WO2011151603A1 - Nouveaux substituts vasculaires biodegradables - Google Patents

Nouveaux substituts vasculaires biodegradables Download PDF

Info

Publication number
WO2011151603A1
WO2011151603A1 PCT/FR2011/051262 FR2011051262W WO2011151603A1 WO 2011151603 A1 WO2011151603 A1 WO 2011151603A1 FR 2011051262 W FR2011051262 W FR 2011051262W WO 2011151603 A1 WO2011151603 A1 WO 2011151603A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
tubular structure
cells
vascular substitute
hydrogel
Prior art date
Application number
PCT/FR2011/051262
Other languages
English (en)
Inventor
Laurent David
Laurence Bordenave
Muriel Remy
Alexandra Montembault
Original Assignee
Universite Claude Bernard Lyon I
Centre National De La Recherche Scientifique
Universite Bordeaux Segalen
Institut National Des Sciences Appliquees De Lyon
Universite Jean Monnet De Saint-Etienne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Claude Bernard Lyon I, Centre National De La Recherche Scientifique, Universite Bordeaux Segalen, Institut National Des Sciences Appliquees De Lyon, Universite Jean Monnet De Saint-Etienne filed Critical Universite Claude Bernard Lyon I
Publication of WO2011151603A1 publication Critical patent/WO2011151603A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to the general field of biodegradable, or even bioassimilable, and cellularizable substitutes for biomedical application.
  • the invention relates to new vascular substitutes based on biodegradable polymers that are polysaccharides and collagen.
  • biodegradable such as those described in patent EP 0850073, including natural polymers such as collagen, carbohydrates of the family of polysaccharides such as chitosan, cellulose, alginates ...
  • the authors plan to cover the inner portion of the tube (and / or external) with a solution containing chitosan and gelatin which is then lyophilized.
  • a process requiring the use of toluene is described to obtain the lyophilizate.
  • the different chitosan-based layers obtained are therefore in dry solid form, taking into account the different stages of drying / lyophilization.
  • Patent application WO 2009/027537 describes a method for producing a combination of two chitosan tubes, one of which is a fluid-tight material of the body and the other is made of a material with interconnected micron porosity to enable cellular infiltration.
  • the inventors have found that the hollow fibers obtained according to the method described in the patent application WO 2009/044053 did not have mechanical properties sufficient to withstand the blood pressure and to be compatible with suture operations on the vessels blood, operation required for implantation. It should also be emphasized that the process described in this patent application is based on the interrupted neutralization of an aqueous collodion whose characteristics are determined (degree of acetylation of chitosan, mass of chitosan, concentration of collodion), so that the hydrogels of the different membranes of the multi-membrane tube described are all identical.
  • the inventors propose, according to the invention, new biodegradable vascular substitutes whose mechanical properties are compatible with their application, but also whose behavior vis-à-vis cells can regenerate an assembly tubular tissue, and even according to some embodiments, a complex multilayer tubular tissue assembly.
  • the present invention relates to a biodegradable vascular substitute having an inner tubular structure and an outer shell, each consisting of a hydrogel of a polysaccharide, collagen or a mixture of such polymers, characterized in that the two hydrogels forming the internal tubular structure and the outer envelope are different and have, in particular, mechanical properties and a colonization rate by different cells.
  • one of the hydrogels has higher strength properties than the other hydrogel, but the other hydrogel has a higher colonization rate.
  • the use of the hydrogels in accordance with the invention makes it possible to obtain a suturable structure comprising at least 80% by weight of water, and preferably at least 90% by weight. and preferably at least 95% by weight of water.
  • the degradability of the hydrogels by the living medium in which the vascular substitute will be implanted is more flexible than in dry systems, particularly for short biodegradation times.
  • the internal tubular structure has mechanical strength properties greater than those of the outer casing.
  • the hydrogel forming the outer envelope has a colonization rate by cells greater than that of the internal tubular structure.
  • the present invention also relates to a process for preparing such a vascular substitute comprising the following steps: a) formation of a tube, optionally multi-membrane, consisting of a polysaccharide hydrogel, collagen or a mixture of these polymers, by spinning then interrupted coagulation of a solution hydro-alcoholic coagulable polymer or mixture of polymers selected to form the tube,
  • the layer is deposited on the outer wall of the tube obtained in step a).
  • step a) is carried out from a hydroalcoholic solution of chitosan, the coagulation being carried out in an alkaline medium.
  • step b) is carried out from an aqueous solution of alcohol-free chitosan, which after deposition on the external walls of the internal tubular structure is neutralized.
  • Figure 1 is a schematic perspective view of an example of a vascular substitute according to the invention.
  • Figures 2A and 2B respectively are schematic views in perspective and in section along B-B of another example of vascular substitute according to the invention.
  • Figures 3A and 3B respectively are schematic views in perspective and in section along B-B of another example of vascular substitute according to the invention.
  • Figures 4A and 4B compare the mechanical properties of different hydrogels of chitosan obtained by aqueous route or hydroalcoholic way.
  • Figures 5 and 6 are partial photographs in light microscopy of an example of vascular substitute according to the invention covered in the inner lumen by living cells.
  • Figure 7 is a partial photograph in light microscopy of an example of vascular substitute according to the invention inhabited in an inter-membrane space by living cells.
  • Hydrogel means a viscoelastic material comprising at least 80%, and preferably at least 90% by weight of water and preferably at least 95% by weight of water.
  • the internal structure and the outer envelope may consist of a physical hydrogel, or a chemical hydrogel also called crosslinked hydrogel.
  • a hydrogel is said to be physical, when the interactions responsible for the inter-chain crosslinking are of physical type, and are in particular hydrogen bonds and / or hydrophobic interactions as opposed to a so-called chemical hydrogel in which the inter-chain interactions are of the type. covalent bond.
  • the constituent hydrogel of the internal structure, as well as the constituent hydrogel of the envelope may be based on one or more polysaccharides or collagen or a polysaccharide / collagen mixture.
  • the selected polymers are biodegradable, i.e. they are able to undergo, under the action of a living medium containing various reagents such as water, nitric oxide, and enzymes, a process decomposition to lead to lower weight compounds that are excreted or metabolized by the body.
  • glycosaminoglycans such as chitin, chitosan, hyaluronic acid, alginates, and especially calcium alginates, and carboxymethyl cellulose
  • polyanionic polysaccharides such as sulphate. dextran, dermatan sulfate, keratan sulfate and heparin.
  • collagen including atelocollagen enzymatically extracted, fibrous collagen from the tendon or skin.
  • collagen include atelocollagen enzymatically extracted, fibrous collagen from the tendon or skin.
  • collagen include atelocollagen enzymatically extracted, fibrous collagen from the tendon or skin.
  • types of collagen that have their own structure and that we find in particular organs.
  • type I, III and IV collagens are present in the wall of blood vessels, type I collagen is the most common and is present in many connective tissues.
  • the inner tubular structure will preferably be a chitosan hydrogel, and especially a physical hydrogel.
  • the outer envelope may also consist of a chitosan hydrogel, and in particular a physical hydrogel.
  • Chitosan is a partially or totally deacetylated derivative of chitin. Its different forms are characterized in particular by their degree of acetylation (DA) and by their molar mass.
  • vascular substitute The mechanical properties of the vascular substitute according to the invention are important because the vascular substitute must firstly withstand the physiological blood pressure ("burst pressure") and secondly be suturable.
  • a vascular substitute should, preferably resisting physiological blood pressure with a safety factor of at least 8, ie the vascular substitute must withstand a pressure corresponding to at least 8 times the maximum physiological pressure of the 220 mm of mercury.
  • the inventors have identified that it is difficult to find the same biodegradable hydrogel, which has such mechanical properties, but also which can be easily colonized so that, when the vascular substitute is implanted, there is reconstitution of a support tissue before degradation of the substitute and subsequent weakening of its mechanical properties.
  • FIG. 1 represents such a structure I with an internal tubular structure 1 and an external envelope 2.
  • it is therefore expected to combine two coaxial tubes, each tube being formed of a hydrogel different from one or more polysaccharides or one or more collagens or a polysaccharide / collagen mixture.
  • Each of the two tubes may have a multi-membrane structure.
  • the constituent hydrogel of the inner tubular structure and the constituent hydrogel of the outer shell may be of different chemical nature, for example one consisting of collagen and the other of chitosan, or of the same chemical nature, for example both consist of chitosan, but of a different chitosan in terms of degree of acetylation (DA), average molecular weight Mw, and / or porosity, so as to possess properties of mechanical resistance and colonization rate by different cells.
  • DA degree of acetylation
  • Mw average molecular weight
  • porosity so as to possess properties of mechanical resistance and colonization rate by different cells.
  • it is intended to use two coaxial hydrogels, one of higher mechanical strength and the other of lower strength but faster colonization rate by cells.
  • the internal tubular structure which gives its structure and its mechanical strength properties to the substitute according to the invention and allows it in particular to be suturable and not burst under blood pressure.
  • the internal tubular structure has a breaking stress ⁇ ⁇ greater than 0.05 MPa, preferably greater than 0.2 MPa.
  • the inner tubular structure also has a modulus of elasticity in traction E (Young's modulus) greater than 0.01 MPa, preferably greater than 0.05 MPa and, for example, of the order of 0.1 MPa.
  • E Youngng's modulus
  • P the equivalent internal pressure
  • R1 the outer radius
  • R2 the inner radius of the tube.
  • the internal pressure in a tube of 10 mm in outer diameter and 5 mm in internal diameter is close to 1500 mmHg, which is much higher than the range of physiological pressures ( ⁇ 240 mmHg).
  • the inventors have found that the chitosan hydrogels formed according to the process described in the patent application WO 2009/044053 did not have such properties.
  • the patent application WO 2009/044053 describes a process for the preparation of hollow fibers by wet spinning under coagulation, comprising a step of spinning through a normal, for example tabular, die of a solution of polysaccharide (in particular chitosan) or coagulable collagen in a coagulant bath, which will be, especially in the case of chitosan, an alkaline solution, followed by at least one partial coagulation cycle in which coagulation is interrupted.
  • the coagulable solution called collodion, is an aqueous solution containing water but no alcohol.
  • the interrupted coagulation cycle is carried out by introducing the aqueous solution of extruded coagulable chitosan into a bath or a coagulation chamber under conditions which make it possible to obtain a fiber which, in cross-section, has a partially coagulated cross-section, and then interrupts the coagulation.
  • the bath or the coagulation chamber contains a coagulating agent such as an alkaline gas such as ammonia or an alkaline solution of sodium hydroxide, potassium hydroxide (for example at a concentration of 1 mol / l) or ammonia whose diffusion in the collodion allows to pass locally in the gel or coagulated state.
  • Stopping coagulation in particular by removing the fiber formed of the coagulation bath and performing a rinse, including water. Stopping the coagulation of the polysaccharide or collagen fiber makes it possible, in particular, to form the central channel of the hollow fiber by stopping the coagulation before taking the core of the fiber in hydrogel, without having to preform the cavity using a central element with fixed diameter as in an annular die. This sequenced coagulation also makes it possible to control the thickness of the tube formed, or the thickness of each membrane in the case of a multi-membrane structure when several successive interrupted coagulations are performed.
  • the inventors have demonstrated that when this method was implemented, not with an aqueous solution of polysaccharide (and for example chitosan), but with a hydroalcoholic solution, the hollow fiber of physical hydrogel polysaccharide (and by example of chitosan) obtained, which can be multi-membrane exhibited the mechanical properties required for the application as a vascular substitute.
  • a hydroalcoholic solution of the water / alcohol mixture type in which the alcohol is preferably a polyalcohol, for example chosen from 1,2- and 1,3-propanediol, the 1, 2-, 1,3- and 1,4-butanediol and 1,2,3-propanetriol (glycerol), with a proportion water / alcohol (v / v), for example from (20/80) to (95 / 5), and preferably from 40/60 to 90/10 (v / v).
  • the alcohol is preferably a polyalcohol, for example chosen from 1,2- and 1,3-propanediol, the 1, 2-, 1,3- and 1,4-butanediol and 1,2,3-propanetriol (glycerol)
  • v / v proportion water / alcohol
  • the implementation of such a hydro-alcoholic collodion allows the formation of a significant fraction of an allomorph or an anhydrous crystalline form of the polysaccharide which is not the case with an aqueous collodion which leads to the allomorphic hydrated alone.
  • concentration of polysaccharide, and especially of chitosan, or of collagen within this solution is, for example, from 0.5 to 6% (g / g), preferably from 1.5 to 4%.
  • the weight average molar mass of the polysaccharide or collagen of the obtained tube is substantially identical to its initial value in the polysaccharide used in the preparation of the extrudable solution. The same is true of the degree of acetylation in the case of a chitosan.
  • the extrudable hydroalcoholic solution is obtained starting from chitosan in aqueous solution of acid, in particular in acetic acid medium, and adding the polyalcohol retained.
  • the extrudable solution is obtained starting from hyaluronan or alginate in aqueous solution at neutral pH and the coagulation operation is carried out in an acidic neutralizing bath. .
  • the method for preparing the internal tubular structure, optionally multi-membrane is in accordance with the method described in patent application WO 2009/044053 to which reference may be made for more details.
  • the neutralization coagulation operation is followed by a washing operation, so as to eliminate the salts formed and possibly the residual alcohol.
  • the internal tubular structure of the vascular substitutes according to the invention consists of a physical chitosan hydrogel having a significant fraction of the anhydrous crystalline allomorph, optionally mixed with a hydrated crystalline form.
  • the anhydrous crystalline form represents at least 5%, preferably at least 10% by weight of the crystalline chitosan present.
  • Such a hydrogel can be prepared by the method in a hydro-alcoholic medium as previously detailed. It is also possible to use a process derived from that described in patent FR2882665. In particular, it is possible to make a physical hydrogel of chitosan from a hydroalcoholic solution as previously described by evaporation of the water in a cylindrical mold to have a cylindrical alcoholic gel and then immerse this alcoholic gel thus formed in an alkaline bath and structure a tubular multi-membrane hydrogel by neutralization interrupted from this preform. An example is given in FIG.
  • an outer envelope around of an internal tubular structure as defined above will then allow to ensure the reconstruction of an external connective support channel before complete degradation of the substitute.
  • This external envelope for its part, consists of a hydrogel, and in particular of a physical hydrogel, for example, chitosan, collagen, a chitosan / collagen mixture, a chitosan / hyaluronic acid mixture, or of an alginate.
  • the outer shell does not have as good mechanical properties as the internal tubular structure, and will more quickly degrade and be colonized by the connective tissue cells in contact with which the vascular substitute is implanted.
  • the outer envelope preferably exhibits rapid cell colonization, i.e. once the outer envelope is in contact with surrounding connective tissue in vivo within a few days, particularly less than 10 days, the hydrogel which constitutes it will be invaded in its volume by cells, in particular cells recruited during the inflammatory reaction and or cells of the connective tissue, and in particular fibroblasts, observable by anatomopathological analysis ( histological sections, specific immunohistological stains).
  • this rapid colonization rate should be observed with connective tissue cells whose tissue regeneration is desired after implantation of the vascular substitute in the body.
  • the colonization rate of the hydrogels constituting a vascular substitute according to the invention may be assessed after implantation on an animal, sacrifice of the latter and observation by pathological analysis.
  • a hydrogel will be considered as colonized, when cells will be visible inside the latter and not only on the surface.
  • the constituent hydrogel of the internal tubular structure may have a colonization time greater than 2 weeks, or even of the order of several months. This is particularly the case of the previously described chitosan hydrogels prepared from an aqueous-alcoholic solution of polysaccharide, optionally mixed with collagen. Therefore, the reconstruction of a peripheral support tissue will be able to occur before complete degradation of the internal tubular structure, thanks to the rapid colonization of the outer envelope which is accompanied by its rapid degradation.
  • the outer envelope is obtained from an aqueous solution of polysaccharide, collagen or their mixture, which after deposition on the outer wall of the internal tubular structure is coagulated by gas or liquid.
  • the aqueous solution used is a solution in water and does not contain alcohol, unlike the hydro-alcoholic solution used for the formation of the internal tubular structure.
  • the outer envelope is obtained from an aqueous solution of chitosan alcohol-free, which after deposition on the outer walls of the inner tubular structure is neutralized. Deposition on the outer wall of the inner tubular structure can be achieved by dipping the inner tubular assembly into an aqueous chitosan solution.
  • aqueous solution of acetate or chitosan hydrochloride characterized by a rather low concentration of chitosan (preferably less than 2% w / w relative to the total mass of the solution) to obtain a hydrogel of low polymer concentration and thus more easily degradable to promote cell colonization.
  • This solution also called collodion, can additionally contain added salts, such as sodium chloride, which contribute to the screening of the charges in the polyelectrolytic solution, and thus to the disintegration of the polysaccharide chains during the neutralization and formation of a more porous gel.
  • the neutralization may be carried out using an aqueous alkaline solution, for example containing sodium hydroxide, potassium hydroxide or ammonia at a concentration of 0.05 to 10M, preferably between 0.05M and 2M. This neutralization will, in most cases, be followed by rinsing with water to remove excess base and salts.
  • an aqueous alkaline solution for example containing sodium hydroxide, potassium hydroxide or ammonia at a concentration of 0.05 to 10M, preferably between 0.05M and 2M.
  • the outer envelope consists of a physical chitosan hydrogel exhibiting almost exclusively a crystalline form hydrated, and preferably free from anhydrous crystalline form.
  • chitosan hydrogels may be named aqueous chitosan gels, as opposed to hydroalcoholic gels of chitosan.
  • almost exclusively it is meant that more than 95% or even more than 98% by weight of the crystalline fraction present consists of crystals of a hydrated crystalline form.
  • the cells of the immune system selectively degrade in vivo the aqueous gels of chitosan and degrade only much more slowly the chitosan hydrogels having a significant fraction of the anhydrous crystalline allomorph as previously described, and especially those obtained by the hydroalcoholic way.
  • This difference is due to the entanglement density which is higher in the chitosan hydrogels with a significant fraction of the anhydrous crystalline allomorph (and in particular those obtained by the hydroalcoholic route), than the aqueous hydrogels.
  • the aqueous hydrogels of chitosan are also particularly advantageous since they also allow diffusion of intercellular messages, oxygen and nutrients.
  • Hydrogels having a significant fraction of the anhydrous crystalline allomorph as previously described, and especially those obtained by the hydroalcoholic way also allow diffusion of the intercellular messages, oxygen and nutrients, but offer, in addition, the possibility ( i) to cultivate the cells in vitro (ii) to develop in vivo in a confined space without rapidly allowing cell migration as is, on the other hand, the case in the solid porous structures described Zhang et al. and WO 2009/027537, in particular.
  • an outer envelope consisting of a physical chitosan hydrogel having almost exclusively a hydrated crystalline form, and preferably free of anhydrous crystalline form and an internal tubular structure consisting of a physical hydrogel of chitosan having a significant fraction of the anhydrous crystalline allomorph, optionally in admixture with a hydrated crystalline form.
  • the outer envelope is constituted, not of an aqueous hydrogel of chitosan, but of a polysaccharide / collagen mixture, and for example of a hyaluronic acid / collagen or chitosan / collagen mixture, the presence of collagen to obtain a faster rate of degradation.
  • polysaccharide / polysaccharide mixture for example chitosan / hyaluronic acid, the hyaluronic acid fraction making it possible to obtain a faster rate of degradation.
  • the polysaccharide mixture has the advantage of being able to modulate the inflammatory response (recruitment of cells promoting the degradation of the hydrogel, for example in the case of the presence of a fraction of alginates or a mixture of chitosan containing a chitosan of high degree of acetylation as explained hereinafter) and the rate of bioresorption, particularly in the case where the component associated with chitosan is present in the extracellular matrix (collagen, hyaluronic acid).
  • the polysaccharide chosen for the internal structure may be a polysaccharide capable of developing a degree of crystallinity. important, for example a chitosan of low degree of acetylation, preferably less than 10% degree of acetylation. It will also be possible to select a polymer mass concentration greater than 2% (m / m relative to the total mass of hydrogel) in the hydrogel constituting the internal structure. It is also advantageous to choose a high molecular weight polysaccharide.
  • a chitosan having a mass average molecular weight Mw greater than 300 000 g / mol may be used to promote the formation of inter-crystalline linkage molecules and between hydrogen and hydrophobic interaction sites, as well as the formation of a high density of entanglement nodes at various scale levels of the hydrogel morphology.
  • the mass average molar masses are determined by the measurement technique described in the publication "Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium" A. MONTEMBAULT, C. VITON, A. DOMARD Biomaterials, 26 (8), 933-943, 2005.
  • the ideal characteristics of the hydrogel are different.
  • a chitosan of higher degree of acetylation it will be possible to choose a chitosan of higher degree of acetylation to limit the degree of crystallinity and to increase the rate of bioresorption.
  • a chitosan having a degree of acetylation greater than 30% which leads to a hydrogel of low degree of crystallinity.
  • a higher DA chitosan also has a higher rate of bioresorption.
  • the outer layer or the internal structure For the outer layer or the internal structure, one can also choose to make mixtures of chitosan of low (for example less than 10%) and high DA (for example greater than 30%) and / or mixtures of low chitosan and high molar mass average mass Mw.
  • a low DA chitosan fraction and high mass to ensure the formation of a gel, and a chitosan of higher DA and lower mass to promote cell colonization.
  • the internal structure may, for example, be made from a collodion containing a majority mass fraction (> 50%) of high mass and low DA chitosan, while the outer envelope may be composed of a majority fraction ( > 50%) of higher DA chitosan and lower mass.
  • the DA and molar mass Mw given above for the hydrogels constituting the vascular substitute substantially correspond to the DA and molar mass Mw of chitosan present in the solutions used for their preparation.
  • the internal tubular structure has mechanical strength properties greater than those of the outer envelope.
  • the outer envelope in turn has a colonization rate by cells greater than that of the internal tubular structure.
  • An inverted configuration although not preferred, could also be provided.
  • the internal tubular structure could be obtained by spinning then interrupted coagulation of a coagulable aqueous solution of chitosan and the outer shell, from a hydro-alcoholic solution of chitosan.
  • the outer envelope would be formed of a hydroalcoholic hydrogel, possibly multi-membrane and the inner tubular structure of an hydrogel obtained by aqueous route on which the endothelium could develop more efficiently taking into account its physico-mechanical properties (lower modulus of elasticity, greater degradability in contact with the living medium), whereas a fibrous capsule would form around the hydrogel longer resorption time.
  • the inner tubular structure and the outer envelope are preferably secured to one another, in particular by physical entanglement of the hydrogels which constitute them, at their contact surface 3
  • This entanglement is in particular obtained by dipping the internal tubular structure in an aqueous solution of polysaccharide or collagen, optionally in a mixture, and in particular chitosan, as described above, in the case where the internal structure has superior strength properties relative to the outer shell and is especially formed of a hydrogel obtained by the aqueous-alcoholic route. It is also possible to fill a hollow fiber formed of a hydro-alcoholic hydrogel, with an aqueous solution of polysaccharide or collagen in the case where the inner tubular structure has lower strength properties , relative to the outer shell.
  • the vascular substitutes according to the invention have the advantage of being completely biodegradable, or even totally bioassimilable in the case where the selected polymers are chitosan, hyaluronic acid or collagen.
  • bioassimilable is meant that they will degrade in the living environment in which they will be implanted, in this case the human body, and that the degradation products will be metabolized by the body.
  • the vascular substitutes according to the invention consist of biomaterials and combine the advantages of chitosan, collagen, hyaluronic acid and alginates in terms of biocompatibility, biodegradability and even bioactivity and moderate cost.
  • the vascular substitutes according to the invention may be prepared with different dimensions, in particular with an internal diameter of 1 to 15 mm, in particular from 2 to 6 mm, corresponding to small arteries for which the demand for new long-term functional vascular substitutes (over 3 years) is the strongest.
  • the vascular substitutes according to the invention will be subjected to a sterilization operation, preferably carried out in an autoclave for 20 minutes at a temperature of 120 ° C.
  • a sterilization operation preferably carried out in an autoclave for 20 minutes at a temperature of 120 ° C.
  • the mechanical and biological properties are not significantly affected by sterilization.
  • sterilization will be performed prior to any functionalization of the vascular substitute with living cells, as detailed below. It is also possible to carry out the preparation from sterilized solid and liquid products, then shaped under sterile conditions.
  • the inner walls of the inner tubular structure are lined (prior to their implantation) with living endothelial cells.
  • Such vascular substitutes I in which the surface of the inner lumen of the inner tubular structure 1 is lined with endothelial cells 4 are illustrated in particular in FIGS. 2A and 2B.
  • endothelial cells of different types such as endothelial cells extracted from the saphenous vein, the vein of the human umbilical cord, or endothelial cells derived from progenitors extracted from circulating blood, and that these cells do not de-differentiate and remain intact (establishment of characteristic endothelial junctions, 1 expression of functional factors) after the formation of the cell layer.
  • the walls of the inner tubular structure will be lined with functional endothelial cells, that is to say similar to the endothelial cells of native tissues and having the markers specific to these native tissues, by expressing proteins such as VE-Cadherin. , CD31, von Willbrand factor.
  • functional endothelial cells that is to say similar to the endothelial cells of native tissues and having the markers specific to these native tissues, by expressing proteins such as VE-Cadherin. , CD31, von Willbrand factor.
  • Such substitutes may be prepared by seeding endothelial cells into the lumen of the inner tubular structure once the inner tubular structure and outer shell have been formed.
  • the cellularization of the internal tubular structure can be performed "static” by injecting an endothelial cell suspension even at moderate density, especially with 50,000 to 100,000 cells per cm 2 , in order to obtain a monolayer cell layer confiuente on the wall of the tube light, in a time that can correspond from a few hours to 48 hours.
  • the cellularization of the internal tubular structure can be carried out "dynamically” by injecting a suspension of moderate density endothelial cells and by slowly rotating the tube to be cellularized around the axis of the inner tube.
  • the internal walls of the inner tubular structure can be coated with a polyanionic polysaccharide, optionally in the form of a polyelectrolyte combination with the hydrogel forming the internal tubular structure.
  • a polyanionic polysaccharide has the advantage of being antithrombogenic.
  • examples of such polyanionic polysaccharides include dextran sulfate, dermatan sulfate, keratan sulfate and heparin.
  • the vascular substitutes according to the invention can be multi-compartmentalized, in order to reconstitute a multi-layered cellularized vascular substitute whose structure is similar to that of a native blood vessel.
  • the inner tubular structure may be multi-membrane, that is to say formed of two or more membranes freely sliding relative to each other.
  • multi-membrane structures may, for example, be prepared by drawing on the method described in patent application WO 2009/044053 but in a hydro-alcoholic medium as described above, and by carrying out several successive partial coagulation cycles. The operating conditions of each interrupted coagulation cycle and their sequence conditions will determine the constitution of each membrane, in particular its thickness, and the size of the inter membrane space separating two adjacent membranes.
  • the invention relates to vascular substitutes as defined above, in which the internal tubular structure comprises at least two membranes separated by an inter-membrane space containing living cells of the same type or size. different types.
  • the inter-membrane space contains smooth muscle cells, or a smooth muscle neo-tissue formed in vitro before implantation.
  • Such vascular substitutes are illustrated in particular in FIGS. 3A and 3B.
  • the configuration shown in FIGS. 3A and 3B comprises an external envelope 2, an internal tubular structure comprising two membranes li and I2.
  • the inter-membrane space between the membranes I1 and I2 contains cells 6, for example, smooth muscle cells, and the inner walls of the membrane li, delimiting the inner tube of the hollow tubular assembly, are lined with cells.
  • the advantage of introducing a layer of cells of a given type into an inter-membrane space is to preserve the integrity of a cell-rich layer of a given type (for example, smooth muscle) and to promote the development of a specific tissue layer (for example, smooth muscle tissue) in the wall of the vascular tissue in reconstruction until the resorption of the internal structure.
  • the cell types chosen for their introduction into the inter-membrane spaces of the internal structure can provide biological functionality for the development and functional maintenance of the tissue in reconstruction, particularly for the endothelium (the cells in co-culture separated in the multi-membrane structure exchange chemical messages on either side of a hydrogel membrane) or provide a function for the implanted vascular substitute.
  • a reinforcing effect may be provided with a layer of fibroblasts synthesizing a collagen-rich tissue. It is also possible to provide specific functionality to the reconstructed tissue, after degradation of the implant, including contractility with a smooth muscle layer.
  • the cells are taken from the patient on whom the substitute is intended to be implanted (cells of autologous origin). If necessary, the cells can be cultured for a period of multiplication and / or differentiation and then be injected with a syringe through the membranes or between the membranes at the end of a multi-tube. - Membrane to achieve an autologous substitute.
  • the addition of cells on or in the internal structure with long bioresorption time will allow the development of tissue within the vascular substitute, in vivo, or possibly first in vitro and then in vivo. After the degradation of the inner part, therefore, the neo-tissues formed in vivo and in vitro remain in the form of a tubular multilayer tissue arrangement resembling the structure of a blood vessel.
  • vascular substitutes as previously defined have been developed by the inventors for their use as vascular substitutes.
  • the vascular substitutes according to the invention may be directly implanted in humans or, in the case where living cells are present on or in the internal tubular structure, the substitutes may be implanted after a cell culture time in vitro to develop a tissue in the inter-membrane spaces and / or an endothelial mat in the inner lumen of the tube. Implantation can take place especially at the level of an artery or a blood vessel to be repaired, during surgery operations in replacement or bypass (bridging) of an injured vessel.
  • the substitutes according to the invention may be used as an active principle release device or molecule encapsulated or inserted in the structure of the hydrogel constituting the membranes or in the inter-membrane chambers.
  • the vascular substitutes according to the invention may therefore be intended for the repair of lesions of vascular tissue in clinical situations such as bypass surgery, or angioplasty, and in particular to inhibit the mechanisms involved in the restenosis of a blood vessel. They can be used to repair arterial vessels following aneurysm resection surgery.
  • biomedical applications may also be considered, particularly as arteriovenous fistula in dialysis patients who no longer have solutions for vascular access.
  • the coagulation is interrupted by extraction of the tubular form gel from the coagulation bath after 5 minutes and rinsing with water.
  • the end of the neutralization is then carried out in a 4M sodium hydroxide bath, which leads to the formation of a gelled core.
  • the extraction of the heart gel is carried out manually then a rinse in 5L of permutated water for 12h is made to remove salts and residual alcohol.
  • the analyzed samples may be solid tubes of 2mm diameter and 1.2cm gauge length or hollow tubes of larger diameter (3-6mm).
  • the tensile tests are carried out on a traction machine (Adamel-Lhomargy model DY22) with a force sensor with a maximum capacity of 5 N and spring jaws adapted to samples of low rigidity.
  • the samples are extracted from their holding water and placed quickly (within 1 minute) in the pulling device, and the tests are short enough to prevent dehydration of the gel. Since the surface of the fiber is very smooth, two pieces of double-sided tape (Scotch tape 3M 12mm wide, ref 3M 34-8501-8644-5) are glued to the ends of the fiber, to avoid slipping during the test. traction.
  • the fibers are placed between jaws made of small adjustable spring clamps, and well suited for these samples of low rigidity.
  • the tests consist of simple loading at a constant crosshead travel speed of 2 mm / min until failure. It is also possible to carry out loading / unloading cycles to appreciate the elastic and plastic component of the deformation. All tests have 2 were made at room temperature, and ambient air.
  • the dYoung (E) modulus is determined by linear regression of the mechanical constitutive law in the range of small deformations, that is to say in the elastic deformation domain (strain ⁇ 10%).
  • Figure 4A shows the evolution of the modulus of elasticity obtained by linear regression of the nominal behavior law (nominal stress - nominal strain) in the elastic domain (strain ⁇ 10%).
  • Figure 4B shows the evolution of the deformation at break of the physical hydrogels of chitosan (average of 5 samples). The hydrogels are capable of a strong deformation before rupture.
  • Figure 4C shows the evolution of the tensile stress of the physical hydrogels of chitosan (average of 5 samples).
  • the results presented in FIGS. 4A, 4B and 4C show that the addition of propanediol in the collodion increases both the modulus, the deformation at break and the tensile stress.
  • the addition of glycerol in the collodion increases the mechanical properties more significantly than 1,2 propanediol.
  • the alcoholic gel is prepared from an alcoholic solution of chitosan with a chitosan concentration of 2% g / g and whose solvent is 50/50 water 1,2 propanediol.
  • the solution is placed in a cylindrical mold, dried for 12 hours at 45 ° C. in an oven to form an alcoholic gel.
  • the gel obtained is neutralized in a 1M sodium hydroxide bath for 3 minutes, then extracted from the coagulating bath for 3 minutes, then returned to the coagulation bath for 3 minutes, etc. until 3 membranes and 2 intermembrane spaces are obtained.
  • the multimembrane gel obtained is washed for 12 hours in deionized water (10 liters) and the gelled core is then removed. Preparation of the outer envelope
  • the tube (mono or multi-membrane) of the internal structure is immersed, by plugging its ends, in an aqueous solution of chitosan acetate of DA 46.2% and mass MW 300 000 g / mol. with a mase concentration of 1.5%. After immersion, the coated hydrogel is neutralized in a 1M sodium hydroxide bath for 15 minutes. Then, the assembly thus obtained is washed in deionized water and renewed 6 times for 12 hours.
  • Endothelial progenitor cells are isolated from human circulating blood by recovering the density gradient mononuclear cell fraction and then cultured (Clinicell Treated - Laboratories MABIO) in a specific medium for the differentiation of EPC into mature endothelial cells (Medium EGM2-MV - Clonetics).
  • Endothelial cells of saphenous vein are isolated by enzymatic treatment and cultured according to the protocol described by Fernandez et al. (Tissue Engineering, Volume 12 (1), 2006).
  • the mature endothelial cells are seeded on the surface of a hydrogel, in a hydrogel in the form of a hollow tube or in a multimembrane hydrogel at the average density of 10 5 cells / cm 2 and in their respective differentiation media for at least 5 hours to form the cell monolayer.
  • the cells adhering to the hydrogel are maintained in culture for 24 hours to a few days without modifying the quality of the cell monolayer (confluence and expression of the phenotypic markers maintained).
  • FIG. 5 shows an optical microscopy photograph, 24 hours after inoculation and Live-Dead staining, of a cell culture of endothelial cells derived from circulating blood endothelial progenitors, and cultured in a physical hydrogel tube of chitosan as previously prepare.
  • the focus is on the bottom of the tube, which highlights the formation of the endothelial mat.
  • Smooth muscle cells are obtained from the human umbilical cord vein by enzymatic treatment (collagenase) and cultured in SMC medium (SMC-Media 2 - PromoCell). The cells are phenotypically characterized in culture (expression of Smooth-Muscle ⁇ -actin) and then injected into the inter-membrane space of chitosan structures. The construct is kept in culture for a few days to several weeks (up to 50 days) without cell death (analyzed by Live-Dead staining) or disappearance of the phenotypic marker of SMC (expression of Smooth-Muscle -actin).
  • Figure 7 shows an optical micrograph of a smooth muscle cell culture (hSMC-human Smooth muscle cells) after labeling of ⁇ -actin and labeling of cell nuclei.
  • the cells were placed in the outermost inter-membrane chamber of a multi-membrane physical chitosan hydrogel as previously prepared.
  • the EPCs such as the SMCs can be obtained from a patient who then constitutes an autologous source.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

La présente invention concerne un substitut vasculaire biodégradable comportant une structure tubulaire interne et une enveloppe externe, chacune constituée d'un hydrogel de polysaccharide, de collagène, éventuellement sous la forme d'un mélange de ces polymères, caractérisé en ce que la structure tubulaire interne présente des propriétés mécaniques supérieures à celles de l'enveloppe externe et en ce que l'enveloppe externe présente une vitesse de colonisation par des cellules, en particulier les cellules du tissu conjonctif, supérieure à celle de la structure tubulaire interne. La structure tubulaire interne peut être tapissée par une couche de cellules endothéliales et peut également être compartimentée.

Description

NOUVEAUX SUBSTITUTS VASCULAIRES BIODEGRADABLES
La présente invention concerne le domaine général des substituts biodégradables, voire bioassimilables, et cellularisables pour application biomédicale. En particulier, l'invention concerne de nouveaux substituts vasculaires à base de polymères biodégradables que sont les polysaccha rides et le collagène.
Il existe actuellement plusieurs types de substituts vasculaires utilisables en conditions cliniques qui s'appuient sur deux technologies différentes :
les substituts artificiels (à base de PTFE expensé ou PET Dacron).
les greffons de veines ou d'artères humaines d'origine autologue ou allogène,
Au delà des applications cliniques, il existe les substituts artificiels à l'étude, certains sont non biodégradables, d'autres sont biodégradables, comme par exemple ceux décrits dans le brevet EP 0850073, notamment à base de polymères naturels comme le collagène, carbohydrates de la famille des polysaccharides tels que le chitosane, la cellulose, les alginates ...
La publication de Zhang et al. dans J. Biomed. Mater. Res. A. vol 77, n°2, 6 janvier 2006, pages 277-284 décrit la réalisation d'un tricot à base de fils solides de chitosane noyé dans un film solide de chitosane. Pour cela, le tricot de fils de chitosane lui-même déposé sur un support tubulaire est trempé dans une solution d'acétate de chitosane et séché pour obtenir un tube renforcé par le tricot. La mise en œuvre d'un tricot, non-directement obtenu par filage mais par tricotage/assemblage de fils solides permet de réaliser des tubes dont les propriétés mécaniques sont compatibles avec leur utilisation en tant que substitut vasculaire. Dans une variante de réalisation, les auteurs envisagent de couvrir la partie interne du tube (et/ou externe) par une solution contenant du chitosane et de la gélatine qui est ensuite lyophilisée. Un procédé nécessitant l'utilisation de toluène est décrit pour obtenir le lyophilisât. Les différentes couches à base de chitosane obtenues sont donc sous forme solide sèche, compte tenu des différentes étapes de séchage/lyophilisation.
La demande de brevet WO 2009/027537 décrit un procédé de réalisation d'une association de deux tubes de chitosane dont l'un est un matériau étanche aux fluides de l'organisme et l'autre est en un matériau à porosité micronique interconnectée pour permettre l'infiltration cellulaire.
Des travaux antérieurs de certains inventeurs de la présente demande de brevet ont porté sur l'élaboration de fibres creuses de polysaccharides et notamment de chitosane, travaux ayant fait l'objet de la demande de brevet WO 2009/044053. Les fibres creuses multi-membranaires, en particulier celles à base de chitosane, apparaissent d'excellents candidats pour l'élaboration de biomatériaux grâce à leur biocompatibilité, biodégradabilité, bioactivité et le coût modéré du chitosane. La demande de brevet WO 2009/04405 indique que les fibres creuses, en particulier les fibres creuses de chitosane peuvent servir de bioréacteurs pour l'ingénierie tissulaire puisque le système multi-membranaire est très bien adapté à la régénération de tissus multicouches à géométrie cylindrique comme les vaisseaux sanguins. Néanmoins, les inventeurs ont pu constater que les fibres creuses obtenues selon le procédé décrit dans la demande de brevet WO 2009/044053 ne présentaient pas des propriétés mécaniques suffisantes pour résister à la pression sanguine et pour être compatibles avec des opérations de suture sur les vaisseaux sanguins, opération requise pour l'implantation. Il convient également de souligner que le procédé décrit dans cette demande de brevet est basé sur la neutralisation interrompue d'un collodion aqueux dont les caractéristiques sont déterminées (Degré d'acétylation du chitosane, Masse du chitosane, Concentration du collodion), de sorte que les hydrogels des différentes membranes du tube multi- membranaire décrit sont tous identiques.
Dans ce contexte, les inventeurs proposent, selon l'invention, de nouveaux substituts vasculaires biodégradables dont les propriétés mécaniques sont compatibles avec leur application, mais également dont le comportement vis-à-vis des cellules permet de régénérer un assemblage tissulaire tubulaire, et même selon certaines variantes de réalisation, un assemblage tissulaire tubulaire multicouche complexe.
Aussi, la présente invention concerne un substitut vasculaire biodégradable comportant une structure tubulaire interne et une enveloppe externe, chacune constituée d'un hydrogel d'un polysaccharide, de collagène ou d'un mélange de tels polymères, caractérisé en ce que les deux hydrogels formant la structure tubulaire interne et l'enveloppe externe sont différents et présentent, notamment, des propriétés mécaniques et une vitesse de colonisation par des cellules, différentes. En particulier, un des hydrogels présente des propriétés de résistance mécanique supérieures à celles de l'autre hydrogel, mais l'autre hydrogel présente une vitesse de colonisation supérieure.
En comparaison à l'utilisation de couches solides sèches de polysaccharide, la mise en œuvre des hydrogels conformément à l'invention permet d'obtenir une structure suturable comportant au moins 80% en masse d'eau, et de préférence, au moins 90% et préférentiellement au moins 95% en masse d'eau. De plus, la dégradabilité des hydrogels par le milieu vivant dans lequel le substitut vasculaire va être implanté est davantage modulable que dans des systèmes secs, en particulier pour les temps de biodégradation courts.
Selon un mode de réalisation préféré, la structure tubulaire interne présente des propriétés de résistance mécaniques supérieures à celles de l'enveloppe externe. Selon un autre mode de réalisation préféré pouvant être combiné au précédent, l'hydrogel formant l'enveloppe externe présente une vitesse de colonisation par des cellules supérieure à celle de la structure tubulaire interne.
La présente invention a également pour objet un procédé de préparation d'un tel substitut vasculaire comprenant les étapes suivantes : a) formation d'un tube, éventuellement multi-membranaire, constitué d'un hydrogel de polysaccharide, de collagène ou d'un mélange de ces polymères, par filage puis coagulation interrompue d'une solution hydro-alcoolique coagulable du polymère ou mélange de polymères sélectionné pour former le tube,
b) formation sur la paroi interne ou externe du tube obtenu à l'étape a) d'une couche d'hydrogel d'un polysaccharide, de collagène ou d'un mélange de ces polymères à partir d'une solution aqueuse exempte d'alcool du polymère ou mélange de polymères sélectionné pour former la couche.
Selon un mode de mise en œuvre du procédé selon l'invention, la couche est déposée sur la paroi externe du tube obtenu à l'étape a).
Selon une autre mode de mise en œuvre du procédé selon l'invention, pouvant être combiné au précédent, l'étape a) est réalisée à partir d'une solution hydro-alcooli ue de chitosane, la coagulation étant réalisée en milieu alcalin.
Selon une autre mode de mise en œuvre du procédé selon l'invention, pouvant être combiné aux précédents, l'étape b) est réalisé à partir d'une solution aqueuse de chitosane exempte d'alcool, qui après dépôt sur les parois externes de la structure tubulaire interne est neutralisée.
La description ci-après, en référence aux Figures annexées permet de mieux comprendre l'invention.
La Figure 1 est une vue schématique en perspective d'un exemple de substitut vasculaire conforme à l'invention.
Les Figures 2A et 2B respectivement sont des vues schématiques en perspective et en coupe selon B-B d'un autre exemple de substitut vasculaire conforme à l'invention.
Les Figures 3A et 3B respectivement sont des vues schématiques en perspective et en coupe selon B-B d'un autre exemple de substitut vasculaire conforme à l'invention.
Les Figures 4A et 4B comparent les propriétés mécaniques de différents hydrogels de chitosane obtenus par voie aqueuse ou voie hydroalcoolique. Les Figures 5 et 6 sont des photographies partielles en microscopie optique d'un exemple de substitut vasculaire selon l'invention recouvert dans la lumière interne par des cellules vivantes.
La Figure 7 est une photographie partielle en microscopie optique d'un exemple de substitut vasculaire selon l'invention habité dans un espace inter- membranaire par des cellules vivantes.
Par hydrogel, on entend un matériau visco-élastique comportant au moins 80%, et de préférence, au moins 90% en masse d'eau et préférentiellement au moins 95% en masse d'eau. Dans le cadre de l'invention, la structure interne et l'enveloppe externe peuvent être constituées d'un hydrogel physique, ou d'un hydrogel chimique encore nommé hydrogel réticulé. Un hydrogel est dit physique, lorsque les interactions responsables de la réticulation inter-chaînes sont de type physique, et sont notamment des liaisons hydrogène et/ou des interactions hydrophobes par opposition à un hydrogel dit chimique dans lequel les interactions inter-chaines sont de type liaison covalente.
L'hydrogel constitutif de la structure interne, ainsi que l'hydrogel constitutif de l'enveloppe peuvent être à base d'un ou plusieurs polysaccha rides ou bien de collagène ou d'un mélange polysaccharide/collagène. Les polymères sélectionnés sont biodégradables, c'est-à-dire qu'ils sont aptes à subir, sous l'action d'un milieu vivant contenant divers réactifs comme l'eau, le monoxyde d'azote, et des enzymes, un processus de décomposition pour conduire à des composés de plus faible masse qui sont excrétés ou métabolisés par l'organisme. A titre d'exemple de polysaccharides, on peut citer les glycosaminoglycanes, tels que la chitine, le chitosane, l'acide hyaluronique, les alginates et notamment les alginates de calcium, et la carboxyméthyl cellulose, ainsi que les polysaccharides polyanioniques tels que le sulfate de dextrane, le dermatane sulfate, le kératane sulfate et l'héparine. Il existe également différentes formes de collagène, on peut notamment citer l'atélocollagène extrait par voie enzymatique, le collagène fibreux issu du tendon ou de peau. On distingue également de nombreux types de collagène qui ont une structure propre et que l'on retrouve dans des organes particuliers. Par exemple, les collagènes de type I, III et IV sont présents dans la paroi des vaisseaux sanguins, le collagène de type I est le plus fréquent et il est présent dans de nombreux tissus conjonctifs. La structure tubulaire interne sera, de préférence, en un hydrogel de chitosane, et notamment en un hydrogel physique. L'enveloppe externe pourra également être constituée d'un hydrogel de chitosane, et notamment d'un hydrogel physique. Le chitosane, est un dérivé partiellement voire totalement désacétylé de la chitine. Ses différentes formes sont notamment caractérisées par leur degré d'acétylation (DA) et par leur masse molaire.
Les propriétés mécaniques du substitut vasculaire selon l'invention sont importantes, car le substitut vasculaire doit d'une part résister à la pression sanguine physiologique (« burst pressure ») et d'autre part être suturable. Conformément à L'Heureux N., et al., Nature 2007, Vol 4. n°7, 389-395 et Konig, G., et al, Biomaterials 2009, 30, 1542-1550, un substitut vasculaire doit, de préférence, résister à la pression sanguine physiologique avec un coefficient de sécurité au moins de l'ordre de 8, c'est-à-dire que le substitut vasculaire doit résister à une pression correspondant à au moins 8 fois la pression physiologique maximale de l'ordre de 220 mm de mercure. Dans le cadre de l'invention, les inventeurs ont identifié qu'il est difficile de trouver un même hydrogel biodégradable, qui présente de telles propriétés mécaniques, mais également qui puisse être facilement colonisé de telle sorte que, lorsque le substitut vasculaire est implanté, il y ait reconstitution d'un tissu de soutien avant dégradation du substitut et affaiblissement subséquent de ses propriétés mécaniques.
C'est pourquoi, dans le cadre de l'invention, il est prévu d'utiliser un assemblage constitué d'au moins deux couches différentes d'hydrogels, en particulier des hydrogels physiques de chitosane (que l'on nomme dans la suite de la description: structure tubulaire interne et enveloppe externe), chacune de ces couches présentant des propriétés différentes et complémentaires. La Figure 1 représente une telle structure I avec une structure tubulaire interne 1 et une enveloppe externe 2. Dans le cadre de l'invention, il est donc prévu d'associer deux tubes coaxiaux, chacun des tubes étant formé d'un hydrogel différent d'un ou plusieurs polysaccharides ou bien d'un ou plusieurs collagènes ou d'un mélange polysaccharide/collagène. Chacun des deux tubes pourra présenter une structure multi-membranaire. L'hydrogel constitutif de la structure tubulaire interne et l'hydrogel constitutif de l'enveloppe externe peuvent être de nature chimique différente, par exemple l'un constitué de collagène et l'autre de chitosane, ou bien de même nature chimique, par exemple, tous deux constitués de chitosane, mais d'un chitosane différent en terme de degré d'acétylation (DA), masse molaire moyenne en masse Mw, et/ou porosité, de manière à posséder des propriétés de résistance mécanique et de vitesse de colonisation par des cellules différentes. Dans le cadre de l'invention, il est prévu d'utiliser deux hydrogels coaxiaux, l'un de résistance mécanique plus élevé et l'autre de résistance mécanique plus faible mais de vitesse de colonisation par des cellules plus rapide.
Selon un mode de réalisation préféré, c'est la structure tubulaire interne qui donne sa structure et ses propriétés de résistance mécanique au substitut selon l'invention et lui permet notamment d'être suturable et de ne pas éclater sous la pression sanguine. En particulier, la structure tubulaire interne présente une contrainte à la rupture σΓ supérieure à 0,05 MPa, de préférence supérieure à 0,2 MPa. De préférence, la structure tubulaire interne présente également un module d'élasticité en traction E (module de Young) supérieur à 0,01 MPa, de préférence supérieur à 0,05 MPa et, par exemple, de l'ordre de 0,1 MPa. L'évaluation des paramètres mécaniques est réalisée comme décrit dans les exemples ci-après. La contrainte à la rupture peut être comparée à la pression interne équivalente P= σΓ *(R1-R2)/R2 où RI est le rayon externe et R2 est le rayon interne du tube. Pour une contrainte à rupture supérieure à 0,2 MPa, la pression interne dans un tube de 10mm de diamètre externe et 5mm de diamètre interne est proche de 1500 mmHg, ce qui est bien supérieur à la gamme de pressions physiologiques (<240mmHg). Les inventeurs ont constaté que les hydrogels de chitosane formés selon le procédé décrit dans la demande de brevet WO 2009/044053 ne possédaient pas de telles propriétés. La demande de brevet WO 2009/044053 décrit un procédé de préparation de fibres creuses par filage voie humide sous coagulation comprenant une étape de filage au travers d'une filière normale, par exemple tabulaire, d'une solution de polysaccharide (notamment de chitosane) ou de collagène coagulable dans un bain coagulant, qui sera, notamment dans le cas du chitosane, une solution alcaline, suivie d'au moins un cycle de coagulation partielle lors de laquelle la coagulation est interrompue. Dans la demande de brevet WO 2009/044053, la solution coagulable, nommée collodion, est une solution aqueuse contenant de l'eau mais pas d'alcool. Le cycle de coagulation interrompue est réalisé en introduisant la solution aqueuse de chitosane coagulable extrudée dans un bain ou une chambre de coagulation, dans des conditions permettant d'obtenir une fibre qui, en section transversale, présente une section partiellement coagulée, puis en interrompant la coagulation. Le bain ou la chambre de coagulation contient un agent coagulant tel qu'un gaz alcalin comme l'ammoniac ou une solution alcaline de soude, potasse (par exemple à une concentration de lmol/L) ou d'ammoniaque dont la diffusion dans le collodion permet de le faire passer localement à l'état gel ou coagulé. L'arrêt de la coagulation, se fait notamment en sortant la fibre formée du bain de coagulation et en effectuant un rinçage, notamment à l'eau. Le fait d'arrêter la coagulation de la fibre de polysaccharide ou de collagène permet, notamment, de former le canal central de la fibre creuse en arrêtant la coagulation avant la prise en hydrogel du cœur de la fibre, sans avoir besoin de préformer la cavité à l'aide d'un élément central à diamètre fixe comme dans une filière annulaire. Cette coagulation séquencée permet également de contrôler l'épaisseur du tube formé, ou de l'épaisseur de chaque membrane dans le cas d'une structure multi-membranaire lorsque plusieurs coagulations interrompues successives sont réalisées. Les inventeurs ont mis en évidence que lorsque ce procédé était mis en œuvre, non pas avec une solution aqueuse de polysaccharide (et par exemple de chitosane), mais avec une solution hydroalcoolique, la fibre creuse d'hydrogel physique de polysaccharide (et par exemple de chitosane) obtenue, qui peut être multi-membranaire présentait les propriétés mécaniques requises pour l'application en tant que substitut vasculaire. En particulier, il est possible d'utiliser une solution hydroalcoolique du type mélange eau/alcool dans laquelle l'alcool est de préférence un poly-alcool, par exemple choisi parmi les 1,2- et 1,3- propanediol, les 1,2-, 1,3- et 1,4-butanediol et le 1,2,3-propanetriol (glycérol), avec une proportion eau/alcool (v/v), par exemple de (20/80) à (95/5), et de préférence de 40/60 à 90/10(v/v). La mise en œuvre d'un tel collodion hydro-alcoolique permet la formation d'une fraction significative d'un allomorphe ou d'une forme cristalline anhydre du polysaccharide ce qui n'est pas le cas avec un collodion aqueux qui conduit à l'allomorphe hydraté seul. La concentration en polysaccharide, et notamment en chitosane, ou en collagène au sein de cette solution est, par exemple, de 0,5 à 6% (g/g), de préférence de 1,5 à 4%. La masse molaire moyenne en masse du polysaccharide ou du collagène du tube obtenu est sensiblement identique à sa valeur initiale dans le polysaccharide ayant servi à la préparation de la solution extrudable. Il en va de même du degré d'acétylation dans le cas d'un chitosane.
S'agissant plus particulièrement du chitosane ou du collagène, de préférence la solution hydroalcoolique extrudable est obtenue en partant de chitosane en solution aqueuse d'acide, notamment en milieu acide acétique, et en ajoutant le polyalcool retenu. Pour l'obtention d'un tube d'acide hyaluronique ou d'alginate, la solution extrudable est obtenue en partant du hyaluronane ou de l'alginate en solution aqueuse à pH neutre et l'opération de coagulation se fait dans un bain neutralisant acide.
Sinon, le procédé de préparation de la structure tubulaire interne, éventuellement multi-membranaire est conforme au procédé décrit dans la demande de brevet WO 2009/044053 à laquelle on pourra se référer pour plus de détails. L'opération de coagulation par neutralisation est suivie d'une opération de lavage, de manière à éliminer les sels formés et éventuellement l'alcool résiduel. Selon un mode de réalisation particulier, la structure tubulaire interne des substituts vasculaires selon l'invention est constituée d'un hydrogel physique de chitosane présentant une fraction significative de l'allomorphe cristallin anhydre, éventuellement en mélange avec une forme cristalline hydratée. La forme cristalline anhydre représente au moins 5%, de préférence au moins 10% en masse du chitosane cristallin présent. Un tel hydrogel peut être préparé grâce au procédé en milieu hydro-alcoolique tel que précédemment détaillé. Il est également possible d'utiliser un procédé dérivé de celui décrit dans le brevet FR2882665. Notamment, il est possible de réaliser un hydrogel physique de chitosane à partir d'une solution hydroalcoolique telle que précédemment décrite par évaporation de l'eau dans un moule cylindrique permettant d'avoir un gel alcoolique de forme cylindrique et, ensuite immerger ce gel alcoolique ainsi formé dans un bain alcalin et structurer un hydrogel multi-membranaire tubulaire par neutralisation interrompue à partir de cette préforme. Un exemple est donné sur la figure 4a de la publication : Multi-membrane hydrogels, Sébastien Ladet, Laurent David & Alain Domard Nature 452, 76-79(6 arch 2008) doi:10.1038/nature06619 accessible à l'adresse: http://www.nature.com/nature/journal/v452/n7183/fig_tab/nature06619_F4. html.
Une fibre creuse formée d'un tel hydrogel physique de chitosane présentant une fraction significative de l'allomorphe cristallin anhydre, bien que satisfaisante au regard de ses propriétés mécaniques, n'est pas envahie rapidement par les cellules (dans la structure du matériau) une fois implantée en tant que substitut vasculaire, même si une telle fibre creuse peut être habitée (dans les espaces inter-membranaires) et/ou recouverte par des cellules, en particulier dans la lumière interne. Si une telle fibre creuse était utilisée seule, il y aurait dégradation du substitut avant reconstruction du canal vasculaire souhaité.
C'est pourquoi, il est prévu dans le cadre de l'invention de mettre en œuvre un tube formé d'au moins deux couches d'hydrogel différent. Selon un mode de réalisation préféré, la présence d'une enveloppe externe, autour d'une structure tubulaire interne telle que ci-dessus définie va alors permettre d'assurer la reconstruction d'un canal conjonctif externe de soutien avant complète dégradation du substitut. Cette enveloppe externe quant à elle, est constituée d'un hydrogel, et en particulier d'un hydrogel physique, par exemple, de chitosane, de collagène, d'un mélange chitosane/collagène, d'un mélange chitosane/acide hyaluronique, ou d'un alginate. L'enveloppe externe ne présente pas d'aussi bonnes propriétés mécaniques que la structure tubulaire interne, et va plus rapidement se dégrader et être colonisée par les cellules du tissu conjonctif au contact desquelles le substitut vasculaire est implanté. En particulier, l'enveloppe externe présente, de préférence, une colonisation cellulaire rapide, c'est-à-dire qu'une fois que l'enveloppe externe est en contact avec un tissu conjonctif environnant in vivo, en quelques jours, notamment en moins de 10 jours, l'hydrogel qui la constitue va être envahi dans son volume par des cellules, notamment des cellules recrutées lors de la réaction inflammatoire et ou des cellules du tissu conjonctif, et notamment des fibroblastes, observables par analyse anatomo- pathologique (coupes histologiques, colorations spécifiques immuno- histologiques). De préférence, cette vitesse de colonisation rapide doit être observée avec des cellules du tissu conjonctif dont la régénération tissulaire est souhaitée après implantation du substitut vasculaire dans l'organisme. La vitesse de colonisation des hydrogels constituant un substitut vasculaire selon l'invention pourra être appréciée après implantation sur un animal, sacrifice de ce dernier et observation par analyse anatomo-pathologique. Un hydrogel sera considéré comme colonisé, lorsque des cellules seront visibles à l'intérieur de ce dernier et pas uniquement en surface. A titre de comparaison, l'hydrogel constitutif de la structure tubulaire interne pourra présenter un temps de colonisation supérieur à 2 semaines, voire de l'ordre de plusieurs mois. C'est notamment le cas des hydrogels de chitosane précédemment décrits préparés à partir d'une solution hydro-alcoolique de polysaccharide, éventuellement en mélange avec du collagène. Par conséquent, la reconstruction d'un tissu périphérique de soutien va pouvoir se produire avant complète dégradation de la structure tubulaire interne, grâce à la colonisation rapide de l'enveloppe externe qui s'accompagne de sa dégradation rapide. Selon un mode de préparation d'un substitut selon l'invention, l'enveloppe externe est obtenue à partir d'une solution aqueuse de polysaccharide, de collagène ou de leur mélange, qui après dépôt sur la paroi externe de la structure tubulaire interne est coagulée par voie gazeuse ou liquide. La solution aqueuse utilisée est une solution dans l'eau et ne contient pas d'alcool, contrairement à la solution hydro-alcoolique utilisée pour la formation de la structure tubulaire interne. Selon un mode de réalisation particulier, l'enveloppe externe est obtenue à partir d'une solution aqueuse de chitosane exempte d'alcool, qui après dépôt sur les parois externes de la structure tubulaire interne est neutralisée. Le dépôt sur la paroi externe de la structure tubulaire interne peut être réalisé par trempage de l'assemblage tubulaire interne dans une solution aqueuse de chitosane. Lors de ce trempage, les extrémités de la structure tubulaire interne auront pu être obturées par des moyens temporaires. Pour la réalisation de l'enveloppe externe, il est possible d'utiliser une solution aqueuse d'acétate ou chlorhydrate de chitosane caractérisée par une concentration en chitosane assez faible (préférentiellement inférieure à 2% m/m par rapport à la masse totale de la solution) pour obtenir un hydrogel à faible concentration en polymère et donc plus facilement dégradable pour favoriser la colonisation cellulaire. Cette solution, encore appelée collodion, peut contenir en plus des sels ajoutés, tel que du chlorure de sodium, qui contribuent à l'écrantage des charges dans la solution polyélectrolytique, et donc au des-enchevêtrement des chaînes de polysaccharide pendant la neutralisation et la formation d'un gel plus poreux. La neutralisation pourra être réalisée grâce à une solution aqueuse alcaline, par exemple contenant de la soude, de la potasse ou de l'ammoniaque à une concentration de 0,05 à 10M, préférentiellement entre 0,05M et 2M. Cette neutralisation sera, le plus souvent, suivie d'un rinçage à l'eau pour éliminer l'excès de base et de sels.
De préférence, l'enveloppe externe est constituée d'un hydrogel physique de chitosane présentant quasi-exclusivement une forme cristalline hydratée, et de préférence exempte de forme cristalline anhydre. Par la suite de tels hydrogels de chitosane pourront être nommés gels aqueux de chitosane, par opposition aux gels hydroalcooliques de chitosane. Par quasi- exclusivement, on entend que plus de 95%, voire plus de 98% en masse de la fraction cristalline présente sont constitués de cristaux d'une forme cristalline hydratée. Il a été constaté par les inventeurs que les cellules du système immunitaire dégradent in vivo de façon sélective les gels aqueux de chitosane et ne dégradent que beaucoup plus lentement les hydrogels de chitosane présentant une fraction significative de l'allomorphe cristallin anhydre tels que précédemment décrits, et notamment ceux obtenus par la voie hydroalcoolique. Cette différence est due à la densité d'enchevêtrement qui est plus forte dans les hydrogels de chitosane présentant une fraction significative de l'allomorphe cristallin anhydre (et notamment ceux obtenus par la voie hydroalcoolique), que les hydrogels aqueux. Les hydrogels acqueux de chitosane sont également particulièrement avantageux puisqu'ils autorisent également une diffusion des messages intercellulaires, de l'oxygène et des nutriments. Après un temps de dégradation de quelques jours (<7jours), ces hydrogels sont dégradés et ensuite envahis par des cellules du système immunitaire, puis envahis par divers types cellulaires recrutés localement. Les hydrogels présentant une fraction significative de l'allomorphe cristallin anhydre tels que précédemment décrits, et notamment ceux obtenus par la voie hydroalcoolique permettent également une diffusion des messages intercellulaires, de l'oxygène et des nutriments, mais offrent, en plus, la possibilité (i) de cultiver les cellules in vitro (ii) de se développer in vivo dans un espace clos sans autoriser rapidement la migration cellulaire comme c'est, par contre, le cas dans les structures poreuses solides décrites Zhang et al. et WO 2009/027537, notamment.
Pour toutes ces raisons, selon des modes particulièrement avantageux, il est envisagé d'utiliser une enveloppe externe constituée d'un hydrogel physique de chitosane présentant quasi-exclusivement une forme cristalline hydratée, et de préférence exempte de forme cristalline anhydre et une structure tubulaire interne constituée d'un hydrogel physique de chitosane présentant une fraction significative de l'allomorphe cristallin anhydre, éventuellement en mélange avec une forme cristalline hydratée. Il est également possible que l'enveloppe externe soit constituée, non pas d'un hydrogel aqueux de chitosane, mais d'un mélange polysaccharide/collagène, et par exemple d'un mélange acide hyaluronique/collagène ou chitosane/collagène, la présence de collagène permettant d'obtenir une vitesse de dégradation plus rapide. Il est également possible d'utiliser un mélange polysaccharide/polysaccharide, par exemple chitosane/acide hyaluronique, la fraction d'acide hyaluronique permettant d'obtenir une vitesse de dégradation plus rapide. Le mélange de polysaccharides présente l'intérêt de pouvoir moduler la réponse inflammatoire (recrutement de cellules favorisant la dégradation de l'hydrogel, par exemple dans le cas de la présence d'une fraction d'alginates ou d'un mélange de chitosane contenant un chitosane de haut degré d'acétylation comme expliqué ci-après) et la vitesse de biorésorption, en particulier dans le cas où le composant associé au chitosane est présent dans la matrice extracellulaire (collagène, acide hyaluronique).
Pour favoriser l'obtention de propriétés de résistance mécanique plus élevées caractérisées notamment par une contrainte à la rupture plus élevée, voire un module d'élasticité plus élevé, le polysaccharide choisi pour la structure interne peut être un polysaccharide susceptible de développer un taux de cristallinité important, par exemple un chitosane de bas degré d'acétylation, de préférence de degré d'acétylation inférieur à 10%. On pourra également sélectionner une concentration en masse en polymère supérieure à 2% (m/m par rapport à la masse totale d'hydrogel) dans l'hydrogel constituant la structure interne. Il est également avantageux de choisir un polysaccharide de haute masse moléculaire. En particulier, un chitosane présentant une masse molaire moyenne en masse Mw supérieure à 300 000 g/mol pourra être utilisé, pour favoriser la formation de molécules de liaisons inter-cristallines et entre sites d'interactions hydrogène et hydrophobes, ainsi que la formation d'une forte densité de nœuds d'enchevêtrement à divers niveaux d'échelle de la morphologie de l'hydrogel. Dans le cadre de l'invention, les masses molaires moyennes en masse sont déterminées par la technique de mesure décrite dans la publication «Physico- chemical studies of the gelation of chitosan in a hydroalcoholic médium » A. MONTEMBAULT, C. VITON, A. DOMARD Biomaterials, 26(8), 933-943, 2005. Pour l'enveloppe externe, les caractéristiques idéales de l'hydrogel sont différentes. De manière avantageuse, on pourra choisir un chitosane de plus haut degré d'acétylation pour limiter le taux de cristallinité et augmenter la vitesse de biorésorption. En particulier, on pourra sélectionner un chitosane présentant un degré d'acétylation supérieur à 30% qui conduit à un hydrogel de faible taux de cristallinité. Un chitosane de DA plus élevé possède également une vitesse de biorésorption plus élevée. Il peut être également intéressant, mais pas obligatoire, de choisir un chitosane de masse suffisante pour réaliser un gel, mais de masse assez faible pour favoriser sa biorésorption : notamment une masse molaire moyenne en masse Mw inférieure à 300 000 g/mol et, de préférence, supérieure à 20 000 g/mol, pourra être sélectionnée. Pour la couche externe ou la structure interne, on peut également choisir de faire des mélanges de chitosane de bas (par exemple inférieur à 10%) et haut DA (par exemple supérieur à 30%) et/ou des mélanges de chitosane de basse et haute masse molaire moyenne en masse Mw. Par exemple, on pourra choisir une fraction de chitosane de bas DA et de haute masse pour assurer la formation d'un gel, et un chitosane de plus haut DA et de plus faible masse pour favoriser la colonisation cellulaire. La structure interne peut, par exemple, être réalisée à partir d'un collodion contenant une fraction massique majoritaire (>50%) de chitosane de haute masse et bas DA, alors que l'enveloppe externe peut être composée d'une fraction majoritaire (>50%) de chitosane de DA plus élevé et de plus faible masse. Il convient de noter que les DA et masse molaire Mw donnés précédemment pour les hydrogels constitutifs du substitut vasculaire correspondent sensiblement aux DA et masse molaire Mw du chitosane présent dans les solutions utilisées pour leur préparation.
Selon le mode de réalisation préféré tel que détaillé précédemment, la structure tubulaire interne présente des propriétés de résistance mécanique supérieures à celles de l'enveloppe externe. L'enveloppe externe, quant à elle présente une vitesse de colonisation par des cellules supérieure à celle de la structure tubulaire interne. Une configuration inversée, bien que non préférée, pourrait également être prévue. Dans ce cas, par exemple, la structure tubulaire interne pourrait être obtenue par filage puis coagulation interrompue d'une solution aqueuse coagulable de chitosane et l'enveloppe externe, à partir d'une solution hydro-alcoolique de chitosane. Dans ce cas, l'enveloppe externe serait formée d'un hydrogel obtenu par voie hydroalcoolique, éventuellement multi-membranaire et la structure tubulaire interne d'un hydrogel obtenu par voie aqueuse sur lequel l'endothélium pourrait se développer de façon plus efficace compte tenu de ses propriétés physico-mécaniques (module d'élasticité inférieur, dégradabilité plus importante au contact du milieu vivant), alors qu'une capsule fibreuse se formerait autour de l'hydrogel de temps de résorption plus long.
Dans le substitut vasculaire selon l'invention, la structure tubulaire interne et l'enveloppe externe sont, de préférence, solidarisées l'une à l'autre, notamment par enchevêtrement physique des hydrogels qui les constituent, au niveau de leur surface de contact 3 représentée sur la Figure 1. Un tel enchevêtrement est notamment obtenu par trempage de la structure tubulaire interne dans une solution aqueuse de polysaccharide ou de collagène, éventuellement en mélange, et en particulier de chitosane, comme décrit précédemment, dans le cas où la structure interne présente des propriétés de résistance mécanique supérieures par rapport à l'enveloppe externe et est notamment formée d'un hydrogel obtenu par voie hydro-alcoolique. Il est également possible de procéder à un remplissage d'une fibre creuse formée d'un hydrogel obtenu par voie hydro-alcoolique, avec une solution aqueuse de polysaccharide ou de collagène dans le cas où la structure tubulaire interne présente des propriétés de résistance mécanique inférieures, par rapport à l'enveloppe externe.
Par ailleurs, les substituts vasculaires selon l'invention ont l'avantage d'être totalement biodégradables, voire totalement bioassimilables dans le cas où les polymères sélectionnés sont du chitosane, de l'acide hyaluronique ou du collagène. Par «bioassimiiables», on entend qu'ils vont se dégrader dans le milieu vivant dans lequel ils vont être implantés, en l'occurrence le corps humain, et que les produits de dégradation vont être métabolisés par l'organisme. Les substituts vasculaires selon l'invention sont constitués de biomatériaux et allient les avantages que présentent le chitosane, le collagène, l'acide hyaluronique, les alginates, en termes de biocompatibilité, biodégradabilité, voire de bioactivité et de coût modéré.
Les substituts vasculaires selon l'invention pourront être élaborés avec différentes dimensions, notamment avec un diamètre interne de 1 à 15 mm, en particulier de 2 à 6 mm, correspondant à des petites artères pour lesquelles la demande en nouveaux substituts vasculaires fonctionnels à long terme (au delà de 3 ans) est la plus forte.
Avant leur implantation dans un organisme, les substituts vasculaires selon l'invention seront soumis à une opération de stérilisation, de préférence réalisée en autoclave pendant 20 minutes à une température de 120°C. Les propriétés mécaniques et biologiques ne sont pas significativement affectées par la stérilisation. Une telle stérilisation sera effectuée avant toute fonctionnalisation du substitut vasculaire avec des cellules vivantes, comme détaillé ci-après. Il est aussi possible de réaliser l'élaboration à partir de produits solides et liquides stérilisés, puis mis en forme en conditions stériles.
Selon un mode de réalisation avantageux, les parois internes de la structure tubulaire interne sont tapissées (préalablement à leur implantation) de cellules endothéliales vivantes. De tels substituts vasculaires I dans lesquels la surface de la lumière interne de la structure tubulaire interne 1 est tapissée de cellules endothéliales 4 sont notamment illustrés Figures 2A et 2B. Les inventeurs ont mis en évidence que les parois internes d'un tube d'hydrogel physique de chitosane tel que précédemment défini pouvaient être tapissées de cellules endothéliales de différents types, tels que des cellules endothéliales extraites de la veine saphène humaine, de la veine du cordon ombilical humain, ou des cellules endothéliales issues de progéniteurs extraits du sang circulant, et que ces cellules ne se dé-différenciaient pas et restaient intactes (établissement de jonctions endothéliales caractéristiques, 1 expression de facteurs fonctionnels) après la constitution du tapis cellulaire. De préférence, les parois de la structure tubulaire interne seront tapissées de cellules endothéliales fonctionnelles, c'est-à-dire semblables aux cellules endothéliales des tissus natifs et présentant les marqueurs spécifiques de ces tissus natifs, en exprimant des protéines comme la VE-Cadherine, CD31, le facteur de von Willbrand. La présence d'une telle couche de cellules endothéliales vivantes sur les parois de la structure tubulaire interne, notamment sous la forme d'un tapis du type monocouche cellulaire, permet d'éviter la formation d'un thrombus, qui aurait tendance à se former si le substitut vasculaire était utilisé seul pour remplacer des vaisseaux sanguins de petit diamètre, en particulier de diamètre interne inférieur à 6 mm. De tels substituts peuvent être préparés en ensemençant des cellules endothéliales dans la lumière de la structure tubulaire interne, une fois que la structure tubulaire interne et l'enveloppe externe ont été formées. Selon un mode de réalisation, la cellularisation de la structure tubulaire interne peut être réalisée de façon « statique » par injection d'une suspension de cellules endothéliales même à densité modérée, notamment avec de 50 000 à 100 000 cellules par cm2, afin d'obtenir une monocouche couche cellulaire confiuente sur la paroi de la lumière du tube, en un temps qui peut correspondre de quelques heures à 48h. Selon un autre mode de réalisation, la cellularisation de la structure tubulaire interne peut-être réalisée de façon «dynamique» par injection d'une suspension de cellules endothéliales à densité modérée et en faisant tourner lentement le tube à cellulariser autour de l'axe du tube interne.
Selon un autre mode de réalisation, il est également possible que les parois internes de la structure tubulaire interne soient revêtues d'un polysaccharide polyanionique, éventuellement sous la forme d'une association polyélectrolyte avec l'hydrogel formant la structure tubulaire interne. Un tel polysaccharide polyanionique a l'avantage d'être antithrombogène. A titre d'exemple de tels polysaccharides polyanioniques, on peut citer le sulfate de dextrane, le dermatane sulfate, le kératane sulfate et l'héparine. Par ailleurs, les substituts vasculaires selon l'invention peuvent être multi-compartimentés, afin de reconstituer un substitut vasculaire cellularisé multicouche dont la structure est similaire à celle d'un vaisseau sanguin natif. En particulier, la structure tubulaire interne peut être multi-membranaire, c'est-à-dire formée de deux ou plusieurs membranes pouvant librement glisser les unes par rapport aux autres. De telles structures multi- membranaires peuvent, par exemple, être préparées en s'inspirant du procédé décrit dans la demande de brevet WO 2009/044053 mais en milieu hydro-alcoolique comme décrit plus haut, et en effectuant plusieurs cycles successifs de coagulation partielle. Les conditions opératoires de chaque cycle de coagulation interrompue et leurs conditions d'enchaînement détermineront la constitution de chaque membrane, notamment son épaisseur, et la taille de l'espace inter membranaire séparant deux membranes adjacentes. En particulier, selon une variante de réalisation, l'invention concerne des substituts vasculaires tels que précédemment définis, dans lesquels la structure tubulaire interne comprend au moins deux membranes séparées par un espace inter-membranaire contenant des cellules vivantes d'un même type ou de types différents. Par exemple, il est possible que l'espace inter-membranaire contienne des cellules musculaires lisses, ou un neo-tissu musculaire lisse constitué in vitro avant implantation. De tels substituts vasculaires sont notamment illustrés Figures 3A et 3B. La configuration présentée Figures 3A et 3B comporte une enveloppe externe 2, une structure tubulaire interne comportant deux membranes li et I2. L'espace inter-membranaire 5 entre les membranes li et I2 renferme des cellules 6, par exemple, des cellules musculaires lisses, et les parois internes de la membrane li, délimitant le tube interne de l'ensemble tubulaire creux, sont tapissées de cellules endothéliales 4. L'avantage d'introduire une couche de cellules d'un type donné dans un espace inter-membranaire est de préserver l'intégrité d'une couche riche en cellules d'un type donné (par exemple, musculaires lisses) et d'ainsi favoriser le développement d'une couche de tissu spécifique (par exemple, du tissu musculaire lisse) dans la paroi du tissu vasculaire en reconstruction jusqu'à la résorption de la structure interne. Les types cellulaires choisis pour leur introduction dans les espaces inter-membranaires de la structure interne peuvent apporter une fonctionnalité biologique pour le développement et le maintien fonctionnel du tissu en reconstruction, en particulier pour l'endothélium (les cellules en co- culture séparées dans la structure multi-membranaire échangent des messages chimiques de part et d'autre d'une membrane d'hydrogel) ou apporter une fonction pour le substitut vasculaire implanté. Par exemple, un effet de renfort peut être apporté avec une couche de fibroblastes synthétisant un tissu riche en collagène. Il est également possible d'apporter une fonctionnalité spécifique au tissu reconstruit, après dégradation de l'implant, notamment la contractilité avec une couche musculaire lisse. De préférence, les cellules sont prélevées chez le patient sur lequel le substitut est destiné à être implanté (cellules d'origine autologues). Si nécessaire, les cellules peuvent être mises en culture pour une période de multiplication et/ou de différentiation pour ensuite, être injectées à l'aide d'une seringue à travers les membranes ou entre les membranes à l'extrémité d'un tube multi- membranaire pour réaliser un substitut autologue. Il est possible de guérir un défaut résultant d'une injection à travers la paroi d'une membrane en le colmatant avec une solution aqueuse ou hydro-alcoolique du polymère utilisé, et notamment de chitosane, puis en neutralisant cette solution par ajout de quelques gouttes de solution basique ou en trempant le matériau dans un tampon biologique (ou milieu de culture tamponné).
L'ajout de cellules sur ou dans la structure interne à temps de biorésorption longs permettra le développement d'un tissu au sein du substitut vasculaire, in vivo, ou éventuellement d'abord in vitro puis in vivo. Après la dégradation de la partie interne, il reste donc les néo-tissus formés in vivo et in vitro sous la forme d'un agencement tissulaire tubulaire multicouche ressemblant à la structure d'un vaisseau sanguin.
Les ensembles tubulaires creux tels que précédemment définis ont été développés par les inventeurs, pour leur utilisation en tant que substituts vasculaires. Les substituts vasculaires selon l'invention pourront être directement implantés chez l'homme ou, dans le cas où des cellules vivantes sont présentes sur ou dans la structure tubulaire interne, les substituts pourront être implantés après un temps de culture cellulaire in vitro pour développer un tissu dans les espaces inter-membranaires et /ou un tapis endothélial dans la lumière interne du tube. L'implantation peut avoir lieu notamment au niveau d'une artère ou d'un vaisseau sanguin à réparer, lors d'opérations de chirurgie en remplacement ou en dérivation (pontage) d'un vaisseau lésé. En outre, les substituts selon l'invention pourront être utilisés en tant que dispositif à relargage de principe ou molécule actifs encapsulés ou insérés dans la structure de l'hydrogel constituant les membranes ou dans les chambres inter-membranaires. Les substituts vasculaires selon l'invention pourront donc être destinés à la réparation des lésions du tissu vasculaire dans des situations cliniques comme pontage, ou angioplastie, et notamment inhiber les mécanismes impliqués dans la resténose d'un vaisseau sanguin. Ils pourront être utilisés pour réparer des vaisseaux artériels suite à la chirurgie de résection d'un anévrisme.
D'autres applications biomédicales peuvent également être envisagées, notamment en tant que fistule artério-veineuse chez les patients dialysés ne disposant plus de solutions pour l'accès vasculaire.
Les exemples ci-après permettent d'illustrer l'invention, mais n'ont aucun caractère limitatif.
Préparation de la structure tubulaire interne
a) Tube monomembrane
Un tube de 5mm de diamètre externe et de 5cm de long est obtenu après extrusion par un pousse seringue d'un coliodion hydroalcoolique 50/50 eau/l,2-propanediol, v/v, à la concentration en acétate de chitosane (DA= 1,5% et Mw=350 000 g/mol) de 2% g/g d'eau, et coagulation dans une solution aqueuse de soude 1 . La coagulation est interrompue par extraction du gel de forme tubulaire du bain de coagulation après 5 minutes et rinçage à l'eau. La fin de la neutralisation est ensuite réalisée dans un bain de soude de concentration 4M, ce qui conduit à la formation d'un cœur gélifié. L'extraction du gel de c ur est effectuée manuellement puis un rinçage dans 5L d'eau permutée pendant 12h est réalisé pour enlever les sels et l'alcool résiduel.
L'intérêt de l'introduction d'un alcool (de préférence choisi dans le groupe 1,2- et 1,3-propane- diol, 1,2-, 1,3- et 1,4-butane-diol, 1,2,3- propane-triol (glycérol)) dans un collodion de polysaccharide (ex: chitosane) pour obtenir un hydrogel de concentration 0,02g chitosane /g d'eau est illustré sur les Figures 4A, 4B et 4C. Ces Figures mettent en évidence les propriétés mécaniques comparées d'hydrogels physique de chitosane obtenus par neutralisation dans un bain de soude de concentration 1M, d'un collodion d'un chitosane de DA 1,5 % et de Mw 350 000 g/mol de concentration 2%g/g et contenant dans le solvant 100% d'eau (H20), 50% eau et 50% 1,2 propane diol (H20/Propanediol), et 50% eau et 50% glycérol (H20/glycérol). Les hydrogels sont lavés après neutralisation et contiennent in fine pour l'analyse mécanique uniquement de l'eau et le polysaccharide (chitosane).
Les échantillons analysés peuvent être des tubes pleins de diamètre 2mm et d'une longueur de gauge de 1,2cm ou des tubes creux de diamètre plus important (3 à 6 mm). Les tests de traction sont réalisés sur une machine de traction (modèle Adamel-Lhomargy DY22) avec un capteur de force de capacité maximale de 5 N et des mors à ressorts adaptés à des échantillons de faibles rigidité. Les échantillons sont extraits de leur eau de conservation et sont placés rapidement (en 1 minute) dans le dispositif de traction, et les essais sont assez courts afin de prévenir la déshydratation du gel. La surface de la fibre étant très lisse, deux bouts de scotch double face (scotch 3M 12mm de large, réf. 3M 34-8501-8644-5) sont collés aux extrémités de la fibre, pour ainsi éviter le glissement au cours du test de traction. Les fibres sont placées entre des mors constituées de petites pinces à ressort ajustable, et bien adaptées pour ces échantillons de faible rigidité. Les essais consistent en un chargement simple à une vitesse de déplacement de traverse constante de 2 mm/min jusqu'à rupture. Il est également possible de réaliser des cycles de chargement/déchargement pour apprécier la composante élastique et plastique de la déformation. Tous les essais ont 2 été réalisés à température ambiante, et à l'air ambiant. La loi de comportement mécanique est obtenue en traçant la courbe de la contrainte (σ =F/So; F est la force appliquée à l'échantillon, So est la section initiale de l'échantillon) en fonction de la déformation
Figure imgf000025_0001
OU LO est la longueur initiale de la partie utile de l'échantillon, AL est la variation de la longueur utile de l'éprouvette). D'autre part, le module dYoung (E) est déterminé par régression linéaire de la loi de comportement mécanique dans la gamme des faibles déformations, c'est-à-dire dans le domaine de déformation élastique (déformation < 10%).
La Figure 4A montre l'évolution du module d'élasticité obtenu par régression linéaire de la loi de comportement nominale (contrainte nominale - déformation nominale) dans le domaine élastique (déformation < 10%). La Figure 4B montre l'évolution de la déformation à la rupture des hydrogels physiques de chitosane (moyenne de 5 échantillons). Les hydrogels sont capables d'une forte déformation avant rupture. La Figure 4C montre l'évolution de la contrainte à la rupture des hydrogels physiques de chitosane (moyenne de 5 échantillons). Les résultats présentés sur les Figures 4A, 4B et 4C montrent que l'ajout de propanediol dans le collodion augmente à la fois le module, la déformation à la rupture et la contrainte à la rupture. L'ajout de glycérol dans le collodion augmente les propriétés mécaniques de façon plus importante que le 1,2 propanediol.
b) Tube multi-membranaire
De la même manière que précédemment, le gel alcoolique est élaboré à partir d'une solution alcoolique de chitosane à la concentration en chitosane de 2%g/g et dont le solvant est 50/50 eau 1,2 propanediol. La solution est placée dans un moule cylindrique, séchée 12h à 45°C dans une étuve pour former un gel alcoolique.
Le gel obtenu est neutralisé dans un bain de soude 1M pendant 3 minutes, puis extrait du bain coagulant pendant 3minutes, puis replacé dans le bain de coagulation 3minutes, etc jusqu'à obtenir 3 membranes et 2 espaces intermembranaires. Le gel multimembranaire obtenu est lavé 12h dans l'eau permutée (10 litres) et le c ur gélifié est alors ôté. Préparation de l'enveloppe externe
Le tube (mono ou multi-membranaire) de la structure interne est immergé, en bouchant ses extrémités, dans une solution aqueuse d'acétate de chitosane de DA 46,2% et de masse Mw 300 000 g/mol. avec une concentration en mase de 1,5%. Après immersion, l'hydrogei revêtu est neutralisé dans un bain de soude 1M pendant 15 minutes. Puis, l'assemblage ainsi obtenu est lavé dans de l'eau permutée et renouvelée 6 fois pendant 12 h.
Avant toute expérimentation biologique, tous les échantillons d'hydrogels de chitosane obtenus sont stérilisés dans l'eau par autoclave pendant 20 minutes à une température de 120°C.
Constitution d'un tapis de cellules endothéliales sur les parois internes de la structure tubulaire interne ou dans un espace inter- membranaire
Des cellules endothéliales progénitrices (EPC) sont isolées du sang circulant humain par récupération de la fraction cellulaire mononucléée sur gradient de densité puis mises en culture (Clinicell Treated - Laboratoires MABIO) dans un milieu spécifique pour la différenciation des EPC en cellules endothéliales matures (Milieu EGM2-MV - Clonetics).
Les cellules endothéliales de veine saphène humaine sont isolées par traitement enzymatique et mises en culture selon le protocole décrit par Fernandez et ai. (Tissue Engineering, Volume 12 (1), 2006).
A l'issue de leur caractérisation phénotypique (expression de vWF, VE- cadhérine et CD31 en particulier) les cellules endothéliales matures sont ensemencées à la surface d'un hydrogel, dans un hydrogel en forme de tube creux ou dans un hydrogel multimembranaire à la densité moyenne de 105 cellules/cm2 et dans leurs milieux de différenciation respectifs pendant au minimum 5h afin de former la monocouche cellulaire. Les cellules adhérentes à l'hydrogei sont maintenues en culture entre 24 heures et quelques jours sans modification de la qualité de la monocouche cellulaire (confluence et expression des marqueurs phénotypiques maintenus). La Figure 5 présente une photographie en microscopie optique, 24 heures après ensemencement et coloration Live-Dead, d'une culture cellulaire de cellules endothéliales issues de progéniteurs endothéliaux du sang circulant, et cultivées dans un tube d'hydrogel physique de chitosane tel que précédemment préparé. La mise au point est effectuée sur le fond du tube, ce qui met en évidence la formation du tapis endothélial. La Figure 6, quant à elle, présente une photographie avec une mise au point dans un plan supérieur, ce qui met en évidence la monocouche endothéliale sur les parois du tube.
Culture de cellules musculaires lisses dans l'espace inter- membranaire de la structure tubulaire interne
Des cellules musculaires lisses (SMC) sont obtenues de la veine du cordon ombilical humain par traitement enzymatique (collagénase) et cultivées en milieu pour SMC (SMC-Media 2 - PromoCell). Les cellules sont caractérisées phénotypiquement en culture (expression de la Smooth-Muscle α-actine) puis injectées dans l'espace inter-membranaire de structures de chitosane. La construction est gardée en culture pendant quelques jours à plusieurs semaines (jusqu'à 50 jours) sans mort cellulaire (analysée par coloration Live-Dead) ni disparition du marqueur phénotypique des SMC (expression de la Smooth-Muscle -actine).
La Figure 7 présente une photographie en microscopie optique d'une culture de cellules musculaires lisses (hSMC-human Smooth muscle cells) après marquage de la α-actine et marquage des noyaux cellulaires. Les cellules on été disposées dans la chambre inter-membranaire la plus externe d'un hydrogel physique multi-membranaire de chitosane tel que précédemment préparé.
En situation clinique, les EPC comme les SMC pourront être obtenues à partir d'un patient qui constitue alors une source autologue.

Claims

REVENDICATIONS
1 - Substitut vasculaire biodégradable comportant une structure tubulaire interne et une enveloppe externe, chacune formée d'un hydrogel d'un polysaccharide, de collagène ou d'un mélange de ces polymères caractérisé en ce que les deux hydrogels formant la structure tubulaire interne et l'enveloppe externe sont différents et présentent, notamment, des propriétés mécaniques et une vitesse de colonisation par des cellules différentes.
2 - Substitut vasculaire biodégradable selon la revendication 1 caractérisé en ce que les différents hydrogels sont des matériaux visco-élastiques comportant au moins 80% en masse d'eau, de préférence, au moins 90%, et préférentiellement au moins 95%.
3 - Substitut vasculaire biodégradable selon la revendication 1 ou 2 caractérisé en ce que la structure tubulaire interne présente des propriétés de résistance mécanique supérieures à celles de l'enveloppe externe.
4 - Substitut vasculaire biodégradable selon la revendication 3 caractérisé en ce que la structure tubulaire interne présente une contrainte à la rupture supérieure à 0,05 MPa, de préférence supérieure à 0,2 MPa et en ce que la structure tubulaire interne présente un module d'élasticité de Young supérieur à 0,01 MPa, et de préférence supérieur à 0,05 MPa.
5 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que l'enveloppe externe présente une vitesse de colonisation par des cellules supérieure à celle de la structure tubulaire interne.
6 - Substitut vasculaire biodégradable selon la revendication 5 caractérisé en ce que la colonisation cellulaire de l'enveloppe externe par les cellules du tissu conjonctif au contact duquel le substitut vasculaire est destiné à être implanté intervient en moins de 10 jours.
7 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que la structure tubulaire interne et l'enveloppe externe sont toutes deux formées d'un hydrogel physique de chitosane. 8 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que la structure tubulaire interne est constituée d'un hydrogel physique de chitosane, comportant une fraction significative d'une forme cristalline anhydre, éventuellement en mélange avec une forme cristalline hydratée.
9 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que la structure tubulaire interne est obtenue par filage puis coagulation interrompue d'une solution hydro-alcoolique coagulable de chitosane.
10 - Substitut vasculaire biodégradable selon la revendication 9 caractérisé en ce que l'alcool est choisi parmi les 1,2- et 1,3-propanediol, les 1,2-, 1,3- et 1,4-butanediol et le 1,2,3-propanetriol.
11 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que la structure tubulaire interne est constituée d'un hydrogel de chitosane de degré d'acétylation inférieur à 10% et de masse molaire moyenne en masse Mw supérieure à 300 000 g/mol.
12 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que l'enveloppe externe est constituée d'un mélange polysaccharide/polysaccharide, par exemple chitosane/acide hyaluronique ou chitosane de DA inférieur à 10 % chitosane de DA supérieur à 30 %, ou encore d'un mélange polysaccharide/collagène, et par exemple d'un mélange acide hyaluronique/collagène ou chitosane/collagène.
13 - Substitut vasculaire biodégradable selon l'une des revendications 1 à
11 caractérisé en ce que l'enveloppe externe est constituée d'un hydrogel physique de chitosane, présentant quasi-exclusivement une forme cristalline hydratée, et de préférence exempte de forme cristalline anhydre.
14 - Substitut vasculaire biodégradable selon l'une des revendications 1 à
12 caractérisé en ce que l'enveloppe externe est constituée d'un hydrogel de chitosane de degré d'acétylation supérieur à 30 % et de masse molaire moyenne en masse Mw inférieure à 300 000 g/mol.
15 - Substitut vasculaire biodégradable selon la revendication 13 ou 14 caractérisé en ce que l'enveloppe externe est obtenue à partir d'une solution aqueuse de chitosane exempte d'alcool, qui après dépôt sur les parois externes de la structure tubulaire interne est neutralisée.
16 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que la structure tubulaire interne et l'enveloppe externe sont liées l'une à l'autre, notamment par enchevêtrement physique des hydrogels qui les constituent, au niveau de leur surface de contact.
17 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que les parois internes de la structure tubulaire interne sont tapissées de cellules endothéliales vivantes.
18 - Substitut vasculaire biodégradable selon la revendication 17 caractérisé en ce que les cellules endothéliales sont fonctionnelles, c'est-à- dire semblables aux cellules endothéliales des tissus natifs et présentant des marqueurs spécifiques de ces tissus natifs, en exprimant des protéines comme la VE-Cadherine, CD31, le facteur de von Willbrand.
19 - Substitut vasculaire biodégradable selon l'une des revendications précédentes caractérisé en ce que le la structure tubulaire interne est constituée d'au moins deux membranes séparées par un espace inter- membranaire contenant des cellules vivantes.
20 - Substitut vasculaire biodégradable selon la revendication 17 à 19 caractérisé en ce que les cellules proviennent du patient sur lequel le substitut est destiné à être implanté.
21 - Substitut vasculaire biodégradable selon la revendication 19 ou 20 caractérisé en ce que les cellules confinées dans l'espace inter-membranaire sont des cellules musculaires lisses.
22 - Substitut vasculaire biodégradable selon la revendication 21 caractérisé en ce que les cellules confinées dans l'espace inter-membranaire sont des cellules musculaires lisses associées à des cellules fibroblastiques.
23 - Procédé de préparation d'un substitut vasculaire selon l'une des revendications 1 à 22 comprenant les étapes suivantes :
a) formation d'un tube, éventuellement multi-membranaire, d'un hydrogel de polysaccharide, de collagène ou d'un mélange de ces polymères, par filage puis coagulation interrompue d'une solution hydro-alcoolique coagulable du polymère ou mélange de polymères sélectionné pour former le tube,
b) formation sur la paroi interne ou externe du tube obtenu à l'étape a) d'une couche d'hydrogel d'un polysaccharide, de collagène ou d'un mélange de ces polymères à partir d'une solution aqueuse exempte d'alcool du polymère ou mélange de polymères sélectionné pour former la couche.
24 - Procédé selon la revendication 23, caractérisé en ce que la couche est déposée sur la paroi externe du tube obtenu à l'étape a).
25 - Procédé selon la revendication 23 ou 24, caractérisé en ce que l'étape a) est réalisée à partir d'une solution hydro-alcoolique de chitosane, la coagulation étant réalisée en milieu alcalin.
26 - Procédé selon la revendications 25, caractérisé en ce que le chitosane de la solution hydro-alcoolique présente un degré d'acétyiation inférieur à 10% et une masse molaire moyenne en masse Mw supérieure à 300 000 g/mol.
27 - Procédé selon l'une des revendications 23 à 26, caractérisé en ce que l'étape b) est réalisé à partir d'une solution aqueuse de chitosane exempte d'alcool, qui après dépôt sur les parois externes de la structure tubulaire interne est neutralisée.
28 - Procédé selon la revendications 27, caractérisé en ce que le chitosane de la solution aqueuse présente un degré d'acétyiation supérieur à 30 % et une masse molaire moyenne en masse Mw inférieure à 300 000 g/mol.
29 - Procédé selon la revendication 27, caractérisé en ce que l'étape b) est réalisé à partir d'une solution aqueuse d'acétate ou de chlorhydrate de chitosane à une concentration inférieure à 2% m/m.
30 - Procédé selon l'une des revendications 23 à 28, caractérisé en ce que l'alcool est un poly-alcool, de préférence choisi parmi les 1,2- et 1,3- propanediol, les 1,2-, 1,3- et 1,4-butanediol et le 1,2,3-propanetriol.
PCT/FR2011/051262 2010-06-04 2011-06-01 Nouveaux substituts vasculaires biodegradables WO2011151603A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054404A FR2960784B1 (fr) 2010-06-04 2010-06-04 Nouveaux substituts vasculaires biodegradables
FR1054404 2010-06-04

Publications (1)

Publication Number Publication Date
WO2011151603A1 true WO2011151603A1 (fr) 2011-12-08

Family

ID=43481031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051262 WO2011151603A1 (fr) 2010-06-04 2011-06-01 Nouveaux substituts vasculaires biodegradables

Country Status (2)

Country Link
FR (1) FR2960784B1 (fr)
WO (1) WO2011151603A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104027851A (zh) * 2014-06-24 2014-09-10 上海大学 一种组织工程小口径血管支架的成形方法及成形系统
WO2015092289A1 (fr) 2013-12-19 2015-06-25 Universite Claude Bernard Lyon I Implant pour la regénération tissulaire comprenant un hydrogel de chitosane suturable
CN105310795A (zh) * 2014-05-26 2016-02-10 烟台隽秀生物科技有限公司 一种人工血管鞘管的制备方法及其模具
CN107899086A (zh) * 2017-11-06 2018-04-13 山东大学 一种透明质酸寡糖修饰的胶原蛋白纳米纤维血管修复材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393788A2 (fr) * 1989-04-17 1990-10-24 Koken Co. Ltd. Prothèse vasculaire et procédé de production pour prothèse vasculaire
EP0850073A1 (fr) 1995-06-02 1998-07-01 Massachusetts Institute Of Technology Inhibition de l'occlusion vasculaire a la suite d'une intervention vasculaire
FR2882665A1 (fr) 2005-03-04 2006-09-08 Univ Claude Bernard Lyon Capsules plurimembranaires de polysaccharides et en particulier de chitosane et leur procede de preparation
WO2009004405A1 (fr) 2007-06-29 2009-01-08 Nokia Corporation Éviter des transferts en alternance
WO2009027537A1 (fr) 2007-08-31 2009-03-05 Kitozyme Sa Prothese destinee a promouvoir la reconstruction in vivo d'un organe creux ou d'une partie d'organe creux
WO2009044053A2 (fr) 2007-09-07 2009-04-09 Universite Claude Bernard Lyon I Fibres creuses, notamment multi membranaires, leur procede de preparation par filage et dispositif pour la mise en oeuvre dudit procede

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393788A2 (fr) * 1989-04-17 1990-10-24 Koken Co. Ltd. Prothèse vasculaire et procédé de production pour prothèse vasculaire
EP0850073A1 (fr) 1995-06-02 1998-07-01 Massachusetts Institute Of Technology Inhibition de l'occlusion vasculaire a la suite d'une intervention vasculaire
FR2882665A1 (fr) 2005-03-04 2006-09-08 Univ Claude Bernard Lyon Capsules plurimembranaires de polysaccharides et en particulier de chitosane et leur procede de preparation
WO2009004405A1 (fr) 2007-06-29 2009-01-08 Nokia Corporation Éviter des transferts en alternance
WO2009027537A1 (fr) 2007-08-31 2009-03-05 Kitozyme Sa Prothese destinee a promouvoir la reconstruction in vivo d'un organe creux ou d'une partie d'organe creux
WO2009044053A2 (fr) 2007-09-07 2009-04-09 Universite Claude Bernard Lyon I Fibres creuses, notamment multi membranaires, leur procede de preparation par filage et dispositif pour la mise en oeuvre dudit procede

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. MONTEMBAULT, C. VITON, A. DOMARD: "Physico- chemical studies of the gelation of chitosan in a hydroalcoholic medium", BIOMATERIALS, vol. 26, no. 8, 2005, pages 933 - 943, XP025280402, DOI: doi:10.1016/j.biomaterials.2004.03.033
FERNANDEZ ET AL., TISSUE ENGINEERING, vol. 12, no. 1, 2006
KONIG, G. ET AL., BIOMATERIALS, vol. 30, 2009, pages 1542 - 1550
L'HEUREUX N. ET AL., NATURE, vol. 4, no. 7, 2007, pages 389 - 395
SÉBASTIEN LADET, LAURENT DAVID, ALAIN DOMARD: "Multi-membrane hydrogels", NATURE, vol. 452, 6 March 2008 (2008-03-06), pages 76 - 79, XP002545563, Retrieved from the Internet <URL:http://www.nature.com/nature/journal/v452/n7183/fig tab/nature06619 F4. html> DOI: doi:10.1038/NATURE06619
ZHANG ET AL., J. BIOMED. MATER. RES. A., vol. 77, no. 2, 6 January 2006 (2006-01-06), pages 277 - 284
ZHANG L, AO Q, WANG A, LU G, KONG L, GONG Y, ZHAO N, ZHANG X.: "A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering.", J BIOMED MATER RES A., vol. 77, no. 2, 6 January 2006 (2006-01-06), pages 277 - 284, XP007916944 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092289A1 (fr) 2013-12-19 2015-06-25 Universite Claude Bernard Lyon I Implant pour la regénération tissulaire comprenant un hydrogel de chitosane suturable
CN105310795A (zh) * 2014-05-26 2016-02-10 烟台隽秀生物科技有限公司 一种人工血管鞘管的制备方法及其模具
CN104027851A (zh) * 2014-06-24 2014-09-10 上海大学 一种组织工程小口径血管支架的成形方法及成形系统
CN107899086A (zh) * 2017-11-06 2018-04-13 山东大学 一种透明质酸寡糖修饰的胶原蛋白纳米纤维血管修复材料及其制备方法

Also Published As

Publication number Publication date
FR2960784A1 (fr) 2011-12-09
FR2960784B1 (fr) 2012-07-20

Similar Documents

Publication Publication Date Title
EP2180906B1 (fr) Prothese destinee a promouvoir la reconstruction in vivo d&#39;un organe creux ou d&#39;une partie d&#39;organe creux
CA2539087C (fr) Nanocomposite a base de poly(alcool de vinyle) et de cellulose bacterienne
CA2759654C (fr) Nouveaux materiaux en collagene et procedes d&#39;obtention
US9206414B2 (en) Anisotropic nanocomposite hydrogel
CA2921678C (fr) Procedes de production de fibres de collagene polymerisees par ndga a resistance elevee, et procedes associes de preparation de materiau preparatoire pour collagene, appareils medicaux et constructions
US10434216B2 (en) Ultra-thin film silk fibroin/collagen composite implant and manufacturing method therefor
US20130309295A1 (en) Biosynthetic functional cellulose (bc) fibers as surgical sutures and reinforcement of implants and growing tissue
CN107376015A (zh) 一种肝素化的细菌纳米纤维素/壳聚糖复合管及其制备方法和应用
WO2011151603A1 (fr) Nouveaux substituts vasculaires biodegradables
Wu et al. Mechanical properties and permeability of porous chitosan–poly (p-dioxanone)/silk fibroin conduits used for peripheral nerve repair
JP2009516038A (ja) 架橋されたゼラチン状材料を基剤とする成形体、該成形体の製造方法、及び該成形体の使用
CA2654754A1 (fr) Hydrogel anisotropique constitue de nanocomposites
Unal et al. Tissue engineering applications of bacterial cellulose based nanofibers
Klemm et al. Bacterial nanocellulose hydrogels designed as bioartificial medical implants
EP2575910B1 (fr) Matrices denses de collagene pour la reparation tissulaire et leur procede de preparation
Min et al. Fabrication and characterization of porous tubular silk fibroin scaffolds
FR3015296A1 (fr) Nouvel hydrogel de chitosane suturable et applications associees
WO2007147739A2 (fr) Tubes de collagene
KR102168815B1 (ko) 하이드로 젤 튜브 및 이의 제조방법
WO2012052679A1 (fr) Procede de preparation de collagene fibrille
Klemm et al. Bacterial nanocellulose for medical applications: potential and examples
JP2001346866A (ja) ハイブリッド樹脂材料およびその製造方法
JP2007014562A (ja) コラーゲン基材
FR2793693A3 (fr) Prothese vasculaire impregnee par un biopolymere d&#39;origine vegetale ou bacterienne et procede pour la realisation d&#39;une telle prothese
ITMI20111905A1 (it) Protesi tubulare multistrato per chirurgia ricostruttiva

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11728350

Country of ref document: EP

Kind code of ref document: A1