WO2011150941A1 - Dispositif et procédé pour essayer un élément de génératrice éolienne - Google Patents

Dispositif et procédé pour essayer un élément de génératrice éolienne Download PDF

Info

Publication number
WO2011150941A1
WO2011150941A1 PCT/DK2011/050194 DK2011050194W WO2011150941A1 WO 2011150941 A1 WO2011150941 A1 WO 2011150941A1 DK 2011050194 W DK2011050194 W DK 2011050194W WO 2011150941 A1 WO2011150941 A1 WO 2011150941A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulator
power plant
wind power
wind
grid
Prior art date
Application number
PCT/DK2011/050194
Other languages
English (en)
Inventor
Søren KAPPELGAARD
Per Hagen Nielsen
Original Assignee
Vestas Wind Systems A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems A/S filed Critical Vestas Wind Systems A/S
Publication of WO2011150941A1 publication Critical patent/WO2011150941A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/021Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system adopting a different treatment of each operating region or a different mode of the monitored system, e.g. transient modes; different operating configurations of monitored system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/84Modelling or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates generally to wind power generation systems and, more specifically, to a device and method for testing a wind power plant component.
  • a utility-scale wind energy system or wind power plant includes a group of wind turbines that operate collectively as a power plant to produce electrical energy without the consumption of fossil fuels.
  • the electricity produced by the wind turbines is provided to the electrical grid, which distributes the generated electricity to power grid customers based on demand.
  • the wind power plant thus reduces the amount of power which must be generated by traditional means by supplying a portion of the total power demand of the electrical grid.
  • a typical wind turbine includes a rotor mounted to a nacelle disposed at the apex of a tower and housing a generator.
  • the rotor typically includes a plurality of blades that capture wind currents to produce rotation of the wind turbine. The rotor thereby converts wind energy into rotational energy. This rotational energy is coupled to the generator, which converts the rotational energy into electricity.
  • the rotor blades will typically have an adjustable pitch that is set by a wind turbine controller in response to wind conditions. The wind turbine controller monitors the speed of the rotor and adjusts the pitch of the rotor blades in response to existing wind conditions in order to maximize the output of the wind turbine and to maintain the speed and torque applied to the generator at or below rated levels.
  • the power produced by the wind turbine is typically coupled to the grid through a power converter that converts the electrical output of the wind turbine generator into AC voltages suitable for use on the grid.
  • the power converter operates under the control of a power controller, which adjusts the frequency, phase angle, and voltage of the power converter output as required to adjust the amount of real and reactive power transferred from the wind turbine generator to the grid.
  • an energy storage system such as a battery, may be coupled to the power converter.
  • the outputs of the wind turbine power converters are typically ganged together in parallel and connected to the grid at a single connection point. These connections will typically include circuit breakers to prevent damage to wind power plant and/or electrical grid components in the event of a power surge or other system disruption.
  • the power controller function may be provided by a subsystem at each individual wind turbine, but may also be controlled, at least in part, by a centralized wind power plant controller.
  • the centralized power plant control function monitors and controls individual wind turbine power converter outputs to provide power output levels that take into account both wind conditions at the individual wind turbine as well as system wide
  • the power plant controller may also control the operation of a reactive compensator to adjust the reactive power supplied to the grid at the wind power plant level.
  • a utility scale wind power plant thus includes multiple subsystems that control the operation of the various components of the power plant, such as electrical grid monitors, wind turbine controllers, power converter controllers, energy storage system controllers, circuit breaker controllers, and a power plant controller. These subsystems monitor wind power plant and grid conditions to provide control mechanisms that optimize the power output of the wind power plant.
  • the wind power plant subsystems also include safety mechanisms that prevent wind turbines, power converters, and other plant systems from operating outside of their maximum allowable design parameters. To this end, the wind power plant subsystems monitor grid and wind power plant
  • wind power plant subsystems interact in complex fashion so that changes in one subsystem can affect the overall performance of a wind power plant in unexpected ways.
  • variable nature of both wind power availability and electrical grid demands further increase the potential for undesirable and unexpected results when wind power plant subsystems or components of the wind power plant are added, removed, or otherwise modified. Testing of new or modified power plant components and
  • the method according to an embodiment of the invention is a method of testing a wind power plant controller.
  • the controller is configured to receive signals from and transmit signals to wind turbines in a wind power plant.
  • the testing method includes: (1 ) connecting the wind power plant controller to a test device.
  • the test device includes one or more subsystem simulators. At least one subsystem simulator is arranged to simulate a certain wind power plant subsystem or conditions influencing wind turbines in a wind power plant; and (2) testing the wind power plant controller by performing a simulation via the subsystem simulators.
  • Program instructions for performing the aforementioned method may be implemented in a computer program product.
  • the program instructions are stored on a computer readable storage medium.
  • the device according to an embodiment of the invention is a test device for testing a wind power plant component.
  • the test device includes an interface for connecting a wind power plant controller to the test device and one or more subsystem simulators. Each of the one or more subsystem simulators is configured to simulate an associated wind power plant subsystem or condition.
  • Figure 1 shows a schematic drawing of a wind power plant
  • Figure 2 shows a schematic drawing of a test device for testing a wind power plant controller
  • Figure 3 shows a schematic drawing similar to Figure 2 that further includes a test measurement simulator; and Figure 4 is a flow chart of a method according to the invention.
  • a wind power plant 10 includes a wind power plant controller (WPP) 20, a plurality of wind turbines represented by wind turbines 30, 31 , 32, 33, and optional reactive power compensation equipment 40.
  • the wind turbines 30-33 are connected via radials 36, 37, 38, 39 and switches 50, 51 to common connection points where the power output of the wind power plant 10 is coupled to one or more electric grids 60, 61 .
  • the wind power plant 10 as illustrated also includes a switch 52 that connects a first group of wind turbines 30, 31 and a second group of wind turbines 32, 33 within the wind power plant 10.
  • the first and second groups of wind turbines may be ganged together by closing the switch 52 so that the wind power plant 10 collectively provides a composite power output to the one or more electrical grids 60, 61 .
  • the first and second groups of wind turbines may be electrically isolated from each other. This isolation allows the wind power plant 10 to provide power to the grids 60, 61 as two electrically separate wind power plants using only a subset of the available wind turbines 30-33 under the control of the wind power plant controller 20 to supply power to each grid 60, 61 .
  • the switches 50-52 are typically not operated directly by the wind power plant controller 20. However, feedback signals relating to the status and/or position of the switches are typically provided to the wind power plant controller 20 to allow the controller 20 to factor in the state of the switches 50-52 as a parameter for controlling the operation of the wind power plant 10.
  • the wind power plant controller 20 provides control signals to the wind turbines 30-33 in the form of power set points such as, but not limited to, the desired active and/or reactive power output to be supplied from the individual wind turbines 30-33. These set points and control signals may be used by the wind turbine power controller 20 to adjust the power output of the wind turbines 30- 33.
  • the wind power system controller 20 may be operatively coupled to the optional compensation equipment 40, which may be configured to adjust the amount of reactive power provided to the grid using known methods.
  • the wind power system controller 20 may thereby regulate the active and reactive power provided to the electrical grid 60, 61 by adjusting the individual power output levels of each wind turbine 30-33, and/or by adjusting the reactive power of the wind power plant 10 at a plant level.
  • the wind power plant controller 20 may obtain measurements of the active and reactive power supplied to the electrical grid 60, 61 , as indicated by arrowed line 4. From these power measurements, the wind power plant controller 20 calculates new power set points and other control signals, as appropriate, to be supplied to the wind turbines 30-33 and other power control equipment, such as the compensation equipment 40 and the switches 50-52. The wind power plant controller 20 transmits these set points and other control signals to the appropriate components and subsystems of the wind power system 10 as indicated by arrowed line 5. In response to the control signals 5, the wind power plant components and subsystems may react by adjusting the power output of the wind turbines 30-33 and wind power system 10 as indicated by arrowed line 6.
  • the wind power plant 10 may comprise a smaller or larger number of wind turbines 30-33.
  • a large wind power plant 100 might include over 100 wind turbines 30-33.
  • the wind power plant includes compensation equipment 40, in which case the wind power plant controller 20 may control the composite power output of the wind power plant 10 by controlling the power output of the wind turbine power converters.
  • the test device 500 comprises a simulator system that includes subsystem simulators in the form of a wind turbine simulator 530, a reactive compensation equipment simulator 540, a circuit breaker simulator 550, a grid simulator 560, a wind simulator 570, a cabling system simulator 575 that simulates the cabling system within the wind power plant 10, an energy storage simulator 580, and/or a supervisory control and data acquisition (SCADA) system simulator 585.
  • Figure 2 illustrates one embodiment in which a grid measurement subsystem 565 is shown outside the test device 500
  • Figure 3 illustrates an alternative embodiment in which a grid measurement subsystem is
  • the grid measurement subsystem as illustrated in Figure 3 is thereby implemented as a grid measurement simulator 566.
  • the subsystem simulators may include data on real- world subsystem performance over a range of environmental conditions.
  • the wind turbine simulator 530 may include the operation of one or more specific models of wind turbines over a range of operating conditions, including a range of wind speeds.
  • the reactive compensation equipment simulator 540 may include simulation of reactive compensation equipment, such as a STATCOM or capacitor banks.
  • the grid simulator 560 may include a range of possible grid operation conditions, including faults in the grid, low voltage ride through situations, frequency fluctuations, inclusion of large loads in the grid, etc.
  • the wind simulator 570 may include simulation of a range of different wind conditions, e.g. wind speed, gusts, wind shear, turbulence, etc.
  • the cabling system simulator 575 may include the electric properties of the cables within the wind power plant 10, such as the impedance of the cables.
  • the energy storage simulator 580 may include properties of an energy storage system within or in conjunction to the wind power plant 10, including the charging state of the energy storage system.
  • the simulated energy storage system might include a battery, a flywheel or other suitable power storage equipment.
  • the test device 500 may include a control interface 590 that connects the wind power plant components to the associated subsystem simulators.
  • the control interface 590 may thereby allow the subsystem simulators to exchange data with their associated wind power plant subsystems.
  • the wind turbine simulator 530 may obtain operational data from the wind power plant controller 20 related to the operation of the wind turbines 30-33. This data may be used to modify the wind turbine simulator 530 so that it more accurately predicts the behavior of the wind turbines 30-33 as configured in the wind power plant 10.
  • data generated by the wind turbine simulator 530 may be provided to the wind power plant controller 20 to improve, control, or otherwise modify the performance of the controller 20.
  • the grid simulator 560 may exchange data with the grid measurement subsystem 565, whether implemented external to the test device 500 ( Figure 2) or, alternatively, within the test device 500 as a grid measurement simulator 566 ( Figure 3) to improve the performance of the grid simulator 560.
  • the test device 500 provides the ability to conduct realistic simulations of wind power plant control strategies and control system under various scenarios which would be difficult, expensive, dangerous, and/or otherwise undesirable to create as a real-world test.
  • the test device 500 thereby provides a virtual laboratory that renders it possible to perform realistic testing of the wind power plant control systems in various scenarios even before the wind power plant 10 is built.
  • the test device 500 thus provides the ability to demonstrate wind power plant control system capabilities prior to implementation.
  • the test device 500 facilitates testing of the wind power plant controller 20 in the case of fluctuations or faults on the electrical grid, e.g., a low voltage ride through (LVRT) or frequency deviations.
  • LVRT low voltage ride through
  • the output from the wind simulator 570 may be provided the wind turbine simulator 530 to generate wind turbine operational scenarios based on probable or extreme wind conditions at the wind power plant 10.
  • signals may also be exchanged between the circuit breaker simulator 550, grid simulator 560, cabling system simulator 575, energy storage simulator 580, and wind turbine simulator 530 based on historical and/or expected behavior of related wind power plant components and the grid 60, 61 . Signals may also be
  • the invention may be implemented in any suitable form including hardware, software, firmware or any combination of these.
  • the invention or some features of the invention can be implemented as computer software running on one or more data processors and/or digital signal processors.
  • the elements and components of embodiments of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units. As such, the invention may be implemented in a single unit, or may be physically and functionally distributed between different units and processors.
  • the simulator subsystems may be implemented as different computer software algorithms running on one or more data processors.
  • the grid measurement subsystem 565 resides outside the test device 500.
  • the grid measurement subsystem 565 may be a hardware grid meter connectable to the wind power plant controller 20 as well as to the test device 500 for testing the wind power plant controller 20.
  • the grid measurement subsystem 565 may be implemented as a software algorithm within the test device 500 that provides a grid measurement simulator 566 as illustrated in Figure 3.
  • the wind power plant controller 20 is configured to receive signals from and transmit signals to wind turbines 30-33 in the wind power plant 10.
  • the wind power plant controller 20 is connected to the test device 500.
  • the test device 500 may include a plurality of subsystem simulators that each represents a component or subsystem of the wind power plant 10. Each subsystem simulator is thereby arranged to simulate a certain wind power plant subsystem or conditions influencing the wind turbines 30-33 in the wind power plant 10.
  • the wind power plant controller 20 is tested by performing a simulation via the subsystem simulators and by registering the performance of the wind power plant controller 20 as a function of the simulations.
  • the results of the simulations from the test device 500 may be used to adjust parameters within the wind power plant controller 20 to optimize the performance of the wind power plant 10, to predict the effect of changes to subsystems within the wind power plant 10, or to control the wind power plant 10.
  • Different configurations and environmental scenarios may thereby be tested with regard to the wind power plant 10 by modeling the wind power plant 10 in the test device (500).
  • wind power plant is synonymous to “wind farm” and “wind park” and is meant to denote a plurality of wind turbines as well further units, equipment, or subsystems, as
  • the methods described herein can be implemented by computer program instructions supplied to the processor of any type of computer to produce a machine with a processor that executes the instructions to implement the functions/acts specified herein.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer to function in a particular manner. To that end, the computer program instructions may be loaded onto a computer to cause the performance of a series of operational steps and thereby produce a computer implemented process such that the executed instructions provide processes for implementing the functions/acts specified herein.
  • Such computer program instructions may also be provided through a computer based network, e.g., the Internet.
  • inventions of embodiments of the invention may be physically, functionally and logically implemented in any suitable way.
  • functionality may be implemented in a single unit, in a plurality of units or as part of other functional units.
  • the invention may be implemented in a single unit, or may be physically and functionally distributed between different units and processors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

L'invention porte sur un dispositif d'essai (500) et un procédé (100) pour essayer un élément d'une installation génératrice éolienne, tel qu'une unité de commande d'installation génératrice éolienne (20). Le dispositif d'essai (500) comprend un ou plusieurs simulateurs de sous-systèmes (530, 540, 550, 560, 566, 570, 575, 580, 585) qui coopèrent pour réaliser une simulation de niveau de système d'une installation génératrice éolienne (10). Chaque simulateur de sous-système (530, 540, 550, 560, 566, 570, 575, 580, 585) est conçu pour simuler un sous-système d'installation génératrice éolienne, ou des conditions qui influencent l'installation génératrice éolienne (10). Le procédé (100) comprend la connexion (102) de l'unité de commande d'installation de génératrice éolienne (20) au dispositif d'essai (500), et l'essai (103) de l'unité de commande d'installation génératrice éolienne (20).
PCT/DK2011/050194 2010-06-04 2011-06-02 Dispositif et procédé pour essayer un élément de génératrice éolienne WO2011150941A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US35137910P 2010-06-04 2010-06-04
US61/351,379 2010-06-04
DKPA201000479 2010-06-04
DKPA201000479 2010-06-04

Publications (1)

Publication Number Publication Date
WO2011150941A1 true WO2011150941A1 (fr) 2011-12-08

Family

ID=45066194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2011/050194 WO2011150941A1 (fr) 2010-06-04 2011-06-02 Dispositif et procédé pour essayer un élément de génératrice éolienne

Country Status (1)

Country Link
WO (1) WO2011150941A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156026A1 (fr) * 2012-04-16 2013-10-24 Kk-Electronic A/S Système d'acquisition de données et procédé permettant d'acquérir des données d'une turbine éolienne
CN103558771A (zh) * 2013-11-05 2014-02-05 济南轨道交通装备有限责任公司 风电场仿真测试平台及其测试方法
EP2853731A1 (fr) * 2013-09-27 2015-04-01 Korea Electric Power Corporation Appareil de simulation de parc éolien
CN105760636A (zh) * 2016-04-14 2016-07-13 南方电网科学研究院有限责任公司 一种发电系统实时仿真系统及实时仿真方法
CN108121214A (zh) * 2016-11-28 2018-06-05 北京金风科创风电设备有限公司 一种风电机组的偏航策略仿真方法和系统
US10018185B2 (en) 2013-12-30 2018-07-10 General Electric Company System and method for commissioning wind turbines
CN112983753A (zh) * 2021-03-03 2021-06-18 南京理工大学 基于无速度传感器地面试验台的风机机械动态模拟方法及系统
CN116880241A (zh) * 2023-08-04 2023-10-13 山东大学 海上风电机组地面试验平台的多层级控制集成系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2170325A (en) * 1985-01-24 1986-07-30 Sojuzorgenergogaz Proizv Ob Device for automatic testing of gas turbine automatic control system
EP1659287A2 (fr) * 2004-11-17 2006-05-24 NORDEX ENERGY GmbH Dispositif et procédure de test de performance d'une installation d'énergie éolienne
DE102007052980A1 (de) * 2007-11-07 2009-05-14 Nordex Energy Gmbh Verfahren und Vorrichtung zur Darstellung des Betriebsverhaltens einer Windenergieanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2170325A (en) * 1985-01-24 1986-07-30 Sojuzorgenergogaz Proizv Ob Device for automatic testing of gas turbine automatic control system
EP1659287A2 (fr) * 2004-11-17 2006-05-24 NORDEX ENERGY GmbH Dispositif et procédure de test de performance d'une installation d'énergie éolienne
DE102007052980A1 (de) * 2007-11-07 2009-05-14 Nordex Energy Gmbh Verfahren und Vorrichtung zur Darstellung des Betriebsverhaltens einer Windenergieanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOOFT EN AL V: "Real time process simulation for evaluation of wind turbine control systems", INTERNET CITATION, 14 August 2008 (2008-08-14), pages 1 - 4, XP008095362, Retrieved from the Internet <URL:http://www.ecn.nl/docs/library/report/2003/rx03043.pdf> [retrieved on 20080814] *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156026A1 (fr) * 2012-04-16 2013-10-24 Kk-Electronic A/S Système d'acquisition de données et procédé permettant d'acquérir des données d'une turbine éolienne
CN104380215A (zh) * 2012-04-16 2015-02-25 Kk风能解决方案公司 数据采集系统以及从风力涡轮机采集数据的方法
EP2853731A1 (fr) * 2013-09-27 2015-04-01 Korea Electric Power Corporation Appareil de simulation de parc éolien
US10180997B2 (en) 2013-09-27 2019-01-15 Korea Electric Power Corporation Apparatus for simulating wind power farm
CN103558771A (zh) * 2013-11-05 2014-02-05 济南轨道交通装备有限责任公司 风电场仿真测试平台及其测试方法
EP2869144A1 (fr) * 2013-11-05 2015-05-06 Jinan Railway Vehicles Equipment Co., Ltd. Plateforme de test de simulation pour centrale éolienne et son procédé de test
US10018185B2 (en) 2013-12-30 2018-07-10 General Electric Company System and method for commissioning wind turbines
CN105760636A (zh) * 2016-04-14 2016-07-13 南方电网科学研究院有限责任公司 一种发电系统实时仿真系统及实时仿真方法
CN108121214A (zh) * 2016-11-28 2018-06-05 北京金风科创风电设备有限公司 一种风电机组的偏航策略仿真方法和系统
CN112983753A (zh) * 2021-03-03 2021-06-18 南京理工大学 基于无速度传感器地面试验台的风机机械动态模拟方法及系统
CN116880241A (zh) * 2023-08-04 2023-10-13 山东大学 海上风电机组地面试验平台的多层级控制集成系统及方法

Similar Documents

Publication Publication Date Title
US9822765B2 (en) Wind power plant control system
Hansen et al. Dynamic modelling of wind farm grid interaction
CN103344437B (zh) 一种风力发电机组半物理实时仿真平台
CN104641529B (zh) 用于确定发电设备控制器中的个体设定点的方法和发电设备控制器
WO2011150941A1 (fr) Dispositif et procédé pour essayer un élément de génératrice éolienne
CN105205232A (zh) 基于rtds的微网系统稳定性仿真测试平台
CA2878335A1 (fr) Procede et dispositif pour injecter de l&#39;energie electrique dans un reseau d&#39;alimentation electrique
CN102830692B (zh) 风电机组主控制系统低电压穿越一致性测试方法
Martinez et al. Tools for analysis and design of distributed resources—Part IV: Future trends
CN104597765A (zh) 一种风力发电机组半物理实时仿真平台
CN104215904A (zh) 一种全功率变流器风电机组低电压穿越测试系统及方法
CN104201716A (zh) 一种基于可控电流源的机电暂态简化模型建立方法
CN102854463B (zh) 一种兆瓦级风力模拟试验系统及试验方法
CN205823545U (zh) 一种风力发电机组变桨系统的测试系统
CN205721145U (zh) 一种双馈风力发电系统的动态实时仿真测试模型装置
Wu et al. Development of an equivalent wind farm model for frequency regulation
Abbes et al. Participation of PMSG-based wind farms to the grid ancillary services
CN103076745A (zh) 常规电力系统仿真软件中风电机组模型的仿真方法
Mahmoud et al. Integrated optimal active and reactive power control scheme for grid connected permanent magnet synchronous generator wind turbines
CN103207373A (zh) 风电机组变桨系统后备电源的测试系统和测试方法
CN108073150A (zh) 基于硬件在环仿真的风电机组功率控制测试平台及其方法
Wang et al. Development of wind-energy modeling technology and standards
Ofoli et al. Real-time digital simulator testbed using eMEGASim® for wind power plants
CN108695979A (zh) 一种微电网控制与检测平台
CN104564519A (zh) 桨距角控制与超级电容相结合的风电入网功率控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11729891

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11729891

Country of ref document: EP

Kind code of ref document: A1