WO2011153943A1 - 控制信道小区间干扰规避的方法和基站 - Google Patents

控制信道小区间干扰规避的方法和基站 Download PDF

Info

Publication number
WO2011153943A1
WO2011153943A1 PCT/CN2011/075471 CN2011075471W WO2011153943A1 WO 2011153943 A1 WO2011153943 A1 WO 2011153943A1 CN 2011075471 W CN2011075471 W CN 2011075471W WO 2011153943 A1 WO2011153943 A1 WO 2011153943A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
control channel
time domain
edge
Prior art date
Application number
PCT/CN2011/075471
Other languages
English (en)
French (fr)
Inventor
耿鹏
王明华
刘虎
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011153943A1 publication Critical patent/WO2011153943A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a method and a base station for controlling Inter-Cell Interference Avoiding (ICIC) in a Long Term Evolution (LTE) system.
  • ICIC Inter-Cell Interference Avoiding
  • the LTE system includes the following control channels, a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid automatic repeat request indication channel (Physical hybrid-ARQ). Indicator channel, PHICH) and physical uplink control channel (PUCCH).
  • the PDCCH is used for sending downlink control information, including uplink and downlink scheduling grant indication information, and the like.
  • the PCFICH is used to transmit a control format indicator, and informs the terminal of the number of symbols occupied by the PDCCH.
  • the PHICH is used to transmit a HARQ (Hybrid Aotumatic Repeat Request) indicator.
  • the PUCCH is used to transmit Uplink Control Information (UCI), and the UCI information mainly includes a HARQ indicator and a Channel Quality Indication (CQI).
  • UCI Uplink Control Information
  • CQI Channel Quality Indication
  • the demodulation performance requirements of each control channel are defined in the existing protocol procedures of LTE. For example, as defined in the 36.101 protocol, in the TDD (Time Division Duplex) mode, the PDCCH reaches 1% when two control channel elements (CCEs) are used under the EPA5 (Extended Pedestrian A model) channel condition.
  • CCEs control channel elements
  • EPA5 Extended Pedestrian A model
  • the minimum signal-to-noise ratio (SNR, Signal-to-Noise Ratio) of the target block error rate is 4.2 dB. Furthermore, even with 8 CCEs, it can only be reduced to -1.8dB under white noise conditions.
  • this demodulation threshold is sufficient for application scenarios such as macro cellular networks, it is not enough for some special application scenarios.
  • microcell networks due to small cell radius and large inter-cell interference, result in large inter-cell interference.
  • the SNR of a cell edge terminal may be much lower than -1.8 dB, resulting in the inability of existing LTE systems to be used in such networks.
  • the downlink control channels PCFICH and PHICH also have such problems. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method and a base station for inter-cell interference avoidance of a control channel to avoid inter-cell interference and reduce the minimum demodulation threshold of the control channel.
  • the present invention provides a method for controlling inter-cell interference avoidance in a channel, and the base station performs the following steps:
  • Dividing terminal classes in each cell including edge terminals;
  • the control channel corresponding to each type of terminal scheduling is delivered according to the determined time domain location, wherein the control channel corresponding to the edge terminal scheduling in the small area is transmitted at a greater power than the other types of terminals in the cell.
  • the step of determining, by the base station, the time domain location delivered by the control channel corresponding to each class of terminal scheduling includes:
  • the time domain location delivered by the control channel corresponding to the uplink and downlink scheduling of each cell is divided into N2 groups, and N2 is greater than or equal to N1, and each of the adjacent N1 cells is selected from the N2 group time domain locations.
  • the group or groups of time domain locations are used as the location of the downlink time domain of the control channel corresponding to the edge terminal scheduling in the cell, which is called the edge subframe position of the cell, so that the edge subframe positions of the neighboring cells are staggered.
  • the step of the base station dividing the terminal class in each cell comprises: the base station dividing the terminal class in each cell according to the information measured by the base station or the information reported by the terminal.
  • the step of determining, by the base station, the cell multiplexing coefficient N1 comprises: determining, by the base station, the small cell multiplexing coefficient N1 according to an interference characteristic of a network environment or a timing requirement of a control channel of a system uplink and downlink scheduling.
  • a frame position, a time domain position corresponding to an edge subframe position of another cell is referred to as a central subframe position of each cell;
  • the base station selects a set of time domain positions for each cell as an edge subframe position of the cell, and uses each
  • the cell edge subframe position, the central subframe position, or the central ring subframe position is sent to the control channel corresponding to the cell center terminal scheduling of the corresponding cell, and the central ring terminal in the corresponding cell is delivered by using the edge subframe position or the central ring subframe position of each cell.
  • the corresponding control channel is scheduled.
  • the power transmission of the control channel corresponding to the edge terminal in the cell is greater than that of the other class of the terminal: the transmit power of the control channel corresponding to the edge terminal scheduling in the cell that is sent by the base station is the largest, and the cell is sent.
  • the transmission power of the control channel corresponding to the central terminal scheduling within is minimized.
  • the transmitting power of the control channel corresponding to the edge terminal scheduling in the cell that is sent by the base station is the maximum transmit power of the cell or A fixed transmit power.
  • the base station further includes a transmit power determining step before the base station sends the control channel: the base station determines, according to the combination of the following manners or manners, the transmit power of the control channel corresponding to each type of terminal scheduling: based on the cell pilot transmit power , determined according to a preset offset; or
  • the information reported by the terminal includes reference signal received power (RSRP) or channel quality indicator (CQI) of the local cell and the neighboring cell; and the information measured by the base station includes the uplink channel quality of the terminal measured by the base station.
  • RSRP reference signal received power
  • CQI channel quality indicator
  • the present invention further provides a base station, where the base station includes a terminal class division module, a time domain location determining module, and a control channel delivery module, where
  • the terminal class division module is configured to divide a terminal category in each cell, including a side Edge terminal
  • the time domain location determining module is connected to the terminal class division module, and is configured to determine a time domain location delivered by a control channel corresponding to each class terminal scheduling, so that edge terminals in each neighboring cell are scheduled to be under the corresponding control channel.
  • the time domain location is staggered;
  • the control channel sending module is connected to the time domain location determining module, and is configured to send a control channel corresponding to each class terminal according to the determined time domain location, where the corresponding control channel for the intra-cell edge terminal is greater than The power of other types of terminals in the small area is delivered.
  • the time domain location determining module specifically includes a cell multiplexing coefficient determining submodule and a timely domain location selecting submodule, where:
  • the cell multiplexing coefficient determining submodule is configured to determine a cell multiplexing coefficient N1;
  • the time domain location selection sub-module is connected to the cell multiplexing coefficient determining sub-module, and is configured to divide the time domain location delivered by the control channel corresponding to the uplink and downlink scheduling of each cell into the N2 group, and the N2 is greater than or equal to N1. And selecting, from the N2 group time domain location, a group or groups of time domain locations for each of the neighboring N1 cells as the delivery time domain location of the control channel corresponding to the edge terminal scheduling in the cell, which is called the The edge subframe position of the cell is such that the edge subframe positions of the neighboring cells are staggered.
  • the terminal class division module divides the class of the terminal in each cell according to the information measured by the base station or the information reported by the terminal.
  • the cell multiplexing coefficient determining sub-module determines the cell multiplexing coefficient N1 according to an interference characteristic of a network environment or a timing requirement of a control channel of the system uplink and downlink scheduling.
  • a time domain location corresponding to an edge subframe position of another cell is referred to as a central subframe location of each cell, and the time domain location selection sub-module selects a set of time domain locations as an edge subframe location for each cell,
  • the control channel sending module is further configured to utilize each cell edge subframe position and center.
  • the sub-frame position or the central sub-frame position is sent to the control channel corresponding to the central terminal scheduling in the cell of the corresponding cell, and the control channel corresponding to the ring-end terminal scheduling of the cell corresponding to the cell is delivered by using the edge subframe position of each cell or the intermediate-subframe position .
  • control channel corresponding to the cell edge terminal scheduling sent by the control channel sending module has the largest transmit power, and the control channel corresponding to the central terminal scheduled in the transmitting cell has the lowest transmit power.
  • the edge terminal in the sending cell schedules the transmit power of the corresponding control channel to be the maximum transmit power of the cell.
  • the base station further includes a transmit power determining module, and is connected to the control information sending module, and is configured to determine, according to the combination of the following manners or manners, the transmit power of the control channel corresponding to each type of terminal scheduling:
  • the information reported by the terminal includes reference signal receiving power of the local cell and the neighboring cell.
  • the information measured by the base station includes the uplink channel quality of the terminal measured by the base station.
  • the method and the base station in the present invention offset the downlink control channel corresponding to the neighboring cell edge terminal scheduling in the time domain and combine the power control to reduce the minimum demodulation threshold of the downlink control channel, avoid inter-cell interference, and do not need the terminal to perform some additional Handling and coordination.
  • FIG. 1 is a schematic diagram of a flow of an inter-cell interference avoidance method for a control channel according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a cell planning of 4 times multiplexing provided by an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a module of a base station according to an embodiment of the present invention.
  • the method for controlling inter-cell interference avoidance of the control channel and the main base station of the present invention is to shift the control channel corresponding to the edge terminal scheduling of neighboring cells in the time domain (time division), and combine power control to avoid inter-cell interference and reduce the minimum demodulation threshold of the control channel.
  • the method for inter-cell interference avoidance of the control channel provided by the embodiment of the present invention is implemented by a base station. As shown in FIG. 1, the base station performs the following steps:
  • Step 101 Divide a terminal category in the cell
  • the categories after terminal division include but are not limited to:
  • N3 may be an integer of 1 or more according to the actual network environment.
  • the basis for terminal category division may be but not limited to:
  • the comparison signal is determined according to the Reference Signal Received Power (RSRP) of the local cell and the neighboring cell reported by the terminal; or
  • CQI Channel Quality Indication
  • the judgment may be made according to the uplink channel quality of the terminal measured by the base station.
  • Step 102 Determine a time domain location that is sent by a control channel corresponding to each class of terminal scheduling, so that the time domain location of the control channel corresponding to the neighboring cell edge terminal scheduling is staggered;
  • Step 102 specifically includes:
  • the manner of determining the cell multiplexing coefficient includes but is not limited to: (1)
  • the cell multiplexing coefficient N1 is determined according to the interference characteristics of the network environment.
  • the time domain multiplexing coefficients and periods in different uplink and downlink subframe configurations are different.
  • the number of different uplink subframes in a radio frame directly affects the time domain multiplexing coefficients and periods.
  • the multiplexing period is a maximum of 4 when the multiplexing period is a radio frame, if you need to achieve a larger multiplexing coefficient Need to enlarge the cycle of multiplexing.
  • the cell multiplexing coefficient N1 is determined to determine a group of time-domain staggered by several d-zones.
  • 102c Select one or several groups of time domain locations from each of the neighboring N1 cells in the N2 group time domain location as the time domain location of the control channel corresponding to the cell edge terminal scheduling, For the edge subframe position of the cell, the edge subframe positions of the neighboring cells are staggered;
  • the manner of staggering the time domain location of the control channel corresponding to the edge terminal scheduling of the neighboring cell includes but is not limited to:
  • the neighboring N1 cells uniquely determine the edge from the divided N1 group time domain resource locations.
  • the time domain location (hereinafter referred to as the edge subframe position) is transmitted by the control channel corresponding to the terminal scheduling.
  • the N1 group resources are completely staggered in the time domain, this ensures that the edge subframe positions of the neighboring cells do not overlap, that is, the control channel corresponding to the edge terminal scheduling of one cell does not appear in the same subframe position.
  • a control channel collides with an edge terminal scheduling of a neighboring cell.
  • the cell identity and the time domain location group number may be correspondingly selected according to the sequence, such as the first cell selection in a group of cells participating in the time domain location selection.
  • the first group of time domain locations is selected, the second cell is selected for the second group of time domain locations, and so on.
  • other complex algorithms can be used under the premise that the time domain position is staggered.
  • N2 N1+1 is made:
  • the neighboring N1 cells uniquely determine the edge subframe position from the divided N1+1 group time domain resource locations. Obviously, the edge subframe positions of the N1 cells also do not overlap.
  • Each of the neighboring cells shares the remaining set of resource locations, and is used for each adjacent cell to simultaneously schedule the control channel corresponding to the ring terminal to deliver.
  • the edge subframe position and the ring subframe position are removed, and the remaining downlink subframe positions are referred to as the central subframe position of the cell, and the central subframe position of the cell corresponds to the edge subframe position of other cells. .
  • the edge subframe position of a cell can only collide with the central subframe position of the neighboring cell.
  • the base station may use the number of cell edge terminals of each cell, the radius of the cell, and the network. For the topology structure, the number of time domain location groups selected by the cell edge terminals of each cell (for example, two groups) is adjusted, but it is necessary to ensure that the edge subframe positions of the neighbor cells are staggered and do not overlap.
  • Step 103 Deliver a control channel corresponding to each type of terminal scheduling according to the determined time domain location, where the control channel corresponding to the intra-cell edge terminal scheduling is delivered with a power greater than that of other types of terminals in the cell.
  • the control channel corresponding to the edge terminal scheduling in the small area can only be sent at the edge subframe position and cannot be sent at the non-edge subframe position.
  • the purpose is to strictly ensure that the edge subframe positions of adjacent cells do not collide.
  • the control channel corresponding to the cell center terminal scheduling, and only the timing requirements of the uplink and downlink scheduling need to be met. It can be sent up and down only at the center subframe position; or it can be sent and received in all downlink subframes, including the edge subframe position, the middle ring subframe position, and the center subframe position.
  • the control channel corresponding to the ring terminal scheduling in the cell may be sent up and down only at the central subframe position; or may be sent or received at the central subframe position. To send and drop at the edge sub-frame position.
  • the power delivered by the corresponding control channel of each type of terminal is determined by the following methods:
  • the control channel corresponding to the edge terminal scheduling is delivered with a large transmission power.
  • the determination of the transmission power includes but is not limited to the following modes and possible combinations of the modes:
  • Manner 4 Calculating and determining the control channel corresponding to the edge terminal scheduling according to the RSRP information of the local cell and the neighboring cell reported by the terminal, based on the transmit power of the cell pilot, or the maximum transmit power of the cell, or a fixed transmit power value. Transmit power.
  • the method includes: but is not limited to: calculating a RSRP difference DeltaRSRP between the local cell and the neighboring cell (if there are multiple neighboring cells, it is necessary to comprehensively consider the sum of DeltaRSRP impacts of different neighboring cells), if the smaller the DeltaRSRP, indicating that the edge terminal schedules the corresponding control channel The greater the required transmit power, the less the required transmit power.
  • Manner 5 The cell pilot transmission power, or the maximum transmit power of the cell, or a fixed transmit power value is used as a reference, and the downlink channel quality CQI is used to determine the transmit power of the control channel corresponding to the edge terminal scheduling.
  • the modes include but are not limited to: The lower the CQI, the higher the transmit power required, and the higher the CQI, the smaller the transmit power required.
  • the transmit power of the control channel corresponding to the edge terminal scheduling is determined by referring to the uplink channel quality determination based on the cell pilot transmit power, or the cell maximum transmit power, or a fixed transmit power value.
  • the method includes but is not limited to: The better the uplink channel quality, the smaller the transmission power required, and the worse the uplink channel quality is, the larger the transmission power is.
  • the uplink channel quality may be characterized by, but not limited to, the following parameters: The SNR of the uplink received signal normalized by the terminal transmit power. (2) If the ring terminal in the cell is defined in step 1, the control channel corresponding to the ring terminal scheduling in the cell is delivered with a relatively small transmission power, which is less than or equal to the transmission power scheduled by the edge terminal.
  • Manner 3 Calculate or determine the transmit power of the control channel corresponding to the central ring terminal scheduling according to the RSRP information of the local cell and the neighboring cell reported by the terminal, based on the cell pilot transmit power, or the maximum transmit power or a fixed transmit power value. ;
  • Manner 4 using the pilot transmit power of the cell, or the maximum transmit power or a fixed transmit power value as a reference, refer to the downlink channel quality CQI to calculate and determine the transmit power of the control channel corresponding to the central ring terminal scheduling;
  • Manner 5 The cell pilot transmit power, or the maximum transmit power or a fixed transmit power value is used as a reference.
  • the uplink channel quality is calculated and determined to determine the transmit power of the control channel corresponding to the central ring schedule.
  • the control channel corresponding to the central terminal scheduling is delivered with a small transmission power.
  • the determination of the transmit power includes, but is not limited to, the following combinations of possible ways and manners:
  • Manner 3 Calculate or determine the RSRP information of the local cell and the neighboring cell reported by the terminal based on the cell pilot transmit power, the maximum transmit power, or a fixed transmit power value.
  • the heart terminal schedules the transmit power of the corresponding control channel;
  • Manner 4 using the pilot transmit power of the cell, or the maximum transmit power or a fixed transmit power value as a reference, refer to the downlink channel quality CQI to calculate and determine the transmit power of the control channel corresponding to the central terminal scheduling;
  • Manner 5 For the TDD mode, based on the cell pilot transmit power, or the maximum transmit power or a fixed transmit power value, refer to the uplink channel quality calculation and determine the transmit power of the control channel corresponding to the central terminal schedule.
  • the control channel of the edge terminal is interfered by the control channel of the neighboring cell, and the interference is not used.
  • the technical solution is reduced, thus improving the demodulation performance of the control channel scheduled by the edge terminal.
  • the implementation process of the application instance includes the following steps:
  • All the terminals in the cell are classified according to the RSRP values of the local cell and the neighboring cell reported by the cell, and the cell center terminal set and the cell edge terminal set are obtained.
  • the detailed identification process is as follows:
  • the threshold can be optimized and determined
  • the terminal is considered to be a cell edge terminal
  • the terminal is considered to be a cell center terminal.
  • the above process may also be compared according to the sum of the RSRP of the cell and the RSRP of multiple strong interfering neighboring cells.
  • the process is as follows:
  • the terminal is considered to be a cell edge terminal.
  • L is the L-cell with the strongest RSR ⁇ 1 of the neighboring cell, that is, only the L neighboring cells with the strongest RSRP are reported, and other neighboring cells are ignored;
  • the terminal is considered to be a cell center terminal.
  • the CQI reported by the UE is compared with the set CQI threshold. If it is less than the set CQI threshold, it is determined as an edge UE, and vice versa.
  • the downlink control subframe corresponding to the downlink scheduling in one radio frame (10 ms) is divided into 4 subframe positions. Part for multiplexing by 4 neighboring cells.
  • the four neighboring cells may uniquely determine that one of the subframe positions is an edge subframe position, for example, the edge subframe position of the cell Cell-1 is subframe #1, and the edge subframe position of the cell Cell-2 is subframe #4.
  • the edge subframe position of the cell Cell-3 is subframe #6, and the edge subframe position of the cell Cell-4 is subframe #9.
  • the subframe position delivered by the control channel corresponding to each category of terminal scheduling in the small area has the following characteristics:
  • the edge terminals in each cell can only be scheduled at the edge subframe position, and the edge terminal cannot be scheduled at the central subframe position, otherwise the edge terminal collision may occur;
  • the central terminal in the small area can be scheduled not only at the central subframe position but also at the edge subframe position;
  • All edge terminals in each cell are transmitted with a maximum transmit power P max of the cell, and P max is the maximum transmit power;
  • control channel corresponding to each class of terminal scheduling is sent and received in the determined time domain position with the set power to improve the demodulation performance of the control channel scheduled by the edge terminal, and reduce the minimum demodulation threshold of the control channel.
  • the present invention further provides an embodiment of a base station.
  • the base station includes a terminal class division module 401, a time domain location determining module 402, and a control channel delivery module 403.
  • the terminal class division module 401 is configured to divide each cell terminal category, including a small cell edge terminal;
  • the time domain location determining module 402 is connected to the terminal class partitioning module, and is configured to determine a time domain location delivered by a control channel corresponding to each class of terminal scheduling, so that each neighboring cell edge terminal schedules a corresponding control channel to be sent.
  • the time domain position is staggered;
  • the control channel sending module 403 is configured to be connected to the time domain location determining module, and configured to send a control channel corresponding to each class terminal according to the determined time domain location, where the corresponding control channel is scheduled for the intra-cell edge terminal.
  • the power is delivered to other terminals in the cell.
  • the time domain location determining module 402 specifically includes a cell multiplexing coefficient determining submodule 4021 and a time domain location selecting submodule 4022, where:
  • the cell multiplexing coefficient determining sub-module 4021 is configured to determine a cell multiplexing coefficient N1.
  • the time domain location selecting sub-module 4022 is connected to the cell multiplexing coefficient determining sub-module, and is configured to perform uplink and downlink scheduling of each cell.
  • the location is the location of the downlink time domain of the control channel corresponding to the cell edge terminal scheduling, and is called the edge subframe position of the cell, so that the edge subframe positions of the neighboring cells are staggered.
  • the terminal class division module 401 divides the class of each cell terminal according to the information measured by the base station or the information reported by the terminal.
  • the cell multiplexing coefficient determining sub-module 4021 determines the cell multiplexing coefficient N1 according to the interference characteristic of the network environment or the timing requirement of the control channel of the system uplink and downlink scheduling.
  • the time domain location corresponding to the subframe position is referred to as the central subframe location of each cell
  • the time domain location selection sub-module selects a set of time domain locations as the edge subframe location for each cell
  • the control channel delivery module further
  • the control channel corresponding to the cell center terminal scheduling of the corresponding cell is sent by using the cell edge subframe position, the central subframe position, or the central ring subframe position, and the corresponding cell is sent by using the edge subframe position or the medium ring subframe position of each cell.
  • the cell center terminal schedules the corresponding control channel.
  • the transmit power of the control channel corresponding to the cell edge terminal scheduling delivered by the control channel delivery module 403 is the largest, and the transmit power of the control channel corresponding to the scheduled cell center terminal scheduling is the smallest.
  • the transmit power of the control channel corresponding to the scheduled cell edge terminal scheduling is the maximum transmit power of the cell.
  • the base station further includes a transmit power determining module 404, and is connected to the control information sending module 403, and is configured to determine, according to the combination of the following manners or manners, the transmit power of the control channel corresponding to each type of terminal scheduling:
  • the method of the present invention can be applied to the uplink control channel and the downlink control channel.
  • the present invention is more applicable to the downlink control channel, and the method and the base station of the present invention shift the downlink control channel corresponding to the neighboring cell edge terminal scheduling in the time domain.
  • the power control is combined to reduce the minimum demodulation threshold of the downlink control channel, and the terminal does not need to perform some additional processing and cooperation.
  • multiple antenna reception such as 8 antennas, improving the demodulation performance of the uplink receiver, etc., can be used to reduce the minimum demodulation threshold of the PUCCH, which is not described in detail in the present invention. And description. Industrial applicability
  • the technical problem to be solved by the present invention is to provide a method and a base station for inter-cell interference avoidance of a control channel to avoid inter-cell interference and reduce the minimum demodulation threshold of the control channel.
  • the method and the base station in the present invention offset the downlink control channel corresponding to the neighboring cell edge terminal scheduling in the time domain and combine the power control to reduce the minimum demodulation threshold of the downlink control channel, avoid inter-cell interference, and do not need the terminal to perform some additional Handling and coordination.

Description

控制信道小区间干扰规避的方法和基站
技术领域
本发明涉及移动通信技术领域, 特别涉及到长期演进 (Long Term Evolution, LTE )系统中一种控制信道小区间干扰规避 ( Inter-Cell Interference Avoiding, ICIC ) 的方法和基站。
背景技术
LTE系统包括以下几种控制信道, 物理下行控制信道( Physical downlink control channel, PDCCH ) , 物理控制格式指示信道 ( Physical control format indicator channel , PCFICH ) , 物理混合自动重传请求指示信道 ( Physical hybrid-ARQ indicator channel, PHICH )和物理上行控制信道 ( Physical uplink control channel, PUCCH ) 。 PDCCH用于下行控制信息的下发, 包括上下行 的调度授权指示信息等等。 PCFICH 用于传送控制格式指示符, 通知终端 PDCCH占用的符号个数。 PHICH用于传送 HARQ ( Hybrid Aotumatic Repeat Request )指示符。 PUCCH用于传送上行控制信息( Uplink Control Information, UCI ) , UCI信息主要包括 HARQ指示符以及信道质量指示( Channel Quality Indication, CQI ) 。
LTE 现有协议规程中定义了各个控制信道的解调性能要求。 比如说 36.101协议规程中定义, TDD ( Time Division Duplex )模式下, 两天线端口 在 EPA5 ( Extended Pedestrian A model )信道条件下釆用 2个控制信道粒子 ( Control Channel Element, CCE )时 PDCCH达到 1%的目标误块率的最低信 噪比(SNR, Signal-to-Noise Ratio )解调门限为 4.2dB。 进一步讲, 就算釆用 8个 CCE,在白噪声条件下也只能降低到 -1.8dB。 虽说这个解调门限对于类似 于宏蜂窝网络等应用场景而言已经足够了, 但对于一些特殊的应用场景则远 远不够, 比如说微蜂窝网络, 由于小区半径小, 多小区间干扰大, 导致小区 边缘终端的 SNR可能远低于 -1.8dB,从而导致现有的 LTE系统无法在这样的 网络中应用。 同样, 下行控制信道 PCFICH和 PHICH也存在这样的问题。 发明内容
本发明要解决的技术问题是提供一种控制信道小区间干扰规避的方法和 基站, 以规避小区间干扰, 降低控制信道的最低解调门限。
为解决以上技术问题,本发明提供一种控制信道小区间干扰规避的方法, 基站执行以下步骤:
划分各小区内的终端类别, 其中包括边缘终端;
确定各类别终端调度对应的控制信道下发的时域位置, 使得各相邻的小 区内的边缘终端调度对应的控制信道的下发时域位置错开;
根据确定的时域位置下发各类别终端调度对应的控制信道, 其中, 对于 小区内的边缘终端调度对应的控制信道以大于小区内其它类别终端的功率下 发。
优选地, 所述基站确定各类别终端调度对应的控制信道下发的时域位置 的步骤包括:
确定小区复用系数 N1 ;
将各个小区上下行调度对应的控制信道下发的时域位置划分为 N2组, 且 N2大于等于 N1 ,并从 N2组时域位置中分别为相邻的 N1个小区中的每个 小区选择一组或多组时域位置作为该小区内的边缘终端调度对应的控制信道 的下发时域位置, 称为该小区的边缘子帧位置, 使相邻小区的边缘子帧位置 错开。
优选地, 所述基站划分各小区内的终端类别的步骤包括: 基站根据其测 量的信息或终端上报的信息划分所述各小区内的终端类别。
优选地, 所述基站确定所述小区复用系数 N1 的步骤包括: 所述基站根 据网络环境的干扰特性或系统上下行调度对控制信道的时序要求确定所述小 区复用系数 Nl。
优选地, 所述终端类别还包括小区内的中心终端; N2=N1 , 所述基站为 每个小区选择一组时域位置作为边缘子帧位置, 所述基站利用各小区的边缘 子帧位置或各小区的边缘子帧位置之外的时域位置下发对应小区内的中心终 端调度对应的控制信道。
优选地, 所述终端类别还包括小区内的中心终端和 N3 类小区内的中环 终端; N2=N1+N3 , 各小区内的边缘子帧位置之外的时域位置称为该小区的 中环子帧位置, 与其他小区的边缘子帧位置对应的时域位置称为各小区的中 心子帧位置; 所述基站为每个小区选择一组时域位置作为该小区的边缘子帧 位置, 利用各小区边缘子帧位置、 中心子帧位置或中环子帧位置下发对应小 区的小区中心终端调度对应的控制信道, 利用各小区的边缘子帧位置或中环 子帧位置下发对应小区内的中环终端调度对应的控制信道。
优选地, 所述对于小区内的边缘终端调度对应的控制信道以大于其它类 别终端的功率下发是: 所述基站下发小区内的边缘终端调度对应的控制信道 的发射功率最大, 下发小区内的中心终端调度对应的控制信道的发射功率最 小。
优选地, 在所述根据确定的时域位置下发各类别终端调度对应的控制信 道的步骤中: 所述基站下发小区内的边缘终端调度对应的控制信道的发射功 率为小区最大发射功率或某一固定发射功率。
优选地, 所述基站下发控制信道前, 还包括发射功率确定步骤: 所述基 站根据以下方式或方式的组合确定各类终端调度对应的控制信道的发射功 率: 以小区导频发射功率为基准, 根据预先设置的偏置量确定; 或
以小区导频发射功率、 小区最大发射功率或某一固定发射功率为基准, 根据终端上报的信息或所述基站测量的信息进行确定;
或, 为某一固定发射功率。
优选地, 所述终端上报的信息包括本小区和邻小区的参考信号接收功率 ( RSRP )或信道质量指示 (CQI ) ; 所述基站测量的信息包括基站测量的终 端的上行信道质量。
为解决以上技术问题, 本发明还提供了一种基站, 该基站包括终端类别 划分模块、 时域位置确定模块、 控制信道下发模块, 其中,
所述终端类别划分模块, 设置为划分各小区内的终端类别, 其中包括边 缘终端;
所述时域位置确定模块, 与所述终端类别划分模块连接, 设置为确定各 类别终端调度对应的控制信道下发的时域位置, 使得各邻小区内的边缘终端 调度对应的控制信道的下发时域位置错开;
所述控制信道下发模块, 与所述时域位置确定模块连接, 设置为根据确 定的时域位置下发各类别终端调度对应的控制信道, 其中对于小区内边缘终 端调度对应的控制信道以大于小区内其它类别终端的功率下发。
优选地, 所述时域位置确定模块具体包括小区复用系数确定子模块及时 域位置选择子模块, 其中:
所述小区复用系数确定子模块, 设置为确定小区复用系数 N1 ;
所述时域位置选择子模块, 与所述小区复用系数确定子模块连接, 设置 为将各个小区上下行调度对应的控制信道下发的时域位置划分为 N2组, 且 N2大于等于 N1 , 并从 N2组时域位置中为相邻 N1个小区中的每个小区选择 一组或若干组时域位置作为该小区内的边缘终端调度对应的控制信道的下发 时域位置, 称为该小区的边缘子帧位置, 使相邻小区的边缘子帧位置错开。
优选地, 所述终端类别划分模块根据所述基站测量的信息或终端上报的 信息划分各小区内的终端的类别。
优选地, 所述小区复用系数确定子模块根据网络环境的干扰特性或系统 上下行调度对控制信道的时序要求确定所述小区复用系数 N1。
优选地, 所述终端类别还包括中心终端; N2=N1 , 所述时域位置选择子 模块为每个小区选择一组时域位置作为边缘子帧位置; 所述控制信道下发模 块还设置为利用各小区的边缘子帧位置或各小区的边缘子帧位置之外的时域 位置下发对应小区内的中心终端调度对应的控制信道。
优选地, 所述终端类别还包括小区内的中心终端和 N3 类小区内的中环 终端; N2=N1+N3 , 各小区的边缘子帧位置之外的时域位置称为该小区的中 环子帧位置, 与其他小区的边缘子帧位置对应的时域位置称为各小区的中心 子帧位置, 所述时域位置选择子模块为每个小区选择一组时域位置作为边缘 子帧位置, 所述控制信道下发模块还设置为利用各小区边缘子帧位置、 中心 子帧位置或中环子帧位置下发对应小区的小区内的中心终端调度对应的控制 信道, 利用各小区的边缘子帧位置或中环子帧位置下发对应小区的小区中环 终端调度对应的控制信道。
优选地, 所述控制信道下发模块下发小区边缘终端调度对应的控制信道 的发射功率最大, 下发小区内的中心终端调度对应的控制信道的发射功率最 小。
优选地, 所述下发小区内的边缘终端调度对应的控制信道的发射功率为 小区最大发射功率。
优选地, 所述基站还包括发射功率确定模块, 与所述控制信息下发模块 连接, 设置为根据以下方式或方式的组合确定各类终端调度对应的控制信道 的发射功率:
以小区导频发射功率为基准, 根据预先设置的偏置量确定; 或
以小区导频发射功率、 小区最大发射功率或某一固定发射功率为基准, 根据终端上报的信息或所述基站测量的信息进行确定;
或, 为某一固定发射功率。
优选地, 所述终端上报的信息包括本小区和邻小区的参考信号接收功率
( RSRP )或信道质量指示 (CQI ) , 所述基站测量的信息包括基站测量的终 端的上行信道质量。
本发明方法和基站将相邻小区边缘终端调度对应的下行控制信道在时域 上错开并结合功率控制来降低下行控制信道的最低解调门限, 规避小区间干 扰, 而且不需要终端进行一些额外的处理和配合。 附图概述
图 1是本发明实施方式所提供的控制信道小区间干扰规避方法的流程示 意图; 的示意图;
图 3 是本发明实施方式所提供的 4倍复用的小区规划示意图; 图 4是本发明实施方式所提供的基站的模块结构示意图。
本发明的较佳实施方式
为了提高控制信道的解调性能, 尤其是 LTE系统下行控制信道的解调性 能, 降低下行控制信道达到目标误块率的最低解调门限, 本发明控制信道小 区间干扰规避的方法和基站的主要思想是将相邻小区边缘终端调度对应的控 制信道在时域上错开 (时分) , 并结合功率控制, 以规避小区间干扰, 降低 控制信道的最低解调门限。
本发明实施方式所提供的控制信道小区间干扰规避的方法由基站来实 现, 如图 1所示, 基站执行以下步骤:
步骤 101 : 划分小区内终端类别;
(1)终端划分后的类别包括但不限于:
小区中心 (内部)终端和小区边缘(外部)终端; 或
小区中心终端、 N3类小区中环终端和小区边缘终端; 其中 N3可根据实 际网络环境, 为 1以及 1以上的整数。
(2)终端类别划分的依据可以为但不限于:
根据终端上报的本小区和邻小区的参考信号接收功率(Reference Signal Received Power, RSRP )进行比较判断; 或
根据终端上报的信道质量指示(Channel Quality Indication, CQI )进行判 断; 或
对于 TDD模式, 可以根据基站测量的终端的上行信道质量进行判断。
步骤 102: 确定各类别终端调度对应的控制信道下发的时域位置, 使得 各邻小区边缘终端调度对应的控制信道的下发时域位置错开;
步骤 102具体包括:
102a: 确定小区复用系数 N1 ;
确定小区复用系数的方式包括但不限于: ( 1 )根据网络环境的干扰特性确定小区复用系数 Nl。
比如为了达到同样的控制信道的目标解调性能, 在干扰比较小的区域, 配置的小区复用系数 N1 比较小, 比如 Nl<=3 , 在干扰比较大的区域, 配置 的小区复用系数比较大, 比如 Nl>3。
( 2 ) 根据系统上下行调度对控制信道的时序要求确定小区复用系数
Nl。
特别是 TDD模式下,不同的上下行子帧配置下的时域复用系数与周期是 存在差异的,一个无线帧内不同的上行子帧数直接影响时域复用系数和周期。 比如图 2是 DL (下行链路) : UL (上行链路) =3:2配置下, 复用周期为一 个无线帧时的复用系数最大为 4, 如果需要实现更大的复用系数就需要拉大 复用的周期。
确定小区复用系数 N1是为了确定由几个 d、区组成一个时域错开的组。
102b:将各个小区上下行调度对应的控制信道下发的时域位置划分为 N2 组, 且 N2>=N1 ;
102c: 从 N2组时域位置中为相邻的 N1个小区中的每个 d、区选择一组或 若干组时域位置作为该小区边缘终端调度对应的控制信道的下发时域位置, 称为该小区的边缘子帧位置, 使相邻小区的边缘子帧位置错开;
将相邻小区的边缘终端调度对应的控制信道的下发时域位置错开的方式 包括但不限于:
(1)如果步骤 101中只将终端划分为小区中心终端和小区边缘终端, 则步 骤 102b中, 使得 Ν2=Ν1 , 相邻的 N1个小区从划分的 N1组时域资源位置中 唯一确定其边缘终端调度对应的控制信道下发时域位置 (下面统称为边缘子 帧位置) 。 显然, 由于 N1 组资源在时域上是完全错开的, 这就保证各个相 邻小区的边缘子帧位置不会重叠, 即同一个子帧位置上不会出现一个小区的 边缘终端调度对应的控制信道与相邻小区的边缘终端调度对应的控制信道碰 撞的情况。
为各小区边缘终端选择时域位置时, 优选地, 可以根据小区标识与时域 位置组号依序对应选择, 如参与时域位置选择的一组小区中的第一个小区选 择第一组时域位置, 第二个小区选择第二组时域位置, 依次类推。 当然在满足时域位置错开的前提下, 还可以釆用其他比较复杂的算法。
(2)如果步骤 101中将终端划分为小区中心终端、 小区中环终端和小区边 缘终端, 则步骤 102b中, 使得 N2=N1+1 :
相邻的 N1个小区从划分的 N1+1组时域资源位置中唯一确定边缘子帧位 置。 显然, N1个小区的边缘子帧位置也是不重叠的。
各个相邻小区共享剩余的一组资源位置, 用于各个相邻小区同时调度中 环终端对应的控制信道下发。
各小区中, 除去其边缘子帧位置和其中环子帧位置, 剩余的下行子帧位 置称为该小区的中心子帧位置, 且该小区的中心子帧位置与其他小区的边缘 子帧位置对应。
一个小区的边缘子帧位置只能与相邻小区的中心子帧位置碰撞上。
以上步骤 102c的(1 ) ( 2 )中, 仅为每个小区的小区边缘终端选择了一 组时域位置, 具体应用时, 基站可根据各小区的小区边缘终端的数量、 小区 的半径、 网络拓朴结构等, 分别调整各个小区的小区边缘终端选择的时域位 置组数(如 2组) , 但需要保证各邻小区的边缘子帧位置是错开的、 不重叠 的。
步骤 103: 根据确定的时域位置下发各类别终端调度对应的控制信道, 其中, 对于小区内边缘终端调度对应的控制信道以大于小区内其它类别终端 的功率下发。
小区内边缘终端调度对应的控制信道只能在边缘子帧位置下发, 不能在 非边缘子帧位置下发, 目的是严格保证相邻小区的边缘子帧位置不碰撞。
小区中心终端调度对应的控制信道下发没有严格的要求, 只需要满足上 下行调度的时序要求即可。 可以只在中心子帧位置上下发; 或者可以在所有 的下行子帧上下发, 包括边缘子帧位置、 中环子帧位置和中心子帧位置。
当划分的终端类别包括小区中环终端时, 小区中环终端调度对应的控制 信道可以只在中环子帧位置上下发; 或者既可以在中环子帧位置上下发也可 以在边缘子帧位置上下发。
各类终端的对应的控制信道下发的功率通过以下方式确定:
( 1 )边缘终端调度对应的控制信道以较大的发射功率下发, 发射功率的 确定包括但不限于以下方式及其方式可能的组合:
方式一: 相对于小区导频发射功率 P (导频功率为小区满足覆盖要求的 基准功率)设置一个偏置量 DeltaPl , 边缘终端调度对应的控制信道的发射功 率 Pl=小区导频发射功率 P+ DeltaPl。
方式二: 边缘终端调度对应的控制信道的发射功率为小区的最大发射功 率;
方式三: 边缘终端调度对应的控制信道的发射功率为某一固定发射功率 值;
方式四: 以小区导频发射功率, 或者小区最大发射功率, 或者某一固定 发射功率值为基准, 根据终端上报的本小区和邻小区的 RSRP信息计算并判 断确定边缘终端调度对应的控制信道的发射功率。 方式包括但不限于: 计算 本小区与邻小区的 RSRP差值 DeltaRSRP (如果有多个相邻小区需要综合考 虑不同邻小区的 DeltaRSRP影响之和) , 如果 DeltaRSRP越小表明边缘终端 调度对应的控制信道需要的发射功率越大, 否则需要的发射功率越小。
方式五: 以小区导频发射功率, 或者小区最大发射功率, 或者某一固定 发射功率值为基准, 参考下行信道质量 CQI判断确定边缘终端调度对应的控 制信道的发射功率。 方式包括但不限于: CQI越低需要的发射功率越大, CQI 越高需要的发射功率越小。
方式六:对于 TDD模式,以小区导频发射功率,或者小区最大发射功率, 或者某一固定发射功率值为基准, 参考上行信道质量判定确定边缘终端调度 对应的控制信道的发射功率。 方式包括但不限于: 上行信道质量越好需要的 发射功率越小、 上行信道质量越差需要的发射功率越大。 上行信道质量可以 由以下但不限于以下参数进行表征: 终端发射功率归一化下的上行接收信号 的 SNR。 (2)如果步骤 1中定义小区中环终端, 则小区中环终端调度对应的控制信 道以相对较小的发射功率下发, 小于等于边缘终端调度的发射功率。 发射功 方式一: 相对于小区导频发射功率 P (导频功率为小区满足覆盖要求的 基准功率 )设置一个偏置量 DeltaP2, 中环终端调度对应的控制信道的发射功 率 P2=小区导频发射功率 P+ DeltaP2。
方式二: 中环终端调度对应的控制信道的发射功率为某一固定发射功率 值;
方式三: 以小区导频发射功率, 或者最大发射功率或者某一固定发射功 率值为基准, 根据终端上报的本小区和邻小区的 RSRP信息计算或者判断确 定中环终端调度对应的控制信道的发射功率;
方式四: 以小区导频发射功率, 或者最大发射功率或者某一固定发射功 率值为基准, 参考下行信道质量 CQI计算并判断确定中环终端调度对应的控 制信道的发射功率;
方式五: 以小区导频发射功率, 或者最大发射功率或者某一固定发射功 率值为基准,对于 TDD模式, 参考上行信道质量计算并判断确定中环终端调 度对应的控制信道的发射功率。
(3)中心终端调度对应的控制信道以较小的发射功率下发。 发射功率的确 定包括但不限于以下方式及其方式可能的组合:
方式一: 相对于小区导频发射功率 P (导频功率为小区满足覆盖要求的 基准功率 )设置一个偏置量 DeltaP3 , 中心终端调度对应的控制信道的发射功 率 P3=小区导频发射功率 P+ DeltaP2。
方式二: 中心终端调度对应的控制信道的发射功率为某一固定发射功率 值;
方式三: 以小区导频发射功率、 最大发射功率或者某一固定发射功率值 为基准, 根据终端上报的本小区和邻小区的 RSRP信息计算或者判断确定中 心终端调度对应的控制信道的发射功率;
方式四: 以小区导频发射功率, 或者最大发射功率或者某一固定发射功 率值为基准, 参考下行信道质量 CQI计算并判断确定中心终端调度对应的控 制信道的发射功率;
方式五: 对于 TDD模式, 以小区导频发射功率, 或者最大发射功率或者 某一固定发射功率值为基准, 参考上行信道质量计算并判断确定中心终端调 度对应的控制信道的发射功率。
本发明的上述实施例中, 对于每一个小区的边缘终端, 因为对应时刻相 邻小区的控制信道的发射功率减少了, 该边缘终端的控制信道受到邻小区控 制信道的干扰相对于不釆用该技术方案减少了, 这样就提高边缘终端调度的 控制信道的解调性能。
需要说明的是: 由于对小区内的所有终端进行了类别的划分, 并限制了 边缘终端只能在边缘子帧位置上调度, 则必然会对系统调度算法、 边缘终端 和中心终端的服务质量(Quality of Service, QoS )保证等等带来影响, 但这 并不影响系统的实现, 也不影响对系统性能的优化。
应用实例:
下面以只分小区边缘终端和小区中心终端为例具体给出一种下行控制信 道小区间干扰规避的技术方案。 其他详细实现方案可以类推。
该应用实例的实现流程包括以下步骤:
1、 划分小区内终端类别;
对小区内所有的终端根据其上报的本小区和邻小区的 RSRP值进行分 类, 得到小区中心终端集合和小区边缘终端集合。 详细判别流程如下:
(1)假设终端上报的本小区的 RSRP值为 RSRPS ,上报的邻小区的 RSRP值 为 RSRPn
(2)定义一个小区边缘终端和小区中心终端划分的门限 , 该门限值 可以优化确定;
(3)如果 RSR^—RSRPn≤ ARSRP , 则认为该终端为小区边缘终端;
(4)如果 RSR^—RSRPn > ARSRP , 则认为该终端为小区中心终端。
上述过程也可以根据本小区 RSRP与多个强干扰邻小区的 RSRP之和进 行比较判断, 过程如下:
(1)假设终端上报的本小区的 RSRP值为 RSRPS ,上报的邻小区的 RSRP值 为 RSRPn
(2)定义一个小区边缘终端和小区中心终端划分的门限 SRP' , 该门限值 可以优化确定;
(3)如果 RSR^ -∑RSRPn≤ ARSRP' , 则认为该终端为小区边缘终端。 其中 L 表示相邻小区 RSR^ 1最强的 L个小区, 即只考虑上报 RSRP最强的 L个相邻 小区, 其它相邻小区忽略不计;
(4)如果 RSR^ - RSRPn≤ ARSRP' , 则认为该终端为小区中心终端。
比如釆用 CQI为依据, 根据 UE上报的 CQI, 与设定的 CQI门限进行比 较, 如果小于该设定的 CQI门限, 则判定为边缘 UE, 反之, 则为中心 UE。
2、 确定小区复用系数;
这里假设实际网络环境中 1个小区可能会受到 3个相邻小区的强干扰, 这样就需要达到 1 : 4的小区复用, 即复用系数 N=4, 复用的小区规划示意图 如图 3所示。
3、 确定小区内控制信道下发的时域位置;
这里以 TDD模式上下行子帧配置 2为例, 并以上行调度时序为基础,按 照图 2所示, 将一个无线帧 (10ms ) 内的下行调度对应的控制信道下发子帧 位置划分成 4个部分, 供 4个相邻小区复用。 4个相邻小区可以唯一确定其 中的一个子帧位置为边缘子帧位置,如小区 Cell— 1的边缘子帧位置为子帧 #1 , 小区 Cell— 2的边缘子帧位置为子帧 #4,小区 Cell— 3的边缘子帧位置为子帧 #6, 小区 Cell— 4的边缘子帧位置为子帧 #9。 对于小区 Cell— 1而言, 在 10ms的一 个无线帧上只有一个边缘子帧位置 #1 , 其他的控制信道下发子帧 #4、 子帧 #6 和子帧 #9为中心子帧位置。 这样就确保了相邻小区的边缘子帧位置在时域上 是完全错开的, 只可能出现一个小区的边缘子帧位置碰撞相邻小区的中心子 帧位置。 由于下行调度不需要支持上行反馈 PHICH的周期, 因此对控制信道 的时序要求相对简单, 比较容易实现, 其原理跟上行调度时序分析是一样的, 这里就不再详细描述了。 另外, 上述分析, 同样也适用于动态广播调度、 寻 呼调度和随机接入调度。 小区内各个类别终端调度对应的控制信道下发的子帧位置具有如下特 点:
各个小区内边缘终端只能在边缘子帧位置上调度, 在中心子帧位置不能 调度边缘终端, 否则会出现边缘终端碰撞的情况;
小区内中心终端不仅可以在中心子帧位置上调度也可以在边缘子帧位置 上调度;
4、设置小区内各个类别终端调度对应的控制信道下发的功率。 具体流程 下:
各个小区内所有边缘终端以小区最大发射功率 Pmax发射, Pmax为最大发射 功率;
所有小区中心终端以某一个固定的功率值 进行发射, 其中 Pset = Ρ^ - ΑΡ , ΔΡ为小区中心终端相对于小区边缘终端的功率偏置。
5、以设置的功率在确定的时域位置上下发各类别终端调度对应的控制信 道, 以提高边缘终端调度的控制信道的解调性能, 降低控制信道的最低解调 门限。
为了实现以上方法, 本发明还提供了一种基站的实施例, 如图 4所示, 该基站包括终端类别划分模块 401、 时域位置确定模块 402、控制信道下发模 块 403 , 其中,
所述终端类别划分模块 401 , 设置为划分各小区终端类别, 其中包括小 区边缘终端;
所述时域位置确定模块 402 , 与所述终端类别划分模块连接, 设置为确 定各类别终端调度对应的控制信道下发的时域位置, 使得各邻小区边缘终端 调度对应的控制信道的下发时域位置错开; 所述控制信道下发模块 403 , 与所述时域位置确定模块连接, 设置为根 据确定的时域位置下发各类别终端调度对应的控制信道, 其中对于小区内边 缘终端调度对应的控制信道以大于小区内其它类别终端的功率下发。
所述时域位置确定模块 402具体包括小区复用系数确定子模块 4021及时 域位置选择子模块 4022, 其中:
所述小区复用系数确定子模块 4021 , 设置为确定小区复用系数 N1; 所述时域位置选择子模块 4022, 与所述小区复用系数确定子模块连接, 设置为将各个小区上下行调度对应的控制信道下发的时域位置划分为 N2组, 且 Ν2>=Ν1 , 并从 N2组时域位置中为相邻 N1个小区中的每个 d、区选择一组 或若干组时域位置作为该小区边缘终端调度对应的控制信道的下发时域位 置, 称为该小区的边缘子帧位置, 使相邻小区的边缘子帧位置错开。
其中, 所述终端类别划分模块 401根据所述基站测量的信息或终端上报 的信息划分各小区终端的类别。
所述小区复用系数确定子模块 4021 根据网络环境的干扰特性或系统上 下行调度对控制信道的时序要求确定所述小区复用系数 N1。
所述终端类别还包括小区中心终端; N2=N1 , 所述时域位置选择子模块 为每个小区选择一组时域位置作为边缘子帧位置; 所述控制信道下发模块还 设置为利用各小区的边缘子帧位置或各小区的边缘子帧位置之外的时域位置 下发对应小区的小区中心终端调度对应的控制信道。
所述终端类别还包括小区中心终端和 N3类小区中环终端; N2=N1+N3 , 各小区的边缘子帧位置之外的时域位置称为所有小区的中环子帧位置, 与其 他小区的边缘子帧位置对应的时域位置称为各小区的中心子帧位置, 所述时 域位置选择子模块为每个小区选择一组时域位置作为边缘子帧位置, 所述控 制信道下发模块还设置为利用各小区边缘子帧位置、 中心子帧位置或中环子 帧位置下发对应小区的小区中心终端调度对应的控制信道, 利用各小区的边 缘子帧位置或中环子帧位置下发对应小区的小区中环终端调度对应的控制信 道。
所述控制信道下发模块 403下发小区边缘终端调度对应的控制信道的发 射功率最大, 下发小区中心终端调度对应的控制信道的发射功率最小。
所述下发小区边缘终端调度对应的控制信道的发射功率为小区最大发射 功率。 所述基站还包括发射功率确定模块 404, 与所述控制信息下发模块 403 连接, 设置为根据以下方式或方式的组合确定各类终端调度对应的控制信道 的发射功率:
以小区导频发射功率为基准, 根据预先设置的偏置量确定; 或
以小区导频发射功率、 小区最大发射功率或某一固定发射功率为基准, 根据终端上报的信息或所述基站测量的信息进行计算并判断后确定;
或为某一固定发射功率。 本发明方法, 可以应用于上行控制信道及下行控制信道, 优选地, 本发 明更适用于下行控制信道, 本发明方法和基站将相邻小区边缘终端调度对应 的下行控制信道在时域上错开并结合功率控制来降低下行控制信道的最低解 调门限, 而且不需要终端进行一些额外的处理和配合。 另外, 对于上行控制 信道 PUCCH而言, 还可以在接收端釆用多天线接收, 比如说 8天线, 提高 上行接收机的解调性能等等来降低 PUCCH的最低解调门限, 本发明不作详 细介绍和描述。 工业实用性
本发明要解决的技术问题是提供一种控制信道小区间干扰规避的方法和 基站, 以规避小区间干扰, 降低控制信道的最低解调门限。 本发明方法和基 站将相邻小区边缘终端调度对应的下行控制信道在时域上错开并结合功率控 制来降低下行控制信道的最低解调门限, 规避小区间干扰, 而且不需要终端 进行一些额外的处理和配合。

Claims

权 利 要 求 书
1、 一种控制信道小区间干扰规避的方法, 包括: 基站执行以下步骤: 划分各小区内的终端类别, 其中包括边缘终端;
确定各类别终端调度对应的控制信道下发的时域位置, 使得各相邻的小 区内的边缘终端调度对应的控制信道的下发时域位置错开;
根据确定的时域位置下发各类别终端调度对应的控制信道, 其中, 对于 小区内的边缘终端调度对应的控制信道以大于小区内其它类别终端的功率下 发。
2、 如权利要求 1所述的方法,其中, 所述基站确定各类别终端调度对应 的控制信道下发的时域位置的步骤包括:
确定小区复用系数 N1 ;
将各个小区上下行调度对应的控制信道下发的时域位置划分为 N2组, 且 N2大于等于 N1 ,并从 N2组时域位置中分别为相邻的 N1个小区中的每个 小区选择一组或多组时域位置作为该小区内的边缘终端调度对应的控制信道 的下发时域位置, 称为该小区的边缘子帧位置, 使相邻小区的边缘子帧位置 错开。
3、 如权利要求 1所述的方法,其中: 所述基站划分各小区内的终端类别 的步骤包括: 基站根据其测量的信息或终端上报的信息划分所述各小区内的 终端类别。
4、 如权利要求 2 所述的方法, 其中: 所述基站确定所述小区复用系数 N1的步骤包括:所述基站根据网络环境的干扰特性或系统上下行调度对控制 信道的时序要求确定所述小区复用系数 Nl。
5、 如权利要求 2所述的方法,其中: 所述终端类别还包括小区内的中心 终端; N2=N1 , 所述基站为每个小区选择一组时域位置作为所述边缘子帧位 置, 所述基站利用各小区的边缘子帧位置或各小区的边缘子帧位置之外的时 域位置下发对应小区内的中心终端调度对应的控制信道。
6、 如权利要求 2所述的方法,其中: 所述终端类别还包括小区内的中心 终端和 N3类小区内的中环终端; N2=N1+N3 , 各小区内的边缘子帧位置之外 的时域位置称为该小区的中环子帧位置, 与其他小区的边缘子帧位置对应的 时域位置称为各小区的中心子帧位置; 所述基站为每个小区选择一组时域位 置作为该小区的边缘子帧位置, 利用各小区边缘子帧位置、 中心子帧位置或 中环子帧位置下发对应小区内的中心终端调度对应的控制信道, 利用各小区 的边缘子帧位置或中环子帧位置下发对应小区的小区内的中环终端调度对应 的控制信道。
7、 如权利要求 6所述的方法,其中, 所述对于小区内的边缘终端调度对 应的控制信道以大于其它类别终端的功率下发是: 所述基站下发小区内的边 缘终端调度对应的控制信道的发射功率最大, 下发小区内的中心终端调度对 应的控制信道的发射功率最小。
8、 如权利要求 1所述的方法,其中,在所述根据确定的时域位置下发各 类别终端调度对应的控制信道的步骤中: 所述基站下发小区内的边缘终端调 度对应的控制信道的发射功率为小区最大发射功率或某一固定发射功率。
9、 如权利要求 1所述的方法, 其中: 所述基站下发控制信道前, 还包括 发射功率确定步骤: 所述基站根据以下方式或方式的组合确定各类终端调度 对应的控制信道的发射功率:
以小区导频发射功率为基准, 根据预先设置的偏置量确定; 或
以小区导频发射功率、 小区最大发射功率或某一固定发射功率为基准, 根据终端上报的信息或所述基站测量的信息进行确定; 或
为某一固定发射功率。
10、 如权利要求 3或 9所述的方法, 其中: 所述终端上报的信息包括本 小区和邻小区的参考信号接收功率(RSRP )或信道质量指示 (CQI ) ; 所述 基站测量的信息包括基站测量的终端的上行信道质量。
11、 一种基站, 包括终端类别划分模块、 时域位置确定模块、 控制信道 下发模块, 其中, 所述终端类别划分模块设置为划分各小区内的终端类别, 其中包括边缘 终端;
所述时域位置确定模块与所述终端类别划分模块连接, 所述时域位置确 定模块设置为确定各类别终端调度对应的控制信道下发的时域位置, 使得各 邻小区内的边缘终端调度对应的控制信道的下发时域位置错开;
所述控制信道下发模块与所述时域位置确定模块连接, 所述控制信道下 发模块设置为根据确定的时域位置下发各类别终端调度对应的控制信道, 其 中对于小区内的边缘终端调度对应的控制信道以大于小区内其它类别终端的 功率下发。
12、 如权利要求 11所述的基站,其中, 所述时域位置确定模块具体包括 小区复用系数确定子模块及时域位置选择子模块, 其中:
所述小区复用系数确定子模块设置为确定小区复用系数 N1;
所述时域位置选择子模块与所述小区复用系数确定子模块连接, 所述时 域位置选择子模块设置为将各个小区上下行调度对应的控制信道下发的时域 位置划分为 N2组, 且 N2大于等于 N1 , 并从 N2组时域位置中为相邻 N1个 小区中的每个小区选择一组或若干组时域位置作为该小区内的边缘终端调度 对应的控制信道的下发时域位置, 称为该小区的边缘子帧位置, 使相邻小区 的边缘子帧位置错开。
13、 如权利要求 11所述的基站,其中: 所述终端类别划分模块根据所述 基站测量的信息或终端上报的信息划分各小区内的终端的类别。
14、 如权利要求 12所述的基站,其中: 所述小区复用系数确定子模块根 据网络环境的干扰特性或系统上下行调度对控制信道的时序要求确定所述小 区复用系数 Nl。
15、 如权利要求 12所述的基站, 其中: 所述终端类别还包括中心终端; N2=N1, 所述时域位置选择子模块是设置成为每个小区选择一组时域位置作 为边缘子帧位置; 所述控制信道下发模块还设置为利用各小区的边缘子帧位 置或各小区的边缘子帧位置之外的时域位置下发对应小区内的中心终端调度 对应的控制信道。
16、 如权利要求 12所述的基站,其中: 所述终端类别还包括小区内的中 心终端和 N3类小区内的中环终端; N2=N1+N3 , 各小区的边缘子帧位置之外 的时域位置称为该小区的中环子帧位置, 与其他小区的边缘子帧位置对应的 时域位置称为各小区的中心子帧位置, 所述时域位置选择子模块为每个小区 选择一组时域位置作为边缘子帧位置, 所述控制信道下发模块是设置为利用 各小区内的边缘子帧位置、 中心子帧位置或中环子帧位置下发对应小区内的 中心终端调度对应的控制信道, 利用各小区的边缘子帧位置或中环子帧位置 下发对应小区内的中环终端调度对应的控制信道。
17、 如权利要求 16所述的基站,其中:所述控制信道下发模块是设置为: 下发小区内的边缘终端调度对应的控制信道的发射功率最大, 下发小区内的 中心终端调度对应的控制信道的发射功率最小。
18、 如权利要求 10所述的基站,其中, 所述下发边缘终端调度对应的控 制信道的发射功率为小区最大发射功率。
19、 如权利要求 10所述的基站,其中: 所述基站还包括发射功率确定模 块, 与所述控制信息下发模块连接, 所述发射功率确定模块设置为根据以下 方式或方式的组合确定各类终端调度对应的控制信道的发射功率:
以小区导频发射功率为基准, 根据预先设置的偏置量确定; 或
以小区导频发射功率、 小区最大发射功率或某一固定发射功率为基准, 根据终端上报的信息或所述基站测量的信息进行确定; 或
为某一固定发射功率。
20、 如权利要求 13或 19所述的基站, 其中: 所述终端上报的信息包括 本小区和邻小区的参考信号接收功率(RSRP )或信道质量指示 (CQI ) , 所 述基站测量的信息包括基站测量的终端的上行信道质量。
PCT/CN2011/075471 2010-06-10 2011-06-08 控制信道小区间干扰规避的方法和基站 WO2011153943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010199590.7 2010-06-10
CN2010101995907A CN102281648A (zh) 2010-06-10 2010-06-10 控制信道小区间干扰规避的方法和基站

Publications (1)

Publication Number Publication Date
WO2011153943A1 true WO2011153943A1 (zh) 2011-12-15

Family

ID=45097545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075471 WO2011153943A1 (zh) 2010-06-10 2011-06-08 控制信道小区间干扰规避的方法和基站

Country Status (2)

Country Link
CN (1) CN102281648A (zh)
WO (1) WO2011153943A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068046A (zh) * 2011-10-18 2013-04-24 中兴通讯股份有限公司 一种上行控制信息资源分配的方法、装置和基站
CN102523586A (zh) * 2011-12-19 2012-06-27 大唐移动通信设备有限公司 一种基于控制信道的小区干扰抑制方法和设备
WO2014056149A1 (zh) * 2012-10-09 2014-04-17 华为技术有限公司 干扰协调的方法及装置
CN104145516B (zh) * 2012-12-31 2018-10-19 华为技术有限公司 一种上行信道干扰协调方法、基站及集中式设备
CN104581836B (zh) * 2013-10-29 2020-04-28 中兴通讯股份有限公司 一种提高lte系统抗测距仪干扰能力的方法及设备
CN104955157A (zh) * 2014-03-27 2015-09-30 成都鼎桥通信技术有限公司 一种小区间下行干扰协调的方法和设备
CN106912112B (zh) * 2015-12-22 2019-10-29 中国联合网络通信集团有限公司 一种调度方法及基站
CN105959959A (zh) * 2016-06-16 2016-09-21 北京汇通金财信息科技有限公司 基站以及基站横连网系统中的干扰协调方法
CN109804696A (zh) * 2016-10-12 2019-05-24 华为技术有限公司 一种调度终端的方法以及基站
CN109302742A (zh) * 2017-07-24 2019-02-01 普天信息技术有限公司 轨道交通车地无线通信系统的干扰协调方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079663A (zh) * 2006-05-24 2007-11-28 方正通信技术有限公司 降低无线蜂窝系统邻小区干扰的方法、基站及系统
CN101287261A (zh) * 2007-04-13 2008-10-15 中兴通讯股份有限公司 一种测量宽带无线信道质量的方法
CN101472323A (zh) * 2007-12-26 2009-07-01 华为技术有限公司 一种下行控制信道分配方法、系统和装置
CN101534285A (zh) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 一种参考信号的发送方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043693B (zh) * 2006-03-23 2011-05-11 华为技术有限公司 一种在小区间消除干扰的方法及系统
CN101064865A (zh) * 2006-04-29 2007-10-31 上海原动力通信科技有限公司 蜂窝移动通信系统的资源调度方法和装置
CN101494895B (zh) * 2008-01-22 2010-12-08 中兴通讯股份有限公司 一种小区间干扰协调的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079663A (zh) * 2006-05-24 2007-11-28 方正通信技术有限公司 降低无线蜂窝系统邻小区干扰的方法、基站及系统
CN101287261A (zh) * 2007-04-13 2008-10-15 中兴通讯股份有限公司 一种测量宽带无线信道质量的方法
CN101472323A (zh) * 2007-12-26 2009-07-01 华为技术有限公司 一种下行控制信道分配方法、系统和装置
CN101534285A (zh) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 一种参考信号的发送方法

Also Published As

Publication number Publication date
CN102281648A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
US11483784B2 (en) Transmission and reception of synchronization signal blocks in a wireless network
US10560849B2 (en) Cell clustering based configuration of flexible time division duplex communication
US20210337485A1 (en) Method and apparatus for controlling ue transmission power in wireless communication system
WO2011153943A1 (zh) 控制信道小区间干扰规避的方法和基站
US9826536B2 (en) Interference suppression method and related device and system
KR101909043B1 (ko) 분산 안테나 시스템에서 간섭 측정 방법 및 장치
US9854600B2 (en) Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor
KR101411345B1 (ko) 셀-간 간섭 조정을 위한 방법 및 디바이스
US20170238320A1 (en) Radio base station and user terminal
TW201808051A (zh) 設備到設備通訊系統中基於優先順序的資源選擇
US20150016350A1 (en) Resource requests in small cell networks
KR101510090B1 (ko) 셀룰러 통신 네트워크에서 셀간 간섭 조정을 위한 방법, 셀룰러 통신 네트워크의 네트워크 구성요소, 및 셀룰러 통신 네트워크
US20110217985A1 (en) Predictive short-term channel quality reporting utilizing reference signals
CN103733675A (zh) 在异构网络中改善无线设备性能
EP3619934A1 (en) Enabling exchange of information on radio frame configuration in neighbor cells
MX2014006518A (es) Utilizacion eficiente del espectro con subtramas casi en blanco.
JP2014524182A (ja) 直交周波数分割多元接続移動通信システムにおいてダウンリンク干渉測定方法及び装置
US20140376517A1 (en) Opportunistic activation of relays in cloud radio access networks
US20190254043A1 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (noma) scheme
WO2017059572A1 (zh) 一种干扰指示方法及装置
CN104023382A (zh) 同频全双工系统中的功率控制方法及基站
US11622333B2 (en) User equipment group selection for direct link or sidelink packet transmission in broadcast
KR20160037766A (ko) 무선 자원 할당과 사용을 관리하는 방법 및 장치, 데이터를 비면허 대역의 채널을 통해 전송하는 방법 및 장치, 그리고 무선 자원 접근을 관리하는 방법 및 장치
US9584194B2 (en) Method and apparatus for cancelling interference
US20110103365A1 (en) Fractional frequency reuse in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791933

Country of ref document: EP

Kind code of ref document: A1