WO2011151974A1 - Artificial sunlight radiating apparatus - Google Patents

Artificial sunlight radiating apparatus Download PDF

Info

Publication number
WO2011151974A1
WO2011151974A1 PCT/JP2011/002590 JP2011002590W WO2011151974A1 WO 2011151974 A1 WO2011151974 A1 WO 2011151974A1 JP 2011002590 W JP2011002590 W JP 2011002590W WO 2011151974 A1 WO2011151974 A1 WO 2011151974A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sunlight irradiation
simulated sunlight
simulated
plate
Prior art date
Application number
PCT/JP2011/002590
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 森
和夫 作間
麻紀 竹永
正樹 金井
洋幸 大塚
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Publication of WO2011151974A1 publication Critical patent/WO2011151974A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light

Definitions

  • the present invention relates to a simulated solar light irradiation apparatus that irradiates a surface to be irradiated with simulated sunlight.
  • a light source such as a xenon lamp is installed in a box, an optical box is provided on the radiation surface of the box to emit simulated sunlight, and from this irradiation box A reflection surface that reflects the radiated pseudo-sunlight, and irradiates the irradiated surface with both the direct light directly emitted from the light source and the reflected light reflected by the reflection surface (for example, Patent Document 1). reference).
  • the shape and arrangement of the reflecting surface should be adjusted according to the plurality of light sources.
  • the change must be made and the change takes time.
  • an optical system having a light source and a reflecting surface is used as one pseudo-sunlight irradiation unit, and a plurality of pseudo-sunlight irradiation units are arranged to expand the irradiation range.
  • the present invention is a unit containing a simulated sunlight irradiation box that emits light from the upper surface and the lower surface, and a reflective surface is provided at a position opposite to the lower surface of the simulated sunlight irradiation box.
  • the simulated sunlight that irradiates the illuminated surface provided at the opposite position of the upper surface of the simulated sunlight irradiation box with the reflected light reflected upward by the reflecting surface and the direct light radiated from the upper surface of the simulated sunlight irradiation box.
  • the simulated sunlight irradiation box may have a linear light source, and each of the simulated sunlight irradiation units may be arranged so that the light sources are arranged in parallel.
  • the auxiliary light that reflects incident light toward the irradiated surface between the simulated solar irradiation box and the irradiated surface is located on the side of the simulated sunlight irradiation unit.
  • a reflective surface may be arranged.
  • a plurality of simulated sunlight irradiation units are arranged side by side, and between the simulated sunlight irradiation units, a light shielding plate that shields light leaking to the side of each simulated sunlight irradiation unit is disposed. It is possible to suppress an increase in illuminance on the irradiated surface due to synthesis of irradiation light of each pseudo-sunlight irradiation unit.
  • each pseudo-sunlight irradiation unit is passed through the gap portion at a position of the irradiated surface located at the boundary portion between the simulated solar light irradiation units. Therefore, it is possible to suppress a decrease in illuminance due to the provision of the light shielding plate at the irradiated surface located at the boundary portion between the pseudo solar light irradiation units. Thereby, an irradiation range can be expanded without performing optical design of a pseudo-sunlight irradiation unit again.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a simulated solar light irradiation apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing the simulated sunlight irradiation device.
  • FIG. 3 is a cross-sectional view showing the configuration of the simulated sunlight irradiation device.
  • FIG. 4 is a longitudinal sectional view schematically showing the configuration of the transmitted light amount adjustment unit.
  • FIG. 5 is a plan view schematically showing the configuration of the transmitted light amount adjustment unit.
  • FIG. 6 is a diagram schematically showing a cross section taken along line I-I ′ shown in FIG. 5.
  • FIG. 7 is a diagram showing the result of simulating the light distribution of the pseudo-sunlight irradiation device
  • (A) is a diagram showing the illuminance distribution on the irradiated surface
  • (B) is the average in the width direction of the irradiated surface. It is a graph which shows illumination intensity
  • (C) is a graph which shows the average illumination intensity of the length direction of a to-be-irradiated surface.
  • FIG. 8 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a plan view showing the simulated sunlight irradiation device.
  • FIG. 10 is a cross-sectional view showing the configuration of the simulated sunlight irradiation device.
  • FIG. 11 is a longitudinal sectional view showing the right half of the right-side simulated sunlight irradiation unit.
  • FIG. 12 is a diagram showing the configuration of the light diffusing member, (A) is a longitudinal sectional view schematically showing the simulated sunlight irradiation unit together with the enlarged light diffusing member, and (B) is the irradiated surface side. It is a figure which shows the light-diffusion member seen from.
  • FIG. 11 is a longitudinal sectional view showing the right half of the right-side simulated sunlight irradiation unit.
  • FIG. 12 is a diagram showing the configuration of the light diffusing member
  • (A) is a longitudinal sectional view schematically showing the simulated sunlight irradiation unit together with the enlarged light diffusing member
  • (B) is the irradiated surface side. It is a figure which shows the light-diffusion member seen from
  • FIG. 13 is a diagram showing measurement results of illuminance unevenness on the irradiated surface
  • (A) is a diagram showing illuminance distribution on the irradiated surface
  • (B) is a graph showing illuminance in the width direction of the irradiated surface
  • (C) is a graph showing the illuminance in the length direction of the irradiated surface.
  • FIG. 1 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus 100 according to the first embodiment.
  • W indicates the width direction
  • H indicates the height direction.
  • the simulated sunlight irradiation device 100 includes a plurality (two in this embodiment) of simulated sunlight irradiation units 1A and 1B, and each of the simulated sunlight irradiation units 1A and 1B combines a plurality of square members 2 in a lattice shape.
  • the frame 4 has a length of about 1.6 m (meters), a width of about 0.9 m, and a height of about 0.8 m, for example.
  • Each of the three side surfaces (sides) excluding one side surface (side) in the length direction of the frame body 4 is covered with a shielding plate 5 to prevent external light from entering.
  • each of the simulated sunlight irradiation units 1A and 1B a simulated sunlight irradiation box 6 that emits simulated sunlight is provided between the side surfaces facing each other in the length direction of the frame body 4.
  • Each of the simulated sunlight irradiation units 1A and 1B has a reflecting surface 8 disposed so as to be opposed to the lower surface 6A of the simulated sunlight irradiation box 6, and is irradiated by the irradiated object 10 disposed so as to be opposed to the upper surface 6B.
  • the surface 10 ⁇ / b> A (for example, a solar cell panel) is illuminated with direct light from the simulated sunlight irradiation box 6 and reflected light from the reflecting surface 8. Further, since the irradiated surface 10A closes the upper surface of the frame body 4, the entry of external light from the upper surface is prevented.
  • FIG. 2 is a plan view showing the simulated sunlight irradiation apparatus 100
  • FIG. 3 is a cross-sectional view showing the configuration of the simulated sunlight irradiation apparatus 100.
  • X indicates the length direction.
  • one straight tube type lamp (light source) 22 is arranged along the simulated sunlight irradiation box 6 to form a linear light source.
  • These lamps 22 are, for example, xenon flash lamps having a strong continuous spectrum over a wide wavelength region from the ultraviolet region to the visible region to the infrared region.
  • Terminal blocks 40 are disposed at both ends of the lamp 22.
  • the simulated sunlight irradiation box 6 includes a pair of long plate-like side frames 24 that form both side surfaces along the longitudinal direction, an upper surface optical filter 26 that forms an upper surface 6B, and a lower surface 6A. And a metal fitting (not shown) for assembling the side frame 24, the upper surface optical filter 26, and the lower surface optical filter 27.
  • the side frame 24 is formed of a light shielding material, or a light shielding material for preventing light transmission is added or applied thereto.
  • Each of the upper optical filter 26 and the lower optical filter 27 is a so-called air mass filter that approximates the emission spectrum of the radiated light to sunlight by cutting the infrared wavelength region from the radiated light of the lamp 22, and is a dielectric multilayer filter. It is comprised using. Further, as shown in FIG. 1, each of the upper optical filter 26 and the lower optical filter 27 has two plate-shaped filter materials each having a mountain shape so that the incident angle of incident light is as close to vertical as possible to suppress the wavelength shift of transmitted light. (Tanigata) is engaged.
  • the simulated sunlight irradiation box 6 is housed in a lamp house 7 formed of a material that does not modulate the spectrum of simulated sunlight emitted by the simulated sunlight irradiation box 6.
  • the reflecting surface 8 reflects the simulated sunlight from the lower surface 6A of the simulated sunlight irradiation box 6 and holds the reflecting plate 30 that irradiates the irradiated surface 10A of the irradiated body 10 in a tiltable manner.
  • the plurality of reflecting devices 32 are configured.
  • the irradiated body 10 is placed on the sample support frame 12 attached on the frame body 4 so that the irradiated surface 10A is separated from the simulated sunlight irradiation box 6 by a predetermined distance L, and the irradiated surface 10A.
  • the direct light from the upper surface 6B of the simulated sunlight irradiation box 6 and the reflected light reflected by the reflecting surface 8 are irradiated.
  • the distribution of the reflected light is controlled so as to compensate for the illuminance unevenness of the direct light on the irradiated surface 10A.
  • the reflection plate 30 is a metal plate having a surface, and extends substantially in parallel along the pseudo-sunlight irradiation box 6 as shown in FIGS.
  • a reflection device 32 is configured by the reflection plate 30 and a holder 31 that holds the reflection plate 30.
  • the plurality of reflecting devices 32 are arranged on the bottom floor 4 ⁇ / b> A of the frame body 4 so that the plurality of reflecting plates 30 are provided and the reflecting surface 8 is formed by these reflecting plates 30.
  • the holder 31 has an angle adjustment mechanism for adjusting the inclination angle of the reflection plate 30, whereby the reflection angle of light can be adjusted independently for each of the reflection plates 30. ing.
  • the heights of several holders 31 close to both side surfaces in the width direction of the frame 4 are sequentially increased, and the reflected light of the reflecting plates 30 on both side surfaces is on the inner side. It is prevented from being shielded by the reflecting plate 30.
  • the irradiated surface 10A from the height position of the simulated solar light irradiation box 6 is provided on the three side surfaces excluding one side surface in the longitudinal direction of the simulated solar light irradiation units 1A and 1B.
  • Auxiliary reflecting surfaces 150A and 150B for reflecting incident light toward the irradiated surface 10A are provided.
  • the auxiliary reflection surface 150A is disposed on the other side surface facing the one side surface that is not covered by the shielding plate 5, and the pair of auxiliary reflection surfaces 150B are disposed on both side surfaces in the width direction of the simulated solar light irradiation units 1A and 1B, respectively. .
  • auxiliary reflecting surfaces 150A and 150B are metal plate materials, and for example, when the illuminance drop of direct light on the side surface side of the pseudo-sunlight irradiation units 1A and 1B is remarkable, the auxiliary reflecting surfaces 150A and 150B It can be used to compensate for a decrease in illuminance of direct light by adjusting the reflection angle (tilt angle) of 150B.
  • the auxiliary reflecting surfaces 150A and 150B are formed in such a length that does not cause a gap at an adjusted inclination angle so as not to reduce the illuminance of direct light at the four corners of the irradiated surface 10A.
  • the auxiliary reflecting surfaces 150A and 150B are arranged on the side surfaces of the simulated sunlight irradiation units 1A and 1B, the light toward the side surfaces of the simulated sunlight irradiation units 1A and 1B is effectively used to The illuminance reduction of the direct light can be compensated, and the simulated sunlight irradiation units 1A and 1B can be downsized as compared with the case where the auxiliary reflection surface is provided horizontally below the simulated sunlight irradiation units 1A and 1B.
  • the simulated sunlight irradiation box 6, the reflecting surface 8, and the auxiliary reflecting surfaces 150A and 150B constitute a part of the optical system of the simulated sunlight irradiation units 1A and 1B.
  • the optical system 1B is disposed close to one side surface where the auxiliary reflecting surface 150A extending in the length direction is not disposed.
  • the amount of transmitted light is set so as to cover the entire irradiated surface 10A and make the illuminance distribution on the irradiated surface 10A uniform.
  • a transmitted light amount adjustment unit 60 for adjustment is provided.
  • the transmitted light amount adjusting unit 60 in addition to the compensation for the uneven illuminance of the direct light by the reflected light of the reflecting surface 8, the transmitted light amount adjusting unit 60 also reduces the illuminance unevenness of the irradiated surface 10A. .
  • the transmitted light amount adjustment unit 60 includes a base plate 62, a transparent plate laminate 64 for adjusting the transmitted light amount, and a surface film (pressing member) 66, and the illuminance of the irradiated surface 10A is high.
  • the translucent plate laminate 64 reduces the amount of light traveling toward a high location, thereby making the illuminance distribution uniform on the irradiated surface 10A in accordance with the low illuminance.
  • the base plate 62, the translucent plate laminate 64, and the surface film 66 each have a transmittance in the spectrum range of the artificial sunlight so as not to modulate the spectrum of the artificial sunlight emitted by the simulated sunlight irradiation box 6.
  • Is constant (flat) and a material having a high transmittance is preferably used.
  • acrylic resin is used in this embodiment.
  • the base plate 62 is a plate-like member having a rectangular shape when viewed from above for supporting the light-transmitting plate laminate 64, and is formed to have such a thickness as to obtain rigidity sufficient to prevent bending due to its own weight.
  • the base plate 62 is arranged so as to completely partition the simulated sunlight irradiation box 6 and the irradiated surface 10A.
  • a translucent plate laminate 64 is arranged in each of the positions where the amount of transmitted light should be reduced in the illumination light passage range R through which the light illuminating the irradiated surface 10A passes.
  • the remaining portions of the illumination light passage range R are made of a transparent plate laminate 64, an acrylic resin that is the same material as the transparent plate 65 and the base plate 62 constituting the transparent plate laminate 64.
  • a single translucent plate 68 (hereinafter referred to as “spacer translucent plate 68”) is disposed.
  • the spacer translucent plate 68 is formed to have the same dimensions as the translucent plate laminate 64, and the replacement of the spacer translucent plate 68 and the translucent plate laminate 64 is easy.
  • the translucent plate laminate 64 is configured by laminating a plurality of translucent plates 65 (FIG. 6), and the parenthesis written with reference numeral 64 in FIG. The number of laminated transparent plates 65 is shown. The specific configuration of the light transmitting plate laminate 64 and the light amount adjustment will be described in detail later.
  • a spacer plate (spacer member) 70 is provided around the illumination light passage range R to fill a gap between the illumination light passage range R and the side surfaces of the pseudo-sunlight irradiation units 1A and 1B. . That is, the upper surface of the base plate 62 is completely filled with the translucent plate laminate 64, the spacer translucent plate 68, and the spacer plate 70, so that the translucent plate laminate 64 can be positioned without being bonded to the base plate 62. Can be fixed. As a result, the translucent plate laminate 64 can be exchanged, and even if an impact or earthquake vibration during installation is applied to the transmitted light amount adjustment unit 60, the misalignment of the translucent plate laminate 64 can be prevented.
  • the optical characteristics of the spacer plate 70 are equivalent to those of the spacer translucent plate 68 provided in the illumination light passage range R. Therefore, the area of the irradiated surface 10A is increased and the illumination light passage range R is somewhat expanded to the periphery. Even in such a case, the entire illuminated surface 10A can be illuminated.
  • the surface film 66 has a spacer light-transmitting plate 64 and a spacer light-transmitting plate 64 in order to prevent lateral displacement of the light-transmitting plate stack 64 mounted on the base plate 62. Cover and press the surfaces of the plate 68 and the spacer plate 70.
  • the surface film 66 is formed by forming PET (polyethylene terephthalate), which is a material that does not modulate the spectrum of pseudo-sunlight, in the same manner as an acrylic resin, in a thin film shape.
  • each of the simulated sunlight irradiation units 1 ⁇ / b> A and 1 ⁇ / b> B has a slip-off prevention bracket 80 extending in parallel with the simulated sunlight irradiation box 6 on the side surfaces on both sides of the simulated sunlight irradiation box 6.
  • a fixing L angle 82 having an L-shaped cross section is fixed to each misalignment drop prevention bracket 80, and both edge portions 62 ⁇ / b> A of the base plate 62 of the transmitted light amount adjustment unit 60 are connected to each fixing L angle 82.
  • the base plate 62 is installed by placing it. On the upper surface of both edge portions 62A of the base plate 62, an L angle 84 for preventing lateral displacement is provided to fill the gap between the side surfaces of the spacer plate 70 and the simulated solar light irradiation units 1A and 1B and prevent lateral displacement of the spacer plate 70. Yes.
  • the fixing L angle 82 is fixed to the square member 2 with screws.
  • an L angle 84 for preventing lateral displacement is placed from the upper side, and this preventing L angle 84 is attached to the fixing L angle 82 with a screw 87, and the simulated sunlight irradiation unit 1A. , 1B is fixed to the square member 2 on the side surface.
  • the edge 62A of the base plate 62 is sandwiched between the fixing L angle 82 and the lateral shift preventing L angle 84, thereby preventing the base plate 62 from rattling.
  • the spacer plate 70, the translucent plate laminate 64, and the spacer translucent plate 68 are spread on the base plate 62. Then, the spacer plate 70, the translucent plate laminate 64, and the spacer translucent plate 68 are covered with the surface film 66 together with the lateral shift preventing L angle 84. Finally, the edge portion of the surface film 66 is pressed by a pressing bar 86, and the pressing bar 86 is fixed to the L angle 84 for preventing lateral displacement by a bolt 89. With the above operation, the installation of the transmitted light amount adjustment unit 60 is completed.
  • FIG. 6 is a diagram schematically showing a cross section taken along the line II ′ shown in FIG.
  • the translucent plate laminate 64 is formed by overlapping a plurality of translucent plates 65 each made of an acrylic resin having a rectangular translucent surface with the same dimensions.
  • the pseudo sunlight F is incident on the light transmitting plate laminate 64
  • the back reflection of the pseudo sunlight F occurs at the front and back interfaces of each light transmitting plate 65, and the light transmitting plate laminate 64 is equivalent to the back reflection.
  • the amount of transmitted light is reduced.
  • the transmittance of the translucent plate laminate 64 is determined by the number of the translucent plates 65 stacked without depending on the thickness of the translucent plate 65.
  • the acrylic resin which is the material of the translucent plate 65, has a high transmittance with respect to the pseudo-sunlight F. Therefore, when the pseudo-sunlight F passes through the translucent plate 65, Although absorption hardly occurs, it is considered that the amount of transmitted light is reduced by each back surface reflection because back surface reflection occurs at the front and back interfaces of the translucent plate 65.
  • the transmitted light amount adjustment unit 60 shown in FIG. 6 in the light transmitting plate laminate 64 in which the two light transmitting plates 65 are stacked, back surface reflection occurs at the front and back interfaces of each light transmitting plate 65, so that a total of 4
  • the amount of light transmitted through the simulated sunlight F is reduced by the number of back surface reflections
  • the transmission of the pseudo sunlight F is transmitted by a total of 8 times of back surface reflection.
  • the amount of light will be reduced.
  • the number of back surface reflections increases in proportion to the number of light transmitting plates 65, and thus the amount of transmitted light of the pseudo sunlight F is reduced in proportion to the number of light transmitting plates 65.
  • the back surface reflection occurs twice at the contact portion C where the transparent plates 65 overlap in the vertical direction. That is, when the transparent plates 65 are simply stacked without using a binder such as an adhesive, a thin air layer 90 is formed between the transparent plates 65. By interposing the air layer 90 between the translucent plates 65, back-surface reflection occurs when the pseudo sunlight F exits from the lower translucent plate 65 to the air layer 90, and the upper side from the air layer 90. Even when the light enters the translucent plate 65, back surface reflection occurs, which causes two back surface reflections at the contact portion C.
  • the light transmitting plates 65 are simply overlapped without using a binder such as an adhesive, and only the air layer 90 is formed between the light transmitting plates 65, thereby transmitting the light transmitting plate laminate 64.
  • the rate can be reduced in proportion to the number of laminated light-transmitting plates 65, and a light-transmitting plate laminate 64 with easy adjustment of the amount of light transmitted can be obtained.
  • a base plate 62 is provided below the translucent plate laminate 64, and a surface film 66 is provided on the translucent plate laminate 64. Since 68 is disposed, back surface reflection similarly occurs at each interface of the base plate 62, the surface film 66, and the spacer translucent plate 68. Therefore, the number of translucent plates 65 of the translucent plate laminate 64 is determined in consideration of these back surface reflections.
  • the translucent plate laminate 64 is configured by simply superimposing the translucent plates 65 without using a binder such as an adhesive, the translucent plate 65 is likely to be laterally displaced by an impact such as an earthquake. Therefore, as shown in FIG. 6, in the light transmitting plate laminate 64, the number of light transmitting plates 65 is reduced by reducing the thickness of the light transmitting plates 65 per sheet according to the number of light transmitting plates 65 to be stacked. Regardless, the entire thickness D is constant (3 mm in the present embodiment), and the spacer translucent plate 68 is also formed to the same thickness D. Thereby, since the other translucent plate 65 or the spacer translucent plate 68 always exists in the horizontal direction of the translucent plate 65, the lateral displacement of the translucent plate 65 is prevented.
  • the translucent plate 65 becomes thinner as the number of the translucent plates 65 stacked is increased. Therefore, the thickness of the translucent plate laminate 64 and the spacer translucent plate 68 varies slightly. Only by this, the lateral displacement of the translucent plate 65 is likely to occur. Therefore, in the present embodiment, as shown in FIG. 6, the surfaces of the translucent plate laminate 64 and the spacer translucent plate 68 are covered with the surface film 66 described above, and the translucent plate laminate 64 is covered with the surface film 66. The lateral displacement of the translucent plate 65 is surely prevented by pressing the surface.
  • Each of the simulated sunlight irradiation units 1A and 1B having the transmitted light amount adjusting unit 60 configured as described above has a predetermined area (600 mm ⁇ 1200 mm) of the irradiated surface 10A located in front of each of the simulated sunlight irradiation units 1A and 1B.
  • the degree of illuminance unevenness can be reduced well.
  • each of the simulated sunlight irradiation units 1A and 1B is configured so that the effective irradiation area is about 600 mm ⁇ 1200 mm.
  • FIG. 1 and FIG. As shown in FIG. 2, two pseudo-sunlight irradiation units 1A and 1B are arranged adjacent to each other. Since the straight tube type lamp 22 used in each of the simulated sunlight irradiation units 1A and 1B has little light emission in the axial direction, the simulated sunlight irradiation units 1A and 1B are arranged so that the lamps 22 are arranged in parallel. ing.
  • the simulated sunlight irradiation units 1A and 1B are arranged in parallel along the light emission direction of the lamp 22, the irradiated surface located at the boundary portion between the simulated sunlight irradiation units 1A and 1B. In the portion of 10A, it is possible to prevent a decrease in illuminance due to the parallel arrangement of the light sources in the axial direction with less light emission.
  • the simulated solar light irradiation units 1A and 1B are miniaturized by providing the auxiliary reflecting surfaces 150A and 150B on the side surfaces, the optical systems of the simulated solar light irradiation units 1A and 1B (the simulated solar light irradiation box 6, The reflecting surface 8, the auxiliary reflecting surfaces 150A and 150B, and the transmitted light amount adjusting unit 60) are arranged relatively close to each other, and the irradiated surface 10A located at the boundary portion between the simulated solar light irradiation units 1A and 1B. It is possible to prevent a decrease in illuminance due to the optical systems of the pseudo-sunlight irradiation units 1A and 1B being spaced apart from each other.
  • the simulated solar light irradiation units 1A and 1B are arranged such that one side surface where the auxiliary reflecting surface 150A extending in the length direction is not arranged is opposed.
  • a part of the optical system of the simulated sunlight irradiation units 1A and 1B (the simulated sunlight irradiation box 6, the reflection surface 8, and the auxiliary reflection surfaces 150A and 150B) is brought close to one side surface.
  • An igniter 23 for starting the two lamps 22 is arranged in the space at the right end in the width direction formed by the arrangement. That is, a part of the optical system of the simulated solar light irradiation units 1 ⁇ / b> A and 1 ⁇ / b> B is arranged close to the center in the width direction by the arrangement space of the igniter 23.
  • the distance L from the lamp 22 to the irradiated surface 10A is about several tens of centimeters, and the incident angle of light incident on the irradiated surface 10A is wide.
  • a light shielding plate 130 is disposed between the simulated sunlight irradiation units 1A and 1B to block light leaking to the side of the simulated sunlight irradiation units 1A and 1B.
  • the light shielding plate 130 is a plate material that extends in the longitudinal direction of the lamp 22 and has a flat surface arranged vertically.
  • the plate material is covered with a black light shielding sheet so that the surface has a property of absorbing light. It is formed using the thing which performed the light absorption process of.
  • the light shielding plate 130 is radiated from one of the simulated sunlight irradiation units 1A and 1B, and in the length direction of the lamp 22 so as to sufficiently shield the light toward the other simulated sunlight irradiation units 1B and 1A. Are provided between the shielding plates 5 facing each other.
  • the light shielding plate 130 is arranged at a predetermined distance M1 from the irradiated surface 10A so as to form a gap ⁇ between the upper end portion 131 and the irradiated surface 10A.
  • each pseudo-sunlight irradiation unit 1A, 1B can be irradiated to the place of the irradiated surface 10A located at the boundary portion between the adjacent pseudo-sunlight irradiation units 1A, 1B through the gap ⁇ . Since it can do, the illumination fall by providing the light shielding plate 130 can be suppressed in the location of 10 A of irradiated surfaces located in the boundary part of adjacent pseudo-sunlight irradiation unit 1A, 1B.
  • the distance M1 is set to a distance at which the boundary between the illuminances by the two pseudo-sunlight irradiation units 1A and 1B becomes inconspicuous. In the present embodiment, the distance M1 is set to 200 mm, for example.
  • FIG. 7 is a diagram showing the result of simulating the light distribution of the simulated sunlight irradiation device 100
  • FIG. 7A is a diagram showing the illuminance distribution on the irradiated surface 10A
  • FIG. 7C is a graph showing the average illuminance in the length direction of the irradiated surface 10A.
  • the illuminance is in the range of 0.0048-0.0055 W / mm 2 in most of the width direction center portion where the light shielding plate 130 is disposed, and the light shielding plate 130 is present.
  • the simulated sunlight irradiation box 6 the reflection surface 8, the auxiliary reflection surfaces 150 ⁇ / b> A and 150 ⁇ / b> B, and the transmitted light amount adjustment unit 60 of each of the simulated sunlight irradiation units 1 ⁇ / b> A and 1 ⁇ / b> B.
  • the effective irradiation area can be expanded to about 1100 mm ⁇ 1400 mm without changing the optical design.
  • a plurality of simulated sunlight irradiation units 1A, 1B are arranged in parallel, and each simulated sunlight irradiation unit 1A, 1B is placed between the simulated sunlight irradiation units 1A, 1B. Since the light shielding plate 130 for shielding the light leaking to the side of 1B is arranged, it is possible to suppress an increase in illuminance on the irradiated surface 10A due to the synthesis of the irradiation light of each of the simulated sunlight irradiation units 1A and 1B.
  • a gap ⁇ is formed between the upper end portion 131 of the light shielding plate 130 and the irradiated surface 10A, and a gap is formed in the irradiated surface 10A located at the boundary portion between the simulated solar light irradiation units 1A and 1B.
  • the light shielding plate 130 is provided at the irradiated surface 10A located at the boundary portion between the simulated sunlight irradiation units 1A and 1B. The decrease in illuminance due to the provision can be suppressed. Thereby, an irradiation range can be expanded, without performing optical design of pseudo-sunlight irradiation units 1A and 1B again.
  • the simulated sunlight irradiation box 6 has the linear lamp 22 and the simulated sunlight irradiation units 1A and 1B are arranged so that the lamps 22 are arranged in parallel. Since the sunlight irradiation units 1A and 1B are arranged side by side along the radiation direction of the light of the lamp 22, in the place of the irradiated surface 10A located at the boundary portion between the simulated sunlight irradiation units 1A and 1B, It is possible to prevent a decrease in illuminance due to the parallel arrangement of light sources in the axial direction in which light emission is small.
  • the incident light is irradiated to the side of the simulated sunlight irradiation units 1A and 1B between the height position of the simulated sunlight irradiation box 6 and the irradiated surface 10A.
  • the auxiliary reflecting surfaces 150A and 150B that reflect toward 10A are arranged.
  • the optical of the simulated sunlight irradiation units 1A and 1B is provided at the irradiated surface 10A located at the boundary between the simulated sunlight irradiation units 1A and 1B. It is possible to prevent a decrease in illuminance due to the system being spaced apart.
  • FIG. 8 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus 200 according to the second embodiment.
  • FIG. 8 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus 200 according to the second embodiment.
  • FIG. 9 is a plan view showing the simulated sunlight irradiation apparatus 200
  • FIG. 10 is a cross-sectional view showing the configuration of the simulated sunlight irradiation apparatus 200.
  • the same parts as those of the simulated solar light irradiation apparatus 100 shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the simulated sunlight irradiation apparatus 200 includes three simulated sunlight irradiation units 1A to 1C.
  • Each pseudo-sunlight irradiation unit 1A, 1B includes two upper and lower auxiliary reflecting surfaces 150A extending in the length direction and a pair of auxiliary reflecting surfaces 150B extending in the width direction.
  • a frame 4 in which a plurality of square members 2 are assembled in a grid shape has dimensions of, for example, a length of about 1.6 m, a width of about 0.8 m, and a height of about 0.8 m.
  • the pseudo-sunlight irradiation box 6 and the reflection surface 8 are configured and arranged substantially at the center in the width direction of the frame body 4.
  • the simulated solar light irradiation unit 1C includes a frame 4 having different dimensions, a pseudo solar light irradiation box 6 and a reflecting surface 8 disposed at the center in the width direction, and two upper and lower sheets extending in the length direction. Except that the auxiliary reflecting surface 150A is not provided, it is configured in the same manner as the simulated sunlight irradiation units 1A and 1B.
  • a light diffusing unit 101 is provided. That is, in each of the simulated solar light irradiation units 1A to 1C, in addition to compensation for uneven illuminance of direct light by the reflected light of the reflecting surface 8, the unevenness of illuminance of the irradiated surface 10A is also reduced by the light diffusion unit 101.
  • FIG. 11 is a longitudinal sectional view showing the right half of the simulated solar light irradiation unit 1A.
  • 12 is a diagram showing the configuration of the light diffusing members 110 and 120
  • FIG. 12A is a longitudinal sectional view schematically showing the simulated sunlight irradiation unit 1A together with the enlarged light diffusing members 110 and 120.
  • FIG. 12B is a diagram showing the light diffusing member 120 viewed from the irradiated surface 10A side. 11 and 12, the light diffusing members 110 and 120 of the simulated sunlight irradiation unit 1A are illustrated, but the light diffusing members 110 and 120 of the simulated sunlight irradiation units 1B and 1C are also irradiated with the simulated sunlight.
  • the light diffusing members 110 and 120 of the unit 1A are configured the same.
  • the light diffusing unit 101 includes a base plate 102 and two layers of light diffusing members 110 and 120 having a light diffusing effect, and the illuminated surface 10A has high illuminance.
  • the light diffusing members 110 and 120 diffuse light directed toward the location, so that the illuminance distribution is made uniform on the irradiated surface 10A.
  • the transmittance of the base plate 102 and the light diffusing members 110 and 120 is constant (flat) in the spectrum range of the simulated sunlight so as not to modulate the spectrum of the simulated sunlight emitted by the simulated sunlight irradiation box 6.
  • a material having a high transmittance is preferably used.
  • the base plate 102 is a plate-like member having a rectangular shape in a top view for supporting the light diffusing member 110, and is formed to have a thickness (for example, 15 mm) that can provide rigidity enough to prevent bending due to its own weight. Yes.
  • acrylic resin is used as the material.
  • the base plate 102 is arranged on the irradiated surface 10A side of the frame 4 so as to completely partition the simulated sunlight irradiation box 6 and the irradiated surface 10A.
  • the two layers of light diffusing members 110 and 120 are each formed by laminating a plurality of diffusing plates, and are disposed at a distance D between the irradiated surface 10A and the lamp 22.
  • the light diffusing effect of the light diffusing unit 101 that is, the effect of reducing the illuminance unevenness of the irradiated surface 10A depends on this distance D.
  • the distance D between the two layers of the light diffusing members 110 and 120 is set to a distance (for example, 100 mm ⁇ D ⁇ 200 mm) where the boundary of illuminance by the plurality of reflectors 30 is not noticeable.
  • each of the simulated sunlight irradiation units 1A to 1B has a cross section L extending in parallel to the simulated sunlight irradiation box 6 on the irradiated surface 10A side and above the simulated sunlight irradiation box 6.
  • Character-shaped light diffusing member receivers 103 are respectively provided on the side surfaces on both sides of the pseudo-sunlight irradiation box 6.
  • a plate-like light diffusing member receiver 104 extending orthogonally to the simulated sunlight irradiation box 6 on the irradiated surface 10A side and the simulated sunlight irradiation box 6 is provided in the length direction of the simulated sunlight irradiation box 6.
  • the base plate 102 and the light diffusing member 110 are placed on the light diffusing member receivers 103 and 104 provided on the irradiated surface 10 ⁇ / b> A side, and are fixed by holding metal fittings (not shown). It is placed on the light diffusing member receivers 103 and 104 provided on the upper side, and is fixed by holding metal fittings (not shown).
  • the light diffusing member 110 on the irradiated surface 10A side is disposed on the upper surface of the base plate 102, and is configured by laminating a plurality of (in this embodiment, two) light diffusing plates 111 and 112.
  • the light diffusing plate 111 on the irradiated surface 10A side is a plate-like member that is formed to have a size that covers the entire illumination light passing range through which the light that illuminates the irradiated surface 10A passes, and has been matted on both sides. It has a mat-like diffusion surface.
  • the light diffusing plate 111 of this embodiment has a thickness of about 3 mm and is formed using a material (acrylic resin in this embodiment) having substantially the same optical characteristics as the base plate 102.
  • the light diffusing plate 112 on the base plate 102 side is a plate-like member formed in substantially the same size as the light diffusing plate 111, and has diffusing surfaces on both sides.
  • One surface of the diffusion surface is formed into an embossed shape by being embossed, and the light diffusion plate 112 is arranged with the diffusion surface having the embossed shape facing the irradiated surface 10A. That is, the mat-like diffusion surface of the light diffusing plate 111 and the embossed surface of the light diffusing plate 112 are in contact with each other, and the lateral displacement of the light diffusing plate 111 can be prevented.
  • the light diffusing plate 112 of this embodiment is formed using a material having a thickness of about 205 ⁇ m and a haze that is a ratio of the parallel light transmittance and the diffuse light transmittance of about 50%.
  • the light diffusing member 120 on the lamp 22 side includes a plurality of (in this embodiment, four) light diffusing plates 121, 122, 123A, 123B and an illuminance adjusting plate 124 that is a diffusing plate for adjusting illuminance location unevenness. It is configured by stacking.
  • the light diffusing plate 121 is configured substantially the same as the light diffusing plate 111, and three light diffusing plates 122, 123 A, 123 B configured substantially the same as the light diffusing plate 112 are embossed on the upper surface of the light diffusing plate 121. Is placed with the diffusion surface having the surface facing the irradiated surface 10A.
  • An illuminance adjusting plate 124 formed smaller than the light diffusing plates 121, 122, 123A, 123B is disposed between the two light diffusing plates 122, 123A (see FIG. 12B).
  • the illuminance adjusting plate 124 is a plate-like member having diffusion surfaces on both sides and embossed on one side, and is disposed with the embossed surface facing the lamp 22 side. As a result, the embossed surface of the lower light diffusion plate 123A comes into contact with the embossed surface of the illuminance adjusting plate 124, and the lateral shift of the illuminance adjusting plate 124 can be prevented.
  • the illuminance adjusting plate 124 is formed using a material having a thickness of about 270 ⁇ m and a haze of about 90%, and has three sizes of 80 mm ⁇ 400 mm, 150 mm ⁇ 600 mm, and 80 mm ⁇ 300 mm. An illuminance adjustment plate 124 is disposed.
  • the illuminance adjusting plate 124 having a relatively high light diffusing effect is provided on the light diffusing member 120 on the lamp 22 side, the illuminance of the irradiated surface 10A is locally changed only by changing the position of the illuminance adjusting plate 124. Light that travels to high places can be more effectively diffused, and fine adjustment of illuminance unevenness can be easily performed.
  • the light diffused by the illuminance adjusting plate 124 can be further diffused by the light diffusing member 110 on the irradiated surface 10A side, compared to the case where the illuminance adjusting plate is arranged on the light diffusing member 110 on the irradiated surface 10A side, Irradiance unevenness can be further reduced. In addition, even when the illuminance unevenness changes over time or when the lamp 22 is replaced and the illuminance unevenness is changed, the illuminance unevenness can be easily reduced by changing the position and size of the illuminance adjusting plate 124. .
  • each of the simulated sunlight irradiation units 1A to 1C having the light diffusion unit 101 configured as described above has a predetermined area (about 600 mm ⁇ 1200 mm) of the irradiated surface 10A located in front of each of the simulated sunlight irradiation units 1A to 1C. ), The illuminance unevenness can be reduced satisfactorily.
  • three simulated sunlight irradiation units 1A to 1C having an effective irradiation area of about 600 mm ⁇ 1200 mm are arranged adjacently so that the lamps 22 are arranged in parallel.
  • the simulated solar light irradiation units 1A and 1B are disposed so that the side where the auxiliary reflection surface 150A extending in the length direction is not disposed is opposed to each other, and the pseudo solar light irradiation units 1A and 1B are disposed between the two simulated solar light irradiation units 1A and 1B.
  • a light irradiation unit 1C is arranged.
  • the light shielding plate 130 is disposed between the simulated sunlight irradiation units 1A and 1C and between the simulated sunlight irradiation units 1B and 1C.
  • the gap portion ⁇ is formed between the irradiation surface 10A and the irradiation surface 10A by a predetermined distance M2.
  • the distance M2 is set to a distance at which the boundary between the illuminances by the two simulated sunlight irradiation units 1A and 1B becomes inconspicuous.
  • the distance M2 is the distance from the irradiated surface 10A to the lower surface of the light diffusion member 120 on the lamp 22 side. Is set.
  • each light diffusing member 110 and 120 may be formed for each of the simulated solar light irradiation units 1A to 1C as described above. More preferably, the solar light irradiation unit 1A to 1C is formed in a size extending over the pseudo-sunlight irradiation units 1A to 1C. As a result, the light diffusing members 110 and 120 are arranged at the boundary portions between the simulated sunlight irradiation units 1A to 1C, and thus the irradiated surface 10A located at the boundary portion between the simulated sunlight irradiation units 1A and 1B. Illuminance unevenness can be further reduced at the locations.
  • FIG. 13 is a diagram showing the measurement result of the illuminance unevenness of the irradiated surface 10A by the simulated sunlight irradiation device 200
  • FIG. 13A is a diagram showing the illuminance distribution of the irradiated surface 10A
  • FIG. ) Is a graph showing the illuminance in the width direction of the irradiated surface 10A
  • FIG. 13C is a graph showing the illuminance in the length direction of the irradiated surface 10A.
  • the simulated sunlight irradiation device 200 can satisfactorily suppress the illuminance unevenness of the irradiated surface 10A. Therefore, according to the simulated sunlight irradiation device 200 of the present embodiment, the simulated sunlight irradiation box 6 of each of the simulated sunlight irradiation units 1A to 1C, the reflection surface 8, the auxiliary reflection surfaces 150A and 150B, the light diffusion unit 101, and the like.
  • the effective irradiation area can be expanded to about 1100 mm ⁇ 2100 mm without changing the optical design. Therefore, the irradiation range can be further expanded by arranging a plurality of simulated sunlight irradiation units 1C in parallel between the two simulated sunlight irradiation units 1A and 1B.
  • the above embodiment is an aspect of the present invention, and it is needless to say that the embodiment can be appropriately changed without departing from the gist of the present invention.
  • the frame was formed for every simulated sunlight irradiation unit, you may form a frame according to the whole magnitude
  • the gap is formed between the upper end of the light shielding plate and the irradiated surface by disposing the light shielding plate by a predetermined distance from the irradiated surface. It is arranged on the entire side surface of the simulated solar light irradiation unit, and by forming an open portion that opens a predetermined distance range from the irradiated surface at the upper end portion of the light shielding plate, the upper end portion of the light shielding plate and the irradiated surface are formed. A gap may be formed between them.
  • the plurality of simulated sunlight irradiation units are arranged adjacent to each other. However, the simulated sunlight irradiation units may be arranged in parallel with some (for example, several centimeters) intervals. Good.

Abstract

Provided is an artificial sunlight radiating apparatus which can provide an extended range of radiation without optical redesign. The artificial sunlight radiating apparatus is configured to include a plurality of artificial sunlight radiating units (1A, 1B) which each accommodate an artificial sunlight radiating box (6) for emitting light through an upper face (6B) and a lower face (6A). The unit (1A, 1B) has a reflector (8) located opposite to the lower face (6A) of the artificial sunlight radiating box (6) to irradiate a radiated face (10A) located opposite to the upper face (6B) of the artificial sunlight radiating box (6) with reflected light and direct light, the reflected light having been reflected on the reflector (8), the direct light having been emitted through the upper face (6B) of the artificial sunlight radiating box (6). The artificial sunlight radiating units (1A, 1B) are arranged side by side. Between the artificial sunlight radiating units (1A, 1B), there is disposed a light shield plate (130) which shields leakage of light through the side of each of the artificial sunlight radiating units (1A, 1B), with a gap (δ) formed between an upper end (131) of the light shield plate (130) and the radiated face (10A). A portion of the radiated face (10A) that is located at the boundary between the artificial sunlight radiating units (1A, 1B) is irradiated through the gap (δ) with beams of light from each of the artificial sunlight radiating units (1A, 1B), the beams overlapping each other.

Description

擬似太陽光照射装置Simulated solar irradiation device
 本発明は、擬似太陽光を被照射面に照射する擬似太陽光照射装置に関する。 The present invention relates to a simulated solar light irradiation apparatus that irradiates a surface to be irradiated with simulated sunlight.
 太陽電池に代表される各種太陽エネルギー利用機器の性能測定や加速劣化試験などのために、自然太陽光の発光スペクトルを再現した擬似太陽光を、太陽エネルギー利用機器の被照射面に照射する擬似太陽光照射装置(ソーラーシミュレーターとも呼ばれる)が知られている。
 この種の擬似太陽光照射装置においては、キセノンランプ等の光源を箱体の中に設置し、箱体の放射面に光学フィルターを設けて擬似太陽光を放射する照射ボックスと、この照射ボックスから放射される擬似太陽光を反射する反射面とを備え、光源から直接放射される直接光及び反射面で反射された反射光の両方で被照射面を照射する構成としている(例えば、特許文献1参照)。
Pseudo-sun that irradiates the irradiated surface of solar energy equipment with simulated sunlight that reproduces the emission spectrum of natural sunlight for performance measurement and accelerated degradation tests of various solar energy equipment represented by solar cells A light irradiation device (also called a solar simulator) is known.
In this type of simulated sunlight irradiation device, a light source such as a xenon lamp is installed in a box, an optical box is provided on the radiation surface of the box to emit simulated sunlight, and from this irradiation box A reflection surface that reflects the radiated pseudo-sunlight, and irradiates the irradiated surface with both the direct light directly emitted from the light source and the reflected light reflected by the reflection surface (for example, Patent Document 1). reference).
特開2002-296319号公報JP 2002-296319 A
 ところで、広面積の太陽電池にも対応可能にすべく、直管型の光源を複数本設けて照射範囲を拡大しようとした場合には、複数本の光源に合わせて反射面の形状や配置を変更しなければならず、その変更に時間が掛かかるといった問題がある。
 また、光源及び反射面を有する光学系を一の擬似太陽光照射ユニットとし、複数の擬似太陽光照射ユニットを並べて、照射範囲を拡大することが考えられる。しかしながら、単に複数の擬似太陽光照射ユニットを並べただけでは、隣り合う擬似太陽光照射ユニットからの光が合成され、擬似太陽光照射ユニットの境界付近に位置する被照射面の箇所において照度が高くなってしまう。特に、光源から被照射面までの距離が数十cm程度となる比較的小型の擬似太陽光照射ユニットを用いる場合には、被照射面に入射する光の入射角が広くなるため、隣り合う擬似太陽光照射ユニットからの光がより多く合成されることとなり、被照射面の照度むらを調整することが困難になるという問題がある。
 本発明は、上述した事情に鑑みてなされたものであり、光学設計を再度行うことなく照射範囲を拡大できる擬似太陽光照射装置を提供することを目的とする。
By the way, when trying to expand the irradiation range by providing a plurality of straight tube type light sources so as to be compatible with a large area solar cell, the shape and arrangement of the reflecting surface should be adjusted according to the plurality of light sources. There is a problem that the change must be made and the change takes time.
Further, it is conceivable that an optical system having a light source and a reflecting surface is used as one pseudo-sunlight irradiation unit, and a plurality of pseudo-sunlight irradiation units are arranged to expand the irradiation range. However, by simply arranging a plurality of simulated sunlight irradiation units, the light from adjacent simulated sunlight irradiation units is combined, and the illuminance is high at the irradiated surface located near the boundary of the simulated sunlight irradiation units. turn into. In particular, when using a relatively small pseudo-sunlight irradiation unit whose distance from the light source to the irradiated surface is about several tens of centimeters, the incident angle of the light incident on the irradiated surface is widened. There is a problem that more light from the sunlight irradiation unit is synthesized, and it is difficult to adjust the illuminance unevenness of the irradiated surface.
This invention is made | formed in view of the situation mentioned above, and it aims at providing the simulated sunlight irradiation apparatus which can expand an irradiation range, without performing optical design again.
 上記目的を達成するために、本発明は、上面及び下面から光を放射する擬似太陽光照射ボックスを納めたユニットであって、前記擬似太陽光照射ボックスの下面の対向位置に反射面を設け、この反射面で上方に反射した反射光、及び前記擬似太陽光照射ボックスの上面から放射する直接光を、前記擬似太陽光照射ボックスの上面の対向位置に設けた被照射面に照射する擬似太陽光照射ユニットを複数備え、各擬似太陽光照射ユニットを並設するとともに、擬似太陽光照射ユニット同士の間に、各擬似太陽光照射ユニットの側方に漏れる光を遮光する遮光板を配置しつつ、前記遮光板の上端部と前記被照射面との間に隙間部を形成し、各擬似太陽光照射ユニット同士の境界部分に位置する前記被照射面の箇所に、前記隙間部を通じて各擬似太陽光照射ユニットの照射光を重ねて照射することを特徴とする。 In order to achieve the above object, the present invention is a unit containing a simulated sunlight irradiation box that emits light from the upper surface and the lower surface, and a reflective surface is provided at a position opposite to the lower surface of the simulated sunlight irradiation box. The simulated sunlight that irradiates the illuminated surface provided at the opposite position of the upper surface of the simulated sunlight irradiation box with the reflected light reflected upward by the reflecting surface and the direct light radiated from the upper surface of the simulated sunlight irradiation box. While providing a plurality of irradiation units, while arranging each simulated sunlight irradiation unit side by side, while arranging a light shielding plate that shields light leaking to the side of each simulated sunlight irradiation unit between the simulated sunlight irradiation units, A gap portion is formed between the upper end portion of the light shielding plate and the irradiated surface, and each pseudo-thickness is passed through the gap portion at a position of the irradiated surface located at a boundary portion between the simulated solar light irradiation units. And irradiating overlapping the irradiation light of the light irradiation unit.
 前記擬似太陽光照射ボックスは線状の光源を有し、前記擬似太陽光照射ユニットのそれぞれを、前記光源が並列に並ぶように配設してもよい。 The simulated sunlight irradiation box may have a linear light source, and each of the simulated sunlight irradiation units may be arranged so that the light sources are arranged in parallel.
 上記構成において、前記擬似太陽光照射ユニットの側方には、前記擬似太陽光照射ボックスの高さ位置から前記被照射面までの間に、入射する光を前記被照射面に向けて反射する補助反射面を配置してもよい。
 なお、この明細書には、2010年6月3日に出願された日本国特許出願・特願2010-127518号の全ての内容が含まれるものとする。
In the above-described configuration, the auxiliary light that reflects incident light toward the irradiated surface between the simulated solar irradiation box and the irradiated surface is located on the side of the simulated sunlight irradiation unit. A reflective surface may be arranged.
This specification includes all the contents of Japanese Patent Application No. 2010-127518 filed on June 3, 2010.
 本発明によれば、複数の擬似太陽光照射ユニットを並設するとともに、擬似太陽光照射ユニット同士の間に、各擬似太陽光照射ユニットの側方に漏れる光を遮光する遮光板を配置したため、各擬似太陽光照射ユニットの照射光の合成による被照射面での照度上昇を抑制できる。
 また、遮光板の上端部と被照射面との間に隙間部を形成し、各擬似太陽光照射ユニット同士の境界部分に位置する被照射面の箇所に、隙間部を通じて各擬似太陽光照射ユニットの照射光を重ねて照射するため、各擬似太陽光照射ユニット同士の境界部分に位置する被照射面の箇所において、遮光板を設けることによる照度の低下を抑制できる。これにより、擬似太陽光照射ユニットの光学設計を再度行うことなく照射範囲を拡大できる。
According to the present invention, a plurality of simulated sunlight irradiation units are arranged side by side, and between the simulated sunlight irradiation units, a light shielding plate that shields light leaking to the side of each simulated sunlight irradiation unit is disposed. It is possible to suppress an increase in illuminance on the irradiated surface due to synthesis of irradiation light of each pseudo-sunlight irradiation unit.
Moreover, a gap portion is formed between the upper end portion of the light shielding plate and the irradiated surface, and each pseudo-sunlight irradiation unit is passed through the gap portion at a position of the irradiated surface located at the boundary portion between the simulated solar light irradiation units. Therefore, it is possible to suppress a decrease in illuminance due to the provision of the light shielding plate at the irradiated surface located at the boundary portion between the pseudo solar light irradiation units. Thereby, an irradiation range can be expanded without performing optical design of a pseudo-sunlight irradiation unit again.
図1は、本発明の第1実施形態に係る擬似太陽光照射装置の構成を模式的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing a configuration of a simulated solar light irradiation apparatus according to the first embodiment of the present invention. 図2は、擬似太陽光照射装置を示す平面図である。FIG. 2 is a plan view showing the simulated sunlight irradiation device. 図3は、擬似太陽光照射装置の構成を示す横断面図である。FIG. 3 is a cross-sectional view showing the configuration of the simulated sunlight irradiation device. 図4は、透過光量調整ユニットの構成を模式的に示す縦断面図である。FIG. 4 is a longitudinal sectional view schematically showing the configuration of the transmitted light amount adjustment unit. 図5は、透過光量調整ユニットの構成を模式的に示す平面図である。FIG. 5 is a plan view schematically showing the configuration of the transmitted light amount adjustment unit. 図6は、図5に示すI-I’線の断面を模式的に示す図である。FIG. 6 is a diagram schematically showing a cross section taken along line I-I ′ shown in FIG. 5. 図7は、擬似太陽光照射装置の配光をシミュレーションした結果を示す図であり、(A)は被照射面の照度分布を示す図であり、(B)は被照射面の幅方向の平均照度を示すグラフであり、(C)は被照射面の長さ方向の平均照度を示すグラフである。FIG. 7 is a diagram showing the result of simulating the light distribution of the pseudo-sunlight irradiation device, (A) is a diagram showing the illuminance distribution on the irradiated surface, and (B) is the average in the width direction of the irradiated surface. It is a graph which shows illumination intensity, (C) is a graph which shows the average illumination intensity of the length direction of a to-be-irradiated surface. 図8は、本発明の第2実施形態に係る擬似太陽光照射装置の構成を模式的に示す縦断面図である。FIG. 8 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus according to the second embodiment of the present invention. 図9は、擬似太陽光照射装置を示す平面図である。FIG. 9 is a plan view showing the simulated sunlight irradiation device. 図10は、擬似太陽光照射装置の構成を示す横断面図である。FIG. 10 is a cross-sectional view showing the configuration of the simulated sunlight irradiation device. 図11は、右側の擬似太陽光照射ユニットの右半分を示す縦断面図である。FIG. 11 is a longitudinal sectional view showing the right half of the right-side simulated sunlight irradiation unit. 図12は、光拡散部材の構成を示す図であり、(A)は擬似太陽光照射ユニットを、拡大した光拡散部材とともに模式的に示す縦断面図であり、(B)は被照射面側から見た光拡散部材を示す図である。FIG. 12 is a diagram showing the configuration of the light diffusing member, (A) is a longitudinal sectional view schematically showing the simulated sunlight irradiation unit together with the enlarged light diffusing member, and (B) is the irradiated surface side. It is a figure which shows the light-diffusion member seen from. 図13は、被照射面の照度むらの測定結果を示す図であり、(A)は被照射面の照度分布を示す図であり、(B)は被照射面の幅方向の照度を示すグラフであり、(C)は被照射面の長さ方向の照度を示すグラフである。FIG. 13 is a diagram showing measurement results of illuminance unevenness on the irradiated surface, (A) is a diagram showing illuminance distribution on the irradiated surface, and (B) is a graph showing illuminance in the width direction of the irradiated surface. (C) is a graph showing the illuminance in the length direction of the irradiated surface.
 以下、図面を参照して本発明の実施形態について説明する。
<第1実施形態>
 図1は、第1実施形態に係る擬似太陽光照射装置100の構成を模式的に示す縦断面図である。なお、図1においてWは幅方向を、Hは高さ方向を示している。
 擬似太陽光照射装置100は、複数(本実施形態では、2つ)の擬似太陽光照射ユニット1A,1Bを備え、各擬似太陽光照射ユニット1A,1Bは、複数の角材2を格子状に組んだ枠体4を有し、この枠体4は、例えば長さが略1.6m(メートル)、幅が略0.9m、及び高さが略0.8m程度の寸法に構成されている。枠体4の長さ方向の一側面(側方)を除く三方の各側面(側方)は、外部光の進入を防止するために遮蔽板5で覆われている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus 100 according to the first embodiment. In FIG. 1, W indicates the width direction, and H indicates the height direction.
The simulated sunlight irradiation device 100 includes a plurality (two in this embodiment) of simulated sunlight irradiation units 1A and 1B, and each of the simulated sunlight irradiation units 1A and 1B combines a plurality of square members 2 in a lattice shape. The frame 4 has a length of about 1.6 m (meters), a width of about 0.9 m, and a height of about 0.8 m, for example. Each of the three side surfaces (sides) excluding one side surface (side) in the length direction of the frame body 4 is covered with a shielding plate 5 to prevent external light from entering.
 各擬似太陽光照射ユニット1A,1Bは、枠体4の長さ方向において対面する側面間に、擬似太陽光を放射する擬似太陽光照射ボックス6が渡設されている。また各擬似太陽光照射ユニット1A,1Bは、擬似太陽光照射ボックス6の下面6Aに対向させて反射面8が配置されており、上面6Bに対向させて配置された被照射体10の被照射面10A(例えば、太陽電池パネル等)が擬似太陽光照射ボックス6の直射光と反射面8の反射光とで照明される。また、被照射面10Aが枠体4の上面を閉塞することで当該上面からの外部光の進入が防止されている。 In each of the simulated sunlight irradiation units 1A and 1B, a simulated sunlight irradiation box 6 that emits simulated sunlight is provided between the side surfaces facing each other in the length direction of the frame body 4. Each of the simulated sunlight irradiation units 1A and 1B has a reflecting surface 8 disposed so as to be opposed to the lower surface 6A of the simulated sunlight irradiation box 6, and is irradiated by the irradiated object 10 disposed so as to be opposed to the upper surface 6B. The surface 10 </ b> A (for example, a solar cell panel) is illuminated with direct light from the simulated sunlight irradiation box 6 and reflected light from the reflecting surface 8. Further, since the irradiated surface 10A closes the upper surface of the frame body 4, the entry of external light from the upper surface is prevented.
 図2は擬似太陽光照射装置100を示す平面図であり、図3は擬似太陽光照射装置100の構成を示す横断面図である。なお、図3においてXは長さ方向を示している。
 擬似太陽光照射ボックス6には、図2及び図3に示すように、1本の直管型のランプ(光源)22が擬似太陽光照射ボックス6に沿って配置されて線状光源を構成している。これらのランプ22には、紫外領域~可視領域~赤外領域の広い波長領域に亘り、強い連続したスペクトルを有する、例えばキセノンフラッシュランプ等が用いられている。ランプ22の両端部には端子台40が配設されている。
FIG. 2 is a plan view showing the simulated sunlight irradiation apparatus 100, and FIG. 3 is a cross-sectional view showing the configuration of the simulated sunlight irradiation apparatus 100. In FIG. 3, X indicates the length direction.
In the simulated sunlight irradiation box 6, as shown in FIGS. 2 and 3, one straight tube type lamp (light source) 22 is arranged along the simulated sunlight irradiation box 6 to form a linear light source. ing. These lamps 22 are, for example, xenon flash lamps having a strong continuous spectrum over a wide wavelength region from the ultraviolet region to the visible region to the infrared region. Terminal blocks 40 are disposed at both ends of the lamp 22.
 この擬似太陽光照射ボックス6は、図1に示すように、長手方向に沿った両側面を構成する長板状の一対のサイドフレーム24と、上面6Bを構成する上面光学フィルター26と、下面6Aを構成する下面光学フィルター27と、これらサイドフレーム24、上面光学フィルター26及び下面光学フィルター27を組み留める金具(図示せず)とを有している。サイドフレーム24は、光遮光性材により形成され、或いは、光の透過を防止する遮光材が付加または塗布されている。 As shown in FIG. 1, the simulated sunlight irradiation box 6 includes a pair of long plate-like side frames 24 that form both side surfaces along the longitudinal direction, an upper surface optical filter 26 that forms an upper surface 6B, and a lower surface 6A. And a metal fitting (not shown) for assembling the side frame 24, the upper surface optical filter 26, and the lower surface optical filter 27. The side frame 24 is formed of a light shielding material, or a light shielding material for preventing light transmission is added or applied thereto.
 上面光学フィルター26及び下面光学フィルター27は、それぞれランプ22の放射光から赤外波長域をカットすることで、放射光の発光スペクトルを太陽光に近似させる、いわゆるエアマスフィルターであり、誘電多層膜フィルターを用いて構成されている。また、上面光学フィルター26及び下面光学フィルター27は、図1に示すように、入射光の入射角度を極力垂直に近づけ透過光の波長シフトを抑えるべく、それぞれ2枚の板状のフィルター材を山形(谷形)に係合させて構成されている。
 擬似太陽光照射ボックス6は、該擬似太陽光照射ボックス6が放射する擬似太陽光のスペクトルを変調しない材質で形成されたランプハウス7に収納されている。
Each of the upper optical filter 26 and the lower optical filter 27 is a so-called air mass filter that approximates the emission spectrum of the radiated light to sunlight by cutting the infrared wavelength region from the radiated light of the lamp 22, and is a dielectric multilayer filter. It is comprised using. Further, as shown in FIG. 1, each of the upper optical filter 26 and the lower optical filter 27 has two plate-shaped filter materials each having a mountain shape so that the incident angle of incident light is as close to vertical as possible to suppress the wavelength shift of transmitted light. (Tanigata) is engaged.
The simulated sunlight irradiation box 6 is housed in a lamp house 7 formed of a material that does not modulate the spectrum of simulated sunlight emitted by the simulated sunlight irradiation box 6.
 反射面8は、図1に示すように、擬似太陽光照射ボックス6の下面6Aからの擬似太陽光を反射し、被照射体10の被照射面10Aを照射する反射板30を傾動自在に保持する複数の反射装置32を有して構成されている。
 被照射体10は、被照射面10Aが擬似太陽光照射ボックス6から所定の距離Lだけ離間するように、枠体4の上に取り付けられた試料支持枠12に載置され、被照射面10Aに対して、擬似太陽光照射ボックス6の上面6Bからの直接光と、反射面8で反射された反射光が照射される。反射光の配光は、被照射面10Aでの直接光の照度むらを補償するように制御されている。
As shown in FIG. 1, the reflecting surface 8 reflects the simulated sunlight from the lower surface 6A of the simulated sunlight irradiation box 6 and holds the reflecting plate 30 that irradiates the irradiated surface 10A of the irradiated body 10 in a tiltable manner. The plurality of reflecting devices 32 are configured.
The irradiated body 10 is placed on the sample support frame 12 attached on the frame body 4 so that the irradiated surface 10A is separated from the simulated sunlight irradiation box 6 by a predetermined distance L, and the irradiated surface 10A. In contrast, the direct light from the upper surface 6B of the simulated sunlight irradiation box 6 and the reflected light reflected by the reflecting surface 8 are irradiated. The distribution of the reflected light is controlled so as to compensate for the illuminance unevenness of the direct light on the irradiated surface 10A.
 反射板30は、表面が金属の板材であり、図2及び図3に示すように、擬似太陽光照射ボックス6に沿って略平行に延在している。反射板30と、該反射板30を保持する保持具31とにより反射装置32が構成されている。そして、枠体4の底床4A上に、複数の反射装置32が並設されることで、複数の反射板30が敷き詰められて設けられ、これらの反射板30により反射面8が形成されている。
 保持具31は、反射板30の傾斜角度を調節するための角度調整機構を有し、これにより、反射板30のそれぞれを、互いに独立して光の反射角度を調整することができるようになっている。このとき、図1に示すように、枠体4の幅方向における両側面に近い幾つかの保持具31の高さが順次高くなされており、両側面側の反射板30の反射光が内側の反射板30に遮蔽されるのを防止している。
The reflection plate 30 is a metal plate having a surface, and extends substantially in parallel along the pseudo-sunlight irradiation box 6 as shown in FIGS. A reflection device 32 is configured by the reflection plate 30 and a holder 31 that holds the reflection plate 30. The plurality of reflecting devices 32 are arranged on the bottom floor 4 </ b> A of the frame body 4 so that the plurality of reflecting plates 30 are provided and the reflecting surface 8 is formed by these reflecting plates 30. Yes.
The holder 31 has an angle adjustment mechanism for adjusting the inclination angle of the reflection plate 30, whereby the reflection angle of light can be adjusted independently for each of the reflection plates 30. ing. At this time, as shown in FIG. 1, the heights of several holders 31 close to both side surfaces in the width direction of the frame 4 are sequentially increased, and the reflected light of the reflecting plates 30 on both side surfaces is on the inner side. It is prevented from being shielded by the reflecting plate 30.
 また、図1~図3に示すように、擬似太陽光照射ユニット1A,1Bの長さ方向の一側面を除く三方の側面には、擬似太陽光照射ボックス6の高さ位置から被照射面10Aまでの間に、入射する光を被照射面10Aに向けて反射する補助反射面150A,150Bが設けられている。補助反射面150Aは遮蔽板5で覆われない一側面に対向する他側面に配置され、一対の補助反射面150Bはそれぞれ擬似太陽光照射ユニット1A,1Bの幅方向の両側面に配置されている。これらの補助反射面150A,150Bは、表面が金属の板材であり、例えば、擬似太陽光照射ユニット1A,1Bの側面側での直接光の照度低下が顕著な場合に、この補助反射面150A,150Bの反射角度(傾斜角度)を調整して直接光の照度低下を補うことなどに使用可能である。補助反射面150A,150Bは、被照射面10Aの四隅での直接光の照度を低下させないように、調整された傾斜角度において、互いに隙間を生じさせない長さに形成される。
 このように、擬似太陽光照射ユニット1A,1Bの側面に補助反射面150A,150Bを配置したため、擬似太陽光照射ユニット1A,1Bの側面に向かう光を有効利用して、被照射面10Aでの直接光の照度低下を補うことができるとともに、補助反射面を擬似太陽光照射ユニット1A,1Bの下部に水平に設ける場合に比べ、擬似太陽光照射ユニット1A,1Bを小型化できる。
Further, as shown in FIGS. 1 to 3, on the three side surfaces excluding one side surface in the longitudinal direction of the simulated solar light irradiation units 1A and 1B, the irradiated surface 10A from the height position of the simulated solar light irradiation box 6 is provided. Auxiliary reflecting surfaces 150A and 150B for reflecting incident light toward the irradiated surface 10A are provided. The auxiliary reflection surface 150A is disposed on the other side surface facing the one side surface that is not covered by the shielding plate 5, and the pair of auxiliary reflection surfaces 150B are disposed on both side surfaces in the width direction of the simulated solar light irradiation units 1A and 1B, respectively. . These auxiliary reflecting surfaces 150A and 150B are metal plate materials, and for example, when the illuminance drop of direct light on the side surface side of the pseudo-sunlight irradiation units 1A and 1B is remarkable, the auxiliary reflecting surfaces 150A and 150B It can be used to compensate for a decrease in illuminance of direct light by adjusting the reflection angle (tilt angle) of 150B. The auxiliary reflecting surfaces 150A and 150B are formed in such a length that does not cause a gap at an adjusted inclination angle so as not to reduce the illuminance of direct light at the four corners of the irradiated surface 10A.
As described above, since the auxiliary reflecting surfaces 150A and 150B are arranged on the side surfaces of the simulated sunlight irradiation units 1A and 1B, the light toward the side surfaces of the simulated sunlight irradiation units 1A and 1B is effectively used to The illuminance reduction of the direct light can be compensated, and the simulated sunlight irradiation units 1A and 1B can be downsized as compared with the case where the auxiliary reflection surface is provided horizontally below the simulated sunlight irradiation units 1A and 1B.
 これらの擬似太陽光照射ボックス6、反射面8、及び補助反射面150A,150Bは、擬似太陽光照射ユニット1A,1Bの光学系の一部を構成しており、各擬似太陽光照射ユニット1A,1Bの光学系は、長さ方向に延在する補助反射面150Aが配置されない一側面側に寄せて配置されている。
 図1に示すように、擬似太陽光照射ボックス6と被照射面10Aの間には、該被照射面10Aの全面を覆い該被照射面10Aでの照度分布を均一化するように透過光量を調整する透過光量調整ユニット60が設けられている。
 すなわち、各擬似太陽光照射ユニット1A,1Bでは、反射面8の反射光による直接光の照度むら補償に加え、透過光量調整ユニット60によっても被照射面10Aの照度むらの低減が図られている。
The simulated sunlight irradiation box 6, the reflecting surface 8, and the auxiliary reflecting surfaces 150A and 150B constitute a part of the optical system of the simulated sunlight irradiation units 1A and 1B. The optical system 1B is disposed close to one side surface where the auxiliary reflecting surface 150A extending in the length direction is not disposed.
As shown in FIG. 1, between the simulated sunlight irradiation box 6 and the irradiated surface 10A, the amount of transmitted light is set so as to cover the entire irradiated surface 10A and make the illuminance distribution on the irradiated surface 10A uniform. A transmitted light amount adjustment unit 60 for adjustment is provided.
That is, in each of the simulated sunlight irradiation units 1A and 1B, in addition to the compensation for the uneven illuminance of the direct light by the reflected light of the reflecting surface 8, the transmitted light amount adjusting unit 60 also reduces the illuminance unevenness of the irradiated surface 10A. .
 図4は透過光量調整ユニット60の構成を模式的に示す縦断面図であり、図5は同平面図である。
 透過光量調整ユニット60は、図4に示すように、ベース板62と、透過光量調整用の透光板積層体64と、表面フィルム(押さえ部材)66とを備え、被照射面10Aの照度が高い箇所に向かう光の光量を透光板積層体64が減じることで、被照射面10Aで照度分布を低い照度に合せて均一化する。
 これらベース板62、透光板積層体64、及び、表面フィルム66には、擬似太陽光照射ボックス6が放射する擬似太陽光のスペクトルを変調しないように、それぞれ擬似太陽光のスペクトル範囲において透過率が一定(フラット)であり、さらに、好ましくは高い透過率を有する材質が用いられている。この材質として、本実施形態では、アクリル樹脂が用いられている。なお、この材質にはガラスを用いてもよい。
4 is a longitudinal sectional view schematically showing the configuration of the transmitted light amount adjustment unit 60, and FIG. 5 is a plan view of the same.
As shown in FIG. 4, the transmitted light amount adjustment unit 60 includes a base plate 62, a transparent plate laminate 64 for adjusting the transmitted light amount, and a surface film (pressing member) 66, and the illuminance of the irradiated surface 10A is high. The translucent plate laminate 64 reduces the amount of light traveling toward a high location, thereby making the illuminance distribution uniform on the irradiated surface 10A in accordance with the low illuminance.
The base plate 62, the translucent plate laminate 64, and the surface film 66 each have a transmittance in the spectrum range of the artificial sunlight so as not to modulate the spectrum of the artificial sunlight emitted by the simulated sunlight irradiation box 6. Is constant (flat), and a material having a high transmittance is preferably used. As this material, acrylic resin is used in this embodiment. In addition, you may use glass for this material.
 ベース板62は、透光板積層体64を担持するための上面視矩形状の板状部材であり、自重による撓みが生じない程度の剛性が得られる厚みを有して形成されている。係るベース板62は、擬似太陽光照射ボックス6と被照射面10Aとの間を完全に仕切るように配置されている。
 ベース板62の上面には、図5に示すように、被照射面10Aを照明する光が通過する照明光通過範囲Rに、透過光量を減じるべき位置のそれぞれに透光板積層体64が配置され、また照明光通過範囲Rの残余の箇所には、透光板積層体64や、この透光板積層体64を構成する透光板65、ベース板62と同一の素材であるアクリル樹脂から成る1枚の透光板68(以下、「スペーサ透光板68」と言う)が配置されている。これにより、照明光通過範囲Rには透光板積層体64及びスペーサ透光板68が隙間無く敷き詰められることとなる。このスペーサ透光板68は、透光板積層体64と同一寸法に形成されており、スペーサ透光板68と透光板積層体64との入れ替えが容易となっている。
 透光板積層体64は、複数枚の透光板65(図6)を積層して構成されており、図5において符号64に添えて記載した括弧書きは、各透光板積層体64の透光板65の積層枚数を示している。なお、この透光板積層体64の具体的な構成、及び、光量調整の作用については後に詳述する。
The base plate 62 is a plate-like member having a rectangular shape when viewed from above for supporting the light-transmitting plate laminate 64, and is formed to have such a thickness as to obtain rigidity sufficient to prevent bending due to its own weight. The base plate 62 is arranged so as to completely partition the simulated sunlight irradiation box 6 and the irradiated surface 10A.
On the upper surface of the base plate 62, as shown in FIG. 5, a translucent plate laminate 64 is arranged in each of the positions where the amount of transmitted light should be reduced in the illumination light passage range R through which the light illuminating the irradiated surface 10A passes. The remaining portions of the illumination light passage range R are made of a transparent plate laminate 64, an acrylic resin that is the same material as the transparent plate 65 and the base plate 62 constituting the transparent plate laminate 64. A single translucent plate 68 (hereinafter referred to as “spacer translucent plate 68”) is disposed. As a result, the translucent plate laminate 64 and the spacer translucent plate 68 are spread without gaps in the illumination light passing range R. The spacer translucent plate 68 is formed to have the same dimensions as the translucent plate laminate 64, and the replacement of the spacer translucent plate 68 and the translucent plate laminate 64 is easy.
The translucent plate laminate 64 is configured by laminating a plurality of translucent plates 65 (FIG. 6), and the parenthesis written with reference numeral 64 in FIG. The number of laminated transparent plates 65 is shown. The specific configuration of the light transmitting plate laminate 64 and the light amount adjustment will be described in detail later.
 照明光通過範囲Rの周囲には、図5に示すように、照明光通過範囲Rと擬似太陽光照射ユニット1A,1Bの側面との隙間を埋めるスペーサ板(スペーサ部材)70が設けられている。すなわち、ベース板62の上面は、透光板積層体64、スペーサ透光板68及びスペーサ板70で隙間無く埋め尽くされることとなり、透光板積層体64をベース板62に接着せずとも位置を固定することができる。これにより、透光板積層体64を交換自在にしつつ、設置時の衝撃や地震の振動が透過光量調整ユニット60に加わっても、透光板積層体64の位置ずれを防止できる。
 なお、スペーサ板70の素材には、透光板積層体64と同一の素材(本実施形態ではアクリル樹脂)を用いることが好ましい。こうすることで、スペーサ板70の光学特性が、照明光通過範囲Rに設けたスペーサ透光板68と同等になるため、被照射面10Aの面積が広がり照明光通過範囲Rが多少周囲に拡張された場合でも、被照射面10Aの全域を照明することができる。
As shown in FIG. 5, a spacer plate (spacer member) 70 is provided around the illumination light passage range R to fill a gap between the illumination light passage range R and the side surfaces of the pseudo-sunlight irradiation units 1A and 1B. . That is, the upper surface of the base plate 62 is completely filled with the translucent plate laminate 64, the spacer translucent plate 68, and the spacer plate 70, so that the translucent plate laminate 64 can be positioned without being bonded to the base plate 62. Can be fixed. As a result, the translucent plate laminate 64 can be exchanged, and even if an impact or earthquake vibration during installation is applied to the transmitted light amount adjustment unit 60, the misalignment of the translucent plate laminate 64 can be prevented.
In addition, it is preferable to use the same material (acrylic resin in this embodiment) as the material of the spacer plate 70 as the material of the spacer plate 70. By doing so, the optical characteristics of the spacer plate 70 are equivalent to those of the spacer translucent plate 68 provided in the illumination light passage range R. Therefore, the area of the irradiated surface 10A is increased and the illumination light passage range R is somewhat expanded to the periphery. Even in such a case, the entire illuminated surface 10A can be illuminated.
 表面フィルム66は、図4に示すように、ベース板62に載置された透光板積層体64の透光板65の横ずれを防止するために、これら透光板積層体64とともにスペーサ透光板68及びスペーサ板70の表面を覆って押さえる。この表面フィルム66は、アクリル樹脂と同様に擬似太陽光のスペクトルを変調しない素材であるPET(ポリエチレンテレフタラート)を薄いフィルム状に形成したものである。 As shown in FIG. 4, the surface film 66 has a spacer light-transmitting plate 64 and a spacer light-transmitting plate 64 in order to prevent lateral displacement of the light-transmitting plate stack 64 mounted on the base plate 62. Cover and press the surfaces of the plate 68 and the spacer plate 70. The surface film 66 is formed by forming PET (polyethylene terephthalate), which is a material that does not modulate the spectrum of pseudo-sunlight, in the same manner as an acrylic resin, in a thin film shape.
 次に、各擬似太陽光照射ユニット1A,1Bへの透過光量調整ユニット60の取付構造を説明する。
 図4に示すように、各擬似太陽光照射ユニット1A,1Bには、擬似太陽光照射ボックス6と平行に延びるズレ落ち防止ブラケット80が、該擬似太陽光照射ボックス6を挟んだ両側の側面にそれぞれ設けられている。また、各ズレ落ち防止ブラケット80には、断面L字状の固定用Lアングル82が固定されており、各固定用Lアングル82に、透過光量調整ユニット60のベース板62の両縁部62Aを載せることで該ベース板62が設置される。
 ベース板62の両縁部62Aの上面には、スペーサ板70と擬似太陽光照射ユニット1A,1Bの側面の隙間を埋めてスペーサ板70の横ずれを防止する横ずれ防止用Lアングル84が設けられている。
Next, the attachment structure of the transmitted light amount adjustment unit 60 to each pseudo-sunlight irradiation unit 1A, 1B will be described.
As shown in FIG. 4, each of the simulated sunlight irradiation units 1 </ b> A and 1 </ b> B has a slip-off prevention bracket 80 extending in parallel with the simulated sunlight irradiation box 6 on the side surfaces on both sides of the simulated sunlight irradiation box 6. Each is provided. Further, a fixing L angle 82 having an L-shaped cross section is fixed to each misalignment drop prevention bracket 80, and both edge portions 62 </ b> A of the base plate 62 of the transmitted light amount adjustment unit 60 are connected to each fixing L angle 82. The base plate 62 is installed by placing it.
On the upper surface of both edge portions 62A of the base plate 62, an L angle 84 for preventing lateral displacement is provided to fill the gap between the side surfaces of the spacer plate 70 and the simulated solar light irradiation units 1A and 1B and prevent lateral displacement of the spacer plate 70. Yes.
 透過光量調整ユニット60の取付け時には、先ず、固定用Lアングル82を角材2にネジ止め固定する。この固定用Lアングル82にベース板62を載せた後、上側から横ずれ防止用Lアングル84を置いて、この防止用Lアングル84を固定用Lアングル82にネジ87で、擬似太陽光照射ユニット1A,1Bの側面の角材2に固定する。これにより、ベース板62の縁部62Aが固定用Lアングル82及び横ずれ防止用Lアングル84で挟み込まれ、ベース板62のガタつきが防止される。
 次いで、ベース板62の上に、スペーサ板70、透光板積層体64及びスペーサ透光板68を敷き詰める。そして、これらスペーサ板70、透光板積層体64及びスペーサ透光板68を横ずれ防止用Lアングル84とともに表面フィルム66で覆う。最後に、表面フィルム66の縁部を押さえバー86で押さえ、この押さえバー86を横ずれ防止用Lアングル84にボルト89で固定する。以上の作業により、透過光量調整ユニット60の取付けが完了する。
When the transmitted light amount adjusting unit 60 is attached, first, the fixing L angle 82 is fixed to the square member 2 with screws. After the base plate 62 is placed on the fixing L angle 82, an L angle 84 for preventing lateral displacement is placed from the upper side, and this preventing L angle 84 is attached to the fixing L angle 82 with a screw 87, and the simulated sunlight irradiation unit 1A. , 1B is fixed to the square member 2 on the side surface. As a result, the edge 62A of the base plate 62 is sandwiched between the fixing L angle 82 and the lateral shift preventing L angle 84, thereby preventing the base plate 62 from rattling.
Next, the spacer plate 70, the translucent plate laminate 64, and the spacer translucent plate 68 are spread on the base plate 62. Then, the spacer plate 70, the translucent plate laminate 64, and the spacer translucent plate 68 are covered with the surface film 66 together with the lateral shift preventing L angle 84. Finally, the edge portion of the surface film 66 is pressed by a pressing bar 86, and the pressing bar 86 is fixed to the L angle 84 for preventing lateral displacement by a bolt 89. With the above operation, the installation of the transmitted light amount adjustment unit 60 is completed.
 次いで、透光板積層体64の構成について詳述する。
 図6は、図5に示したI-I’線の断面を模式的に示す図である。
 この図に示すように、透光板積層体64は、それぞれ矩形状の透光面が同一寸法のアクリル樹脂から成る透光板65を複数枚重ねて構成されている。この透光板積層体64に擬似太陽光Fを入射した場合、各透光板65の表裏の各界面で擬似太陽光Fの裏面反射が生じ、この裏面反射の分だけ透光板積層体64の透過光量が減じられる。また、この透光板積層体64の透過率は、透光板65の厚みには依らず、該透光板65を重ねた枚数で決定されている。
 この理由としては、透光板65の材質であるアクリル樹脂が擬似太陽光Fに対して高い透過率を有するため、擬似太陽光Fが透光板65を透過する際に透光板65への吸収は、ほぼ生じないものの、透光板65の表裏の各界面で裏面反射が発生することから各裏面反射により透過光量が減じられるためと考えられる。
Next, the configuration of the light transmissive plate laminate 64 will be described in detail.
FIG. 6 is a diagram schematically showing a cross section taken along the line II ′ shown in FIG.
As shown in this figure, the translucent plate laminate 64 is formed by overlapping a plurality of translucent plates 65 each made of an acrylic resin having a rectangular translucent surface with the same dimensions. When the pseudo sunlight F is incident on the light transmitting plate laminate 64, the back reflection of the pseudo sunlight F occurs at the front and back interfaces of each light transmitting plate 65, and the light transmitting plate laminate 64 is equivalent to the back reflection. The amount of transmitted light is reduced. Further, the transmittance of the translucent plate laminate 64 is determined by the number of the translucent plates 65 stacked without depending on the thickness of the translucent plate 65.
The reason for this is that the acrylic resin, which is the material of the translucent plate 65, has a high transmittance with respect to the pseudo-sunlight F. Therefore, when the pseudo-sunlight F passes through the translucent plate 65, Although absorption hardly occurs, it is considered that the amount of transmitted light is reduced by each back surface reflection because back surface reflection occurs at the front and back interfaces of the translucent plate 65.
 したがって、図6に示した透過光量調整ユニット60において、透光板65を2枚重ねた透光板積層体64では、それぞれの透光板65の表裏の界面で裏面反射が生じるため、合計4回の裏面反射分だけ擬似太陽光Fの透過光量が減じられ、また、透光板65を4枚重ねた透光板積層体64では、合計8回の裏面反射分だけ擬似太陽光Fの透過光量が減じられることとなる。このように、透光板積層体64では、透光板65の枚数に比例して裏面反射回数が増えるため、透光板65の枚数に比例して擬似太陽光Fの透過光量が減じられる。 Therefore, in the transmitted light amount adjustment unit 60 shown in FIG. 6, in the light transmitting plate laminate 64 in which the two light transmitting plates 65 are stacked, back surface reflection occurs at the front and back interfaces of each light transmitting plate 65, so that a total of 4 The amount of light transmitted through the simulated sunlight F is reduced by the number of back surface reflections, and in the light transmitting plate laminate 64 in which four light transmission plates 65 are stacked, the transmission of the pseudo sunlight F is transmitted by a total of 8 times of back surface reflection. The amount of light will be reduced. As described above, in the light transmitting plate laminate 64, the number of back surface reflections increases in proportion to the number of light transmitting plates 65, and thus the amount of transmitted light of the pseudo sunlight F is reduced in proportion to the number of light transmitting plates 65.
 ここで図6に示すように、透光板65同士が上下方向で重なり合う接触部Cで2回の裏面反射が生じるのは次のように考えられる。すなわち、接着剤等のバインダ-を使用せずに透光板65同士を単に重ねた場合、これら透光板65の間には薄い空気層90が形成される。この空気層90が透光板65同士の間に介在することで、擬似太陽光Fが下側の透光板65から空気層90に出るときに裏面反射が生じるとともに、空気層90から上側の透光板65に入射するときにも裏面反射が生じ、これにより接触部Cで2回の裏面反射が生じることとなる。
 このように、接着剤等のバインダーを用いずに透光板65同士を単純に重ね合せ、これら透光板65の間に空気層90のみを形成することで、透光板積層体64の透過率が透光板65の積層枚数に比例して減少させることができ、透光量の調整が容易な透光板積層体64が得られることとなる。
 なお、透過光量調整ユニット60では、透光板積層体64の下にベース板62を、上に表面フィルム66をそれぞれ備え、また、透光板積層体64が無い場所には、スペーサ透光板68が配置されるため、これらベース板62、表面フィルム66及びスペーサ透光板68の各界面でも同様に裏面反射が生じる。したがって、これらの裏面反射を加味して、透光板積層体64の透光板65の枚数が決定される。
Here, as shown in FIG. 6, it is considered that the back surface reflection occurs twice at the contact portion C where the transparent plates 65 overlap in the vertical direction. That is, when the transparent plates 65 are simply stacked without using a binder such as an adhesive, a thin air layer 90 is formed between the transparent plates 65. By interposing the air layer 90 between the translucent plates 65, back-surface reflection occurs when the pseudo sunlight F exits from the lower translucent plate 65 to the air layer 90, and the upper side from the air layer 90. Even when the light enters the translucent plate 65, back surface reflection occurs, which causes two back surface reflections at the contact portion C.
In this way, the light transmitting plates 65 are simply overlapped without using a binder such as an adhesive, and only the air layer 90 is formed between the light transmitting plates 65, thereby transmitting the light transmitting plate laminate 64. The rate can be reduced in proportion to the number of laminated light-transmitting plates 65, and a light-transmitting plate laminate 64 with easy adjustment of the amount of light transmitted can be obtained.
In the transmitted light amount adjusting unit 60, a base plate 62 is provided below the translucent plate laminate 64, and a surface film 66 is provided on the translucent plate laminate 64. Since 68 is disposed, back surface reflection similarly occurs at each interface of the base plate 62, the surface film 66, and the spacer translucent plate 68. Therefore, the number of translucent plates 65 of the translucent plate laminate 64 is determined in consideration of these back surface reflections.
 ここで、接着剤等のバインダーを用いずに透光板65同士を単純に重ねて透光板積層体64を構成しているため、地震などの衝撃により透光板65が横ずれを起こしやすい。そこで、図6に示すように、透光板積層体64においては、透光板65を重ねる枚数に応じて1枚当たりの透光板65の厚みを薄くすることで透光板65の枚数にかかわらず全体の厚みDが一定(本実施形態では3mm)となるようにし、また、スペーサ透光板68も同じ厚みDに形成されている。これにより、透光板65の横方向には、必ず、他の透光板65又はスペーサ透光板68が存在するため、透光板65の横ずれが防止される。 Here, since the translucent plate laminate 64 is configured by simply superimposing the translucent plates 65 without using a binder such as an adhesive, the translucent plate 65 is likely to be laterally displaced by an impact such as an earthquake. Therefore, as shown in FIG. 6, in the light transmitting plate laminate 64, the number of light transmitting plates 65 is reduced by reducing the thickness of the light transmitting plates 65 per sheet according to the number of light transmitting plates 65 to be stacked. Regardless, the entire thickness D is constant (3 mm in the present embodiment), and the spacer translucent plate 68 is also formed to the same thickness D. Thereby, since the other translucent plate 65 or the spacer translucent plate 68 always exists in the horizontal direction of the translucent plate 65, the lateral displacement of the translucent plate 65 is prevented.
 ただし、透光板積層体64においては、透光板65を重ねる枚数が多くなるほど透光板65が薄くなるため、透光板積層体64やスペーサ透光板68の厚みに多少のバラつきがあるだけで透光板65の横ずれが生じやすくなる。そこで、本実施形態では、図6に示すように、これら透光板積層体64及びスペーサ透光板68の表面を上述した表面フィルム66で覆い、該表面フィルム66により、透光板積層体64の表面を押さえることで透光板65の横ずれを確実に防止することとしている。
 このように構成された透過光量調整ユニット60を有する各擬似太陽光照射ユニット1A,1Bは、当該各擬似太陽光照射ユニット1A,1Bの正面に位置する被照射面10Aの所定面積(600mm×1200mm程度)において、照度むらを良好に低減することができる。
However, in the translucent plate laminate 64, the translucent plate 65 becomes thinner as the number of the translucent plates 65 stacked is increased. Therefore, the thickness of the translucent plate laminate 64 and the spacer translucent plate 68 varies slightly. Only by this, the lateral displacement of the translucent plate 65 is likely to occur. Therefore, in the present embodiment, as shown in FIG. 6, the surfaces of the translucent plate laminate 64 and the spacer translucent plate 68 are covered with the surface film 66 described above, and the translucent plate laminate 64 is covered with the surface film 66. The lateral displacement of the translucent plate 65 is surely prevented by pressing the surface.
Each of the simulated sunlight irradiation units 1A and 1B having the transmitted light amount adjusting unit 60 configured as described above has a predetermined area (600 mm × 1200 mm) of the irradiated surface 10A located in front of each of the simulated sunlight irradiation units 1A and 1B. The degree of illuminance unevenness can be reduced well.
 すなわち、各擬似太陽光照射ユニット1A,1Bは、有効照射面積が600mm×1200mm程度となるように構成されており、擬似太陽光照射装置100では、照射範囲を拡大すべく、図1及び図2に示すように、2つの擬似太陽光照射ユニット1A,1Bを隣接して並設している。各擬似太陽光照射ユニット1A,1Bに用いられる直管型のランプ22は軸方向への光の放射が少ないため、擬似太陽光照射ユニット1A,1Bはランプ22が並列に並ぶように配設されている。したがって、擬似太陽光照射ユニット1A,1Bは、ランプ22の光の放射方向に沿って並設されることとなるので、各擬似太陽光照射ユニット1A,1B同士の境界部分に位置する被照射面10Aの箇所において、光の放射が少ない軸方向に光源を並設することによる照度低下を防止できる。 That is, each of the simulated sunlight irradiation units 1A and 1B is configured so that the effective irradiation area is about 600 mm × 1200 mm. In the simulated sunlight irradiation apparatus 100, in order to expand the irradiation range, FIG. 1 and FIG. As shown in FIG. 2, two pseudo-sunlight irradiation units 1A and 1B are arranged adjacent to each other. Since the straight tube type lamp 22 used in each of the simulated sunlight irradiation units 1A and 1B has little light emission in the axial direction, the simulated sunlight irradiation units 1A and 1B are arranged so that the lamps 22 are arranged in parallel. ing. Therefore, since the simulated sunlight irradiation units 1A and 1B are arranged in parallel along the light emission direction of the lamp 22, the irradiated surface located at the boundary portion between the simulated sunlight irradiation units 1A and 1B. In the portion of 10A, it is possible to prevent a decrease in illuminance due to the parallel arrangement of the light sources in the axial direction with less light emission.
 また、擬似太陽光照射ユニット1A,1Bは、補助反射面150A,150Bを側面に備えることで小型化されているため、擬似太陽光照射ユニット1A,1Bの光学系(擬似太陽光照射ボックス6、反射面8、補助反射面150A,150B、及び透過光量調整ユニット60)が比較的近くに配置されることとなり、各擬似太陽光照射ユニット1A,1B同士の境界部分に位置する被照射面10Aの箇所において、擬似太陽光照射ユニット1A,1Bの光学系を離間配置することによる照度低下を防止できる。なお、擬似太陽光照射ユニット1A,1Bは、長さ方向に延在する補助反射面150Aが配置されない一側面側を対向させて配置されている。擬似太陽光照射装置100には、擬似太陽光照射ユニット1A,1Bの光学系の一部(擬似太陽光照射ボックス6、反射面8、及び補助反射面150A,150B)を一側面側に寄せて配置することによって形成された幅方向右端部のスペースに、2本のランプ22を始動させるイグナイタ23が配置されている。すなわち、擬似太陽光照射ユニット1A,1Bの光学系の一部は、イグナイタ23の配置スペース分だけ、幅方向において中央に寄せて配置されている。 Moreover, since the simulated solar light irradiation units 1A and 1B are miniaturized by providing the auxiliary reflecting surfaces 150A and 150B on the side surfaces, the optical systems of the simulated solar light irradiation units 1A and 1B (the simulated solar light irradiation box 6, The reflecting surface 8, the auxiliary reflecting surfaces 150A and 150B, and the transmitted light amount adjusting unit 60) are arranged relatively close to each other, and the irradiated surface 10A located at the boundary portion between the simulated solar light irradiation units 1A and 1B. It is possible to prevent a decrease in illuminance due to the optical systems of the pseudo-sunlight irradiation units 1A and 1B being spaced apart from each other. The simulated solar light irradiation units 1A and 1B are arranged such that one side surface where the auxiliary reflecting surface 150A extending in the length direction is not arranged is opposed. In the simulated sunlight irradiation apparatus 100, a part of the optical system of the simulated sunlight irradiation units 1A and 1B (the simulated sunlight irradiation box 6, the reflection surface 8, and the auxiliary reflection surfaces 150A and 150B) is brought close to one side surface. An igniter 23 for starting the two lamps 22 is arranged in the space at the right end in the width direction formed by the arrangement. That is, a part of the optical system of the simulated solar light irradiation units 1 </ b> A and 1 </ b> B is arranged close to the center in the width direction by the arrangement space of the igniter 23.
 本実施形態の擬似太陽光照射ユニット1A,1Bでは、ランプ22から被照射面10Aまでの距離Lが数十cm程度となっており、被照射面10Aに入射する光の入射角が広くなるため、単に2つの擬似太陽光照射ユニット1A,1Bを並設しただけでは、隣り合う擬似太陽光照射ユニット1A,1Bからの光が多く合成され、擬似太陽光照射ユニット1A,1Bの境界付近に位置する被照射面10Aの箇所において照度が高くなる。
 そこで、擬似太陽光照射ユニット1A,1B間に、擬似太陽光照射ユニット1A,1Bの側方に漏れる光を遮光する遮光板130が配置されている。遮光板130は、ランプ22の長手方向に延在し、平面が鉛直に配置された板材であり、その表面が光を吸収する性質を有するように、例えば、板材に黒色の遮光シートを被せる等の光吸収処理を施したものを用いて形成されている。また、遮光板130は、一方の擬似太陽光照射ユニット1A,1Bから放射され、他方の擬似太陽光照射ユニット1B,1Aに向かう光を十分に遮蔽可能にするために、ランプ22の長さ方向において対面する遮蔽板5間に渡って設けられている。
In the simulated solar light irradiation units 1A and 1B of the present embodiment, the distance L from the lamp 22 to the irradiated surface 10A is about several tens of centimeters, and the incident angle of light incident on the irradiated surface 10A is wide. By simply arranging two simulated sunlight irradiation units 1A and 1B in parallel, a lot of light from the adjacent simulated sunlight irradiation units 1A and 1B is synthesized and positioned near the boundary between the simulated sunlight irradiation units 1A and 1B. The illuminance increases at the irradiated surface 10A.
Therefore, a light shielding plate 130 is disposed between the simulated sunlight irradiation units 1A and 1B to block light leaking to the side of the simulated sunlight irradiation units 1A and 1B. The light shielding plate 130 is a plate material that extends in the longitudinal direction of the lamp 22 and has a flat surface arranged vertically. For example, the plate material is covered with a black light shielding sheet so that the surface has a property of absorbing light. It is formed using the thing which performed the light absorption process of. Further, the light shielding plate 130 is radiated from one of the simulated sunlight irradiation units 1A and 1B, and in the length direction of the lamp 22 so as to sufficiently shield the light toward the other simulated sunlight irradiation units 1B and 1A. Are provided between the shielding plates 5 facing each other.
 ここで、隣り合う擬似太陽光照射ユニット1A,1Bからの光をすべて遮光してしまうと、擬似太陽光照射ユニット1A,1Bの境界に位置する被照射面10Aの箇所において照度が低下してしまう。
 そこで、遮光板130は、その上端部131と被照射面10Aとの間に隙間部δを形成するように、被照射面10Aから所定の距離M1だけ離して配置されている。これにより、隣り合う擬似太陽光照射ユニット1A,1Bの境界部分に位置する被照射面10Aの箇所に、隙間部δを通じて各擬似太陽光照射ユニット1A,1Bの照射光を重ねて照射することができるので、隣り合う擬似太陽光照射ユニット1A,1Bの境界部分に位置する被照射面10Aの箇所において、遮光板130を設けることによる照度低下を抑制できる。距離M1は、2つの擬似太陽光照射ユニット1A,1Bによる照度の境界が目立たなくなる距離に設定され、本実施形態では、例えば200mmに設定されている。
Here, if all the lights from the adjacent simulated sunlight irradiation units 1A and 1B are shielded, the illuminance decreases at the irradiated surface 10A located at the boundary between the simulated sunlight irradiation units 1A and 1B. .
Therefore, the light shielding plate 130 is arranged at a predetermined distance M1 from the irradiated surface 10A so as to form a gap δ between the upper end portion 131 and the irradiated surface 10A. Thereby, the irradiation light of each pseudo-sunlight irradiation unit 1A, 1B can be irradiated to the place of the irradiated surface 10A located at the boundary portion between the adjacent pseudo-sunlight irradiation units 1A, 1B through the gap δ. Since it can do, the illumination fall by providing the light shielding plate 130 can be suppressed in the location of 10 A of irradiated surfaces located in the boundary part of adjacent pseudo-sunlight irradiation unit 1A, 1B. The distance M1 is set to a distance at which the boundary between the illuminances by the two pseudo-sunlight irradiation units 1A and 1B becomes inconspicuous. In the present embodiment, the distance M1 is set to 200 mm, for example.
 図7は、擬似太陽光照射装置100の配光をシミュレーションした結果を示す図であり、図7(A)は被照射面10Aの照度分布を示す図であり、図7(B)は被照射面10Aの幅方向の平均照度を示すグラフであり、図7(C)は被照射面10Aの長さ方向の平均照度を示すグラフである。
 この図に示すように、被照射面10Aにおいては、遮光板130を配置した幅方向中央部を除く大部分で、照度が0.0048-0.0055W/mm2の範囲にあり、遮光板130を配置した幅方向中央部では、照度が若干低下しているものの、最低照度は0.0035-0.0042W/mm2の範囲にあり、照度の低下度合いは小さい。したがって、本実施形態の擬似太陽光照射装置100によれば、各擬似太陽光照射ユニット1A,1Bの擬似太陽光照射ボックス6、反射面8、補助反射面150A,150B、及び透過光量調整ユニット60等の光学設計を変更することなく、有効照射面積を1100mm×1400mm程度まで拡大できる。
FIG. 7 is a diagram showing the result of simulating the light distribution of the simulated sunlight irradiation device 100, FIG. 7A is a diagram showing the illuminance distribution on the irradiated surface 10A, and FIG. FIG. 7C is a graph showing the average illuminance in the length direction of the irradiated surface 10A.
As shown in this figure, on the irradiated surface 10A, the illuminance is in the range of 0.0048-0.0055 W / mm 2 in most of the width direction center portion where the light shielding plate 130 is disposed, and the light shielding plate 130 is present. Although the illuminance is slightly reduced at the central portion in the width direction where the is disposed, the minimum illuminance is in the range of 0.0035-0.0042 W / mm 2 , and the degree of decrease in illuminance is small. Therefore, according to the simulated sunlight irradiation device 100 of the present embodiment, the simulated sunlight irradiation box 6, the reflection surface 8, the auxiliary reflection surfaces 150 </ b> A and 150 </ b> B, and the transmitted light amount adjustment unit 60 of each of the simulated sunlight irradiation units 1 </ b> A and 1 </ b> B. The effective irradiation area can be expanded to about 1100 mm × 1400 mm without changing the optical design.
 以上説明したように、本実施形態によれば、複数の擬似太陽光照射ユニット1A,1Bを並設するとともに、擬似太陽光照射ユニット1A,1B同士の間に、各擬似太陽光照射ユニット1A,1Bの側方に漏れる光を遮光する遮光板130を配置する構成としたため、各擬似太陽光照射ユニット1A,1Bの照射光の合成による被照射面10Aでの照度上昇を抑制できる。
 また、遮光板130の上端部131と被照射面10Aとの間に隙間部δを形成し、各擬似太陽光照射ユニット1A,1B同士の境界部分に位置する被照射面10Aの箇所に、隙間部δを通じて各擬似太陽光照射ユニット1A,1Bの照射光を重ねて照射するため、各擬似太陽光照射ユニット1A,1B同士の境界部分に位置する被照射面10Aの箇所において、遮光板130を設けることによる照度の低下を抑制できる。これにより、擬似太陽光照射ユニット1A,1Bの光学設計を再度行うことなく照射範囲を拡大できる。
As described above, according to the present embodiment, a plurality of simulated sunlight irradiation units 1A, 1B are arranged in parallel, and each simulated sunlight irradiation unit 1A, 1B is placed between the simulated sunlight irradiation units 1A, 1B. Since the light shielding plate 130 for shielding the light leaking to the side of 1B is arranged, it is possible to suppress an increase in illuminance on the irradiated surface 10A due to the synthesis of the irradiation light of each of the simulated sunlight irradiation units 1A and 1B.
Further, a gap δ is formed between the upper end portion 131 of the light shielding plate 130 and the irradiated surface 10A, and a gap is formed in the irradiated surface 10A located at the boundary portion between the simulated solar light irradiation units 1A and 1B. In order to irradiate the irradiation light of each of the simulated sunlight irradiation units 1A and 1B through the section δ, the light shielding plate 130 is provided at the irradiated surface 10A located at the boundary portion between the simulated sunlight irradiation units 1A and 1B. The decrease in illuminance due to the provision can be suppressed. Thereby, an irradiation range can be expanded, without performing optical design of pseudo-sunlight irradiation units 1A and 1B again.
 また、本実施形態によれば、擬似太陽光照射ボックス6は線状のランプ22を有し、擬似太陽光照射ユニット1A,1Bのそれぞれを、ランプ22が並列に並ぶように配設したため、擬似太陽光照射ユニット1A,1Bがランプ22の光の放射方向に沿って並設することとなるので、各擬似太陽光照射ユニット1A,1B同士の境界部分に位置する被照射面10Aの箇所において、光の放射が少ない軸方向に光源を並設することによる照度低下を防止できる。 Further, according to the present embodiment, the simulated sunlight irradiation box 6 has the linear lamp 22 and the simulated sunlight irradiation units 1A and 1B are arranged so that the lamps 22 are arranged in parallel. Since the sunlight irradiation units 1A and 1B are arranged side by side along the radiation direction of the light of the lamp 22, in the place of the irradiated surface 10A located at the boundary portion between the simulated sunlight irradiation units 1A and 1B, It is possible to prevent a decrease in illuminance due to the parallel arrangement of light sources in the axial direction in which light emission is small.
 また、本実施形態によれば、擬似太陽光照射ユニット1A,1Bの側方には、擬似太陽光照射ボックス6の高さ位置から被照射面10Aまでの間に、入射する光を被照射面10Aに向けて反射する補助反射面150A,150Bを配置する構成とした。この構成により、枠体4の側面に配置した遮蔽板5によって遮光されてしまう光を有効利用して、被照射面10Aでの直接光の照度低下を補うことができるとともに、補助反射面を枠体4の下部に水平に配置する場合に比べ、擬似太陽光照射装置100を小型化できる。したがって、擬似太陽光照射ユニット1A,1Bを近接配置できるので、各擬似太陽光照射ユニット1A,1B同士の境界部分に位置する被照射面10Aの箇所において、擬似太陽光照射ユニット1A,1Bの光学系が離間配置されることによる照度低下を防止できる。 Moreover, according to this embodiment, the incident light is irradiated to the side of the simulated sunlight irradiation units 1A and 1B between the height position of the simulated sunlight irradiation box 6 and the irradiated surface 10A. The auxiliary reflecting surfaces 150A and 150B that reflect toward 10A are arranged. With this configuration, light that is blocked by the shielding plate 5 arranged on the side surface of the frame body 4 can be effectively used to compensate for a decrease in illuminance of direct light on the irradiated surface 10A, and the auxiliary reflection surface can be framed. Compared with the case where it is arranged horizontally below the body 4, the simulated solar light irradiation device 100 can be reduced in size. Therefore, since the simulated sunlight irradiation units 1A and 1B can be disposed close to each other, the optical of the simulated sunlight irradiation units 1A and 1B is provided at the irradiated surface 10A located at the boundary between the simulated sunlight irradiation units 1A and 1B. It is possible to prevent a decrease in illuminance due to the system being spaced apart.
<第2実施形態>
 第1実施形態では、2つの擬似太陽光照射ユニット1A,1Bを並設していたが、第2実施形態では、3つの擬似太陽光照射ユニット1A~1Cを並設している。また、第1実施形態では、被照射面10Aの照度むらを低減するために、透過光量を調整する透過光量調整ユニット60を設けていたが、第2実施形態では、透過光量調整ユニット60に代えて、光を拡散する光拡散ユニット101を設けている。
 図8は、第2実施形態に係る擬似太陽光照射装置200の構成を模式的に示す縦断面図である。また、図9は擬似太陽光照射装置200を示す平面図であり、図10は擬似太陽光照射装置200の構成を示す横断面図である。なお、これら図8~図10では、図1~3に示す擬似太陽光照射装置100と同一部分には同一の符号を付して説明を省略する。
<Second Embodiment>
In the first embodiment, the two simulated sunlight irradiation units 1A and 1B are arranged in parallel, but in the second embodiment, the three simulated sunlight irradiation units 1A to 1C are arranged in parallel. In the first embodiment, the transmitted light amount adjustment unit 60 for adjusting the transmitted light amount is provided in order to reduce the illuminance unevenness of the irradiated surface 10A. However, in the second embodiment, the transmitted light amount adjustment unit 60 is used instead. Thus, a light diffusion unit 101 that diffuses light is provided.
FIG. 8 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus 200 according to the second embodiment. FIG. 9 is a plan view showing the simulated sunlight irradiation apparatus 200, and FIG. 10 is a cross-sectional view showing the configuration of the simulated sunlight irradiation apparatus 200. 8 to 10, the same parts as those of the simulated solar light irradiation apparatus 100 shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
 擬似太陽光照射装置200は、3つの擬似太陽光照射ユニット1A~1Cを備えている。各擬似太陽光照射ユニット1A,1Bは、長さ方向に延在する上下二枚の補助反射面150Aと、幅方向に延在する一対の補助反射面150Bとを備えている。擬似太陽光照射ユニット1Cでは、複数の角材2を格子状に組んだ枠体4が、例えば長さが略1.6m、幅が略0.8m、高さが略0.8m程度の寸法に構成され、擬似太陽光照射ボックス6及び反射面8が枠体4の幅方向において略中央に配置されている。擬似太陽光照射ユニット1Cは、枠体4の寸法が異なる点、擬似太陽光照射ボックス6及び反射面8が幅方向中央に配置される点、及び、長さ方向に延在する上下2枚の補助反射面150Aを備えない点以外は、擬似太陽光照射ユニット1A,1Bと同一に構成されている。 The simulated sunlight irradiation apparatus 200 includes three simulated sunlight irradiation units 1A to 1C. Each pseudo-sunlight irradiation unit 1A, 1B includes two upper and lower auxiliary reflecting surfaces 150A extending in the length direction and a pair of auxiliary reflecting surfaces 150B extending in the width direction. In the simulated solar light irradiation unit 1C, a frame 4 in which a plurality of square members 2 are assembled in a grid shape has dimensions of, for example, a length of about 1.6 m, a width of about 0.8 m, and a height of about 0.8 m. The pseudo-sunlight irradiation box 6 and the reflection surface 8 are configured and arranged substantially at the center in the width direction of the frame body 4. The simulated solar light irradiation unit 1C includes a frame 4 having different dimensions, a pseudo solar light irradiation box 6 and a reflecting surface 8 disposed at the center in the width direction, and two upper and lower sheets extending in the length direction. Except that the auxiliary reflecting surface 150A is not provided, it is configured in the same manner as the simulated sunlight irradiation units 1A and 1B.
 図8に示すように、擬似太陽光照射ボックス6と被照射面10Aの間には、該被照射面10Aの全面を覆い該被照射面10Aでの照度分布を均一化するように光を拡散する光拡散ユニット101が設けられている。
 すなわち、各擬似太陽光照射ユニット1A~1Cでは、反射面8の反射光による直接光の照度むら補償に加え、光拡散ユニット101によっても被照射面10Aの照度むらの低減が図られている。
As shown in FIG. 8, light is diffused between the simulated sunlight irradiation box 6 and the irradiated surface 10A so as to cover the entire irradiated surface 10A and to make the illuminance distribution on the irradiated surface 10A uniform. A light diffusing unit 101 is provided.
That is, in each of the simulated solar light irradiation units 1A to 1C, in addition to compensation for uneven illuminance of direct light by the reflected light of the reflecting surface 8, the unevenness of illuminance of the irradiated surface 10A is also reduced by the light diffusion unit 101.
 図11は、擬似太陽光照射ユニット1Aの右半分を示す縦断面図である。また、図12は光拡散部材110、120の構成を示す図であり、図12(A)は擬似太陽光照射ユニット1Aを、拡大した光拡散部材110、120とともに模式的に示す縦断面図であり、図12(B)は被照射面10A側から見た光拡散部材120を示す図である。なお、図11及び図12では、擬似太陽光照射ユニット1Aの光拡散部材110、120が図示されているが、擬似太陽光照射ユニット1B,1Cの光拡散部材110、120も、擬似太陽光照射ユニット1Aの光拡散部材110、120と同一に構成されている。
 光拡散ユニット101は、図11及び図12(A)に示すように、ベース板102と、光拡散効果を有する二層の光拡散部材110,120とを備え、被照射面10Aの照度が高い箇所に向かう光を光拡散部材110,120が拡散することで、被照射面10Aで照度分布を均一化する。
 これらベース板102、及び光拡散部材110,120には、擬似太陽光照射ボックス6が放射する擬似太陽光のスペクトルを変調しないように、それぞれ擬似太陽光のスペクトル範囲において透過率が一定(フラット)であり、さらに、好ましくは高い透過率を有する材質が用いられている。
FIG. 11 is a longitudinal sectional view showing the right half of the simulated solar light irradiation unit 1A. 12 is a diagram showing the configuration of the light diffusing members 110 and 120, and FIG. 12A is a longitudinal sectional view schematically showing the simulated sunlight irradiation unit 1A together with the enlarged light diffusing members 110 and 120. FIG. 12B is a diagram showing the light diffusing member 120 viewed from the irradiated surface 10A side. 11 and 12, the light diffusing members 110 and 120 of the simulated sunlight irradiation unit 1A are illustrated, but the light diffusing members 110 and 120 of the simulated sunlight irradiation units 1B and 1C are also irradiated with the simulated sunlight. The light diffusing members 110 and 120 of the unit 1A are configured the same.
As shown in FIGS. 11 and 12A, the light diffusing unit 101 includes a base plate 102 and two layers of light diffusing members 110 and 120 having a light diffusing effect, and the illuminated surface 10A has high illuminance. The light diffusing members 110 and 120 diffuse light directed toward the location, so that the illuminance distribution is made uniform on the irradiated surface 10A.
The transmittance of the base plate 102 and the light diffusing members 110 and 120 is constant (flat) in the spectrum range of the simulated sunlight so as not to modulate the spectrum of the simulated sunlight emitted by the simulated sunlight irradiation box 6. Furthermore, a material having a high transmittance is preferably used.
 ベース板102は、光拡散部材110を担持するための上面視矩形状の板状部材であり、自重による撓みが生じない程度の剛性が得られる厚み(例えば、15mm)を有して形成されている。本実施形態のベース板102には、上記材質として、アクリル樹脂が用いられている。なお、この材質にはガラスを用いてもよい。係るベース板102は、擬似太陽光照射ボックス6と被照射面10Aとの間を完全に仕切るように、枠体4の被照射面10A側に配置されている。
 二層の光拡散部材110,120は、それぞれ複数枚の拡散板を積層して構成されており、被照射面10Aとランプ22との間に、距離Dだけ離して配置されている。光拡散ユニット101の光拡散効果、すなわち、被照射面10Aの照度むらの低減の効果は、この距離Dに依存している。本実施形態では、二層の光拡散部材110,120間の距離Dが、複数の反射板30による照度の境界が目立たなくなる距離(例えば、100mm<D≦200mm)に設定されている。
The base plate 102 is a plate-like member having a rectangular shape in a top view for supporting the light diffusing member 110, and is formed to have a thickness (for example, 15 mm) that can provide rigidity enough to prevent bending due to its own weight. Yes. For the base plate 102 of the present embodiment, acrylic resin is used as the material. In addition, you may use glass for this material. The base plate 102 is arranged on the irradiated surface 10A side of the frame 4 so as to completely partition the simulated sunlight irradiation box 6 and the irradiated surface 10A.
The two layers of light diffusing members 110 and 120 are each formed by laminating a plurality of diffusing plates, and are disposed at a distance D between the irradiated surface 10A and the lamp 22. The light diffusing effect of the light diffusing unit 101, that is, the effect of reducing the illuminance unevenness of the irradiated surface 10A depends on this distance D. In the present embodiment, the distance D between the two layers of the light diffusing members 110 and 120 is set to a distance (for example, 100 mm <D ≦ 200 mm) where the boundary of illuminance by the plurality of reflectors 30 is not noticeable.
 次に、各擬似太陽光照射ユニット1A~1Bへの光拡散ユニット101の取付構造を説明する。
 図11及び図12に示すように、各擬似太陽光照射ユニット1A~1Bには、被照射面10A側及び擬似太陽光照射ボックス6の上方に、擬似太陽光照射ボックス6と平行に延びる断面L字状の光拡散部材受け103が、該擬似太陽光照射ボックス6を挟んだ両側の側面にそれぞれ設けられている。また、被照射面10A側及び擬似太陽光照射ボックス6の上方に、擬似太陽光照射ボックス6と直交して延びる板状の光拡散部材受け104が、該擬似太陽光照射ボックス6の長さ方向において対面する側面にそれぞれ設けられている。
 ベース板102及び光拡散部材110は被照射面10A側に設けられた光拡散部材受け103,104に載置され、図示しない抑え金具によって固定され、光拡散部材120は擬似太陽光照射ボックス6の上方に設けられた光拡散部材受け103,104に載置され、図示しない抑え金具によって固定される。
Next, the attachment structure of the light diffusion unit 101 to each of the simulated sunlight irradiation units 1A to 1B will be described.
As shown in FIGS. 11 and 12, each of the simulated sunlight irradiation units 1A to 1B has a cross section L extending in parallel to the simulated sunlight irradiation box 6 on the irradiated surface 10A side and above the simulated sunlight irradiation box 6. Character-shaped light diffusing member receivers 103 are respectively provided on the side surfaces on both sides of the pseudo-sunlight irradiation box 6. Further, a plate-like light diffusing member receiver 104 extending orthogonally to the simulated sunlight irradiation box 6 on the irradiated surface 10A side and the simulated sunlight irradiation box 6 is provided in the length direction of the simulated sunlight irradiation box 6. Are provided on the side surfaces facing each other.
The base plate 102 and the light diffusing member 110 are placed on the light diffusing member receivers 103 and 104 provided on the irradiated surface 10 </ b> A side, and are fixed by holding metal fittings (not shown). It is placed on the light diffusing member receivers 103 and 104 provided on the upper side, and is fixed by holding metal fittings (not shown).
 次いで、図12を参照し、光拡散部材110、120の構成について詳述する。
 被照射面10A側の光拡散部材110は、ベース板102の上面に配置され、複数枚(本実施形態では、2枚)の光拡散板111,112を積層して構成されている。被照射面10A側の光拡散板111は、被照射面10Aを照明する光が通過する照明光通過範囲全体を覆う大きさに形成された板状部材であり、両面に艶消し加工を施したマット状の拡散面を有している。本実施形態の光拡散板111は、厚みが約3mmであり、ベース板102とほぼ同じ光学的特徴を有する素材(本実施形態では、アクリル樹脂)を用いて形成されている。
Next, the configuration of the light diffusing members 110 and 120 will be described in detail with reference to FIG.
The light diffusing member 110 on the irradiated surface 10A side is disposed on the upper surface of the base plate 102, and is configured by laminating a plurality of (in this embodiment, two) light diffusing plates 111 and 112. The light diffusing plate 111 on the irradiated surface 10A side is a plate-like member that is formed to have a size that covers the entire illumination light passing range through which the light that illuminates the irradiated surface 10A passes, and has been matted on both sides. It has a mat-like diffusion surface. The light diffusing plate 111 of this embodiment has a thickness of about 3 mm and is formed using a material (acrylic resin in this embodiment) having substantially the same optical characteristics as the base plate 102.
 ベース板102側の光拡散板112は、光拡散板111と略同一の大きさに形成された板状部材であり、両面に拡散面を有している。この拡散面の片面はエンボス加工が施されることによりエンボス形状に形成されており、光拡散板112は、エンボス形状を有する拡散面を被照射面10A側に向けて配置されている。すなわち、光拡散板111のマット状の拡散面と光拡散板112のエンボス面とが接触することとなり、光拡散板111の横ずれを防止できる。本実施形態の光拡散板112は、厚みが約205μm、平行光線透過率と拡散光線透過率の比であるヘイズが約50%である素材を用いて形成されている。 The light diffusing plate 112 on the base plate 102 side is a plate-like member formed in substantially the same size as the light diffusing plate 111, and has diffusing surfaces on both sides. One surface of the diffusion surface is formed into an embossed shape by being embossed, and the light diffusion plate 112 is arranged with the diffusion surface having the embossed shape facing the irradiated surface 10A. That is, the mat-like diffusion surface of the light diffusing plate 111 and the embossed surface of the light diffusing plate 112 are in contact with each other, and the lateral displacement of the light diffusing plate 111 can be prevented. The light diffusing plate 112 of this embodiment is formed using a material having a thickness of about 205 μm and a haze that is a ratio of the parallel light transmittance and the diffuse light transmittance of about 50%.
 ランプ22側の光拡散部材120は、複数枚(本実施形態では、4枚)の光拡散板121,122,123A,123Bと、照度場所むら調整用の拡散板である照度調整板124とを積層して構成されている。光拡散板121は光拡散板111と略同一に構成され、光拡散板121の上面には、光拡散板112と略同一に構成された3枚の光拡散板122,123A,123Bがエンボス形状を有する拡散面を被照射面10A側に向けて載置されている。2枚の光拡散板122,123A間には、光拡散板121,122,123A,123Bより小さく形成された照度調整板124が配置されている(図12(B)参照)。照度調整板124は、両面に拡散面を有するとともに、片面にエンボス加工が施された板状部材であり、エンボス面をランプ22側に向けて配置されている。これにより、下側の光拡散板123Aのエンボス面と照度調整板124のエンボス面とが接触することとなり、照度調整板124の横ずれを防止できる。本実施形態では、照度調整板124は、厚みが約270μm、ヘイズが約90%である素材を用いて形成されており、大きさが80mm×400mm、150mm×600mm、80mm×300mmの3枚の照度調整板124が配置されている。 The light diffusing member 120 on the lamp 22 side includes a plurality of (in this embodiment, four) light diffusing plates 121, 122, 123A, 123B and an illuminance adjusting plate 124 that is a diffusing plate for adjusting illuminance location unevenness. It is configured by stacking. The light diffusing plate 121 is configured substantially the same as the light diffusing plate 111, and three light diffusing plates 122, 123 A, 123 B configured substantially the same as the light diffusing plate 112 are embossed on the upper surface of the light diffusing plate 121. Is placed with the diffusion surface having the surface facing the irradiated surface 10A. An illuminance adjusting plate 124 formed smaller than the light diffusing plates 121, 122, 123A, 123B is disposed between the two light diffusing plates 122, 123A (see FIG. 12B). The illuminance adjusting plate 124 is a plate-like member having diffusion surfaces on both sides and embossed on one side, and is disposed with the embossed surface facing the lamp 22 side. As a result, the embossed surface of the lower light diffusion plate 123A comes into contact with the embossed surface of the illuminance adjusting plate 124, and the lateral shift of the illuminance adjusting plate 124 can be prevented. In the present embodiment, the illuminance adjusting plate 124 is formed using a material having a thickness of about 270 μm and a haze of about 90%, and has three sizes of 80 mm × 400 mm, 150 mm × 600 mm, and 80 mm × 300 mm. An illuminance adjustment plate 124 is disposed.
 このように、比較的光拡散効果の高い照度調整板124を、ランプ22側の光拡散部材120に設けたため、照度調整板124の位置を変えるだけで、被照射面10Aの照度が局部的に高い箇所に向かう光をより効果的に拡散し、照度むらの微調整を容易に行うことができる。これに加え、照度調整板124で拡散した光を被照射面10A側の光拡散部材110でさらに拡散できるので、被照射面10A側の光拡散部材110に照度調整板を配置する場合に比べ、照度むらをより低減できる。また、照度むらに経時変化が生じた場合や、ランプ22を交換して照度むらが変更した場合にも、照度調整板124の位置や大きさを変更することで、照度むらを容易に低減できる。さらに、照度調整板124は、光拡散板122,123の間に配置されているため、照度調整板124を固定する固定具を設ける必要がなくなり、部品点数を削減できる。
 このように構成された光拡散ユニット101を有する各擬似太陽光照射ユニット1A~1Cは、当該各擬似太陽光照射ユニット1A~1Cの正面に位置する被照射面10Aの所定面積(600mm×1200mm程度)において、照度むらを良好に低減することができる。
As described above, since the illuminance adjusting plate 124 having a relatively high light diffusing effect is provided on the light diffusing member 120 on the lamp 22 side, the illuminance of the irradiated surface 10A is locally changed only by changing the position of the illuminance adjusting plate 124. Light that travels to high places can be more effectively diffused, and fine adjustment of illuminance unevenness can be easily performed. In addition to this, since the light diffused by the illuminance adjusting plate 124 can be further diffused by the light diffusing member 110 on the irradiated surface 10A side, compared to the case where the illuminance adjusting plate is arranged on the light diffusing member 110 on the irradiated surface 10A side, Irradiance unevenness can be further reduced. In addition, even when the illuminance unevenness changes over time or when the lamp 22 is replaced and the illuminance unevenness is changed, the illuminance unevenness can be easily reduced by changing the position and size of the illuminance adjusting plate 124. . Furthermore, since the illuminance adjusting plate 124 is disposed between the light diffusing plates 122 and 123, there is no need to provide a fixture for fixing the illuminance adjusting plate 124, and the number of parts can be reduced.
Each of the simulated sunlight irradiation units 1A to 1C having the light diffusion unit 101 configured as described above has a predetermined area (about 600 mm × 1200 mm) of the irradiated surface 10A located in front of each of the simulated sunlight irradiation units 1A to 1C. ), The illuminance unevenness can be reduced satisfactorily.
 擬似太陽光照射装置200では、有効照射面積が600mm×1200mm程度である3つの擬似太陽光照射ユニット1A~1Cを、ランプ22が並列に並ぶように隣接して配設している。なお、擬似太陽光照射ユニット1A,1Bは、長さ方向に延在する補助反射面150Aが配置されない側を対向させて配置され、これら2つの擬似太陽光照射ユニット1A,1B間に、擬似太陽光照射ユニット1Cが配置されている。 In the simulated sunlight irradiation apparatus 200, three simulated sunlight irradiation units 1A to 1C having an effective irradiation area of about 600 mm × 1200 mm are arranged adjacently so that the lamps 22 are arranged in parallel. The simulated solar light irradiation units 1A and 1B are disposed so that the side where the auxiliary reflection surface 150A extending in the length direction is not disposed is opposed to each other, and the pseudo solar light irradiation units 1A and 1B are disposed between the two simulated solar light irradiation units 1A and 1B. A light irradiation unit 1C is arranged.
 また、本実施形態では、擬似太陽光照射ユニット1A,1C間、及び、擬似太陽光照射ユニット1B,1C間に、遮光板130が配置されており、遮光板130は、その上端部131と被照射面10Aとの間に隙間部δを形成するように、被照射面10Aから所定の距離M2だけ離して配置されている。距離M2は、2つの擬似太陽光照射ユニット1A,1Bによる照度の境界が目立たなくなる距離に設定され、本実施形態では、被照射面10Aからランプ22側の光拡散部材120の下面までの距離に設定されている。
 すなわち、遮光板130は光拡散部材110,120の下方に配置されているため、各光拡散部材110,120は、上述のように擬似太陽光照射ユニット1A~1C毎に形成されてもよいが、擬似太陽光照射ユニット1A~1Cに渡って延在する大きさに形成されるのがより望ましい。これにより、擬似太陽光照射ユニット1A~1Cの境界部分に光拡散部材110,120が配置されることとなるので、各擬似太陽光照射ユニット1A,1B同士の境界部分に位置する被照射面10Aの箇所において照度むらをより低減できる。
In the present embodiment, the light shielding plate 130 is disposed between the simulated sunlight irradiation units 1A and 1C and between the simulated sunlight irradiation units 1B and 1C. The gap portion δ is formed between the irradiation surface 10A and the irradiation surface 10A by a predetermined distance M2. The distance M2 is set to a distance at which the boundary between the illuminances by the two simulated sunlight irradiation units 1A and 1B becomes inconspicuous. In this embodiment, the distance M2 is the distance from the irradiated surface 10A to the lower surface of the light diffusion member 120 on the lamp 22 side. Is set.
That is, since the light shielding plate 130 is disposed below the light diffusing members 110 and 120, each light diffusing member 110 and 120 may be formed for each of the simulated solar light irradiation units 1A to 1C as described above. More preferably, the solar light irradiation unit 1A to 1C is formed in a size extending over the pseudo-sunlight irradiation units 1A to 1C. As a result, the light diffusing members 110 and 120 are arranged at the boundary portions between the simulated sunlight irradiation units 1A to 1C, and thus the irradiated surface 10A located at the boundary portion between the simulated sunlight irradiation units 1A and 1B. Illuminance unevenness can be further reduced at the locations.
 図13は、擬似太陽光照射装置200による被照射面10Aの照度むらの測定結果を示す図であり、図13(A)は被照射面10Aの照度分布を示す図であり、図13(B)は被照射面10Aの幅方向の照度を示すグラフであり、図13(C)は被照射面10Aの長さ方向の照度を示すグラフである。
 この図に示すように、照度は1.11-1.12SUN(1SUN=1000W/m2)の範囲から1.15-1.16SUNの範囲にあるとともに、この図に示す照度分布から照度むらを計算すると約1.82%という値が得られており、擬似太陽光照射装置200では、被照射面10Aの照度むらを良好に抑制できることが実証された。したがって、本実施形態の擬似太陽光照射装置200によれば、各擬似太陽光照射ユニット1A~1Cの擬似太陽光照射ボックス6、反射面8、補助反射面150A,150B、及び光拡散ユニット101等の光学設計を変更することなく、有効照射面積を1100mm×2100mm程度まで拡大できる。
 したがって、2つの擬似太陽光照射ユニット1A,1B間に、複数の擬似太陽光照射ユニット1Cを並設することで、照射範囲をさらに拡大することができる。
FIG. 13 is a diagram showing the measurement result of the illuminance unevenness of the irradiated surface 10A by the simulated sunlight irradiation device 200, and FIG. 13A is a diagram showing the illuminance distribution of the irradiated surface 10A, and FIG. ) Is a graph showing the illuminance in the width direction of the irradiated surface 10A, and FIG. 13C is a graph showing the illuminance in the length direction of the irradiated surface 10A.
As shown in this figure, the illuminance is in the range of 1.11-1.12 SUN (1 SUN = 1000 W / m 2 ) to 1.15-1.16 SUN. When calculated, a value of about 1.82% was obtained, and it was demonstrated that the simulated sunlight irradiation device 200 can satisfactorily suppress the illuminance unevenness of the irradiated surface 10A. Therefore, according to the simulated sunlight irradiation device 200 of the present embodiment, the simulated sunlight irradiation box 6 of each of the simulated sunlight irradiation units 1A to 1C, the reflection surface 8, the auxiliary reflection surfaces 150A and 150B, the light diffusion unit 101, and the like. The effective irradiation area can be expanded to about 1100 mm × 2100 mm without changing the optical design.
Therefore, the irradiation range can be further expanded by arranging a plurality of simulated sunlight irradiation units 1C in parallel between the two simulated sunlight irradiation units 1A and 1B.
 但し、上記実施形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
 例えば、上記実施形態では、擬似太陽光照射ユニット毎に枠体を形成したが、複数の擬似太陽光照射ユニットを並設した全体の大きさに合わせて枠体を形成してもよい。
However, the above embodiment is an aspect of the present invention, and it is needless to say that the embodiment can be appropriately changed without departing from the gist of the present invention.
For example, in the said embodiment, although the frame was formed for every simulated sunlight irradiation unit, you may form a frame according to the whole magnitude | size which arranged the some simulated sunlight irradiation unit in parallel.
 また、上記実施形態では、遮光板を被照射面から所定の距離だけ離して配置することにより、遮光板の上端部と被照射面との間に隙間部を形成していたが、遮光板を擬似太陽光照射ユニットの側面全体に配置し、遮光板の上端部分に、被照射面から所定の距離の範囲を開放する開放部を形成することにより、遮光板の上端部と被照射面との間に隙間部を形成してもよい。
 また、上記実施形態では、複数の擬似太陽光照射ユニットをそれぞれ隣接して並設していたが、擬似太陽光照射ユニットを、若干(例えば、数cm)の間隔をあけて並設してもよい。
In the above embodiment, the gap is formed between the upper end of the light shielding plate and the irradiated surface by disposing the light shielding plate by a predetermined distance from the irradiated surface. It is arranged on the entire side surface of the simulated solar light irradiation unit, and by forming an open portion that opens a predetermined distance range from the irradiated surface at the upper end portion of the light shielding plate, the upper end portion of the light shielding plate and the irradiated surface are formed. A gap may be formed between them.
In the above embodiment, the plurality of simulated sunlight irradiation units are arranged adjacent to each other. However, the simulated sunlight irradiation units may be arranged in parallel with some (for example, several centimeters) intervals. Good.
 1A~1C 擬似太陽光照射ユニット
 6 擬似太陽光照射ボックス
 6A 下面
 6B 上面
 8 反射面
 10 被照射体
 10A 被照射面
 22 ランプ(光源)
 150A,150B 補助反射面
 100,200 擬似太陽光照射装置
 130 遮光板
 131 上端部
 M 距離
 δ 隙間部
1A to 1C Pseudo sunlight irradiation unit 6 Pseudo sunlight irradiation box 6A Lower surface 6B Upper surface 8 Reflecting surface 10 Object to be irradiated 10A Irradiated surface 22 Lamp (light source)
150A, 150B Auxiliary reflecting surface 100, 200 Pseudo-sunlight irradiation device 130 Light shielding plate 131 Upper end M Distance δ Gap

Claims (3)

  1.  上面及び下面から光を放射する擬似太陽光照射ボックスを納めたユニットであって、前記擬似太陽光照射ボックスの下面の対向位置に反射面を設け、この反射面で上方に反射した反射光、及び前記擬似太陽光照射ボックスの上面から放射する直接光を、前記擬似太陽光照射ボックスの上面の対向位置に設けた被照射面に照射する擬似太陽光照射ユニットを複数備え、
     各擬似太陽光照射ユニットを並設するとともに、
     擬似太陽光照射ユニット同士の間に、各擬似太陽光照射ユニットの側方に漏れる光を遮光する遮光板を配置しつつ、
     前記遮光板の上端部と前記被照射面との間に隙間部を形成し、各擬似太陽光照射ユニット同士の境界部分に位置する前記被照射面の箇所に、前記隙間部を通じて各擬似太陽光照射ユニットの照射光を重ねて照射する
     ことを特徴とする擬似太陽光照射装置。
    A unit containing a pseudo-sunlight irradiation box that emits light from an upper surface and a lower surface, provided with a reflecting surface at a position opposite to the lower surface of the pseudo-sunlight irradiation box, and reflected light reflected upward by the reflecting surface; and A plurality of simulated sunlight irradiation units that irradiate the irradiated surface with direct light radiated from the upper surface of the simulated sunlight irradiation box on the irradiated position at the opposite position of the upper surface of the simulated sunlight irradiation box
    While arranging each simulated sunlight irradiation unit side by side,
    While arranging the light shielding plate that shields the light leaking to the side of each simulated sunlight irradiation unit between the simulated sunlight irradiation units,
    A gap portion is formed between the upper end portion of the light shielding plate and the irradiated surface, and each simulated sunlight is passed through the gap portion at a position of the irradiated surface located at a boundary portion between the simulated sunlight irradiation units. A pseudo-sunlight irradiation device characterized by irradiating with irradiation light from an irradiation unit.
  2.  前記擬似太陽光照射ボックスは線状の光源を有し、
     前記擬似太陽光照射ユニットのそれぞれを、前記光源が並列に並ぶように配設したことを特徴とする請求項1に記載の擬似太陽光照射装置。
    The simulated sunlight irradiation box has a linear light source,
    The simulated sunlight irradiation device according to claim 1, wherein each of the simulated sunlight irradiation units is disposed so that the light sources are arranged in parallel.
  3.  前記擬似太陽光照射ユニットの側方には、前記擬似太陽光照射ボックスの高さ位置から前記被照射面までの間に、入射する光を前記被照射面に向けて反射する補助反射面を配置したことを特徴とする請求項1又は2に記載の擬似太陽光照射装置。 On the side of the simulated sunlight irradiation unit, an auxiliary reflection surface that reflects incident light toward the irradiated surface is disposed between the height position of the simulated sunlight irradiation box and the irradiated surface. The pseudo-sunlight irradiation device according to claim 1 or 2, wherein
PCT/JP2011/002590 2010-06-03 2011-05-10 Artificial sunlight radiating apparatus WO2011151974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-127518 2010-06-03
JP2010127518A JP5621328B2 (en) 2010-06-03 2010-06-03 Simulated solar irradiation device

Publications (1)

Publication Number Publication Date
WO2011151974A1 true WO2011151974A1 (en) 2011-12-08

Family

ID=45066367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002590 WO2011151974A1 (en) 2010-06-03 2011-05-10 Artificial sunlight radiating apparatus

Country Status (3)

Country Link
JP (1) JP5621328B2 (en)
TW (1) TW201213787A (en)
WO (1) WO2011151974A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157444A1 (en) * 2012-04-19 2013-10-24 ウシオ電機株式会社 Solar cell test light irradiation device
CN111237681A (en) * 2020-02-25 2020-06-05 飞率有限公司 Day-type hybrid ultra-precise artificial sunlight simulation device and simulation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035998B2 (en) * 2012-08-20 2016-11-30 岩崎電気株式会社 Simulated solar irradiation device
JP5692193B2 (en) * 2012-09-27 2015-04-01 ダイキン工業株式会社 Simulated solar irradiation device
TWI501411B (en) * 2012-10-04 2015-09-21 Motech Ind Inc Solar cell and module comprising the same
KR102284260B1 (en) * 2019-11-19 2021-08-04 성균관대학교산학협력단 Spectral measurement apparatus for estimating characteristic of solar panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132212A (en) * 1982-02-01 1983-08-06 Hakko:Kk Artificial sunlight irradiating device
JP2002296319A (en) * 2001-04-02 2002-10-09 Nisshinbo Ind Inc Pseudo sunlight irradiation apparatus
US6548819B1 (en) * 2000-03-30 2003-04-15 Hughes Electronics Corporation Infrared enhanced pulsed solar simulator
JP2003331630A (en) * 2002-05-10 2003-11-21 Nisshinbo Ind Inc Pseudo sunlight irradiation apparatus
JP2009264991A (en) * 2008-04-28 2009-11-12 Iwasaki Electric Co Ltd Pseudo sunlight irradiation apparatus
JP2010027826A (en) * 2008-07-18 2010-02-04 Nisshinbo Holdings Inc Solar simulator, and method of measuring multi-junction solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218841A (en) * 1986-03-20 1987-09-26 Suga Shikenki Kk Focusing type fading promotion tester
US5136886A (en) * 1990-11-06 1992-08-11 Atlas Electric Devices Co. Accelerated weathering and lightfastness testing chamber
JP2002329403A (en) * 2001-04-27 2002-11-15 Advanced Display Inc Illumination device for display device and display device provided with the same
JP2003028785A (en) * 2001-07-13 2003-01-29 Nisshinbo Ind Inc Pseudo sunlight irradiation device
JP4454361B2 (en) * 2004-03-30 2010-04-21 Nec液晶テクノロジー株式会社 Surface emitting device
JP4671977B2 (en) * 2007-01-30 2011-04-20 京セラ株式会社 Lighting equipment and vending machines
JP2009266298A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Ultraviolet ray radiating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132212A (en) * 1982-02-01 1983-08-06 Hakko:Kk Artificial sunlight irradiating device
US6548819B1 (en) * 2000-03-30 2003-04-15 Hughes Electronics Corporation Infrared enhanced pulsed solar simulator
JP2002296319A (en) * 2001-04-02 2002-10-09 Nisshinbo Ind Inc Pseudo sunlight irradiation apparatus
JP2003331630A (en) * 2002-05-10 2003-11-21 Nisshinbo Ind Inc Pseudo sunlight irradiation apparatus
JP2009264991A (en) * 2008-04-28 2009-11-12 Iwasaki Electric Co Ltd Pseudo sunlight irradiation apparatus
JP2010027826A (en) * 2008-07-18 2010-02-04 Nisshinbo Holdings Inc Solar simulator, and method of measuring multi-junction solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157444A1 (en) * 2012-04-19 2013-10-24 ウシオ電機株式会社 Solar cell test light irradiation device
JP2013222945A (en) * 2012-04-19 2013-10-28 Ushio Inc Light irradiation device for testing solar cell
CN111237681A (en) * 2020-02-25 2020-06-05 飞率有限公司 Day-type hybrid ultra-precise artificial sunlight simulation device and simulation method

Also Published As

Publication number Publication date
JP5621328B2 (en) 2014-11-12
TW201213787A (en) 2012-04-01
JP2011252814A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5621328B2 (en) Simulated solar irradiation device
JP5928510B2 (en) Simulated solar irradiation device
CN104748006B (en) For the film-type back light unit of flat-panel monitor
JPWO2007049584A1 (en) Reflective screen and front projection system
JP5335874B2 (en) Solar simulator
US20120275132A1 (en) Pseudo-Sunlight Irradiating Apparatus
CN207764521U (en) A kind of backlight module and display device
JP2003028785A (en) Pseudo sunlight irradiation device
JP3086609B2 (en) LCD lighting system
JP6990279B2 (en) Light source device, lighting device, and display device
WO2014082325A1 (en) Backlight module and display device using same
JP6035998B2 (en) Simulated solar irradiation device
JP2015184270A (en) Pseudo sunlight irradiation device
JP2009145254A (en) Pseudo sunlight irradiation apparatus
JP5092875B2 (en) Simulated solar irradiation device
JP3460149B2 (en) Simulated sunlight irradiation device
JP5355525B2 (en) Pseudo-sunlight irradiation device and solar panel inspection device
JP2006269190A (en) Direct backlight
JP2015190905A (en) Pseudo sunlight radiation device
JP2010171132A (en) Pseudo sunlight irradiation device
JP5251714B2 (en) Simulated solar irradiation device
KR102654815B1 (en) High-brightness double-sided advertising panel
CN220855406U (en) Backlight lamp panel of liquid crystal display
JP2014099306A (en) Led lighting device
JP5605403B2 (en) Simulated solar irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789389

Country of ref document: EP

Kind code of ref document: A1