WO2011152356A1 - Polishing agent and polishing method - Google Patents

Polishing agent and polishing method Download PDF

Info

Publication number
WO2011152356A1
WO2011152356A1 PCT/JP2011/062387 JP2011062387W WO2011152356A1 WO 2011152356 A1 WO2011152356 A1 WO 2011152356A1 JP 2011062387 W JP2011062387 W JP 2011062387W WO 2011152356 A1 WO2011152356 A1 WO 2011152356A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
layer
agent
insulating layer
Prior art date
Application number
PCT/JP2011/062387
Other languages
French (fr)
Japanese (ja)
Inventor
竹宮 聡
靖之 高木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2011152356A1 publication Critical patent/WO2011152356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/06Other polishing compositions
    • C09G1/14Other polishing compositions based on non-waxy substances
    • C09G1/18Other polishing compositions based on non-waxy substances on other substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to an abrasive used in a manufacturing process of a semiconductor integrated circuit device (hereinafter sometimes referred to as a semiconductor device) and a polishing method. More particularly, the present invention relates to an abrasive for chemical mechanical polishing suitable for forming and planarizing a buried metal wiring, and a polishing method using the same.
  • copper As a wiring material, copper has attracted attention because of its low specific resistance and superior electromigration resistance compared to conventionally used aluminum alloys. Copper has a low vapor pressure of its chloride gas, and it is difficult to process into a wiring shape by reactive ion etching (RIE), so a damascene method is used to form wiring.
  • RIE reactive ion etching
  • CMP Chemical Mechanical Polishing
  • a barrier layer made of a tantalum compound such as tantalum, tantalum alloy or tantalum nitride is formed in order to prevent diffusion of copper into the insulating layer. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion where copper is embedded.
  • CMP the barrier layer is very hard compared to copper, a sufficient polishing rate cannot often be obtained. Therefore, as shown in FIG. 1, a two-step polishing method has been proposed which includes a first polishing step for removing an excess metal wiring layer and a second polishing step for removing an excess barrier layer.
  • FIG. 1 is a cross-sectional view showing a method of forming a buried wiring by CMP.
  • FIG. 1 (a) is before polishing
  • FIG. 1 (b) is after the first polishing step for removing the excess metal wiring layer
  • FIG. 1 (c) is in the middle of the second polishing step for removing the excess barrier layer.
  • FIG. 1 (d) shows the state after the second polishing step.
  • a cap layer made of an insulating material such as silicon dioxide may be formed between the insulating layer and the barrier layer.
  • FIG. 1A to FIG. 1D illustrate the case where there is a cap layer.
  • the cap layer may not be provided.
  • a groove for forming the buried wiring is formed in the insulating layer 2 on the substrate 1.
  • an excess portion of the metal wiring layer 5 is removed in a first polishing step.
  • an excess portion of the barrier layer 4 is removed in the second polishing step.
  • the metal wiring layer 5 called dishing 6 is reduced as shown in FIG. Therefore, in the second polishing step, as shown in FIG. 1 (c), the excess portion of the barrier layer 4 is completely removed, the cap layer 3 is further removed, and as shown in FIG. 1 (d), If necessary, it is necessary to cut the insulating layer 2 so as to have the same height (level) as the metal wiring layer 5 to achieve a high level of flatness.
  • the copper buried wiring 7 is formed.
  • FIG. 1D shows a state in which the cap layer 3 is completely removed and flattened.
  • CMP using a conventional abrasive has a problem that dishing and erosion of copper embedding (metal wiring layer 5) increase.
  • dishing refers to a state in which the metal wiring layer 5 is excessively polished and the central portion is depressed as indicated by reference numeral 6 in FIG. 1C and FIG. 2, and is likely to occur in a wide wiring portion. .
  • Erosion is likely to occur in thin wiring portions or dense wiring portions.
  • the erosion is an insulating layer of the wiring portion as compared with the insulating layer portion (Global portion) 9 having no wiring pattern. 2 is a phenomenon in which the insulating layer 2 is partially thinned due to excessive polishing. That is, an erosion 8 portion polished further than the polishing portion 10 of the global portion 9 is generated.
  • the cap layer 3 and the barrier layer 4 are not shown.
  • the polishing rate of the barrier layer 4 is lower than the polishing rate of the metal wiring layer 5, so that the copper in the wiring part is excessively polished while the barrier layer 4 is polished and removed, resulting in large dishing. 6 had occurred.
  • the polishing pressure applied to the barrier layer 4 and the insulating layer 2 below the high-density wiring portion is higher than that of the portion having a low wiring density, the degree of progress of polishing in the second polishing step is larger due to the wiring density. Different. As a result, the insulating layer 2 in the high-density wiring portion was excessively polished, and a large erosion 8 was generated. When dishing 6 or erosion 8 occurs, there is a problem that wiring resistance increases and electromigration easily occurs, and the reliability of the device is lowered.
  • the tantalum and tantalum compound used as the barrier layer 4 are difficult to chemically etch and have a higher hardness than copper, so that removal by mechanical polishing is not easy. If the hardness of the abrasive grains is increased in order to increase the polishing rate of the barrier layer 4, scratches are generated in the copper wiring having a lower hardness, and problems such as electrical defects are likely to occur. Further, when the concentration (content ratio) of abrasive grains in the abrasive is increased, it becomes difficult to maintain the dispersed state of the abrasive grains in the abrasive, resulting in problems such as sedimentation and gelation over time. Likely to happen.
  • BTA benzotriazole
  • Non-Patent Document 1 a corrosion inhibitor for copper and copper alloys
  • BTA benzotriazole
  • Non-Patent Document 1 a corrosion inhibitor for copper and copper alloys
  • BTA forms a dense film on the surface of copper and copper alloys, suppresses redox reactions to prevent etching, and is known to be effective as an additive for preventing dishing of copper wiring parts.
  • the use of a water-soluble polymer as a protective film forming agent for suppressing the dishing 6 of the metal wiring layer 5 has been studied. That is, the polishing rate ratio (metal layer / barrier layer) between the metal wiring layer 5 and the barrier layer 4 is large for the purpose of suppressing polishing of the barrier layer 4 and the insulating layer 2 while polishing and removing copper at high speed.
  • An abrasive having a large polishing rate ratio (metal layer / insulating layer) between the metal wiring layer 5 and the insulating layer 2 has been developed (see, for example, Patent Document 2).
  • these abrasives all relate to the first polishing step for polishing and removing the metal wiring layer 5 such as the copper wiring layer, and in the second polishing step, the cap layer 3 is removed at a high speed, and An abrasive that satisfies the requirement to suppress the polishing of the insulating layer 2 made of a low dielectric constant material as much as possible has not yet been found.
  • the barrier layer 4 is polished at a high speed in the second polishing step, and the metal wiring layer 5 is polished at an appropriate polishing rate. Furthermore, it is required to highly planarize the insulating layer 2 while cutting it.
  • the polishing agent for the first polishing step is mainly required to polish the metal wiring layer 5 at a high polishing rate, whereas the polishing agent for the second polishing step has a high barrier layer 4. Polishing at a polishing rate and polishing the insulating layer 2 at a higher polishing rate than the metal wiring layer 5 are required, and the required characteristics of both are greatly different.
  • the role of the second polishing step in CMP is to completely remove the unnecessary barrier layer 4 portion and reduce dishing 6 generated in the first polishing step.
  • the dishing 6 is removed by scraping only the barrier layer 4 in the second polishing process. It is also possible to eliminate the polishing of the metal wiring layer 5 and the insulating layer 2.
  • the thickness of the barrier layer 4 is as thin as 20 to 40 nm, and the dishing 6 is suppressed to a range smaller than the thickness of the barrier layer 4 in order to polish and remove the metal wiring layer 5 at a high speed in the first polishing process. It is extremely difficult.
  • the first polishing step if there is local variation in the polishing rate of the metal wiring layer 5, over-polishing is required to completely remove unnecessary wiring metal residues in the surface. It becomes more difficult to keep 6 small.
  • the second polishing step it is required to repair the dishing 6 larger than the film thickness of the barrier layer 4 generated in the first polishing step to realize high leveling.
  • the insulating layer 2 in the wiring portion is excessively polished as compared with the insulating layer portion (Global portion) 9 having no wiring pattern.
  • the layer 2 tends to be thin, in recent years, the reduction of the erosion 8 has become a major issue as the generation of semiconductors advances and the wiring portion becomes thinner.
  • the barrier layer 4 is directly formed thereon.
  • the barrier layer 4 is formed after the cap layer 3 made of, for example, silicon dioxide is formed on the insulating layer 2 made of a low dielectric constant material (hereinafter also referred to as a low dielectric constant insulating layer). Things have been done.
  • the relative dielectric constant of the low dielectric constant material constituting the insulating layer 2 is generally 3 or less
  • the relative dielectric constant of silicon dioxide formed by, for example, plasma CVD (chemical vapor deposition) is Since it is as high as 4, it is not preferable to leave the cap layer 3 at the time of planarization by polishing from the viewpoint of a low dielectric constant. That is, in the second polishing step, it is preferable to remove all the cap layer 3.
  • the polishing rate of the low dielectric constant insulating layer 2 should be significantly suppressed relative to the polishing rate of the cap layer 3. is necessary. However, it has been difficult to suppress the polishing rate of the low dielectric constant insulating layer 2 chemically and mechanically more fragile than the polishing rate of the cap layer 3 with conventional polishing agents.
  • the polishing rate of the low dielectric constant insulating layer 2 and the polishing rate of the silicon dioxide film as the cap layer 3 are (Hereinafter, referred to as a low dielectric constant insulating layer / silicon dioxide film selection ratio).
  • An object of the present invention is to provide an abrasive having excellent polishing performance suitable for planarization of embedded wiring in the manufacture of a semiconductor integrated circuit device. It is another object of the present invention to provide a polishing method having excellent polishing performance in a polishing process such as planarization of embedded wiring when manufacturing a semiconductor integrated circuit device.
  • a first aspect of the present invention is an abrasive for chemically and mechanically polishing a surface to be polished in the manufacture of a semiconductor integrated circuit device, comprising abrasive grains, an oxidizing agent, a protective film forming agent, an acid And an amine having a hydrocarbon group selected from an alkyl group having 6 to 20 carbon atoms, an aryl group, and an aryl-substituted alkyl group, and water.
  • the second aspect of the present invention is the abrasive according to the first aspect, wherein the amine having a hydrocarbon group is at least one selected from the group consisting of octylamine, dodecylamine and polyoxyethylene laurylamine. I will provide a.
  • a third aspect of the present invention is a method of supplying a polishing agent to a polishing pad, bringing a polishing target surface of a semiconductor integrated circuit device into contact with the polishing pad, and polishing by relative movement between the two,
  • a polishing method is provided in which the abrasive is the abrasive according to the first aspect or the second aspect.
  • the present invention it is possible to obtain an abrasive having excellent polishing performance suitable for planarization of embedded wiring in chemical mechanical polishing in the manufacture of a semiconductor integrated circuit device.
  • a cap layer made of a silicon dioxide film or the like is formed on a fragile low dielectric constant insulating layer, when the cap layer is completely removed to expose the low dielectric constant insulating layer, it is highly flat. A smooth surface.
  • a semiconductor integrated circuit device having a highly flattened multilayer structure can be obtained.
  • FIG. 1A to 1D are cross-sectional views of a semiconductor integrated circuit device schematically showing a polishing process at the time of forming a buried wiring by CMP.
  • FIG. 2 is a cross-sectional view of a semiconductor integrated circuit device for explaining dishing and erosion that occur when a buried wiring is formed by CMP.
  • FIG. 3 is a diagram showing an example of a polishing apparatus that can be used in the polishing method of the present invention.
  • the abrasive of the present invention is an abrasive for chemically and mechanically polishing a surface to be polished in the manufacture of a semiconductor integrated circuit device, and comprises abrasive grains, an oxidizing agent, a protective film forming agent, an acid, It contains an amine having a hydrocarbon group selected from an alkyl group having 6 to 20 carbon atoms, an aryl group, and an aryl-substituted alkyl group, and water.
  • the abrasive according to the present invention has a slurry shape.
  • the flat surface of the insulating layer having the embedded metal wiring layer can be obtained by using the abrasive of the present invention.
  • dishing and erosion can be suppressed by preferentially polishing the convex portion while suppressing preferential polishing of the concave portion.
  • the barrier layer is polished at a high polishing rate and the insulating layer (cap When the layer is present, the cap layer) can be polished at a higher polishing rate than the metal wiring layer. That is, the polishing performance suitable for the second polishing step described above can be exhibited.
  • the polishing agent according to the present invention when polishing the surface to be polished in which the cap layer, the barrier layer, and the metal wiring layer are formed in this order on the insulating layer, after removing the cap layer completely, The polished surface can be flattened while minimizing the amount of etching of the underlying insulating layer.
  • the polishing agent according to the present invention removes excess copper when polishing a surface to be polished in which a cap layer, a barrier layer, and a metal wiring layer are formed in this order on an insulating layer. It can use suitably for the 2nd grinding
  • the above-mentioned effects can be obtained, and scratches on the metal wiring layer can be reduced, so that it is easy to form embedded metal wiring with high reliability and excellent electrical characteristics. It becomes.
  • a high polishing rate can be realized, and the dispersion stability of the abrasive grains is also excellent.
  • the “surface to be polished” means an intermediate surface that appears in the process of manufacturing a semiconductor integrated circuit device.
  • the “surface to be polished” according to the present invention includes a metal wiring layer, a barrier layer, and an insulating layer. And / or a cap layer will be present.
  • the “metal wiring layer” in the present invention means a layer made of planar metal wiring, but does not necessarily indicate only a layer spread over one surface as shown in FIG. Layers as a set of individual wirings are also included as in c) and (d). Further, it can be considered as a “metal wiring layer” including a portion such as a via for electrically connecting the planar metal wiring to another portion.
  • polishing agent of this invention is explained in full detail.
  • the abrasive grains in the abrasive of the present invention can be appropriately selected from known abrasive grains. Specifically, particles made of at least one material selected from the group consisting of silica, alumina, cerium oxide (ceria), zirconium oxide (zirconia), titanium oxide (titania), tin oxide, zinc oxide and manganese oxide. Preferably there is.
  • silica those produced by a known method can be used.
  • colloidal silica obtained by hydrolyzing silicon alkoxide such as ethyl silicate and methyl silicate by a sol-gel method can be used.
  • colloidal silica obtained by ion-exchange of sodium silicate and fumed silica obtained by vapor phase synthesis of silicon tetrachloride in an oxygen and hydrogen flame can be used.
  • colloidal alumina can also be preferably used.
  • cerium oxide, zirconium oxide, titanium oxide, tin oxide, and zinc oxide produced by a liquid phase method or a gas phase method can also be preferably used.
  • the use of colloidal silica is preferable because the particle size is easily controlled and a high-purity product can be obtained.
  • the average primary particle size of the abrasive grains needs to be in the range of 5 to 300 nm from the viewpoint of polishing characteristics and dispersion stability. It is preferably in the range of 5 to 60 nm, more preferably in the range of 10 to 60 nm.
  • the average secondary particle size of the abrasive grains is preferably in the range of 8 to 300 nm.
  • the abrasive grains it is preferable to use those that are associated. The presence or absence of the association can be easily confirmed with an electron microscope.
  • the association ratio of the abrasive grains in the abrasive is particularly in the range of 1.5 to 5, the polishing rate of the insulating layer can be controlled without decreasing the polishing rate of the barrier layer.
  • the association ratio of the abrasive grains is defined as a value obtained by dividing the average secondary particle diameter of the abrasive grains in the abrasive slurry by the average primary particle diameter.
  • the average primary particle size is determined as a particle size in terms of equivalent sphere from the specific surface area of the particles.
  • the specific surface area of the particles is measured by a nitrogen adsorption method known as the BET method.
  • the average secondary particle diameter is the diameter of the average aggregate in the abrasive and is measured using, for example, a particle size distribution meter using dynamic light scattering.
  • the content (concentration) of abrasive grains in the abrasive of the present invention is preferably in the range of 0.1 to 20% by mass with respect to the total mass of the abrasive, and the polishing rate and the polishing rate within the wafer surface It is preferable to set appropriately considering the uniformity and dispersion stability. A range of 1 to 15% by mass of the total mass of the abrasive is more preferable.
  • the oxidizing agent in the abrasive of the present invention forms an oxide film on the surface of the barrier layer. By removing this oxide film from the surface to be polished by mechanical force, polishing of the barrier layer is promoted.
  • the oxidizing agent is at least selected from hydrogen peroxide, iodate, periodate, hypochlorite, perchlorate, persulfate, percarbonate, perborate and perphosphate.
  • One is preferred.
  • As iodate, periodate, hypochlorite, perchlorate, persulfate, percarbonate, perborate and perphosphate, ammonium salt, potassium salt, etc. are used. be able to.
  • hydrogen peroxide is preferable because it does not contain an alkali metal component and does not produce harmful by-products.
  • the content (concentration) of the oxidizing agent in the abrasive of the present invention is preferably in the range of 0.01 to 50% by mass with respect to the total mass of the abrasive. Further, it is preferable to set appropriately considering the polishing rate and the like. A range of 0.2 to 10% by mass with respect to the total mass of the abrasive is more preferable, and a range of 0.2 to 2% by mass is particularly preferable.
  • the protective film forming agent in the abrasive of the present invention means a chemical having a function of forming a protective film on the surface of the metal wiring layer in order to prevent dishing of the metal wiring layer.
  • the metal wiring layer is made of copper or a copper alloy
  • any material may be used as long as it suppresses elution of copper by forming a film by physically or chemically adsorbing on the copper surface.
  • the protective film forming agent is preferably a compound represented by the following formula (1).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxylic acid group.
  • Examples of the compound represented by the formula (1) include BTA, tolyltriazole (TTA) in which the H atom at the 4 or 5 position of the benzene ring of BTA is substituted with a methyl group, and benzotriazole-4 substituted with a carboxylic acid group -Carboxylic acid and the like. These may be used alone or in combination of two or more.
  • the content (concentration) of the protective film forming agent in the abrasive of the present invention is preferably in the range of 0.001 to 5% by mass with respect to the total mass of the abrasive, from the viewpoint of polishing characteristics. A range of 01 to 1.0% by mass is more preferable, and a range of 0.05 to 0.5% by mass is particularly preferable.
  • the abrasive of the present invention contains an acid in addition to the above-described abrasive grains, oxidizing agent, and protective film forming agent.
  • the above-described oxidizing agent functions also as an acid, it is handled as an acid instead of an oxidizing agent.
  • an acid it is preferable to use one or more inorganic acids selected from nitric acid, sulfuric acid and hydrochloric acid.
  • nitric acid which is an oxo acid having oxidizing power and does not contain halogen.
  • the acid content (concentration) in the abrasive of the present invention is preferably in the range of 0.01 to 50% by mass, more preferably in the range of 0.01 to 20% by mass with respect to the total mass of the abrasive. A range of 0.02 to 0.5% by mass is particularly preferred.
  • a basic compound can be added together with the acid described above.
  • the basic compound ammonia, potassium hydroxide, quaternary ammonium hydroxide such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, monoethanolamine and the like can be used. Ammonia is preferred when it is preferable not to include an alkali metal.
  • an acid and a basic compound in any step of preparation of the abrasive
  • the polishing rate of the barrier layer can be increased, and the pH of the abrasive is in the desired range.
  • the content (concentration) of the basic compound in the abrasive is preferably in the range of 0.01 to 50% by mass, more preferably in the range of 0.01 to 10% by mass, based on the total mass of the abrasive. A range of 01 to 1% by mass is particularly preferred.
  • concentration of the acid and the basic compound in the abrasive when it becomes a salt means the concentration when it is assumed that the salt exists independently as an acid and a basic compound, respectively.
  • the pH of the abrasive according to the present invention is preferably in the range of 2-5.
  • the pH when silica is used as the abrasive is preferably 4 or less, and the pH is 2 to 4 depending on the desired polishing rate of the metal wiring layer (for example, copper wiring layer). Areas are used as appropriate.
  • a pH buffering agent may be used.
  • the pH buffering agent can be used without particular limitation as long as it has pH buffering ability, but is selected from succinic acid, citric acid, oxalic acid, phthalic acid, tartaric acid and adipic acid which are polyvalent carboxylic acids. One or more are preferred.
  • glycylglycine and alkali carbonate can also be used.
  • the content ratio (concentration) of the pH buffering agent in the abrasive is preferably 10% by mass or less with respect to the total mass of the abrasive. Note that the pH buffer is not treated as the acid or basic compound.
  • the amine having a hydrocarbon group selected from an alkyl group, an aryl group, and an aryl-substituted alkyl group having 6 to 20 carbon atoms in the polishing agent of the present invention can be obtained from silicon dioxide or the like without greatly scraping the low dielectric constant insulating layer.
  • This is a component (hereinafter, referred to as a low dielectric constant layer polishing inhibiting component) that is blended in order to give selectivity to the polishing rate between the cap layer and the low dielectric constant insulating layer.
  • an alkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an H atom of the alkyl group are substituted with an aryl group.
  • An amine having a hydrocarbon group selected from aryl-substituted alkyl groups having 6 to 20 carbon atoms is used. Specifically, octylamine, dodecylamine, and polyoxyethylene laurylamine are exemplified, and it is preferable to use at least one selected from the group consisting of these amines. Such an amine does not deteriorate the dispersibility of the abrasive slurry.
  • the amine includes not only a primary amine having a primary amino group but also a secondary amine having a secondary amino group and a tertiary amine having a tertiary amino group.
  • the amine functions to suppress polishing of the low dielectric constant insulating layer because of the amino group (primary amino group, secondary amino group or tertiary amino group) which is a hydrophilic group of these compounds, and hydrophobicity.
  • This is considered to be the action of the hydrocarbon group (alkyl group having 6 to 20 carbon atoms, aryl group, aryl-substituted alkyl group). That is, the amine having a hydrophilic group and a hydrophobic group is interposed between an abrasive grain made of an oxide and a hydrophilic low-dielectric constant insulating layer having an organic group and a hydrophobic surface. This is thought to be due to the interaction.
  • the amine has a hydrophilic group and a hydrophobic group
  • the hydrophobic group has less than 6 carbon atoms
  • a sufficient effect of suppressing polishing of the low dielectric constant insulating layer does not occur.
  • the hydrocarbon group has 6 to 20 carbon atoms and does not have a primary to tertiary amino group (for example, polyoxyethylene alkyl ether)
  • a low dielectric constant Polishing of the insulating layer is suppressed, and the low dielectric constant insulating layer / silicon dioxide film selection ratio cannot be reduced.
  • the characteristic regarding stability will arise, such as the dispersibility of an abrasive
  • the polishing rate between the cap layer and the low dielectric constant insulating layer is selected, and the low dielectric constant insulating layer is exposed after the cap layer has been scraped.
  • An abrasive having the property that the polishing rate is significantly reduced is disclosed.
  • the dielectric constant k of the low dielectric constant insulating layer described in this publication is 2.7, and the use of an insulating layer having a lower dielectric constant (relative dielectric constant of 2.2) that has been increasingly demanded for use in recent years. It was difficult to apply to polishing.
  • the value of the selective ratio between the low dielectric constant insulating layer having a relative dielectric constant k of 2.2 and the cap layer made of silicon dioxide is sufficiently high.
  • the low dielectric constant insulating layer / silicon dioxide film selection ratio can be made 1.0 or less by the abrasive of the present invention. More preferably, it is 0.5 or less.
  • the cap layer and the metal wiring layer are included because the polishing rate is greatly reduced at the stage where the low dielectric constant insulating layer is exposed after the cap layer has been scraped off.
  • polishing the surface to be polished after completely removing the cap layer, it is possible to flatten the surface to be polished while minimizing the amount of cutting of the underlying low dielectric constant insulating layer It has excellent characteristics. Such characteristics are considered to be obtained by combining chemical polishing resulting from the chemical composition of the polishing agent and mechanical polishing caused by the abrasive grains in CMP technology, and could not be realized with conventional polishing agents. It is an effect.
  • the content (concentration) of the low dielectric constant layer polishing inhibiting component in the abrasive is sufficient to reduce the low dielectric constant insulating layer / silicon dioxide film selection ratio, so that the total mass of the abrasive is obtained.
  • the content is preferably in the range of 0.01 to 1% by mass, and preferably set appropriately in consideration of the desired selection ratio. A range of 0.02 to 0.5% by mass with respect to the total mass of the abrasive is more preferable, and a range of 0.04 to 0.2% by mass is even more preferable.
  • water is used to stably disperse the abrasive grains. Any water may be used as long as it does not violate the gist of the present invention, but it is preferable to use pure water, ion-exchanged water or the like. Water is preferably contained in the range of 40 to 98% by mass with respect to the total mass of the abrasive.
  • the abrasive of the present invention includes a primary alcohol having 1 to 4 carbon atoms, a glycol having 2 to 4 carbon atoms, and CH 3 CH (OH) CH in order to adjust fluidity, dispersion stability, and polishing rate.
  • a primary alcohol having 1 to 4 carbon atoms
  • a glycol having 2 to 4 carbon atoms and CH 3 CH (OH) CH
  • 2 O—C m H 2m-1 ether (where m is an integer of 1 to 4)
  • N-methyl-2-pyrrolidone N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone and carbonic acid
  • the primary alcohol is preferably methyl alcohol, ethyl alcohol, or isopropyl alcohol.
  • glycol ethylene glycol and propylene glycol are preferable.
  • ether propylene glycol monomethyl ether and propylene glycol monoethyl ether are preferable.
  • N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, and propylene carbonate are polar solvents having a relative dielectric constant in the range of 30 to 65 at 25 ° C. Can be dissolved at a high concentration.
  • the abrasive according to the present invention contains water having a high surface tension
  • the addition of the organic solvent is effective for adjusting the fluidity.
  • the organic solvent acts as a good solvent for the compound represented by the formula (1), which is a protective film forming agent, so the content ratio (concentration) of the protective film forming agent in the abrasive is within a desired range. There is an advantage that it is easy to adjust.
  • the abrasive according to the present invention requires a surfactant, a chelating agent, a reducing agent, a viscosity imparting agent or a viscosity modifier, an anti-aggregating agent or a dispersing agent, a rust preventive agent, etc., unless it is contrary to the spirit of the present invention. Depending on the content, it can be appropriately contained. However, when these additives have the functions of an oxidizing agent, a protective film forming agent, an acid or a basic compound, they are handled as an oxidizing agent, a protective film forming agent, an acid or a basic compound.
  • the above-described constituent components are contained in the predetermined content ratio (concentration), the abrasive grains are uniformly dispersed, and other components are uniformly dissolved. Prepared and used.
  • a stirring and mixing method usually used in the production of an abrasive for example, a stirring and mixing method using an ultrasonic disperser, a homogenizer, or the like can be employed.
  • the abrasive according to the present invention does not necessarily have to be supplied to the polishing site as a mixture of all the pre-configured abrasive materials. When supplying to the place of polishing, the polishing material may be mixed to form the composition of the abrasive.
  • the polishing agent according to the present invention can also control the polishing rate of a metal wiring layer made of, for example, copper, it is suitable for obtaining a flat surface of an insulating layer having an embedded metal wiring layer in the manufacture of a semiconductor integrated circuit device. It is. In particular, it is suitable for polishing a surface to be polished formed by laminating a barrier layer and a metal wiring layer on an insulating layer. That is, the abrasive according to the present invention has both functions of high-speed polishing of the barrier layer and flattening of the insulating layer having the embedded metal wiring layer.
  • the barrier layer is a layer made of at least one material selected from the group consisting of tantalum, a tantalum alloy and a tantalum compound.
  • the barrier layer can also be applied to films made of other metals, etc., and even when a layer made of a metal or a metal compound other than tantalum, such as Ti, TiN, TiSiN, WN, etc., is used as the barrier layer. Effects can be obtained.
  • any known material may be used as the material constituting the insulating layer that is one of the objects to be polished by the abrasive according to the present invention.
  • a silicon dioxide film can be exemplified.
  • the silicon dioxide film one having a crosslinked structure of Si and O and having a ratio of the number of atoms of Si and O of 1: 2 is generally used, but other films may be used.
  • a film deposited by plasma CVD using tetraethoxysilane (TEOS) or silane gas (SiH 4 ) is generally known.
  • a film made of a low dielectric constant material having a relative dielectric constant of 3 or less has been used as an insulating layer for the purpose of suppressing signal delay.
  • a porous silica film or an organic silicon material (generally referred to as SiOC) film mainly composed of Si—O bonds and containing CH 3 bonds is known.
  • SiOC organic silicon material
  • the above-mentioned organosilicon material is an extension of the conventional technology as a process technology, and mass production technology with a wide range of application has been achieved by performing appropriate process tuning. Therefore, there is a demand for a technique for flattening a film using this low dielectric constant material, and the abrasive according to the present invention can be suitably used for that purpose.
  • Examples of the organic silicon material that is a low dielectric constant material include trade name Black Diamond 1 (relative permittivity 2.7, Applied Materials technology), trade name Coral (relative permittivity 2.7, Novellus Systems technology), Aurora 2. 7 (relative permittivity: 2.7, Japan ASM Co., Ltd.), and the like. Among them, a compound having a Si—CH 3 bond is preferably used. As an organic silicon material whose dielectric constant is further reduced than that of the above-mentioned material, a trade name Black Diamond 2x (relative dielectric constant 2.2, Applied Materials, Inc. technology) is known.
  • the abrasive according to the present invention can also be suitably used for a structure in which a cap layer is formed on an insulating layer.
  • a cap layer is formed on an insulating layer.
  • the low dielectric constant insulating layer is flattened without much shaving. Suitable for.
  • the selection ratio of the low dielectric constant insulating layer / cap layer specifically, the selection ratio of SiOC layer / silicon dioxide layer can be 1.0 or less.
  • the selection ratio of SiOC layer / silicon dioxide layer is preferably in the range of 0.04 to 0.50, and more preferably in the range of 0.05 to 0.30.
  • the cap layer is a groove for embedding a metal wiring layer in a chemically and mechanically fragile low dielectric constant insulating layer when the low dielectric constant material is used for the insulating layer to improve the adhesion between the insulating layer and the barrier layer. Is provided for use as a mask material when formed by etching. In addition, the cap layer is provided for the purpose of preventing deterioration of the low dielectric constant material.
  • a film having silicon and oxygen as constituent elements is generally used.
  • An example of such a film is a silicon dioxide film.
  • the silicon dioxide film a film having a crosslinked structure of Si and O and having a ratio of the number of atoms of Si and O of 1: 2 is generally used, but other films may be used.
  • a silicon dioxide film a film deposited by plasma CVD using tetraethoxysilane (TEOS) or silane gas (SiH 4 ) is known.
  • the abrasive according to the present invention uses a silicon dioxide film in which TEOS is deposited by CVD as a cap layer, and a trade name Black Diamond 1 (relative dielectric) which is a compound having a Si—CH 3 bond as a low dielectric constant organosilicon material.
  • TEOS TEOS
  • a trade name Black Diamond 1 relative dielectric
  • it can be particularly preferably used.
  • it can be used suitably also when using the product name Black Diamond 2x (relative permittivity 2.2) having a low relative permittivity.
  • the metal wiring layer to be polished by the abrasive according to the present invention is preferably a layer made of one or more materials selected from copper, copper alloys and copper compounds.
  • the abrasive of the present invention can also be applied to metals other than copper, such as metal films such as Al, W, Ag, Pt, and Au.
  • the polishing surface of the semiconductor integrated circuit device is brought into contact with the polishing pad while supplying the polishing agent to the polishing pad.
  • a method of polishing by relative motion between the two is preferable.
  • FIG. 3 is a diagram showing an example of a polishing apparatus that can be used in the polishing method of the present invention.
  • the polishing apparatus 20 supplies a polishing head 22 for holding a semiconductor integrated circuit device 21, a polishing surface plate 23, a polishing pad 24 attached to the surface of the polishing surface plate 23, and an abrasive 25 to the polishing pad 24.
  • a polishing agent supply pipe 26 is provided. While supplying the polishing agent 25 from the polishing agent supply pipe 26, the surface to be polished of the semiconductor integrated circuit device 21 held by the polishing head 22 is brought into contact with the polishing pad 24, and the polishing head 22 and the polishing surface plate 23 are relative to each other. It is comprised so that it may grind
  • the polishing head 22 may perform a linear motion as well as a rotational motion. Further, the polishing surface plate 23 and the polishing pad 24 may be as large as or smaller than the semiconductor integrated circuit device 21. In that case, it is preferable that the entire surface to be polished of the semiconductor integrated circuit device 21 can be polished by relatively moving the polishing head 22 and the polishing surface plate 23. Furthermore, the polishing surface plate 23 and the polishing pad 24 do not have to perform rotational movement, and may move in one direction, for example, by a belt type.
  • the polishing conditions of the polishing apparatus 20 are not particularly limited, but by applying a load to the polishing head 22 and pressing it against the polishing pad 24, it is possible to increase the polishing pressure and improve the polishing rate.
  • the polishing pressure is preferably about 0.5 to 50 kPa, and more preferably about 3 to 40 kPa from the viewpoint of preventing polishing defects such as uniformity of the polished surface of the semiconductor integrated circuit device 21 at the polishing rate, flatness, and scratches.
  • the number of rotations of the polishing surface plate 23 and the polishing head 22 is preferably about 50 to 500 rpm, but is not limited thereto.
  • the supply amount of the abrasive 25 is appropriately adjusted and selected depending on the material constituting the surface to be polished, the composition of the abrasive, each of the above polishing conditions, etc. For example, when polishing a wafer having a diameter of 200 mm, it is generally 100. A supply rate of about ⁇ 300 ml / min is preferred.
  • the polishing pad 24 may be made of a general nonwoven fabric, foamed polyurethane, porous resin, non-porous resin, or the like. Further, in order to promote the supply of the polishing agent 25 to the polishing pad 24 or to collect a certain amount of the polishing agent 25 on the polishing pad 24, the surface of the polishing pad 24 has a lattice shape, a concentric circle shape, a spiral shape, or the like. Groove processing may be performed.
  • the pad conditioner may be brought into contact with the surface of the polishing pad 24 and polishing may be performed while conditioning the surface of the polishing pad 24.
  • a groove such as a wiring pattern or a recess such as a via is formed in an insulating layer on a substrate, and then a barrier layer is formed.
  • abrasive (1-1) Each of the abrasives of Examples 1 to 11 was prepared as shown below. Specifically, nitric acid and a pH buffering agent shown in Table 1 were added to water, and amines E1 to E3, which are low dielectric constant layer polishing inhibiting components, were added and stirred for 10 minutes to obtain solution a. Moreover, BTA which is a protective film forming agent was dissolved in ethylene glycol (EG) which is a good solvent to obtain a liquid b having a solid content concentration of 40% by mass of the protective film forming agent.
  • EG ethylene glycol
  • amine E1 represents polyoxyethylene laurylamine
  • E2 represents octylamine
  • E3 represents dodecylamine.
  • the liquid b was added to the liquid a, and then colloidal silica in which silica was dispersed in water was gradually added, and then the basic compound KOH was gradually added to adjust the pH. Thereafter, an aqueous solution of hydrogen peroxide as an oxidizing agent was further added and stirred for 30 minutes to obtain an abrasive.
  • Table 1 shows the content (concentration: mass%) of each component, pH buffer, basic compound, and ethylene glycol (EG) used in each example with respect to the entire abrasive. Pure water was used as water.
  • Each abrasive of Comparative Examples 1 to 3 was prepared as shown below. That is, nitric acid and a pH buffer were added to water, and E4 to E6 were added instead of amines E1 to E3, followed by stirring for 10 minutes to obtain solution a. Moreover, BTA which is a protective film forming agent was dissolved in EG which is a good solvent to obtain a liquid b having a BTA solid content concentration of 40% by mass.
  • E4 used in Comparative Example 1 represents butylethanolamine
  • E5 used in Comparative Example 2 represents butyldiethanolamine
  • E6 used in Comparative Example 3 represents polyoxyethylene lauryl ether.
  • the liquid b was added to the liquid a, then colloidal silica was gradually added, and further KOH was gradually added to adjust the pH. Thereafter, an aqueous solution of hydrogen peroxide as an oxidizing agent was further added and stirred for 30 minutes to obtain an abrasive.
  • Table 1 shows the content (concentration: mass%) of each component, pH buffer, basic compound, and EG used in Comparative Examples 1 to 3 with respect to the entire abrasive. Pure water was used as water.
  • Table 1 shows the content (concentration: mass%) of each component, pH buffer, basic compound, and EG used in Comparative Examples 4 to 6 with respect to the entire abrasive. Pure water was used as water.
  • the average primary particle size of abrasive grains is determined from the specific surface area of particles obtained by drying an aqueous dispersion, and the equivalent spherical equivalent particle size As sought.
  • the specific surface area of the particles was measured by a BET single-point method, which is a nitrogen adsorption method, using Flowsob II2300 (manufactured by Shimadzu Corporation).
  • the average secondary particle size of the abrasive was measured with Microtrac UPA (Nikkiso Co., Ltd.).
  • the association ratio (average secondary particle size / average primary particle size) was determined. The results were as follows.
  • the abrasive grains of Examples 1 to 11 and Comparative Examples 1 to 4 had an average primary particle size of 29 nm, an average secondary particle size of 61 nm, and an association ratio of 2.1.
  • the abrasive grains of Comparative Example 5 had an average primary particle size of 17 nm, an average secondary particle size of 23 nm, and an association ratio of 1.4.
  • the abrasive grains of Comparative Example 6 had an average primary particle size of 35 nm, an average secondary particle size of 50 nm, and an association ratio of 1.4.
  • Polishing machine Fully automatic CMP machine MIRRA (manufactured by APPLIED MATERIALS) (Wafer size 200mm diameter) Small polishing machine: Nanofactor (manufactured by Nano Factor) (When wafer size is 45mm square) Polishing pressure: 14kPa Platen (plate) rotation speed: shown in Table 2. Head (substrate holding part) rotation speed: 80 rpm Abrasive supply rate: 200 ml / min Polishing pad: Hard pad, IC1400 (Rohm and Haas) Soft pad is H7000 (Fujibow)
  • A Metal wiring layer polishing rate evaluation wafer A wafer in which a Cu layer having a thickness of 1500 nm was formed on a substrate by plating was used.
  • B Wafer for barrier layer polishing rate evaluation A wafer in which a tantalum (Ta) layer having a thickness of 200 nm was formed on a substrate by a sputtering method was used.
  • C Cap layer polishing rate evaluation wafer A wafer in which a silicon dioxide (SiO 2 ) layer having a thickness of 800 nm was formed on a substrate by plasma CVD was used.
  • (D) Wafer for low dielectric constant insulating layer polishing rate evaluation A wafer in which a SiOC (A) layer having a thickness of 800 nm was formed by plasma CVD using Black Diamond 1 (relative dielectric constant 2.7) on a substrate was used. . In addition, a wafer was used in which a SiOC (B) layer having a thickness of 800 nm was formed on the substrate by plasma CVD using Black Diamond 2x (relative dielectric constant 2.2).
  • the polishing rate was calculated from the film thickness before and after polishing.
  • the metal wiring layer (Cu layer) and the barrier layer (Ta layer) were measured using a sheet resistance measuring device RS75 (manufactured by KLA Tencor) calculated from the surface resistance by the four-probe method.
  • a sheet resistance measuring device RS75 manufactured by KLA Tencor
  • an optical interference type fully automatic film thickness measuring device UV1280SE manufactured by KLA Tencor was used.
  • polishing agent of the comparative example 4 does not contain a low dielectric constant layer grinding
  • the abrasives of Comparative Example 5 and Comparative Example 6 do not contain a low dielectric constant layer polishing inhibiting component, and further, the pH of the abrasive slurry and the association ratio of the abrasive grains are out of the preferred ranges.
  • the effect of suppressing the polishing rate of the SiOC (A) layer, which is an insulating layer, is not sufficient.
  • a desired SiOC (A) layer / SiO 2 layer selection ratio (1.0 or less) is not obtained.
  • polishing agent for chemical mechanical polishing that is used for planarization of embedded wiring in the manufacture of a semiconductor integrated circuit device, having excellent polishing performance and good storage stability.

Abstract

Disclosed is a polishing agent for chemically and mechanically polishing a surface to be polished in the production of a semiconductor integrated circuit device. The polishing agent contains: abrasive grains; an oxidizing agent; a protective film-forming agent; an acid; an amine having a hydrocarbon group that is selected from among an alkyl group, an aryl group and an aryl-substituted alkyl group and has 6-20 carbon atoms; and water.

Description

研磨剤および研磨方法Abrasive and polishing method
 本発明は、半導体集積回路装置(以下、半導体デバイスと示すことがある。)の製造工程に用いられる研磨剤、および研磨方法に関する。より詳しくは、埋め込み金属配線の形成および平坦化などに適した化学的機械的研磨用研磨剤、およびそれを用いた研磨方法に関する。 The present invention relates to an abrasive used in a manufacturing process of a semiconductor integrated circuit device (hereinafter sometimes referred to as a semiconductor device) and a polishing method. More particularly, the present invention relates to an abrasive for chemical mechanical polishing suitable for forming and planarizing a buried metal wiring, and a polishing method using the same.
 近年、半導体集積回路の高集積化・高機能化に伴い、微細化・高密度化のための微細加工技術の開発が求められている。半導体デバイスの製造工程、特に多層配線形成工程においては、層間絶縁膜や埋め込み配線の平坦化技術が重要である。すなわち、半導体製造プロセスの微細化・高密度化により配線が多層化するにしたがい、各層での表面の凹凸が大きくなりやすく、その段差がリソグラフィの焦点深度を越える等の問題が生じやすい。この問題を防ぐために、多層配線形成工程での高平坦化技術が重要となっている。 In recent years, with the higher integration and higher functionality of semiconductor integrated circuits, development of microfabrication technology for miniaturization and higher density has been demanded. In a semiconductor device manufacturing process, particularly a multilayer wiring forming process, a technique for planarizing an interlayer insulating film and embedded wiring is important. That is, as the wiring becomes multi-layered due to miniaturization and high density of the semiconductor manufacturing process, the surface unevenness of each layer tends to increase, and problems such as the step exceeding the depth of focus of lithography tend to occur. In order to prevent this problem, high planarization technology in the multilayer wiring formation process is important.
 配線材料としては、従来から使用されているアルミニウム合金に比べて比抵抗が低く、エレクトロマイグレーション耐性に優れることから、銅が着目されている。銅は、その塩化物ガスの蒸気圧が低く、反応性イオンエッチング法(RIE:Reactive Ion Etching)では配線形状への加工が難しいため、配線の形成にはダマシーン(Damascene)法が用いられる。これは、絶縁層に配線用の溝パターンやビア等の凹部を形成し、次にバリア層を形成した後に、溝部に埋め込むように銅をスパッタ法やメッキ法等で成膜し、その後凹部以外の絶縁層表面が露出するまで余分な銅層とバリア層を化学的機械的研磨法(CMP:Chemical Mechanical Polishing、以下CMPという。)で除去して表面を平坦化し、埋め込み金属配線を形成する方法である。近年は、このように凹部に銅が埋め込まれた銅配線とビア部とを同時に形成する、デュアルダマシーン(Dual Damascene)法が主流となっている。 As a wiring material, copper has attracted attention because of its low specific resistance and superior electromigration resistance compared to conventionally used aluminum alloys. Copper has a low vapor pressure of its chloride gas, and it is difficult to process into a wiring shape by reactive ion etching (RIE), so a damascene method is used to form wiring. This is because a groove pattern for wiring or a recess such as a via is formed in the insulating layer, and then a barrier layer is formed, and then copper is deposited by sputtering or plating so as to be embedded in the groove, and then other than the recess Removing excess copper layer and barrier layer by chemical mechanical polishing (CMP: Chemical Mechanical Polishing, hereinafter referred to as CMP) until the surface of the insulating layer is exposed, and forming a buried metal wiring It is. In recent years, a dual damascene method in which a copper wiring in which copper is embedded in a concave portion and a via portion is formed at the same time has become mainstream.
 このような銅埋め込み配線の形成においては、絶縁層中への銅の拡散防止のために、タンタル、タンタル合金または窒化タンタル等のタンタル化合物からなるバリア層が形成される。そのため、銅を埋め込む配線部分以外では、露出したバリア層をCMPにより取り除く必要がある。しかしながら、バリア層は銅に比べて非常に硬いために、十分な研磨速度が得られない場合が多い。そこで、図1に示すように、余分な金属配線層を除去する第1研磨工程と、余分なバリア層を除去する第2研磨工程とからなる2段階研磨法が提案されている。 In the formation of such a copper buried wiring, a barrier layer made of a tantalum compound such as tantalum, tantalum alloy or tantalum nitride is formed in order to prevent diffusion of copper into the insulating layer. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion where copper is embedded. However, since the barrier layer is very hard compared to copper, a sufficient polishing rate cannot often be obtained. Therefore, as shown in FIG. 1, a two-step polishing method has been proposed which includes a first polishing step for removing an excess metal wiring layer and a second polishing step for removing an excess barrier layer.
 図1は、埋め込み配線をCMPにより形成する方法を示す断面図である。図1(a)は研磨前、図1(b)は余分な金属配線層を除去する第1研磨工程の終了後、図1(c)は余分なバリア層を除去する第2研磨工程の途中、図1(d)は第2研磨工程終了後の状態をそれぞれ示す。絶縁層に低誘電率材料を用いる場合には、絶縁層とバリア層との間に、二酸化ケイ素等の絶縁材料からなるキャップ層を形成する場合もある。図1(a)~図1(d)は、キャップ層のある場合を例示したものである。絶縁層が低誘電率材料からなる層でない場合には、キャップ層は設けなくてもよい。 FIG. 1 is a cross-sectional view showing a method of forming a buried wiring by CMP. FIG. 1 (a) is before polishing, FIG. 1 (b) is after the first polishing step for removing the excess metal wiring layer, and FIG. 1 (c) is in the middle of the second polishing step for removing the excess barrier layer. FIG. 1 (d) shows the state after the second polishing step. When a low dielectric constant material is used for the insulating layer, a cap layer made of an insulating material such as silicon dioxide may be formed between the insulating layer and the barrier layer. FIG. 1A to FIG. 1D illustrate the case where there is a cap layer. When the insulating layer is not a layer made of a low dielectric constant material, the cap layer may not be provided.
 埋め込み配線の形成では、まず図1(a)に示すように、基板1上の絶縁層2に埋め込み配線を形成するための溝を形成する。次いで、溝が形成された絶縁層2の上に、キャップ層3、バリア層4および金属配線層5を順に形成した後、第1研磨工程で、金属配線層5の余分な部分を除去する。次に第2研磨工程で、バリア層4の余分な部分を除去する。通常、第1研磨工程終了後は、図1(b)に示すように、ディッシング6と呼ばれる金属配線層5の目減りが生じる。したがって、第2研磨工程では、図1(c)に示すように、バリア層4の余分な部分を完全に除去し、さらにキャップ層3を除去するとともに、図1(d)に示すように、必要ならば絶縁層2を削り込んで金属配線層5と同一の高さ(面一)に揃え、高度な平坦化を達成することが必要となる。こうして銅の埋め込み配線7が形成される。 In the formation of the buried wiring, first, as shown in FIG. 1A, a groove for forming the buried wiring is formed in the insulating layer 2 on the substrate 1. Next, after forming the cap layer 3, the barrier layer 4 and the metal wiring layer 5 in this order on the insulating layer 2 in which the groove is formed, an excess portion of the metal wiring layer 5 is removed in a first polishing step. Next, in the second polishing step, an excess portion of the barrier layer 4 is removed. Usually, after completion of the first polishing process, the metal wiring layer 5 called dishing 6 is reduced as shown in FIG. Therefore, in the second polishing step, as shown in FIG. 1 (c), the excess portion of the barrier layer 4 is completely removed, the cap layer 3 is further removed, and as shown in FIG. 1 (d), If necessary, it is necessary to cut the insulating layer 2 so as to have the same height (level) as the metal wiring layer 5 to achieve a high level of flatness. Thus, the copper buried wiring 7 is formed.
 なお、キャップ層3は必ずしも全て除去する必要はないが、絶縁層2に比べて誘電率の高いキャップ層3を残すことは全体の誘電率の上昇につながるため、研磨・除去した方がデバイスの特性が良好となる。図1(d)では、キャップ層3を完全に除去して平坦化した状態を示している。 It is not always necessary to remove the cap layer 3, but leaving the cap layer 3 having a higher dielectric constant than that of the insulating layer 2 leads to an increase in the overall dielectric constant. Good characteristics. FIG. 1D shows a state in which the cap layer 3 is completely removed and flattened.
 このような平坦化において、従来の研磨剤を用いたCMPでは、銅の埋め込み(金属配線層5)のディッシングやエロージョンが大きくなるという問題があった。ここでディッシングとは、図1(c)および図2において符号6で示すように、金属配線層5が過剰に研磨されて中央部が窪んだ状態をいい、幅の広い配線部で発生しやすい。エロージョンとは、細い配線部や密集した配線部で発生しやすいもので、図2において符号8で示すように、配線パターンのない絶縁層部分(Global部)9に比べて、配線部の絶縁層2が過剰に研磨され、絶縁層2が部分的に薄くなる現象をいう。すなわち、Global部9の研磨部分10よりもさらに研磨されたエロージョン8部分が生じる。なお、図2においては、キャップ層3およびバリア層4は図示を省略している。 In such flattening, CMP using a conventional abrasive has a problem that dishing and erosion of copper embedding (metal wiring layer 5) increase. Here, dishing refers to a state in which the metal wiring layer 5 is excessively polished and the central portion is depressed as indicated by reference numeral 6 in FIG. 1C and FIG. 2, and is likely to occur in a wide wiring portion. . Erosion is likely to occur in thin wiring portions or dense wiring portions. As shown by reference numeral 8 in FIG. 2, the erosion is an insulating layer of the wiring portion as compared with the insulating layer portion (Global portion) 9 having no wiring pattern. 2 is a phenomenon in which the insulating layer 2 is partially thinned due to excessive polishing. That is, an erosion 8 portion polished further than the polishing portion 10 of the global portion 9 is generated. In FIG. 2, the cap layer 3 and the barrier layer 4 are not shown.
 従来の研磨剤を用いた場合は、バリア層4の研磨速度が金属配線層5の研磨速度より小さいため、バリア層4を研磨・除去する間に配線部の銅が過剰に研磨されて大きなディッシング6が生じていた。また、高密度配線部のバリア層4やその下の絶縁層2に加わる研磨圧力が、配線密度の低い部分に比べて高くなるため、第2研磨工程での研磨の進行度合いが配線密度により大きく異なる。その結果、高密度配線部の絶縁層2が過剰に研磨されて、大きなエロージョン8が生じていた。ディッシング6やエロージョン8が発生すると、配線抵抗の増加やエレクトロマイグレーションが起こりやすくなり、デバイスの信頼性を低下させるという問題があった。 When the conventional polishing agent is used, the polishing rate of the barrier layer 4 is lower than the polishing rate of the metal wiring layer 5, so that the copper in the wiring part is excessively polished while the barrier layer 4 is polished and removed, resulting in large dishing. 6 had occurred. In addition, since the polishing pressure applied to the barrier layer 4 and the insulating layer 2 below the high-density wiring portion is higher than that of the portion having a low wiring density, the degree of progress of polishing in the second polishing step is larger due to the wiring density. Different. As a result, the insulating layer 2 in the high-density wiring portion was excessively polished, and a large erosion 8 was generated. When dishing 6 or erosion 8 occurs, there is a problem that wiring resistance increases and electromigration easily occurs, and the reliability of the device is lowered.
 バリア層4として用いられるタンタルやタンタル化合物は、化学的にエッチングすることが難しく、また銅に比べて硬度が高いため、機械的にも研磨による除去が容易ではない。バリア層4の研磨速度を上げるために、砥粒の硬度を高くすると、硬度がより低い銅配線にスクラッチが発生して電気的不良などの問題が発生しやすい。また、研磨剤中の砥粒の濃度(含有割合)を高めると、研磨剤中での砥粒の分散状態を維持することが困難になり、経時的に沈降やゲル化が生じるなどの問題が発生しやすい。 The tantalum and tantalum compound used as the barrier layer 4 are difficult to chemically etch and have a higher hardness than copper, so that removal by mechanical polishing is not easy. If the hardness of the abrasive grains is increased in order to increase the polishing rate of the barrier layer 4, scratches are generated in the copper wiring having a lower hardness, and problems such as electrical defects are likely to occur. Further, when the concentration (content ratio) of abrasive grains in the abrasive is increased, it becomes difficult to maintain the dispersed state of the abrasive grains in the abrasive, resulting in problems such as sedimentation and gelation over time. Likely to happen.
 また、CMPにおいては、研磨中の銅の腐食を防止する必要がある。銅および銅合金に対する腐食抑制剤の中でも、最も効果的で広く利用されているものとして、ベンゾトリアゾール(以下、BTAという。)およびその誘導体が知られている(例えば、非特許文献1参照。)。BTAは、銅および銅合金表面に緻密な皮膜を形成し、酸化還元反応を抑制してエッチングを防止するものであり、銅配線部のディッシングを防止するための添加物として有効であることが知られている(例えば、特許文献1参照。)。しかし、BTAの添加量を増やすだけで対処すると、銅の研磨速度が低下し、研磨時間が長時間になるため、ディッシング6やエロージョン8の欠陥が増加することがあった。 Also, in CMP, it is necessary to prevent copper corrosion during polishing. Among the most effective and widely used corrosion inhibitors for copper and copper alloys, benzotriazole (hereinafter referred to as BTA) and its derivatives are known (for example, see Non-Patent Document 1). . BTA forms a dense film on the surface of copper and copper alloys, suppresses redox reactions to prevent etching, and is known to be effective as an additive for preventing dishing of copper wiring parts. (For example, refer to Patent Document 1). However, if only the amount of addition of BTA is increased, the copper polishing rate decreases and the polishing time becomes long, so that the defects of dishing 6 and erosion 8 may increase.
 さらに、金属配線層5のディッシング6を抑制するための保護膜形成剤として、水溶性高分子の使用も検討されてきた。すなわち、高速で銅を研磨・除去しながらバリア層4や絶縁層2の研磨を抑制することを目的とし、金属配線層5とバリア層4との研磨速度比(金属層/バリア層)が大きく、金属配線層5と絶縁層2の研磨速度比(金属層/絶縁層)も大きな研磨剤が開発されている(例えば、特許文献2参照。)。 Furthermore, the use of a water-soluble polymer as a protective film forming agent for suppressing the dishing 6 of the metal wiring layer 5 has been studied. That is, the polishing rate ratio (metal layer / barrier layer) between the metal wiring layer 5 and the barrier layer 4 is large for the purpose of suppressing polishing of the barrier layer 4 and the insulating layer 2 while polishing and removing copper at high speed. An abrasive having a large polishing rate ratio (metal layer / insulating layer) between the metal wiring layer 5 and the insulating layer 2 has been developed (see, for example, Patent Document 2).
日本国特開平8-83780号公報(特許請求の範囲)Japanese Unexamined Patent Publication No. 8-83780 (Claims) 日本国特開2001-144047号公報(特許請求の範囲)Japanese Patent Laid-Open No. 2001-144047 (Claims)
 しかしながら、これらの研磨剤は、いずれも銅配線層のような金属配線層5を研磨・除去する第1研磨工程に関するものであり、第2研磨工程において、キャップ層3を高速で除去し、かつ低誘電率材料からなる絶縁層2の研磨はできるだけ抑制する、という要求を満足させる研磨剤は、未だ見出されていなかった。 However, these abrasives all relate to the first polishing step for polishing and removing the metal wiring layer 5 such as the copper wiring layer, and in the second polishing step, the cap layer 3 is removed at a high speed, and An abrasive that satisfies the requirement to suppress the polishing of the insulating layer 2 made of a low dielectric constant material as much as possible has not yet been found.
 以下、第2研磨工程での問題点について、絶縁層2上にバリア層4と金属配線層5とがこの順で形成されたものを研磨する場合について説明する。絶縁層2上にキャップ層3を有するものを研磨する場合の問題点は、その後説明する。 Hereinafter, the problem in the second polishing step will be described in the case where the barrier layer 4 and the metal wiring layer 5 formed in this order on the insulating layer 2 are polished. Problems in the case of polishing one having the cap layer 3 on the insulating layer 2 will be described later.
 絶縁層2上にバリア層4と金属配線層5とが順に形成された層構成においては、第2研磨工程で、バリア層4を高速で研磨し、金属配線層5は適度な研磨速度で研磨し、さらに絶縁層2を削り込みながら高度に平坦化することが要求される。 In the layer configuration in which the barrier layer 4 and the metal wiring layer 5 are sequentially formed on the insulating layer 2, the barrier layer 4 is polished at a high speed in the second polishing step, and the metal wiring layer 5 is polished at an appropriate polishing rate. Furthermore, it is required to highly planarize the insulating layer 2 while cutting it.
 すなわち、第1研磨工程の研磨剤には、主に金属配線層5を高い研磨速度で研磨することが要求されるのに対して、第2研磨工程の研磨剤には、バリア層4を高い研磨速度で研磨し、かつ絶縁層2を金属配線層5よりも高い研磨速度で研磨することが要求されており、両者の要求特性は大きく異なる。 That is, the polishing agent for the first polishing step is mainly required to polish the metal wiring layer 5 at a high polishing rate, whereas the polishing agent for the second polishing step has a high barrier layer 4. Polishing at a polishing rate and polishing the insulating layer 2 at a higher polishing rate than the metal wiring layer 5 are required, and the required characteristics of both are greatly different.
 先に述べたように、CMPにおける第2研磨工程の役割は、不要なバリア層4部分を完全に除去するとともに、第1研磨工程で生じたディッシング6を低減することである。図1において、第1研磨工程で生じたディッシング6の大きさがバリア層4の膜厚よりも薄い場合は、第2研磨工程においては、バリア層4のみを削り取ることでディッシング6を除去することができ、金属配線層5や絶縁層2の研磨を不要とすることも可能である。しかし、バリア層4の厚さは20~40nmと薄く、かつ第1研磨工程においては高速で金属配線層5を研磨・除去するため、ディッシング6をバリア層4の膜厚よりも小さい範囲に抑えることは極めて困難である。また、第1研磨工程において、金属配線層5の研磨速度に局所的なばらつきがある場合には、面内の不要な配線金属残渣を完全に除去するためのオーバー研磨が必要となるため、ディッシング6を小さく抑えることはさらに困難となる。 As described above, the role of the second polishing step in CMP is to completely remove the unnecessary barrier layer 4 portion and reduce dishing 6 generated in the first polishing step. In FIG. 1, when the size of the dishing 6 generated in the first polishing process is smaller than the film thickness of the barrier layer 4, the dishing 6 is removed by scraping only the barrier layer 4 in the second polishing process. It is also possible to eliminate the polishing of the metal wiring layer 5 and the insulating layer 2. However, the thickness of the barrier layer 4 is as thin as 20 to 40 nm, and the dishing 6 is suppressed to a range smaller than the thickness of the barrier layer 4 in order to polish and remove the metal wiring layer 5 at a high speed in the first polishing process. It is extremely difficult. Further, in the first polishing step, if there is local variation in the polishing rate of the metal wiring layer 5, over-polishing is required to completely remove unnecessary wiring metal residues in the surface. It becomes more difficult to keep 6 small.
 したがって、第2研磨工程においては、第1研磨工程で生じた、バリア層4の膜厚よりも大きいディッシング6を修復して高度な平坦化を実現することが要求される。 Therefore, in the second polishing step, it is required to repair the dishing 6 larger than the film thickness of the barrier layer 4 generated in the first polishing step to realize high leveling.
 さらに一般には、図2に示すように、細い配線や高密度配線において、配線パターンのない絶縁層部分(Global部)9に比べて、配線部の絶縁層2が過剰に研磨される結果、絶縁層2が薄くなりやすいが、近年、半導体の世代が進み配線部がより細くなるにつれて、このエロージョン8の低減が大きな課題になっていた。 More generally, as shown in FIG. 2, in a thin wiring or a high-density wiring, the insulating layer 2 in the wiring portion is excessively polished as compared with the insulating layer portion (Global portion) 9 having no wiring pattern. Although the layer 2 tends to be thin, in recent years, the reduction of the erosion 8 has become a major issue as the generation of semiconductors advances and the wiring portion becomes thinner.
 キャップ層3を設ける場合には、次の問題点が存在する。近年、LSIの配線遅延を低減するために、絶縁層2に低誘電率材料が用いられているが、低誘電率材料は化学的機械的に脆弱であるため、その上に直接バリア層4を成膜することは少なく、低誘電率材料からなる絶縁層2(以下、低誘電率絶縁層ともいう。)上に、例えば二酸化ケイ素からなるキャップ層3を形成した後、バリア層4を形成することが行われている。ところが、絶縁層2を構成する低誘電率材料の比誘電率が一般に3以下であるのに対して、例えばプラズマCVD(化学的気相成長法)により成膜される二酸化ケイ素の比誘電率は4と高いため、研磨による平坦化の際にキャップ層3を残すことは、低誘電率の点からは好ましいことではない。すなわち第二研磨工程においては、キャップ層3を全て取り去ることが好ましい。 When the cap layer 3 is provided, the following problems exist. In recent years, low dielectric constant materials have been used for the insulating layer 2 in order to reduce LSI wiring delay. However, since the low dielectric constant material is chemically and mechanically fragile, the barrier layer 4 is directly formed thereon. The barrier layer 4 is formed after the cap layer 3 made of, for example, silicon dioxide is formed on the insulating layer 2 made of a low dielectric constant material (hereinafter also referred to as a low dielectric constant insulating layer). Things have been done. However, while the relative dielectric constant of the low dielectric constant material constituting the insulating layer 2 is generally 3 or less, the relative dielectric constant of silicon dioxide formed by, for example, plasma CVD (chemical vapor deposition) is Since it is as high as 4, it is not preferable to leave the cap layer 3 at the time of planarization by polishing from the viewpoint of a low dielectric constant. That is, in the second polishing step, it is preferable to remove all the cap layer 3.
 しかしながら、キャップ層3を完全に除去するために研磨時間を長くとると、キャップ層3よりも脆弱な低誘電率絶縁層2が露出した段階で研磨速度が大きく増加するため、この低誘電率絶縁層2が必要以上に削られてしまうという問題があった。低誘電率絶縁層2を削りすぎた場合、この部分を平坦化するにはさらに金属配線層5を削りこまなければならず、その結果、金属配線層5の過剰研磨分が大きくなり、抵抗値が増大するという問題が生じる。キャップ層3を完全に除去した後の低誘電率絶縁層2の削りこみを避けるためには、キャップ層3の研磨速度に対して低誘電率絶縁層2の研磨速度を大幅に抑制することが必要である。しかしながら、化学的機械的にキャップ層3より脆弱な低誘電率絶縁層2の研磨速度を、キャップ層3の研磨速度よりも大幅に抑制することは、従来からの研磨剤では困難であった。 However, if the polishing time is increased to completely remove the cap layer 3, the polishing rate is greatly increased when the low dielectric constant insulating layer 2 that is more fragile than the cap layer 3 is exposed. There was a problem that the layer 2 was scraped more than necessary. If the low dielectric constant insulating layer 2 is cut too much, the metal wiring layer 5 must be further cut to flatten this portion. As a result, the excessive polishing amount of the metal wiring layer 5 becomes large and the resistance value is increased. The problem of increasing is caused. In order to avoid scraping of the low dielectric constant insulating layer 2 after the cap layer 3 is completely removed, the polishing rate of the low dielectric constant insulating layer 2 should be significantly suppressed relative to the polishing rate of the cap layer 3. is necessary. However, it has been difficult to suppress the polishing rate of the low dielectric constant insulating layer 2 chemically and mechanically more fragile than the polishing rate of the cap layer 3 with conventional polishing agents.
 キャップ層3を完全に除去した後の低誘電率絶縁層2の削り込みを抑制する能力を表す指標として、低誘電率絶縁層2の研磨速度とキャップ層3である二酸化ケイ素膜の研磨速度との比(以下、低誘電率絶縁層/二酸化ケイ素膜の選択比という。)で表す方法がある。この選択比の値が小さいほど、キャップ層3を完全に除去した後、低誘電率絶縁層2の削り込み量を小さくすることができる。低誘電率絶縁層/二酸化ケイ素膜の選択比をできるだけ小さくすることができる研磨剤が求められている。 As an index indicating the ability to suppress the cutting of the low dielectric constant insulating layer 2 after the cap layer 3 is completely removed, the polishing rate of the low dielectric constant insulating layer 2 and the polishing rate of the silicon dioxide film as the cap layer 3 are (Hereinafter, referred to as a low dielectric constant insulating layer / silicon dioxide film selection ratio). The smaller the value of the selection ratio, the smaller the amount of cutting of the low dielectric constant insulating layer 2 after the cap layer 3 is completely removed. There is a need for an abrasive capable of minimizing the low dielectric constant insulating layer / silicon dioxide film selection ratio.
 本発明は、半導体集積回路装置の製造の際の埋め込み配線の平坦化などに好適する研磨性能に優れた研磨剤を提供することを目的とする。また、本発明は、半導体集積回路装置の製造に際して、埋め込み配線の平坦化などの研磨工程において研磨性能に優れた研磨方法を提供することを目的とする。 An object of the present invention is to provide an abrasive having excellent polishing performance suitable for planarization of embedded wiring in the manufacture of a semiconductor integrated circuit device. It is another object of the present invention to provide a polishing method having excellent polishing performance in a polishing process such as planarization of embedded wiring when manufacturing a semiconductor integrated circuit device.
 本発明の第1の態様は、半導体集積回路装置の製造において被研磨面を化学的機械的に研磨するための研磨剤であって、砥粒と、酸化剤と、保護膜形成剤と、酸と、炭素数6~20のアルキル基、アリール基、アリール置換アルキル基から選ばれる炭化水素基を有するアミンと、水とを含有する研磨剤を提供する。 A first aspect of the present invention is an abrasive for chemically and mechanically polishing a surface to be polished in the manufacture of a semiconductor integrated circuit device, comprising abrasive grains, an oxidizing agent, a protective film forming agent, an acid And an amine having a hydrocarbon group selected from an alkyl group having 6 to 20 carbon atoms, an aryl group, and an aryl-substituted alkyl group, and water.
 本発明の第2の態様は、前記炭化水素基を有するアミンが、オクチルアミン、ドデシルアミンおよびポリオキシエチレンラウリルアミンからなる群から選ばれる少なくとも1種である、第1の態様に記載の研磨剤を提供する。 The second aspect of the present invention is the abrasive according to the first aspect, wherein the amine having a hydrocarbon group is at least one selected from the group consisting of octylamine, dodecylamine and polyoxyethylene laurylamine. I will provide a.
 本発明の第3の態様は、研磨剤を研磨パッドに供給し、半導体集積回路装置の被研磨面と前記研磨パッドとを接触させて、両者間の相対運動により研磨する方法であって、前記研磨剤が第1の態様または第2の態様に記載の研磨剤である研磨方法を提供する。 A third aspect of the present invention is a method of supplying a polishing agent to a polishing pad, bringing a polishing target surface of a semiconductor integrated circuit device into contact with the polishing pad, and polishing by relative movement between the two, A polishing method is provided in which the abrasive is the abrasive according to the first aspect or the second aspect.
 本発明によれば、半導体集積回路装置の製造の際の化学的機械的研磨において、埋め込み配線の平坦化などに適する研磨性能に優れた研磨剤を得ることができる。特に、脆弱な低誘電率絶縁層の上に二酸化ケイ素膜等からなるキャップ層が形成された積層構造において、キャップ層を完全に除去して低誘電率絶縁層を露出させる場合に、高度に平坦な表面を得ることができる。また、本発明の研磨方法によれば、高平坦化された多層構造を持つ半導体集積回路装置を得ることができる。 According to the present invention, it is possible to obtain an abrasive having excellent polishing performance suitable for planarization of embedded wiring in chemical mechanical polishing in the manufacture of a semiconductor integrated circuit device. Particularly in a laminated structure in which a cap layer made of a silicon dioxide film or the like is formed on a fragile low dielectric constant insulating layer, when the cap layer is completely removed to expose the low dielectric constant insulating layer, it is highly flat. A smooth surface. Moreover, according to the polishing method of the present invention, a semiconductor integrated circuit device having a highly flattened multilayer structure can be obtained.
図1(a)~(d)は、CMPによる埋め込み配線形成時の研磨工程を模式的に示す半導体集積回路装置の断面図である。1A to 1D are cross-sectional views of a semiconductor integrated circuit device schematically showing a polishing process at the time of forming a buried wiring by CMP. 図2は、CMPによる埋め込み配線形成時に発生するディッシングおよびエロージョンを説明するための半導体集積回路装置の断面図である。FIG. 2 is a cross-sectional view of a semiconductor integrated circuit device for explaining dishing and erosion that occur when a buried wiring is formed by CMP. 図3は、本発明の研磨方法に使用可能な研磨装置の一例を示す図である。FIG. 3 is a diagram showing an example of a polishing apparatus that can be used in the polishing method of the present invention.
 以下に、本発明の実施の形態を、図、表、実施例等を用いて説明する。なお、これらの図、表、実施例等は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り、他の実施の形態も本発明の範疇に属し得る。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, tables, examples and the like. In addition, these figures, tables, examples, etc. illustrate the present invention, and do not limit the scope of the present invention. Other embodiments may belong to the category of the present invention as long as they meet the gist of the present invention.
 本発明の研磨剤は、半導体集積回路装置の製造において被研磨面を化学的機械的に研磨するための研磨剤であって、砥粒と、酸化剤と、保護膜形成剤と、酸と、炭素数6~20のアルキル基、アリール基、アリール置換アルキル基から選ばれる炭化水素基を有するアミンと、水をそれぞれ含有する。本発明に係る研磨剤はスラリーの形状を有する。 The abrasive of the present invention is an abrasive for chemically and mechanically polishing a surface to be polished in the manufacture of a semiconductor integrated circuit device, and comprises abrasive grains, an oxidizing agent, a protective film forming agent, an acid, It contains an amine having a hydrocarbon group selected from an alkyl group having 6 to 20 carbon atoms, an aryl group, and an aryl-substituted alkyl group, and water. The abrasive according to the present invention has a slurry shape.
 半導体集積回路装置の製造の際の被研磨面の研磨において、本発明の研磨剤を用いることにより、埋め込まれた金属配線層を有する絶縁層の平坦な表面を得ることができる。また、凹部の優先研磨を抑制しながら凸部を優先的に研磨することにより、ディッシングやエロージョンの発生を抑制することができる。 In the polishing of the surface to be polished in the manufacture of the semiconductor integrated circuit device, the flat surface of the insulating layer having the embedded metal wiring layer can be obtained by using the abrasive of the present invention. In addition, dishing and erosion can be suppressed by preferentially polishing the convex portion while suppressing preferential polishing of the concave portion.
 具体的には、半導体集積回路装置の絶縁層上にバリア層と金属配線層とが順に形成された被研磨面を研磨する場合に、バリア層を高い研磨速度で研磨し、かつ絶縁層(キャップ層が存在する場合にはキャップ層)を金属配線層よりも高い研磨速度で研磨することができる。すなわち、前記した第2研磨工程に適した研磨性能を発揮することができる。さらに、本発明に係る研磨剤は、絶縁層上にキャップ層とバリア層と金属配線層とがこの順で形成された被研磨面を研磨する場合に、キャップ層を完全に除去した後に、その下にある絶縁層の削り込み量を最小限に抑制しながら、被研磨面を平坦化することができる。 Specifically, when a surface to be polished, in which a barrier layer and a metal wiring layer are sequentially formed on an insulating layer of a semiconductor integrated circuit device, is polished, the barrier layer is polished at a high polishing rate and the insulating layer (cap When the layer is present, the cap layer) can be polished at a higher polishing rate than the metal wiring layer. That is, the polishing performance suitable for the second polishing step described above can be exhibited. Furthermore, the polishing agent according to the present invention, when polishing the surface to be polished in which the cap layer, the barrier layer, and the metal wiring layer are formed in this order on the insulating layer, after removing the cap layer completely, The polished surface can be flattened while minimizing the amount of etching of the underlying insulating layer.
 このように、本発明に係る研磨剤は、絶縁層上にキャップ層とバリア層と金属配線層とがこの順に形成された被研磨面を研磨する場合に、余剰の銅を除去する第1研磨工程の後に使用する第2研磨工程に好適に使用することができる。 As described above, the polishing agent according to the present invention removes excess copper when polishing a surface to be polished in which a cap layer, a barrier layer, and a metal wiring layer are formed in this order on an insulating layer. It can use suitably for the 2nd grinding | polishing process used after a process.
 さらに、本発明の研磨剤においては、前記効果を得ることができるうえに、金属配線層のスクラッチも少なくすることができるので、信頼性が高く、電気特性に優れた埋め込み金属配線の形成が容易となる。また、高い研磨速度を実現することが可能であり、さらに砥粒の分散安定性にも優れている。 Furthermore, in the polishing agent of the present invention, the above-mentioned effects can be obtained, and scratches on the metal wiring layer can be reduced, so that it is easy to form embedded metal wiring with high reliability and excellent electrical characteristics. It becomes. In addition, a high polishing rate can be realized, and the dispersion stability of the abrasive grains is also excellent.
 なお、本発明において、「被研磨面」とは、半導体集積回路装置を製造する過程で現れる中間段階の表面を意味する。本発明では、金属配線層、バリア層、絶縁層およびキャップ層の1層以上が研磨の対象物となるので、本発明に係る「被研磨面」には、金属配線層、バリア層、絶縁層およびキャップ層の少なくともいずれかが存在することになる。 In the present invention, the “surface to be polished” means an intermediate surface that appears in the process of manufacturing a semiconductor integrated circuit device. In the present invention, since one or more of the metal wiring layer, the barrier layer, the insulating layer, and the cap layer are objects to be polished, the “surface to be polished” according to the present invention includes a metal wiring layer, a barrier layer, and an insulating layer. And / or a cap layer will be present.
 また、本発明における「金属配線層」とは、面状の金属配線よりなる層を意味するが、必ずしも図1(a)のように一面に広がった層だけを指すものではなく、図1(c)や(d)のように個々の配線の集合としての層も含まれる。また、面状の金属配線と他の部分とを電気的に接続するためのビア等の部分も含めて、「金属配線層」と考えることができる。以下、本発明の研磨剤の各成分について詳述する。 In addition, the “metal wiring layer” in the present invention means a layer made of planar metal wiring, but does not necessarily indicate only a layer spread over one surface as shown in FIG. Layers as a set of individual wirings are also included as in c) and (d). Further, it can be considered as a “metal wiring layer” including a portion such as a via for electrically connecting the planar metal wiring to another portion. Hereinafter, each component of the abrasive | polishing agent of this invention is explained in full detail.
 本発明の研磨剤中の砥粒は、公知の砥粒の中から適宜選択することができる。具体的には、シリカ、アルミナ、酸化セリウム(セリア)、酸化ジルコニウム(ジルコニア)、酸化チタン(チタニア)、酸化スズ、酸化亜鉛および酸化マンガンからなる群から選ばれる少なくとも1種の材料からなる粒子であることが好ましい。シリカとしては、公知の方法で製造されるものを使用することができる。例えば、エチルシリケート、メチルシリケート等のシリコンアルコキシドをゾルゲル法により加水分解することにより得られるコロイダルシリカを使用することができる。また、ケイ酸ナトリウムをイオン交換したコロイダルシリカや、四塩化ケイ素を酸素と水素の火炎中で気相合成したヒュームドシリカを使用することができる。 The abrasive grains in the abrasive of the present invention can be appropriately selected from known abrasive grains. Specifically, particles made of at least one material selected from the group consisting of silica, alumina, cerium oxide (ceria), zirconium oxide (zirconia), titanium oxide (titania), tin oxide, zinc oxide and manganese oxide. Preferably there is. As silica, those produced by a known method can be used. For example, colloidal silica obtained by hydrolyzing silicon alkoxide such as ethyl silicate and methyl silicate by a sol-gel method can be used. Further, colloidal silica obtained by ion-exchange of sodium silicate and fumed silica obtained by vapor phase synthesis of silicon tetrachloride in an oxygen and hydrogen flame can be used.
 同様に、コロイダルアルミナも好ましく使用することができる。また、液相法や気相法で製造した酸化セリウム、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛も好ましく使用することができる。これらの中でも、粒径が制御しやすく高純度品を得ることができる点から、コロイダルシリカの使用が好ましい。 Similarly, colloidal alumina can also be preferably used. Further, cerium oxide, zirconium oxide, titanium oxide, tin oxide, and zinc oxide produced by a liquid phase method or a gas phase method can also be preferably used. Among these, the use of colloidal silica is preferable because the particle size is easily controlled and a high-purity product can be obtained.
 砥粒の平均一次粒径は、研磨特性と分散安定性の点から、5~300nmの範囲にあることが必要である。5~60nmの範囲にあることが好ましく、10~60nmの範囲がより好ましい。また、砥粒の平均二次粒径は、8~300nmの範囲にあることが好ましい。 The average primary particle size of the abrasive grains needs to be in the range of 5 to 300 nm from the viewpoint of polishing characteristics and dispersion stability. It is preferably in the range of 5 to 60 nm, more preferably in the range of 10 to 60 nm. The average secondary particle size of the abrasive grains is preferably in the range of 8 to 300 nm.
 砥粒としては、会合したものを使用することが好ましい。会合の有無は電子顕微鏡で容易に確認することができる。研磨剤中の砥粒の会合比が特に1.5~5の範囲にあることにより、バリア層の研磨速度を低下させることなく、絶縁層の研磨速度を制御することができる。ここで、砥粒の会合比は、研磨剤スラリー中の砥粒の平均二次粒径を平均一次粒径で割った値と定義される。平均一次粒径は、粒子の比表面積から等価球換算の粒径として求められる。その粒子の比表面積は、BET法として知られている窒素吸着法により測定される。平均二次粒径は、研磨剤中の平均凝集体の直径であり、例えば動的光散乱を用いた粒度分布計を用いて測定される。 As the abrasive grains, it is preferable to use those that are associated. The presence or absence of the association can be easily confirmed with an electron microscope. When the association ratio of the abrasive grains in the abrasive is particularly in the range of 1.5 to 5, the polishing rate of the insulating layer can be controlled without decreasing the polishing rate of the barrier layer. Here, the association ratio of the abrasive grains is defined as a value obtained by dividing the average secondary particle diameter of the abrasive grains in the abrasive slurry by the average primary particle diameter. The average primary particle size is determined as a particle size in terms of equivalent sphere from the specific surface area of the particles. The specific surface area of the particles is measured by a nitrogen adsorption method known as the BET method. The average secondary particle diameter is the diameter of the average aggregate in the abrasive and is measured using, for example, a particle size distribution meter using dynamic light scattering.
 本発明の研磨剤中の砥粒の含有割合(濃度)は、研磨剤の全質量に対して0.1~20質量%の範囲であることが好ましく、かつ研磨速度、ウェハ面内の研磨速度の均一性、分散安定性等を考慮して適宜設定することが好ましい。研磨剤全質量の1~15質量%の範囲がより好ましい。 The content (concentration) of abrasive grains in the abrasive of the present invention is preferably in the range of 0.1 to 20% by mass with respect to the total mass of the abrasive, and the polishing rate and the polishing rate within the wafer surface It is preferable to set appropriately considering the uniformity and dispersion stability. A range of 1 to 15% by mass of the total mass of the abrasive is more preferable.
 本発明の研磨剤中の酸化剤は、バリア層の表面に酸化皮膜を形成するものである。この酸化皮膜を機械的な力で被研磨面から除去することにより、バリア層の研磨が促進される。酸化剤としては、過酸化水素、ヨウ素酸塩、過ヨウ素酸塩、次亜塩素酸塩、過塩素酸塩、過硫酸塩、過炭酸塩、過ホウ酸塩および過リン酸塩から選ばれる少なくとも1種が好ましい。ヨウ素酸塩、過ヨウ素酸塩、次亜塩素酸塩、過塩素酸塩、過硫酸塩、過炭酸塩、過ホウ酸塩および過リン酸塩としては、アンモニウム塩や、カリウム塩等を使用することができる。アルカリ金属成分を含有せず、有害な副生成物を生じない点から、これらの中でも過酸化水素が好ましい。 The oxidizing agent in the abrasive of the present invention forms an oxide film on the surface of the barrier layer. By removing this oxide film from the surface to be polished by mechanical force, polishing of the barrier layer is promoted. The oxidizing agent is at least selected from hydrogen peroxide, iodate, periodate, hypochlorite, perchlorate, persulfate, percarbonate, perborate and perphosphate. One is preferred. As iodate, periodate, hypochlorite, perchlorate, persulfate, percarbonate, perborate and perphosphate, ammonium salt, potassium salt, etc. are used. be able to. Of these, hydrogen peroxide is preferable because it does not contain an alkali metal component and does not produce harmful by-products.
 研磨促進の効果を十分に得るために、本発明の研磨剤中の酸化剤の含有割合(濃度)は、研磨剤の全質量に対して0.01~50質量%の範囲であることが好ましく、かつ研磨速度等を考慮して適宜設定することが好ましい。研磨剤全質量の0.2~10質量%の範囲がより好ましく、0.2~2質量%の範囲が特に好ましくい。 In order to sufficiently obtain the effect of promoting polishing, the content (concentration) of the oxidizing agent in the abrasive of the present invention is preferably in the range of 0.01 to 50% by mass with respect to the total mass of the abrasive. Further, it is preferable to set appropriately considering the polishing rate and the like. A range of 0.2 to 10% by mass with respect to the total mass of the abrasive is more preferable, and a range of 0.2 to 2% by mass is particularly preferable.
 本発明の研磨剤中の保護膜形成剤とは、金属配線層のディッシングを防止するために、金属配線層表面に保護膜を形成する機能を有する薬剤を意味する。例えば、金属配線層が銅または銅合金からなる場合は、銅表面に物理的または化学的に吸着して皮膜を形成することにより、銅の溶出を抑制するものであればよい。 The protective film forming agent in the abrasive of the present invention means a chemical having a function of forming a protective film on the surface of the metal wiring layer in order to prevent dishing of the metal wiring layer. For example, in the case where the metal wiring layer is made of copper or a copper alloy, any material may be used as long as it suppresses elution of copper by forming a film by physically or chemically adsorbing on the copper surface.
 保護膜形成剤としては、以下の式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
The protective film forming agent is preferably a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Rは水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはカルボン酸基を示している。 In the formula (1), R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxylic acid group.
 式(1)で表される化合物としては、BTA、BTAのベンゼン環の4または5位置のH原子がメチル基で置換されたトリルトリアゾール(TTA)、カルボン酸基で置換されたベンゾトリアゾール-4-カルボン酸等が挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。本発明の研磨剤中の保護膜形成剤の含有割合(濃度)は、研磨特性の点から、研磨剤の全質量に対して0.001~5質量%の範囲にあることが好ましく、0.01~1.0質量%の範囲がより好ましく、0.05~0.5質量%の範囲が特に好ましい。 Examples of the compound represented by the formula (1) include BTA, tolyltriazole (TTA) in which the H atom at the 4 or 5 position of the benzene ring of BTA is substituted with a methyl group, and benzotriazole-4 substituted with a carboxylic acid group -Carboxylic acid and the like. These may be used alone or in combination of two or more. The content (concentration) of the protective film forming agent in the abrasive of the present invention is preferably in the range of 0.001 to 5% by mass with respect to the total mass of the abrasive, from the viewpoint of polishing characteristics. A range of 01 to 1.0% by mass is more preferable, and a range of 0.05 to 0.5% by mass is particularly preferable.
 本発明の研磨剤には、前記した砥粒、酸化剤、保護膜形成剤の他に酸が含まれる。前記した酸化剤が酸としても機能する場合には、酸化剤ではなく酸として扱うものとする。 The abrasive of the present invention contains an acid in addition to the above-described abrasive grains, oxidizing agent, and protective film forming agent. When the above-described oxidizing agent functions also as an acid, it is handled as an acid instead of an oxidizing agent.
 このような酸としては、硝酸、硫酸および塩酸から選ばれる1種以上の無機酸を用いることが好ましい。中でも、酸化力のあるオキソ酸でありハロゲンを含まない硝酸の使用が好ましい。また、本発明の研磨剤における酸の含有割合(濃度)は、研磨剤の全質量に対して0.01~50質量%の範囲が好ましく、0.01~20質量%の範囲がより好ましく、0.02~0.5質量%の範囲が特に好ましい。酸の添加により、バリア層や絶縁層の研磨速度を高めることができる。また、研磨剤の分散安定性を向上させることも可能である。 As such an acid, it is preferable to use one or more inorganic acids selected from nitric acid, sulfuric acid and hydrochloric acid. Among these, it is preferable to use nitric acid which is an oxo acid having oxidizing power and does not contain halogen. The acid content (concentration) in the abrasive of the present invention is preferably in the range of 0.01 to 50% by mass, more preferably in the range of 0.01 to 20% by mass with respect to the total mass of the abrasive. A range of 0.02 to 0.5% by mass is particularly preferred. By adding an acid, the polishing rate of the barrier layer or the insulating layer can be increased. It is also possible to improve the dispersion stability of the abrasive.
 本発明に係る研磨剤を後述する所定のpHに調整するために、前記した酸とともに塩基性化合物を添加することができる。塩基性化合物としては、アンモニア、水酸化カリウム、テトラメチルアンモニウムヒドロキシドやテトラエチルアンモニウムヒドロキシドのような4級アンモニウムヒドロキシド、モノエタノールアミン等を使用することができる。アルカリ金属を含まない方が好ましい場合には、アンモニアが好適である。 In order to adjust the abrasive according to the present invention to a predetermined pH described later, a basic compound can be added together with the acid described above. As the basic compound, ammonia, potassium hydroxide, quaternary ammonium hydroxide such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, monoethanolamine and the like can be used. Ammonia is preferred when it is preferable not to include an alkali metal.
 なお、酸や塩基性化合物は、本発明の研磨剤調製のどの段階に添加してもよい。例えば、酸または塩基性化合物で処理したものを研磨剤の成分として使用する場合も、上記に説明する酸や塩基性化合物の添加に該当する。また、使用する酸と塩基性化合物との全てまたはその一部を反応させて塩とした後添加することもできるが、バリア層の研磨速度を大きくできる点、研磨剤のpHを所望の範囲に調節しやすい点、および取扱い性の点などから、本発明では、酸と塩基性化合物とを別々に添加することが好ましい。 In addition, you may add an acid and a basic compound in any step of preparation of the abrasive | polishing agent of this invention. For example, when using what was processed with the acid or the basic compound as a component of an abrasive | polishing agent, it corresponds to addition of the acid and basic compound which are demonstrated above. It can also be added after reacting all or part of the acid and basic compound used to form a salt. However, the polishing rate of the barrier layer can be increased, and the pH of the abrasive is in the desired range. In the present invention, it is preferable to add the acid and the basic compound separately from the viewpoint of easy adjustment and handling.
 研磨剤中の塩基性化合物の含有割合(濃度)は、研磨剤の全質量に対して0.01~50質量%の範囲が好ましく、0.01~10質量%の範囲がより好ましく、0.01~1質量%の範囲が特に好ましい。なお、塩となった場合における研磨剤中の酸および塩基性化合物の濃度は、その塩がそれぞれ酸と塩基性化合物として独立に存在していると仮定した場合の濃度を意味する。 The content (concentration) of the basic compound in the abrasive is preferably in the range of 0.01 to 50% by mass, more preferably in the range of 0.01 to 10% by mass, based on the total mass of the abrasive. A range of 01 to 1% by mass is particularly preferred. In addition, the concentration of the acid and the basic compound in the abrasive when it becomes a salt means the concentration when it is assumed that the salt exists independently as an acid and a basic compound, respectively.
 本発明に係る研磨剤のpHは2~5の範囲とすることが好ましい。研磨特性と分散安定性とを考慮すると、砥粒としてシリカを用いた場合のpHは4以下が好ましく、金属配線層(例えば銅配線層)の所望の研磨速度に応じて、pH2~4の酸性領域が適宜使用される。 The pH of the abrasive according to the present invention is preferably in the range of 2-5. In consideration of the polishing characteristics and dispersion stability, the pH when silica is used as the abrasive is preferably 4 or less, and the pH is 2 to 4 depending on the desired polishing rate of the metal wiring layer (for example, copper wiring layer). Areas are used as appropriate.
 砥粒がアルミナやセリアの場合には、それらの等電点やゲル化領域を考慮して、最適pH値に調整することが好ましい。そのために、pH緩衝剤を使用してもよい。pH緩衝剤としては、pH緩衝能があるものであれば特に制限なく使用することができるが、多価カルボン酸であるコハク酸、クエン酸、シュウ酸、フタル酸、酒石酸およびアジピン酸から選ばれる1種以上が好ましい。また、グリシルグリシンや炭酸アルカリも使用することができる。研磨剤中のpH緩衝剤の含有割合(濃度)は、研磨剤の全質量に対して10質量%以下が好ましい。なお、pH緩衝剤は、上記酸や塩基性化合物としては扱わないものとする。 When the abrasive grains are alumina or ceria, it is preferable to adjust to an optimum pH value in consideration of their isoelectric point and gelation region. For this purpose, a pH buffering agent may be used. The pH buffering agent can be used without particular limitation as long as it has pH buffering ability, but is selected from succinic acid, citric acid, oxalic acid, phthalic acid, tartaric acid and adipic acid which are polyvalent carboxylic acids. One or more are preferred. Moreover, glycylglycine and alkali carbonate can also be used. The content ratio (concentration) of the pH buffering agent in the abrasive is preferably 10% by mass or less with respect to the total mass of the abrasive. Note that the pH buffer is not treated as the acid or basic compound.
 本発明の研磨剤中の炭素数6~20の、アルキル基、アリール基およびアリール置換アルキル基から選ばれる炭化水素基を有するアミンは、低誘電率絶縁層をあまり削らずに、二酸化ケイ素等からなるキャップ層と低誘電率絶縁層との研磨速度に選択性を持たせるために配合される成分(以下、低誘電率層研磨抑制成分という。)である。本発明の研磨剤においては、このような低誘電率層研磨抑制成分として、炭素数6~20のアルキル基、炭素数6~20のアリール基およびアルキル基のH原子がアリール基で置換された炭素数6~20のアリール置換アルキル基から選ばれる炭化水素基を有するアミンが使用される。具体的には、オクチルアミン、ドデシルアミン、ポリオキシエチレンラウリルアミンが例示され、これらのアミンからなる群から選ばれる少なくとも1種を使用することが好ましい。このようなアミンは、研磨剤スラリーの分散性を悪化させることがない。なお、本明細書においてアミンは、1級アミノ基を有する第1アミンだけでなく、2級アミノ基を有する第2アミンおよび3級アミノ基を有する第3アミンをも含むものとする。 The amine having a hydrocarbon group selected from an alkyl group, an aryl group, and an aryl-substituted alkyl group having 6 to 20 carbon atoms in the polishing agent of the present invention can be obtained from silicon dioxide or the like without greatly scraping the low dielectric constant insulating layer. This is a component (hereinafter, referred to as a low dielectric constant layer polishing inhibiting component) that is blended in order to give selectivity to the polishing rate between the cap layer and the low dielectric constant insulating layer. In the polishing agent of the present invention, as such a low dielectric constant layer polishing suppressing component, an alkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an H atom of the alkyl group are substituted with an aryl group. An amine having a hydrocarbon group selected from aryl-substituted alkyl groups having 6 to 20 carbon atoms is used. Specifically, octylamine, dodecylamine, and polyoxyethylene laurylamine are exemplified, and it is preferable to use at least one selected from the group consisting of these amines. Such an amine does not deteriorate the dispersibility of the abrasive slurry. In the present specification, the amine includes not only a primary amine having a primary amino group but also a secondary amine having a secondary amino group and a tertiary amine having a tertiary amino group.
 前記アミンが、低誘電率絶縁層の研磨を抑制する働きをするのは、これらの化合物の有する親水基であるアミノ基(1級アミノ基、2級アミノ基あるいは3級アミノ基)と、疎水基である炭化水素基(炭素数6~20のアルキル基、アリール基、アリール置換アルキル基)の作用と考えられる。すなわち、酸化物からなり表面が親水性の砥粒と、有機基を持つため表面が疎水性の低誘電率絶縁層との間に、親水基と疎水基をそれぞれ有する前記アミンが介在することで、相互作用を生じさせているためと考えられる。親水基と疎水基をそれぞれ有するアミンであっても、疎水基の炭素数が6未満のものでは、低誘電率絶縁層の研磨を抑制する十分な効果が生じない。また、炭素数が6~20の炭化水素基を有するものであっても、1級から3級のアミノ基を有しないもの(例えば、ポリオキシエチレンアルキルエーテル)を使用した場合は、低誘電率絶縁層の研磨を抑制し、低誘電率絶縁層/二酸化ケイ素膜の選択比を小さくすることができない。また、研磨剤の分散性が低下するなどの、安定性に関する特性低下が生じるため好ましくない。 The amine functions to suppress polishing of the low dielectric constant insulating layer because of the amino group (primary amino group, secondary amino group or tertiary amino group) which is a hydrophilic group of these compounds, and hydrophobicity. This is considered to be the action of the hydrocarbon group (alkyl group having 6 to 20 carbon atoms, aryl group, aryl-substituted alkyl group). That is, the amine having a hydrophilic group and a hydrophobic group is interposed between an abrasive grain made of an oxide and a hydrophilic low-dielectric constant insulating layer having an organic group and a hydrophobic surface. This is thought to be due to the interaction. Even if the amine has a hydrophilic group and a hydrophobic group, if the hydrophobic group has less than 6 carbon atoms, a sufficient effect of suppressing polishing of the low dielectric constant insulating layer does not occur. In addition, even when the hydrocarbon group has 6 to 20 carbon atoms and does not have a primary to tertiary amino group (for example, polyoxyethylene alkyl ether), a low dielectric constant Polishing of the insulating layer is suppressed, and the low dielectric constant insulating layer / silicon dioxide film selection ratio cannot be reduced. Moreover, since the characteristic regarding stability will arise, such as the dispersibility of an abrasive | polishing agent falling, it is not preferable.
 なお、日本国特開2007-12679号公報には、キャップ層と低誘電率絶縁層との研磨速度に選択性が付けられ、キャップ層を削りきった後低誘電率絶縁層が露出した段階で研磨速度が大幅に低下する、という性質を有する研磨剤が開示されている。しかし、この公報に記載されている低誘電率絶縁層の比誘電率kは2.7であり、近年使用の要求が高まっているさらに低誘電率(比誘電率2.2)の絶縁層の研磨には適用することが難しかった。 In Japanese Patent Application Laid-Open No. 2007-12679, the polishing rate between the cap layer and the low dielectric constant insulating layer is selected, and the low dielectric constant insulating layer is exposed after the cap layer has been scraped. An abrasive having the property that the polishing rate is significantly reduced is disclosed. However, the dielectric constant k of the low dielectric constant insulating layer described in this publication is 2.7, and the use of an insulating layer having a lower dielectric constant (relative dielectric constant of 2.2) that has been increasingly demanded for use in recent years. It was difficult to apply to polishing.
 前記低誘電率層研磨抑制成分を含有する本発明の研磨剤によれば、比誘電率kが2.2の低誘電率絶縁層と二酸化ケイ素からなるキャップ層との選択比の値を十分に小さくすることができる。具体的には、本発明の研磨剤により、低誘電率絶縁層/二酸化ケイ素膜の選択比を1.0以下とすることができる。0.5以下とすることがより好ましい。 According to the polishing agent of the present invention containing the low dielectric constant layer polishing inhibiting component, the value of the selective ratio between the low dielectric constant insulating layer having a relative dielectric constant k of 2.2 and the cap layer made of silicon dioxide is sufficiently high. Can be small. Specifically, the low dielectric constant insulating layer / silicon dioxide film selection ratio can be made 1.0 or less by the abrasive of the present invention. More preferably, it is 0.5 or less.
 上記したように、本発明に係る研磨剤は、さらに低誘電率(例えば比誘電率k=2.2)の絶縁層であっても、キャップ層と低誘電率絶縁層との研磨速度に選択性をつけてキャップ層を削りきった後、低誘電率絶縁層が露出した段階で研磨速度が大幅に低下する、という性質を有しているので、キャップ層と金属配線層とを含んでなる被研磨面を研磨する際に、キャップ層を完全に除去した後に、その下にある低誘電率絶縁層の削り込み量を最小限に抑制しながら被研磨面を平坦化することができる、という優れた特徴を有する。このような特徴は、CMP技術において、研磨剤の薬剤組成に起因する化学的研磨と砥粒がもたらす機械的研磨とが融合して得られるものと考えられ、従来の研磨剤では実現できなかった効果である。 As described above, the polishing agent according to the present invention is selected for the polishing rate of the cap layer and the low dielectric constant insulating layer even for an insulating layer having a low dielectric constant (for example, relative dielectric constant k = 2.2). The cap layer and the metal wiring layer are included because the polishing rate is greatly reduced at the stage where the low dielectric constant insulating layer is exposed after the cap layer has been scraped off. When polishing the surface to be polished, after completely removing the cap layer, it is possible to flatten the surface to be polished while minimizing the amount of cutting of the underlying low dielectric constant insulating layer It has excellent characteristics. Such characteristics are considered to be obtained by combining chemical polishing resulting from the chemical composition of the polishing agent and mechanical polishing caused by the abrasive grains in CMP technology, and could not be realized with conventional polishing agents. It is an effect.
 前記低誘電率層研磨抑制成分の研磨剤中における含有割合(濃度)は、低誘電率絶縁層/二酸化ケイ素膜の選択比を小さくするうえで十分な効果を得る点から、研磨剤の全質量に対して0.01~1質量%の範囲が好ましく、所望の選択比等を考慮して適宜設定することが好ましい。研磨剤全質量の0.02~0.5質量%の範囲がより好ましく、0.04~0.2質量%の範囲がさらにより好ましい。 The content (concentration) of the low dielectric constant layer polishing inhibiting component in the abrasive is sufficient to reduce the low dielectric constant insulating layer / silicon dioxide film selection ratio, so that the total mass of the abrasive is obtained. The content is preferably in the range of 0.01 to 1% by mass, and preferably set appropriately in consideration of the desired selection ratio. A range of 0.02 to 0.5% by mass with respect to the total mass of the abrasive is more preferable, and a range of 0.04 to 0.2% by mass is even more preferable.
 本発明に係る研磨剤において、水は砥粒を安定的に分散させるために使用される。使用する水は、本発明の趣旨に反しない限りどのようなものを使用してもよいが、純水、イオン交換水等を使用することが好ましい。水は研磨剤の全質量に対して40~98質量%の範囲で含まれることが好ましい。 In the abrasive according to the present invention, water is used to stably disperse the abrasive grains. Any water may be used as long as it does not violate the gist of the present invention, but it is preferable to use pure water, ion-exchanged water or the like. Water is preferably contained in the range of 40 to 98% by mass with respect to the total mass of the abrasive.
 また、本発明の研磨剤には、流動性や分散安定性、研磨速度を調節するために、炭素数1~4の1級アルコール、炭素数2~4のグリコールおよびCHCH(OH)CHO-C2m-1で表されるエーテル(ただし、mは1~4の整数。)、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトンおよび炭酸プロピレンからなる群から選ばれる少なくとも1種の有機溶媒を加えることが好ましい。具体的には、1級アルコールとしては、メチルアルコノール、エチルアルコール、イソプロピルアルコールが好ましい。グリコールとしては、エチレングリコール、プロピレングリコールが好ましい。エーテルとしては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルが好ましい。また、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、炭酸プロピレンは、25℃における比誘電率が30~65の範囲の極性溶媒であり、溶媒和により電解質を高濃度で溶解することができる。 Further, the abrasive of the present invention includes a primary alcohol having 1 to 4 carbon atoms, a glycol having 2 to 4 carbon atoms, and CH 3 CH (OH) CH in order to adjust fluidity, dispersion stability, and polishing rate. 2 O—C m H 2m-1 ether (where m is an integer of 1 to 4), N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone and carbonic acid It is preferable to add at least one organic solvent selected from the group consisting of propylene. Specifically, the primary alcohol is preferably methyl alcohol, ethyl alcohol, or isopropyl alcohol. As glycol, ethylene glycol and propylene glycol are preferable. As the ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether are preferable. N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, and propylene carbonate are polar solvents having a relative dielectric constant in the range of 30 to 65 at 25 ° C. Can be dissolved at a high concentration.
 本発明に係る研磨剤には、表面張力の高い水が含まれるため、上記の有機溶媒の添加はその流動性を調節するために有効である。特に、上記の有機溶媒は、保護膜形成剤である前記式(1)で表される化合物の良溶媒として働くため、研磨剤中の保護膜形成剤の含有割合(濃度)を所望の範囲に調節しやすいという利点がある。 Since the abrasive according to the present invention contains water having a high surface tension, the addition of the organic solvent is effective for adjusting the fluidity. In particular, the organic solvent acts as a good solvent for the compound represented by the formula (1), which is a protective film forming agent, so the content ratio (concentration) of the protective film forming agent in the abrasive is within a desired range. There is an advantage that it is easy to adjust.
 本発明に係る研磨剤には、本発明の趣旨に反しない限り、界面活性剤、キレート化剤、還元剤、粘性付与剤または粘度調節剤、凝集防止剤または分散剤、防錆剤等を必要に応じて適宜含有させることができる。ただし、これらの添加剤が、酸化剤、保護膜形成剤、酸または塩基性化合物の機能を有する場合は、酸化剤、保護膜形成剤、酸または塩基性化合物として扱うものとする。 The abrasive according to the present invention requires a surfactant, a chelating agent, a reducing agent, a viscosity imparting agent or a viscosity modifier, an anti-aggregating agent or a dispersing agent, a rust preventive agent, etc., unless it is contrary to the spirit of the present invention. Depending on the content, it can be appropriately contained. However, when these additives have the functions of an oxidizing agent, a protective film forming agent, an acid or a basic compound, they are handled as an oxidizing agent, a protective film forming agent, an acid or a basic compound.
 本発明に係る研磨剤は、前記した構成成分が前記所定の含有割合(濃度)で含有され、砥粒については均一に分散した、それ以外の成分については均一に溶解した混合状態になるように調製され使用される。混合には研磨剤の製造に通常用いられる撹拌混合方法、例えば、超音波分散機、ホモジナイザー等による撹拌混合方法を採ることができる。本発明に係る研磨剤は、必ずしも予め構成する研磨材料をすべて混合したものとして研磨の場に供給する必要はない。研磨の場に供給する際に、研磨材料が混合されて研磨剤の組成になってもよい。 In the abrasive according to the present invention, the above-described constituent components are contained in the predetermined content ratio (concentration), the abrasive grains are uniformly dispersed, and other components are uniformly dissolved. Prepared and used. For mixing, a stirring and mixing method usually used in the production of an abrasive, for example, a stirring and mixing method using an ultrasonic disperser, a homogenizer, or the like can be employed. The abrasive according to the present invention does not necessarily have to be supplied to the polishing site as a mixture of all the pre-configured abrasive materials. When supplying to the place of polishing, the polishing material may be mixed to form the composition of the abrasive.
 本発明に係る研磨剤は、例えば銅からなる金属配線層の研磨速度も制御できることから、半導体集積回路装置の製造において、埋め込まれた金属配線層を有する絶縁層の平坦な表面を得るのに好適である。特に、絶縁層上にバリア層と金属配線層とを積層して形成された被研磨面を研磨するのに好適である。すなわち、本発明に係る研磨剤は、バリア層の高速研磨と、埋め込まれた金属配線層を有する絶縁層の平坦化との両方の機能を併せ持つものである。 Since the polishing agent according to the present invention can also control the polishing rate of a metal wiring layer made of, for example, copper, it is suitable for obtaining a flat surface of an insulating layer having an embedded metal wiring layer in the manufacture of a semiconductor integrated circuit device. It is. In particular, it is suitable for polishing a surface to be polished formed by laminating a barrier layer and a metal wiring layer on an insulating layer. That is, the abrasive according to the present invention has both functions of high-speed polishing of the barrier layer and flattening of the insulating layer having the embedded metal wiring layer.
 特に、バリア層がタンタル、タンタル合金およびタンタル化合物からなる群から選ばれる少なくとも1種の材料からなる層であるときに、高い効果が得られる。しかし、他の金属等からなる膜に対しても適用することができ、バリア層としてタンタル以外の金属または金属化合物、例えばTi、TiN、TiSiN、WN等からなる層を用いた場合にも、十分な効果が得られる。 Particularly, a high effect can be obtained when the barrier layer is a layer made of at least one material selected from the group consisting of tantalum, a tantalum alloy and a tantalum compound. However, it can also be applied to films made of other metals, etc., and even when a layer made of a metal or a metal compound other than tantalum, such as Ti, TiN, TiSiN, WN, etc., is used as the barrier layer. Effects can be obtained.
 本発明に係る研磨剤による研磨対象の一つである絶縁層を構成する材料としては、公知のどのような材料を使用してもよい。例えば、二酸化ケイ素膜を例示することができる。二酸化ケイ素膜としては、一般にSiとOとの架橋構造からなり、SiとOの原子数の比が1:2のものが使用されるが、それ以外のものでもよい。このような二酸化ケイ素膜としては、テトラエトキシシラン(TEOS)やシランガス(SiH)を使用し、プラズマCVDにより堆積させたものが一般的に知られている。 Any known material may be used as the material constituting the insulating layer that is one of the objects to be polished by the abrasive according to the present invention. For example, a silicon dioxide film can be exemplified. As the silicon dioxide film, one having a crosslinked structure of Si and O and having a ratio of the number of atoms of Si and O of 1: 2 is generally used, but other films may be used. As such a silicon dioxide film, a film deposited by plasma CVD using tetraethoxysilane (TEOS) or silane gas (SiH 4 ) is generally known.
 また近年、信号遅延の抑制を目的として、比誘電率が3以下の低誘電率材料からなる膜が絶縁層として使用されるようになってきている。このような低誘電率材料膜としては、ポーラスシリカ膜や、主にSi-O結合から構成されCH結合を含む有機ケイ素材料(一般にSiOCと表記される。)膜が知られている。これらの膜も、本発明に係る研磨剤を適用する絶縁層として好適に使用することができる。 In recent years, a film made of a low dielectric constant material having a relative dielectric constant of 3 or less has been used as an insulating layer for the purpose of suppressing signal delay. As such a low dielectric constant material film, a porous silica film or an organic silicon material (generally referred to as SiOC) film mainly composed of Si—O bonds and containing CH 3 bonds is known. These films can also be suitably used as an insulating layer to which the abrasive according to the present invention is applied.
 前記した有機ケイ素材料は、プロセス技術として従来技術の延長線上にあり、適切なプロセスチューニングを行うことにより、適応範囲の広い量産技術が達成されている。したがって、この低誘電率材料を使用した膜を平坦化する技術が要望されており、その目的のために、本発明に係る研磨剤を好適に使用することができる。 The above-mentioned organosilicon material is an extension of the conventional technology as a process technology, and mass production technology with a wide range of application has been achieved by performing appropriate process tuning. Therefore, there is a demand for a technique for flattening a film using this low dielectric constant material, and the abrasive according to the present invention can be suitably used for that purpose.
 低誘電率材料である有機ケイ素材料としては、商品名Black Diamond1(比誘電率2.7、アプライドマテリアルズ社技術)、商品名Coral(比誘電率2.7、Novellus Systems社技術)、Aurora2.7(比誘電率2.7、日本ASM社技術)等を挙げることができ、とりわけSi-CH結合を有する化合物が好ましく用いられる。前記材料よりさらに誘電率が低減された有機ケイ素材料としては、商品名Black Diamond2x(比誘電率2.2、アプライドマテリアルズ社技術)が知られている。 Examples of the organic silicon material that is a low dielectric constant material include trade name Black Diamond 1 (relative permittivity 2.7, Applied Materials technology), trade name Coral (relative permittivity 2.7, Novellus Systems technology), Aurora 2. 7 (relative permittivity: 2.7, Japan ASM Co., Ltd.), and the like. Among them, a compound having a Si—CH 3 bond is preferably used. As an organic silicon material whose dielectric constant is further reduced than that of the above-mentioned material, a trade name Black Diamond 2x (relative dielectric constant 2.2, Applied Materials, Inc. technology) is known.
 本発明に係る研磨剤は、絶縁層上にキャップ層が形成された構造のものについても好適に使用することができる。例えば、低誘電率絶縁層上にキャップ層、バリア層および金属配線層が順に積層された多層構造において、キャップ層を完全に除去した後、低誘電率絶縁層をあまり削りこまずに平坦化するために適している。そして、低誘電率絶縁層/キャップ層の選択比、具体的にはSiOC層/二酸化ケイ素層の選択比を、1.0以下とすることができる。SiOC層/二酸化ケイ素層の選択比は、0.04~0.50の範囲であることが好ましく、0.05~0.30の範囲であることがより好ましい。 The abrasive according to the present invention can also be suitably used for a structure in which a cap layer is formed on an insulating layer. For example, in a multilayer structure in which a cap layer, a barrier layer, and a metal wiring layer are sequentially laminated on a low dielectric constant insulating layer, after the cap layer is completely removed, the low dielectric constant insulating layer is flattened without much shaving. Suitable for. The selection ratio of the low dielectric constant insulating layer / cap layer, specifically, the selection ratio of SiOC layer / silicon dioxide layer can be 1.0 or less. The selection ratio of SiOC layer / silicon dioxide layer is preferably in the range of 0.04 to 0.50, and more preferably in the range of 0.05 to 0.30.
 キャップ層は、絶縁層に低誘電率材料を使用する場合に、絶縁層とバリア層との密着性を高め、化学的機械的に脆弱な低誘電率絶縁層に金属配線層を埋め込むための溝をエッチングにより形成する際のマスク材として用いるために設けられる。また、キャップ層は、低誘電率材料の変質防止を図ることを目的として設けられる。 The cap layer is a groove for embedding a metal wiring layer in a chemically and mechanically fragile low dielectric constant insulating layer when the low dielectric constant material is used for the insulating layer to improve the adhesion between the insulating layer and the barrier layer. Is provided for use as a mask material when formed by etching. In addition, the cap layer is provided for the purpose of preventing deterioration of the low dielectric constant material.
 キャップ層としては、一般にケイ素と酸素とを構成要素とする膜が使用される。このような膜としては、二酸化ケイ素膜を例示することができる。二酸化ケイ素膜としては、一般にSiとOとの架橋構造よりなり、SiとOの原子数の比が1:2のものが使用されるが、これ以外のものでもよい。このような二酸化ケイ素膜としては、テトラエトキシシラン(TEOS)やシランガス(SiH)を使用し、プラズマCVDにより堆積させたものが知られている。 As the cap layer, a film having silicon and oxygen as constituent elements is generally used. An example of such a film is a silicon dioxide film. As the silicon dioxide film, a film having a crosslinked structure of Si and O and having a ratio of the number of atoms of Si and O of 1: 2 is generally used, but other films may be used. As such a silicon dioxide film, a film deposited by plasma CVD using tetraethoxysilane (TEOS) or silane gas (SiH 4 ) is known.
 本発明に係る研磨剤は、キャップ層として、TEOSをCVDにより堆積させた二酸化ケイ素膜を用い、低誘電率の有機ケイ素材料としてSi-CH結合を有する化合物である商品名Black Diamond1(比誘電率2.7)を用いる場合に、特に好適に使用することができる。さらに比誘電率の低い商品名Black Diamond2x(比誘電率2.2)を用いる場合にも好適に使用することができる。 The abrasive according to the present invention uses a silicon dioxide film in which TEOS is deposited by CVD as a cap layer, and a trade name Black Diamond 1 (relative dielectric) which is a compound having a Si—CH 3 bond as a low dielectric constant organosilicon material. In the case of using the rate 2.7), it can be particularly preferably used. Furthermore, it can be used suitably also when using the product name Black Diamond 2x (relative permittivity 2.2) having a low relative permittivity.
 本発明に係る研磨剤の研磨対象となる金属配線層としては、銅、銅合金および銅化合物から選ばれる1種以上の材料からなる層が好ましい。しかし、本発明の研磨剤は、銅以外の金属、例えばAl、W、Ag、Pt、Au等の金属膜に対しても適用可能である。 The metal wiring layer to be polished by the abrasive according to the present invention is preferably a layer made of one or more materials selected from copper, copper alloys and copper compounds. However, the abrasive of the present invention can also be applied to metals other than copper, such as metal films such as Al, W, Ag, Pt, and Au.
 本発明の研磨剤を用いて半導体集積回路装置の被研磨面を研磨する方法としては、研磨剤を研磨パッドに供給しながら、半導体集積回路装置の被研磨面と研磨パッドとを接触させ、両者間の相対運動により研磨を行う方法が好ましい。 As a method for polishing a surface to be polished of a semiconductor integrated circuit device using the polishing agent of the present invention, the polishing surface of the semiconductor integrated circuit device is brought into contact with the polishing pad while supplying the polishing agent to the polishing pad. A method of polishing by relative motion between the two is preferable.
 上記研磨方法において、研磨装置としては従来公知の研磨装置を使用することができる。図3は、本発明の研磨方法に使用可能な研磨装置の一例を示す図である。この研磨装置20は、半導体集積回路装置21を保持する研磨ヘッド22と、研磨定盤23と、研磨定盤23の表面に貼り付けられた研磨パッド24と、研磨パッド24に研磨剤25を供給する研磨剤供給配管26とを備えている。研磨剤供給配管26から研磨剤25を供給しながら、研磨ヘッド22に保持された半導体集積回路装置21の被研磨面を研磨パッド24に接触させ、研磨ヘッド22と研磨定盤23とを相対的に回転運動させて研磨を行うように構成されている。なお、本発明の実施形態に使用される研磨装置はこのような構造のものに限定されない。 In the above polishing method, a conventionally known polishing apparatus can be used as the polishing apparatus. FIG. 3 is a diagram showing an example of a polishing apparatus that can be used in the polishing method of the present invention. The polishing apparatus 20 supplies a polishing head 22 for holding a semiconductor integrated circuit device 21, a polishing surface plate 23, a polishing pad 24 attached to the surface of the polishing surface plate 23, and an abrasive 25 to the polishing pad 24. A polishing agent supply pipe 26 is provided. While supplying the polishing agent 25 from the polishing agent supply pipe 26, the surface to be polished of the semiconductor integrated circuit device 21 held by the polishing head 22 is brought into contact with the polishing pad 24, and the polishing head 22 and the polishing surface plate 23 are relative to each other. It is comprised so that it may grind | polish by rotating. Note that the polishing apparatus used in the embodiment of the present invention is not limited to such a structure.
 研磨ヘッド22は、回転運動だけでなく直線運動をしてもよい。また、研磨定盤23および研磨パッド24は、半導体集積回路装置21と同程度またはそれ以下の大きさであってもよい。その場合は、研磨ヘッド22と研磨定盤23とを相対的に移動させることにより、半導体集積回路装置21の被研磨面の全面を研磨できるようにすることが好ましい。さらに、研磨定盤23および研磨パッド24は回転運動を行なうものでなくてもよく、例えばベルト式で一方向に移動するものであってもよい。 The polishing head 22 may perform a linear motion as well as a rotational motion. Further, the polishing surface plate 23 and the polishing pad 24 may be as large as or smaller than the semiconductor integrated circuit device 21. In that case, it is preferable that the entire surface to be polished of the semiconductor integrated circuit device 21 can be polished by relatively moving the polishing head 22 and the polishing surface plate 23. Furthermore, the polishing surface plate 23 and the polishing pad 24 do not have to perform rotational movement, and may move in one direction, for example, by a belt type.
 このような研磨装置20の研磨条件には特に制限はないが、研磨ヘッド22に荷重をかけて研磨パッド24に押しつけることで、より研磨圧力を高め、研磨速度を向上させることも可能である。研磨圧力は0.5~50kPa程度が好ましく、研磨速度の半導体集積回路装置21の被研磨面内均一性、平坦性、スクラッチなどの研磨欠陥防止の観点から、3~40kPa程度がより好ましい。研磨定盤23および研磨ヘッド22の回転数は、50~500rpm程度が好ましいがこれに限定されない。また、研磨剤25供給量については、被研磨面構成材料や研磨剤の組成、上記各研磨条件等により適宜調整、選択されるが、例えば、直径200mmのウェハを研磨する場合には、概ね100~300ml/分程度の供給量が好ましい。 The polishing conditions of the polishing apparatus 20 are not particularly limited, but by applying a load to the polishing head 22 and pressing it against the polishing pad 24, it is possible to increase the polishing pressure and improve the polishing rate. The polishing pressure is preferably about 0.5 to 50 kPa, and more preferably about 3 to 40 kPa from the viewpoint of preventing polishing defects such as uniformity of the polished surface of the semiconductor integrated circuit device 21 at the polishing rate, flatness, and scratches. The number of rotations of the polishing surface plate 23 and the polishing head 22 is preferably about 50 to 500 rpm, but is not limited thereto. The supply amount of the abrasive 25 is appropriately adjusted and selected depending on the material constituting the surface to be polished, the composition of the abrasive, each of the above polishing conditions, etc. For example, when polishing a wafer having a diameter of 200 mm, it is generally 100. A supply rate of about ~ 300 ml / min is preferred.
 研磨パッド24としては、一般的な不織布、発泡ポリウレタン、多孔質樹脂、非多孔質樹脂などからなるものを使用することができる。また、研磨パッド24への研磨剤25の供給を促進し、あるいは研磨パッド24に研磨剤25が一定量溜まるようにするために、研磨パッド24の表面に格子状、同心円状、らせん状などの溝加工が施されていてもよい。 The polishing pad 24 may be made of a general nonwoven fabric, foamed polyurethane, porous resin, non-porous resin, or the like. Further, in order to promote the supply of the polishing agent 25 to the polishing pad 24 or to collect a certain amount of the polishing agent 25 on the polishing pad 24, the surface of the polishing pad 24 has a lattice shape, a concentric circle shape, a spiral shape, or the like. Groove processing may be performed.
 また、必要に応じて、パッドコンディショナーを研磨パッド24の表面に接触させ、研磨パッド24表面のコンディショニングを行いながら研磨してもよい。 In addition, if necessary, the pad conditioner may be brought into contact with the surface of the polishing pad 24 and polishing may be performed while conditioning the surface of the polishing pad 24.
 このような研磨装置を使用する本発明に係る研磨方法は、基板上の絶縁層に配線用の溝パターンやビア等の凹部を形成し、次にバリア層を形成した後に、金属例えば銅を溝部に埋め込むためにスパッタ法やメッキ法等で成膜した被研磨面において、凹部以外の絶縁層表面が露出するまで金属層とバリア層とをCMPで除去して、埋め込み金属配線層を形成する方法に好適に用いられる。 In the polishing method according to the present invention using such a polishing apparatus, a groove such as a wiring pattern or a recess such as a via is formed in an insulating layer on a substrate, and then a barrier layer is formed. A method of forming a buried metal wiring layer by removing the metal layer and the barrier layer by CMP until the surface of the insulating layer other than the concave portion is exposed on the surface to be polished formed by sputtering or plating for embedding in Is preferably used.
 以下、本発明を実施例および比較例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
 (1)研磨剤の調製
(1-1)実施例1~11の各研磨剤を、以下に示すように調製した。すなわち、水に硝酸と表1に示すpH緩衝剤とを加え、さらに低誘電率層研磨抑制成分であるアミンE1~E3を加えて10分間撹拌し、a液を得た。また、保護膜形成剤であるBTAを、その良溶媒であるエチレングリコール(EG)に溶解し、保護膜形成剤の固形分濃度が40質量%のb液を得た。なお、表1中、アミンE1はポリオキシエチレンラウリルアミンを、E2はオクチルアミンを、E3はドデシルアミンをそれぞれ示している。
(1) Preparation of abrasive (1-1) Each of the abrasives of Examples 1 to 11 was prepared as shown below. Specifically, nitric acid and a pH buffering agent shown in Table 1 were added to water, and amines E1 to E3, which are low dielectric constant layer polishing inhibiting components, were added and stirred for 10 minutes to obtain solution a. Moreover, BTA which is a protective film forming agent was dissolved in ethylene glycol (EG) which is a good solvent to obtain a liquid b having a solid content concentration of 40% by mass of the protective film forming agent. In Table 1, amine E1 represents polyoxyethylene laurylamine, E2 represents octylamine, and E3 represents dodecylamine.
 次に、a液にb液を添加した後、水にシリカを分散させたコロイダルシリカを徐々に添加し、さらに塩基性化合物であるKOHを徐々に添加してpHを調整した。その後、さらに酸化剤である過酸化水素の水溶液を添加し、30分間撹拌して研磨剤を得た。各実施例において使用した各成分、pH緩衝剤、塩基性化合物およびエチレングリコール(EG)の研磨剤全体に対する含有割合(濃度;質量%)を、表1に示す。水としては純水を使用した。 Next, the liquid b was added to the liquid a, and then colloidal silica in which silica was dispersed in water was gradually added, and then the basic compound KOH was gradually added to adjust the pH. Thereafter, an aqueous solution of hydrogen peroxide as an oxidizing agent was further added and stirred for 30 minutes to obtain an abrasive. Table 1 shows the content (concentration: mass%) of each component, pH buffer, basic compound, and ethylene glycol (EG) used in each example with respect to the entire abrasive. Pure water was used as water.
(1-2)比較例1~3の各研磨剤を、以下に示すように調製した。すなわち、水に硝酸とpH緩衝剤とを加え、さらにアミンE1~E3の代わりにE4~E6を加えて10分間撹拌し、a液を得た。また、保護膜形成剤であるBTAを、その良溶媒であるEGに溶解し、BTAの固形分濃度が40質量%のb液を得た。なお、比較例1で使用したE4はブチルエタノールアミンを、比較例2で使用したE5はブチルジエタノールアミンを、比較例3で使用したE6はポリオキシエチレンラウリルエーテルをそれぞれ示している。 (1-2) Each abrasive of Comparative Examples 1 to 3 was prepared as shown below. That is, nitric acid and a pH buffer were added to water, and E4 to E6 were added instead of amines E1 to E3, followed by stirring for 10 minutes to obtain solution a. Moreover, BTA which is a protective film forming agent was dissolved in EG which is a good solvent to obtain a liquid b having a BTA solid content concentration of 40% by mass. E4 used in Comparative Example 1 represents butylethanolamine, E5 used in Comparative Example 2 represents butyldiethanolamine, and E6 used in Comparative Example 3 represents polyoxyethylene lauryl ether.
 次に、a液にb液を添加した後、コロイダルシリカを徐々に添加し、さらにKOHを徐々に添加してpHを調整した。その後、さらに酸化剤である過酸化水素の水溶液を添加し、30分間撹拌して研磨剤を得た。比較例1~3において使用した各成分、pH緩衝剤、塩基性化合物およびEGの研磨剤全体に対する含有割合(濃度;質量%)を表1に示す。水としては純水を使用した。 Next, the liquid b was added to the liquid a, then colloidal silica was gradually added, and further KOH was gradually added to adjust the pH. Thereafter, an aqueous solution of hydrogen peroxide as an oxidizing agent was further added and stirred for 30 minutes to obtain an abrasive. Table 1 shows the content (concentration: mass%) of each component, pH buffer, basic compound, and EG used in Comparative Examples 1 to 3 with respect to the entire abrasive. Pure water was used as water.
(1-3)比較例4~6の各研磨剤を、以下に示すように調製した。すなわち、水に硝酸とpH緩衝剤とを加えて撹拌し、a液を得た。また、BTAを、その良溶媒であるEGに溶解し、BTAの固形分濃度が40質量%のb液を得た。 (1-3) Each abrasive of Comparative Examples 4 to 6 was prepared as shown below. That is, nitric acid and a pH buffer were added to water and stirred to obtain a solution a. Moreover, BTA was melt | dissolved in EG which is the good solvent, and b liquid whose solid content concentration of BTA is 40 mass% was obtained.
 次に、a液にb液を添加した後、コロイダルシリカを徐々に添加し、さらにKOHを徐々に添加してpHを調整した。その後、さらに過酸化水素の水溶液を添加し、30分間撹拌して研磨剤を得た。比較例4~6において使用した各成分、pH緩衝剤、塩基性化合物およびEGの研磨剤全体に対する含有割合(濃度;質量%)を表1に示す。水としては純水を使用した。 Next, the liquid b was added to the liquid a, then colloidal silica was gradually added, and further KOH was gradually added to adjust the pH. Thereafter, an aqueous solution of hydrogen peroxide was further added and stirred for 30 minutes to obtain an abrasive. Table 1 shows the content (concentration: mass%) of each component, pH buffer, basic compound, and EG used in Comparative Examples 4 to 6 with respect to the entire abrasive. Pure water was used as water.
 (2)pHの測定
 実施例1~11および比較例1~6で調製された研磨剤スラリーのpHを、横河電機社製のpH81-11を使用し25℃で測定した。測定結果を表1に示す。
(2) Measurement of pH The pH of the abrasive slurry prepared in Examples 1 to 11 and Comparative Examples 1 to 6 was measured at 25 ° C. using pH 81-11 manufactured by Yokogawa Electric Corporation. The measurement results are shown in Table 1.
 (3)砥粒の平均一次粒径、平均二次粒径および会合比の測定
 砥粒の平均一次粒径は、水分散液を乾燥させて得られる粒子の比表面積から、等価球換算粒径として求めた。粒子の比表面積は、フローソブII2300型(島津製作所製)を用いて、窒素吸着法であるBET一点法で測定した。研磨剤の平均二次粒径は、マイクロトラックUPA(日機装社製)で測定した。そして、会合比(平均二次粒径/平均一次粒径)を求めた。結果は以下の通りであった。実施例1~11および比較例1~4の砥粒は、平均一次粒径29nm、平均二次粒径61nmであり、会合比は2.1であった。比較例5の砥粒は、平均一次粒径17nm、平均二次粒径23nmであり、会合比は1.4であった。比較例6の砥粒は、平均一次粒径35nm、平均二次粒径50nmであり、会合比は1.4であった。
(3) Measurement of average primary particle size, average secondary particle size, and association ratio of abrasive grains The average primary particle size of abrasive grains is determined from the specific surface area of particles obtained by drying an aqueous dispersion, and the equivalent spherical equivalent particle size As sought. The specific surface area of the particles was measured by a BET single-point method, which is a nitrogen adsorption method, using Flowsob II2300 (manufactured by Shimadzu Corporation). The average secondary particle size of the abrasive was measured with Microtrac UPA (Nikkiso Co., Ltd.). The association ratio (average secondary particle size / average primary particle size) was determined. The results were as follows. The abrasive grains of Examples 1 to 11 and Comparative Examples 1 to 4 had an average primary particle size of 29 nm, an average secondary particle size of 61 nm, and an association ratio of 2.1. The abrasive grains of Comparative Example 5 had an average primary particle size of 17 nm, an average secondary particle size of 23 nm, and an association ratio of 1.4. The abrasive grains of Comparative Example 6 had an average primary particle size of 35 nm, an average secondary particle size of 50 nm, and an association ratio of 1.4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (4)研磨剤の研磨特性の評価
 実施例1~11および比較例1~6で得られた研磨剤について、以下の方法で研磨性能の評価を行った。
(4) Evaluation of polishing characteristics of abrasives The polishing performance of the abrasives obtained in Examples 1 to 11 and Comparative Examples 1 to 6 was evaluated by the following method.
(4-1)研磨条件
 研磨は、以下の装置を使用し、以下に示す条件で行った。
研磨機:全自動CMP装置MIRRA(APPLIED MATERIALS社製)
    (ウェハサイズ200mm径の場合)
小型研磨機:Nanofactor(ナノファクター社製)
    (ウェハサイズ45mm角の場合)
研磨圧:14kPa
プラテン(定盤)回転数:表2に示す。
ヘッド(基板保持部)回転数:80rpm
研磨剤供給速度:200ミリリットル/分
研磨パッド:ハードパッドは、IC1400(ロームアンドハース社製)
      ソフトパッドは、H7000(フジボウ社製)
(4-1) Polishing conditions Polishing was performed using the following apparatus under the following conditions.
Polishing machine: Fully automatic CMP machine MIRRA (manufactured by APPLIED MATERIALS)
(Wafer size 200mm diameter)
Small polishing machine: Nanofactor (manufactured by Nano Factor)
(When wafer size is 45mm square)
Polishing pressure: 14kPa
Platen (plate) rotation speed: shown in Table 2.
Head (substrate holding part) rotation speed: 80 rpm
Abrasive supply rate: 200 ml / min Polishing pad: Hard pad, IC1400 (Rohm and Haas)
Soft pad is H7000 (Fujibow)
(4-2)被研磨物
 被研磨物として、次のブランケットウェハ(a)~(d)を使用した。ウェハサイズは実施例4~6および比較例5,6については、200mm径とした。それ以外は、200mm径のウェハをカットして得られた45mm角のものを使用した。
(4-2) Object to be polished The following blanket wafers (a) to (d) were used as objects to be polished. The wafer size was 200 mm for Examples 4 to 6 and Comparative Examples 5 and 6. Other than that, the 45 mm square thing obtained by cutting a 200 mm diameter wafer was used.
(a)金属配線層研磨速度評価用ウェハ
 基板上に厚さ1500nmのCu層をメッキにより成膜したウェハを使用した。
(b)バリア層研磨速度評価用ウェハ
 基板上に厚さ200nmのタンタル(Ta)層をスパッタ法により成膜したウェハを使用した。
(c)キャップ層研磨速度評価用ウェハ
 基板上に厚さ800nmの二酸化ケイ素(SiO)層をプラズマCVDにより成膜したウェハを使用した。
(d)低誘電率絶縁層研磨速度評価用ウェハ
 基板上に、Black Diamond1(比誘電率2.7)を使用しプラズマCVDにより厚さ800nmのSiOC(A)層を成膜したウェハを使用した。また、基板上に、Black Diamond2x(比誘電率2.2)を使用しプラズマCVDにより厚さ800nmのSiOC(B)層を成膜したウェハを使用した。
(A) Metal wiring layer polishing rate evaluation wafer A wafer in which a Cu layer having a thickness of 1500 nm was formed on a substrate by plating was used.
(B) Wafer for barrier layer polishing rate evaluation A wafer in which a tantalum (Ta) layer having a thickness of 200 nm was formed on a substrate by a sputtering method was used.
(C) Cap layer polishing rate evaluation wafer A wafer in which a silicon dioxide (SiO 2 ) layer having a thickness of 800 nm was formed on a substrate by plasma CVD was used.
(D) Wafer for low dielectric constant insulating layer polishing rate evaluation A wafer in which a SiOC (A) layer having a thickness of 800 nm was formed by plasma CVD using Black Diamond 1 (relative dielectric constant 2.7) on a substrate was used. . In addition, a wafer was used in which a SiOC (B) layer having a thickness of 800 nm was formed on the substrate by plasma CVD using Black Diamond 2x (relative dielectric constant 2.2).
(4-3)研磨剤の特性評価方法
 研磨速度は、研磨前後の膜厚から算出した。膜厚の測定には、金属配線層(Cu層)とバリア層(Ta層)については、四探針法による表面抵抗から算出するシート抵抗測定装置RS75(KLAテンコール社製)を用い、低誘電率絶縁層(SiOC(A)層、SiOC(B)層)およびキャップ層(SiO層)については、光干渉式全自動膜厚測定装置UV1280SE(KLAテンコール社製)を用いた。
(4-3) Method for evaluating characteristics of polishing agent The polishing rate was calculated from the film thickness before and after polishing. For the measurement of the film thickness, the metal wiring layer (Cu layer) and the barrier layer (Ta layer) were measured using a sheet resistance measuring device RS75 (manufactured by KLA Tencor) calculated from the surface resistance by the four-probe method. For the rate insulating layer (SiOC (A) layer, SiOC (B) layer) and cap layer (SiO 2 layer), an optical interference type fully automatic film thickness measuring device UV1280SE (manufactured by KLA Tencor) was used.
(4-4)ブランケットウェハ研磨特性評価
 上記各ブランケットウェハを使用し、金属配線層、バリア層、キャップ層および低誘電率絶縁層の各研磨速度を測定・評価した。実施例1~11および比較例1~6の各研磨剤を使用し、前記ブランケットウェハを用いて得られたCu層、Ta層、SiO層、SiOC(A)層、およびSiOC(B)層の各研磨速度(単位はnm/分)を、表2に示す。また、SiOC(A)層/SiO層の選択比、およびSiOC(B)層/SiO層の選択比を表2に示す。
(4-4) Evaluation of Blanket Wafer Polishing Characteristics Using the above blanket wafers, the polishing rates of the metal wiring layer, barrier layer, cap layer and low dielectric constant insulating layer were measured and evaluated. Cu layers, Ta layers, SiO 2 layers, SiOC (A) layers, and SiOC (B) layers obtained by using the abrasives of Examples 1 to 11 and Comparative Examples 1 to 6 and using the blanket wafer. Table 2 shows each polishing rate (unit: nm / min). Table 2 shows the selection ratio of SiOC (A) layer / SiO 2 layer and the selection ratio of SiOC (B) layer / SiO 2 layer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2の結果から、実施例1~11で得られた研磨剤を使用した場合は、キャップ層であるSiO層の研磨速度が大きく、低誘電率絶縁層であるSiOC(A)層およびSiOC(B)層の研磨速度が相対的に小さくなっており、SiOC(A)層/SiO層およびSiOC(B)層/SiO層の選択比が0.5以下と極めて小さくなっていることがわかる。したがって、このような研磨剤を使用することで、キャップ層を研磨除去した後、低誘電率絶縁層をあまり削りこまずに研磨を実行するのに特に好適な研磨剤が得られることが理解される。 From the results shown in Table 2, when the abrasives obtained in Examples 1 to 11 were used, the polishing rate of the SiO 2 layer as the cap layer was large, and the SiOC (A) layer and the SiOC as the low dielectric constant insulating layer. (B) The polishing rate of the layer is relatively small, and the selection ratio of SiOC (A) layer / SiO 2 layer and SiOC (B) layer / SiO 2 layer is extremely small, 0.5 or less. I understand. Therefore, it is understood that by using such an abrasive, after the cap layer is polished and removed, an abrasive that is particularly suitable for carrying out the polishing without significantly shaving the low dielectric constant insulating layer can be obtained. The
 それに対して、比較例1および比較例2の研磨剤においては、低誘電率層研磨抑制成分である特定のアミンの代わりに、炭素数が6未満のアルキル基を有するアミンが配合されているので、低誘電率絶縁層の中でも特に誘電率の低いSiOC(B)層の研磨速度を抑制する効果が十分ではない。そのため、SiOC(B)層/SiO層の選択比は1.0を超える値となっている。 On the other hand, in the abrasives of Comparative Example 1 and Comparative Example 2, an amine having an alkyl group having less than 6 carbon atoms is blended in place of the specific amine which is a low dielectric constant layer polishing suppressing component. Moreover, the effect of suppressing the polishing rate of the SiOC (B) layer having a low dielectric constant among the low dielectric constant insulating layers is not sufficient. Therefore, the selection ratio of SiOC (B) layer / SiO 2 layer is a value exceeding 1.0.
 比較例3の研磨剤では、低誘電率層研磨抑制成分である特定のアミンの代わりに、アミノ基を持たないエーテル化合物が配合されているので、低誘電率絶縁層の中でも特に誘電率の低いSiOC(B)層の研磨速度を抑制する効果が十分ではない。そのため、SiOC(B)層/SiO層の所望の選択比(1.0以下)を実現することができない。 In the polishing agent of Comparative Example 3, an ether compound having no amino group is blended in place of the specific amine which is a low dielectric constant layer polishing inhibiting component, so that the dielectric constant is particularly low among the low dielectric constant insulating layers. The effect of suppressing the polishing rate of the SiOC (B) layer is not sufficient. Therefore, the desired selectivity (1.0 or less) of SiOC (B) layer / SiO 2 layer cannot be realized.
 比較例4の研磨剤は、低誘電率層研磨抑制成分を含まないため、低誘電率絶縁層であるSiOC(B)層の研磨速度を抑制する効果が十分ではない。そのため、SiOC(B)層/SiO層の所望の選択比(1.0以下)を実現することができない。 Since the abrasive | polishing agent of the comparative example 4 does not contain a low dielectric constant layer grinding | polishing suppression component, the effect which suppresses the grinding | polishing speed | rate of the SiOC (B) layer which is a low dielectric constant insulating layer is not enough. Therefore, the desired selectivity (1.0 or less) of SiOC (B) layer / SiO 2 layer cannot be realized.
 さらに、比較例5および比較例6の研磨剤は、低誘電率層研磨抑制成分を含有せず、さらに研磨剤スラリーのpHや砥粒の会合比が好ましい範囲から外れているため、低誘電率絶縁層であるSiOC(A)層の研磨速度を抑制する効果も十分ではない。その結果、所望のSiOC(A)層/SiO層の選択比(1.0以下)が得られていない。 Furthermore, the abrasives of Comparative Example 5 and Comparative Example 6 do not contain a low dielectric constant layer polishing inhibiting component, and further, the pH of the abrasive slurry and the association ratio of the abrasive grains are out of the preferred ranges. The effect of suppressing the polishing rate of the SiOC (A) layer, which is an insulating layer, is not sufficient. As a result, a desired SiOC (A) layer / SiO 2 layer selection ratio (1.0 or less) is not obtained.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2010年6月3日出願の日本特許出願2010-128116に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2010-128116 filed on June 3, 2010, the contents of which are incorporated herein by reference.
 本発明によれば、半導体集積回路装置の製造に際して埋め込み配線の平坦化などに用いる化学的機械的研磨用の研磨剤を、研磨性能に優れかつ保存安定性のよいものとして提供することができる。 According to the present invention, it is possible to provide a polishing agent for chemical mechanical polishing that is used for planarization of embedded wiring in the manufacture of a semiconductor integrated circuit device, having excellent polishing performance and good storage stability.
 1…基板、2…絶縁層、3…キャップ層、4…バリア層、5…金属配線層、6…ディッシング、7…埋め込み配線、8…エロージョン、9…グローバル部、20…研磨装置、21…半導体集積回路装置、22…研磨ヘッド、23…研磨定盤、24…研磨パッド、25…研磨剤、26…研磨剤供給配管。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Insulating layer, 3 ... Cap layer, 4 ... Barrier layer, 5 ... Metal wiring layer, 6 ... Dishing, 7 ... Embedded wiring, 8 ... Erosion, 9 ... Global part, 20 ... Polishing apparatus, 21 ... Semiconductor integrated circuit device 22... Polishing head 23. Polishing surface plate 24. Polishing pad 25. Polishing agent 26.

Claims (13)

  1.  半導体集積回路装置の製造において被研磨面を化学的機械的に研磨するための研磨剤であって、
     砥粒と、
     酸化剤と、
     保護膜形成剤と、
     酸と、
     炭素数6~20の、アルキル基、アリール基およびアリール置換アルキル基から選ばれる炭化水素基を有するアミンと、
     水と
    を含有する研磨剤。
    An abrasive for chemically and mechanically polishing a surface to be polished in the manufacture of a semiconductor integrated circuit device,
    Abrasive grains,
    An oxidizing agent,
    A protective film forming agent;
    Acid,
    An amine having a hydrocarbon group of 6 to 20 carbon atoms selected from an alkyl group, an aryl group and an aryl-substituted alkyl group;
    An abrasive containing water.
  2.  前記炭化水素基を有するアミンが、オクチルアミン、ドデシルアミンおよびポリオキシエチレンラウリルアミンからなる群から選ばれる少なくとも1種である、請求項1に記載の研磨剤。 The abrasive according to claim 1, wherein the amine having a hydrocarbon group is at least one selected from the group consisting of octylamine, dodecylamine and polyoxyethylene laurylamine.
  3.  前記保護膜形成剤が、式(1)で表される化合物(ただし、Rは水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはカルボン酸基である。)である、請求項1または2に記載の研磨剤。
    Figure JPOXMLDOC01-appb-C000001
    The protective film forming agent is a compound represented by the formula (1) (wherein R 1 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxylic acid group). The abrasive | polishing agent of Claim 1 or 2 which is.
    Figure JPOXMLDOC01-appb-C000001
  4.  前記砥粒が、シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛および酸化マンガンからなる群から選ばれる少なくとも1種の材料からなる粒子である、請求項1~3のいずれか1項に記載の研磨剤。 The abrasive grain according to any one of claims 1 to 3, wherein the abrasive grains are particles made of at least one material selected from the group consisting of silica, alumina, cerium oxide, zirconium oxide, titanium oxide, tin oxide, zinc oxide and manganese oxide. The abrasive | polishing agent of Claim 1.
  5.  前記砥粒がコロイダルシリカからなるものである、請求項4に記載の研磨剤。 The abrasive according to claim 4, wherein the abrasive grains are made of colloidal silica.
  6.  当該研磨剤の全質量に対して、前記砥粒を0.1~20質量%、前記酸化剤を0.01~50質量%、前記保護膜形成剤を0.001~5質量%、前記酸を0.01~50質量%、前記アミンを0.01~1.0質量%、前記水を40~98質量%の割合でそれぞれ含有する、請求項1~5のいずれか1項に記載の研磨剤。 0.1 to 20% by mass of the abrasive grains, 0.01 to 50% by mass of the oxidizing agent, 0.001 to 5% by mass of the protective film forming agent, and 0.001 to 5% by mass of the abrasive based on the total mass of the abrasive. 6. The composition according to claim 1, wherein 0.01 to 50% by mass, 0.01 to 1.0% by mass of the amine, and 40 to 98% by mass of the water are contained. Abrasive.
  7.  pHが2~5の範囲にあることを特徴とする、請求項1~6のいずれか1項に記載の研磨剤。 The abrasive according to any one of claims 1 to 6, wherein the pH is in the range of 2 to 5.
  8.  pH緩衝剤をさらに含有することを特徴とする、請求項1~7のいずれか1項に記載の研磨剤。 The abrasive according to any one of claims 1 to 7, further comprising a pH buffer.
  9.  絶縁層上にバリア層と金属配線層とが順に形成された被研磨面を研磨するための研磨剤である、請求項1~8のいずれか1項に記載の研磨剤。 The abrasive according to any one of claims 1 to 8, which is an abrasive for polishing a surface to be polished in which a barrier layer and a metal wiring layer are sequentially formed on an insulating layer.
  10.  比誘電率が3以下の低誘電率材料からなる絶縁層上に、キャップ層とバリア層と金属配線層とが順に形成された被研磨面を研磨するための研磨剤である、請求項1~9のいずれか1項に記載の研磨剤。 A polishing agent for polishing a surface to be polished in which a cap layer, a barrier layer, and a metal wiring layer are sequentially formed on an insulating layer made of a low dielectric constant material having a relative dielectric constant of 3 or less. 10. The abrasive | polishing agent of any one of 9.
  11.  前記金属配線層が銅からなり、前記バリア層が、タンタル、タンタル合金およびタンタル化合物からなる群から選ばれる少なくとも1種からなる、請求項9または10に記載の研磨剤。 The abrasive according to claim 9 or 10, wherein the metal wiring layer is made of copper, and the barrier layer is made of at least one selected from the group consisting of tantalum, a tantalum alloy and a tantalum compound.
  12.  研磨剤を研磨パッドに供給し、半導体集積回路装置の被研磨面と前記研磨パッドとを接触させて、両者間の相対運動により研磨する研磨方法であって、前記研磨剤が請求項1~11のいずれか1項に記載の研磨剤である研磨方法。 A polishing method for supplying a polishing agent to a polishing pad, bringing a polishing target surface of a semiconductor integrated circuit device into contact with the polishing pad, and polishing by relative movement between the two, wherein the polishing agent is the polishing agent. A polishing method, which is the abrasive according to any one of the above.
  13.  絶縁層中に埋め込まれた金属配線層を有する半導体集積回路装置の製造において、金属配線層を研磨してバリア層が現れた後の研磨段階に前記研磨剤を使用する、請求項12記載の研磨方法。 13. The polishing according to claim 12, wherein in the manufacture of a semiconductor integrated circuit device having a metal wiring layer embedded in an insulating layer, the polishing agent is used in a polishing step after the metal wiring layer is polished and a barrier layer appears. Method.
PCT/JP2011/062387 2010-06-03 2011-05-30 Polishing agent and polishing method WO2011152356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-128116 2010-06-03
JP2010128116A JP2013165088A (en) 2010-06-03 2010-06-03 Polishing agent and polishing method

Publications (1)

Publication Number Publication Date
WO2011152356A1 true WO2011152356A1 (en) 2011-12-08

Family

ID=45066723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062387 WO2011152356A1 (en) 2010-06-03 2011-05-30 Polishing agent and polishing method

Country Status (3)

Country Link
JP (1) JP2013165088A (en)
TW (1) TW201202402A (en)
WO (1) WO2011152356A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152107A (en) * 2013-05-13 2014-11-19 深圳清华大学研究院 Ceramic material use abrasive
CN112204449A (en) * 2018-06-14 2021-01-08 奥林巴斯株式会社 Optical deflector and scanning laser microscope
EP3947580A4 (en) * 2019-03-25 2022-12-14 CMC Materials, Inc. Additives to improve particle dispersion for cmp slurry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133198A1 (en) 2012-03-05 2013-09-12 株式会社 フジミインコーポレーテッド Polishing composition and method using said polishing composition to manufacture compound semiconductor substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512681A (en) * 2000-10-19 2004-04-22 フェロー コーポレイション Chemical mechanical polishing slurry and polishing method
JP2007318152A (en) * 1998-06-26 2007-12-06 Cabot Microelectronics Corp Chemical mechanical polishing slurry useful for cooper/tantalum substrate
JP2009278061A (en) * 2008-04-16 2009-11-26 Hitachi Chem Co Ltd Polishing solution for cmp and polishing method
JP2010041029A (en) * 2008-02-18 2010-02-18 Jsr Corp Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318152A (en) * 1998-06-26 2007-12-06 Cabot Microelectronics Corp Chemical mechanical polishing slurry useful for cooper/tantalum substrate
JP2004512681A (en) * 2000-10-19 2004-04-22 フェロー コーポレイション Chemical mechanical polishing slurry and polishing method
JP2010041029A (en) * 2008-02-18 2010-02-18 Jsr Corp Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP2009278061A (en) * 2008-04-16 2009-11-26 Hitachi Chem Co Ltd Polishing solution for cmp and polishing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152107A (en) * 2013-05-13 2014-11-19 深圳清华大学研究院 Ceramic material use abrasive
CN104152107B (en) * 2013-05-13 2016-08-17 深圳清华大学研究院 Ceramic material grinding agent
CN112204449A (en) * 2018-06-14 2021-01-08 奥林巴斯株式会社 Optical deflector and scanning laser microscope
CN112204449B (en) * 2018-06-14 2022-06-17 奥林巴斯株式会社 Optical deflector and scanning laser microscope
EP3947580A4 (en) * 2019-03-25 2022-12-14 CMC Materials, Inc. Additives to improve particle dispersion for cmp slurry

Also Published As

Publication number Publication date
TW201202402A (en) 2012-01-16
JP2013165088A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
EP1909312A1 (en) Abrasive and process for producing semiconductor integrated-circuit unit
KR100481651B1 (en) Slurry for chemical mechanical polishing and method for manufacturing semiconductor device
US8062547B2 (en) CMP slurry, preparation method thereof and method of polishing substrate using the same
JP5361306B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP5327427B2 (en) Chemical mechanical polishing aqueous dispersion preparation set, chemical mechanical polishing aqueous dispersion preparation method, chemical mechanical polishing aqueous dispersion, and chemical mechanical polishing method
TWI434955B (en) Method for chemical mechanical planarization of a tungsten-containing substrate
JP5472585B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
EP1930938A1 (en) Polishing agent, method for polishing surface to be polished, and method for manufacturing semiconductor integrated circuit device
KR20070001994A (en) Polishing agent and polishing method
US20080171441A1 (en) Polishing compound and method for producing semiconductor integrated circuit device
JPWO2007116770A1 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
KR20100015627A (en) Polishing agent composition and method for manufacturing semiconductor integrated circuit device
CN109531282B (en) Chemical mechanical polishing method for cobalt
JP5333744B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion manufacturing method
EP2161737A1 (en) Polishing composition and method for manufacturing semiconductor integrated circuit device
JP2008124377A (en) Aqueous dispersant for chemical-mechanical polishing, chemical-mechanical polishing method, and kit for preparing aqueous dispersant for chemical-mechanical polishing
WO2011152356A1 (en) Polishing agent and polishing method
JP4719204B2 (en) Chemical mechanical polishing slurry and semiconductor device manufacturing method
JP2010161201A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method using the same, and method of manufacturing chemical mechanical polishing aqueous dispersion
JP2010010717A (en) Abrasive agent and polishing method
JP2010041027A (en) Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP2009272418A (en) Abrasive composition, and method of manufacturing semiconductor integrated circuit device
KR101197163B1 (en) Cmp slurry
JP7375515B2 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
JP2013065858A (en) Aqueous dispersing element for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersing element for chemical mechanical polishing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP