WO2011150853A1 - 小区资源分配方法和装置 - Google Patents

小区资源分配方法和装置 Download PDF

Info

Publication number
WO2011150853A1
WO2011150853A1 PCT/CN2011/075119 CN2011075119W WO2011150853A1 WO 2011150853 A1 WO2011150853 A1 WO 2011150853A1 CN 2011075119 W CN2011075119 W CN 2011075119W WO 2011150853 A1 WO2011150853 A1 WO 2011150853A1
Authority
WO
WIPO (PCT)
Prior art keywords
subchannel
terminal
relay
direct
pair
Prior art date
Application number
PCT/CN2011/075119
Other languages
English (en)
French (fr)
Inventor
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011150853A1 publication Critical patent/WO2011150853A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the present invention claims the priority of the Chinese Patent Application entitled “Cell Resource Allocation Method and Apparatus", which is filed on June 2, 2010, the Chinese Patent Office, Application No. 201010189872. This is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to mobile networks, and in particular, to a method and apparatus for cell resource allocation.
  • BACKGROUND In a cell of an existing mobile communication system, a terminal can be relayed by one or more other terminals and then connected to a corresponding cell base station. These terminals that provide relay services for other terminals are called relay terminals. The use of the relay terminal reduces the path loss and improves the communication quality of each transmission link, thereby greatly increasing the capacity and coverage of the entire cell.
  • One scheme adopted by the prior art is a heuristic sub-optimal scheme for joint relay selection and subchannels for a single source terminal - multiple relay terminals - a single destination terminal, a scenario where there is no connection between the source terminal and the destination terminal distribution.
  • the scenario assumed by the existing heuristic suboptimal scheme is as shown in FIG. 1. It is assumed that there are fixed k relay terminals Rl-Rk between the source terminal and the destination terminal, and the available sub-nodes between the relay terminal and the destination terminal are detected. The transmission quality of the channel and the capacity of the available subchannels are selected.
  • the transmission quality of the available subchannels between the destination terminal and the destination terminal is the highest, and the relay terminal having the largest subchannel capacity is the relay communication between the source terminal and the destination terminal.
  • the existing route and resource joint allocation policy is based on an assumed static scenario, and defines the source terminal.
  • the destination terminal must communicate with several fixed relay terminals.
  • the number and location of terminals are changed at any time, and the terminal that can be used as a relay is also changed at any time, and the source terminal and the destination terminal do not necessarily have to communicate through the relay terminal.
  • the existing route and resource joint allocation policy is only when the communication path from the source terminal to the destination terminal is selected. Considering the factors affecting the communication quality such as the available subchannel transmission quality and the available subchannel capacity between the relay terminal and the destination terminal, the communication quality between the source terminal and the relay terminal is not considered. Furthermore, the existing route and resource joint allocation policy assumes that the available resources between the source terminal and the relay terminal and between the relay terminal and the destination terminal are the same. In fact, based on the spatiality of the link and the spatiality of the spectrum resources, the source terminal and the relay, and the spectrum resources of the relay and the destination terminal may be different.
  • a method for cell resource allocation comprising: receiving, by a terminal, subchannel information of the terminal and subchannel information of a neighbor node of the terminal; The subchannel information and the subchannel information of the neighbor node determine a cell level subchannel and a shared level subchannel, the cell level subchannel includes a subchannel available in the entire cell, and the shared level subchannel includes a cell level subchannel and a sub-channel that can only be used between the terminal and a part of the terminal; a cell-level sub-channel is allocated to the terminal as a direct sub-channel, and a shared-level sub-channel is allocated to the terminal as a relay sub-channel, wherein The direct subchannel is a subchannel used by
  • An apparatus for resource allocation of a cell comprising: a receiving unit: configured to receive subchannel information of the terminal reported by the terminal and subchannel information of a neighbor node of the terminal; and a determining unit: configured to be used according to the terminal The subchannel information and the subchannel information of the neighbor node determine a cell level subchannel including a subchannel available in the entire cell, and a sharing level subchannel including a cell level subchannel and only a subchannel that can be used between the terminal and a part of the terminal; a configuration unit: configured to allocate a cell-level subchannel to the terminal as a direct subchannel, and allocate a shared-level subchannel to the terminal as a relay subchannel Using the direct subchannel as a subchannel used by the direct link between the terminal and the base station, where the relay subchannel is a sub trunk used between the terminal and the partial terminal channel.
  • FIG. 1 is a schematic diagram of a scenario assumed by a prior heuristic suboptimal scheme.
  • 2 is a flow chart of an embodiment of a method for cell resource allocation according to the present invention.
  • 3 is a flow chart of another embodiment of a method for cell resource allocation according to the present invention.
  • FIG. 4 is a flow chart of another embodiment of a method for cell resource allocation according to the present invention.
  • FIG. 5 is a flowchart of another embodiment of a method for cell resource allocation according to the present invention.
  • 6 is a flow chart of another embodiment of a method for cell resource allocation according to the present invention.
  • FIG. 7 is a schematic structural diagram of an embodiment of an apparatus for cell resource allocation according to the present invention.
  • FIG. 8 is a schematic structural diagram of a specific embodiment of a configuration unit in a device for cell resource allocation according to the present invention.
  • FIG. 9 is a schematic structural diagram of another specific embodiment of a configuration unit in a device for cell resource allocation according to the present invention.
  • FIG. 10 is a schematic structural diagram of another specific embodiment of a configuration unit in a device for cell resource allocation according to the present invention.
  • FIG. 11 is a schematic structural diagram of another specific embodiment of a configuration unit in a device for cell resource allocation according to the present invention.
  • an embodiment of the method for cell resource allocation according to the present invention includes:
  • the S20K receives the subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal.
  • the available subchannel resources of the cell may change every allocation period, and the terminal may detect the available subchannels by using spectrum sensing methods, such as energy detection, matching filtering, etc., and then The base station reports the spectrum sensing result of the terminal, where the spectrum sensing result includes the subchannel information of the terminal detected by the terminal, where the subchannel information includes a subchannel currently available to the terminal and a subchannel that is currently unavailable (eg, By the community or phase The sub-channel used by other terminals of the neighboring cell); at the same time, the terminal monitors the reporting result of the neighboring node, the neighboring node is a terminal that is close to the terminal, has a strong signal and can be monitored, and the neighboring node and the local At least one terminal
  • N' is the number of subchannels between terminal i and neighbor node k.
  • the bandwidth of the channel ⁇ is ", then the available resource H of the terminal i, if the terminal listens to the neighboring node, the reported result satisfies the condition of the monitoring report, for example, the number of neighbor nodes is large or the available resources of the terminal are many (the specific value can be based on the empirical value) Or the statistical value setting), reporting the local neighboring node monitoring result to the base station. That is, the reporting condition is the remaining energy of the terminal i, and ⁇ is the number of all neighboring nodes of the terminal i,
  • Fi is the available resource of terminal i
  • 3 ⁇ 4 ⁇ is the resource condition of the terminal participating in the report
  • is a constant greater than 0 and less than 1.
  • S202 Determine a cell-level subchannel and a shared-level subchannel according to the subchannel information of the terminal and the subchannel information of the neighboring node, where the cell-level subchannel includes a subchannel that is available in the entire cell, and the shared-level subchannel A cell-level subchannel and sub-channels that are only available between the terminal and a portion of the terminal are included.
  • the base station divides the available subchannel resources of the current cell into two types according to the spectrum sensing result of each terminal and the monitoring result of the neighboring node: a cell level subchannel and a sharing level subchannel, and the cell level subchannel is available to all terminals in the entire cell.
  • the shared-level subchannel includes cell-level subchannels, and also includes subchannels that are only available between some of the terminals. Let the set of cell-level subchannels be:
  • represents a set of cell-level subchannels, '/' ⁇ ', ⁇ represents a cell-level subchannel, and ⁇ represents a number of cell-level subchannels. Then the set of shared-level subchannels satisfies the representative A set of shared-level subchannels, ;, / 2 , ⁇ , ⁇ represents a shared-level subchannel, and ⁇ ' represents the number of shared-level subchannels.
  • the cell-level subchannel is allocated to the terminal as a direct subchannel
  • the shared-level subchannel is allocated to the terminal as a relay subchannel
  • the direct subchannel is a direct link between the terminal and the base station.
  • a subchannel, the relay subchannel being a subchannel used by a relay link between the terminal and the partial terminal.
  • the direct link is established on the direct subchannel and the relay link is established on the relay subchannel.
  • the cell-level subchannel is allocated to the relay terminal or the destination terminal for use as a direct subchannel
  • the shared-level subchannel is allocated to the destination terminal for use as a relay subchannel.
  • the base station may first allocate each cell-level subchannel to the terminal MS with the highest gain of the corresponding subchannel, and then according to the fairness or QoS of the terminal. For the same demand, the terminal with the highest subchannel gain is used as the relay terminal RS, and the shared subchannel is used in the RS-MS link to improve the usage of the subchannel.
  • the cell-level subchannel is allocated to the terminal as a direct link
  • the shared-level sub-channel is allocated to the terminal as a relay link
  • the direct communication between the terminal and the base station is considered, and the relay terminal is dynamically selected.
  • the resource utilization is improved.
  • the subchannel suitable for use between the terminals is specifically divided into a cell-level subchannel and a shared-level subchannel.
  • the shared-level sub-channel is allocated to the terminal as a relay sub-channel, which takes into consideration the link spatiality of the relay communication and the spatiality of the spectrum sub-channel, and is beneficial for making full use of the link resources between the terminal and the terminal in the current cell.
  • the embodiment determines, according to the subchannel information of the terminal and the subchannel information of the neighbor node of the terminal, the subchannel and the adoption of the direct link communication of the terminal according to the environment in which the terminal is currently located.
  • the subchannel pair of the relay link communication has a more reasonable resource allocation.
  • Another embodiment of the method for cell resource allocation according to the present invention on the basis of the embodiment shown in FIG. 2, follows the principle of maximizing system capacity on the premise of limiting total power when assigning subchannels to terminals. As shown in FIG. 3, this embodiment includes:
  • the S30U receives the subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal. The same as step 201, no further description is made here.
  • the subchannel of 1 is n's subchannel of relay terminal 1 to terminal i.
  • the subchannel capacity actually available to the terminal i is mainly limited by two conditions, one is the capacity of the subchannel n of the base station to the relay terminal 1, and is represented here by X; the other is that the terminal i passes the relay terminal.
  • the capacity available from subchannel n' of terminal i to subchannel n of base station to terminal i denoted here by y.
  • the subchannel capacity actually available to terminal i is the minimum of the two values X and y. The above is expressed by the formula (1) as follows:
  • n represents the nth direct subchannel (herein referred to as direct subchannel n)
  • n' represents the nth shared subchannel (herein referred to as shared subchannel ⁇ ')
  • denotes the number of cell level subchannels
  • N' denotes the number of shared-level subchannels
  • denotes the bandwidth of the direct subchannel ⁇ (here, the bandwidth of the subchannel ⁇ ' is assumed to be the same as ⁇ )
  • c denotes a cell-level subchannel
  • s denotes a shared-level subchannel
  • denotes a cell-level A set of subchannels
  • denotes a set of shared-level subchannels
  • Bit error rate requirement is subchannel real The signal-to-noise ratio difference between capacity and Shannon capacity; Wo is the noise power spectral density. Since the relay method uses the base station to relay terminal 1, and then to the terminal i, the transmission time is roughly the base station directly to the terminal i. Twice, so the subchannel capacity actually available to the terminal i is roughly the total subchannel capacity multiplied by 1/2. The case where the terminal only uses the subchannel capacity available for the direct link can be classified as follows: The subchannel n communicates with the terminal i, which is expressed by the formula (2) as follows:
  • R i gas nl « 2 (1 + ⁇ ⁇ . ⁇ ) ( 2 )
  • n represents the nth direct subchannel (
  • N represents the number of cell-level subchannels
  • Bn represents the bandwidth of direct subchannel n
  • '' is the transmission power of base station to terminal i on direct subchannel n, from base station to terminal i Direct
  • the channel gain of subchannel n, ⁇ is the user's bit error rate requirement, is the signal-to-noise ratio difference between the sub-channel actual capacity and the Shannon capacity; Wo is the noise power spectral density.
  • S303 Select a subchannel allocation scheme that maximizes the total capacity of the subchannel of the local cell, and according to the subchannel allocation scheme, determine that the terminal only uses the subchannel of the direct link communication and the subchannel that communicates by using the relay link. It is assumed that there are X terminals in the cell, and there are y subchannels in the same cell. There are several different allocation modes for allocating y subchannels to X terminals, that is, the subchannel allocation scheme. A subchannel allocation scheme with the largest total capacity of the subchannel of the local cell. As shown in equation (3), the formula is modeled as follows: M L M
  • R. R where "represents the subchannel capacity actually available to the terminal i on the premise that the relay terminal 1 exists, indicating that the subchannel capacity actually available to the terminal i under the premise that the relay terminal 1 does not exist, is the base station to The transmission power of the terminal i on the direct subchannel n, and also the transmission power of the base station to the relay terminal 1 on the direct subchannel n, which is used on the relay subchannel ⁇ ' when the relay terminal 1 transmits a signal to the terminal i.
  • the transmission power "" indicates that the relay subchannel pair ( ⁇ , ⁇ ') is allocated to the terminal i and the relay terminal 1, and ⁇ ''" indicates that the channel n is directly allocated to the terminal 1, and M indicates the terminal in the cell.
  • the number, L represents the number of relay terminals.
  • the constraint condition (3-1) indicates that the subchannel n can only be assigned to one terminal; the restriction conditions (3-2), (3-3) and (3-4) indicate that the subchannel n' can only be assigned to one terminal;
  • Condition (3-5) indicates that the power allocated by the system to the base station and the terminal shall not exceed the total system power.
  • P0,i,n are the transmit power of the base station to the terminal i on the direct subchannel n, and also the transmit power of the base station to the relay terminal 1 on the direct subchannel n, 'send the signal to the terminal 1 for the relay terminal 1
  • the transmit power used on the relay subchannel n'; Bn represents the bandwidth of the direct subchannel n, and ⁇ is the user's bit error rate requirement, which is the difference between the actual capacity of the subchannel and the Shannon capacity.
  • A( , " is the channel gain from the base station to the relay terminal 1
  • Equation (5) and constraints (5-1) to (5-5) can be solved by Lagrangian dual method and KKT condition, and a subchannel allocation scheme with the largest total capacity of subchannels can be obtained, according to which A channel allocation scheme, which determines a subchannel in which the terminal uses direct link communication and a subchannel that uses a relay link to communicate. Under the maximum system capacity, the terminal with high subchannel gain will get a lot of subchannel capacity, but the service rate of the terminal may be low, and the subchannel resources are not effectively utilized; on the contrary, the terminal with low subchannel gain will not be able to use Ensure the actual required transfer rate. Therefore, the resource optimization allocation strategy aiming at maximizing system capacity should also consider the guarantee of terminal service quality and fairness.
  • the maximum subchannel allocation scheme obtained by the terminal may satisfy the following condition: the number of cell level subchannels allocated for the terminal is equal to the cell level that can be evenly allocated to each terminal.
  • the number of channels The formula is expressed as follows -
  • the relay subchannel pair ( n , ⁇ ') is allocated to the terminal i and the relay terminal 1, and the subchannel ⁇ is directly allocated to the terminal i, and n is the nth direct subchannel (referred to herein as a direct subroutine).
  • Channels n), n ' represent the nth shared subchannel (herein referred to as shared subchannel n'), N represents the number of cell-level subchannels, L represents the number of shared-level subchannels, and N is the cell of the cell.
  • the total number of subchannels, M is the total number of terminals in the cell.
  • the meaning of the formula is:
  • the number of direct subchannels allocated to each terminal is equal to N/M rounding.
  • the maximum subchannel allocation scheme obtained by the terminal also needs to satisfy the following conditions: the transmission rate of the subchannel allocated to the terminal is greater than or equal to the The minimum rate requirement for the terminal.
  • ' ⁇ indicates the minimum rate requirement of the terminal i, "", indicating that the relay subchannel pair ( ⁇ , ⁇ ') is allocated to the terminal i and the relay terminal 1, indicating that the subchannel ⁇ is directly allocated to the terminal i
  • n Representing the nth direct subchannel (referred to herein as direct subchannel n)
  • n' represents the nth shared subchannel (herein referred to as shared subchannel n')
  • N represents the number of direct subchannels
  • N represents the number of direct subchannels
  • N' The number of shared subchannels
  • represents the rate at which user i can transmit on direct subchannel n
  • "' indicates the rate at which user i can relay over terminal 1 on the relay subchannel pair (n, n').
  • the system capacity maximization principle is adopted under the premise of total power limitation, and the subchannel of the terminal adopting direct link communication is determined and adopted.
  • the sub-channel of the link communication can maximize the system capacity of the cell, and the resource allocation is more reasonable.
  • Another embodiment of the method for cell resource allocation according to the present invention is based on the embodiment shown in FIG. Subletter When, based on fairness solution shown in Figure 4, comprising:
  • the S40U receives the subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal. The same as step 201, no further description is made here.
  • each cell-level subchannel is allocated to the terminal with the highest channel gain using the cell-level subchannel, and is used as a direct subchannel.
  • the base station traverses each terminal of the cell, finds the terminal with the highest channel gain using the cell-level subchannel, and allocates the cell-level subchannel to the terminal for use as a direct subchannel. If there are multiple terminals using the channel gain of the cell-level subchannels the same, the base station randomly allocates the cell-level subchannel to one of the terminals.
  • the number of cell-level subchannels allocated to each terminal is different, and there are many and many sub-channels. In a case where the cell environment is relatively complicated, the gap may be quite different, in order to balance the subchannels.
  • the fairness of allocation taking the total number of cell-level subchannels of the cell and the total number of terminals in the cell, that is, the average value of the number of molecular channels per terminal of the cell, is considered as fairness.
  • the traversal may pass through the relay subchannel pair of the terminal, and find a channel therefrom.
  • the relay subchannel pair includes: (1) a direct subchannel that has been allocated to the terminal; (2) a relay subchannel for the relay link of the terminal to other terminals.
  • the other terminal is a terminal whose allocated subchannel number is smaller than the average value of the current cell.
  • the relay subchannel is taken from a shared level subchannel that has not been allocated.
  • another terminal is sought (end of purpose) End) is the terminal that allocates the fewest number of subchannels.
  • the relay subchannel pair is used. Assigned to the other terminal. For example, the relay subchannel pair (n, n') of the terminal MS 1 having the most subchannels, and the destination terminal being MS2, where n is a direct subchannel and n ' is a relay subchannel. Then the condition for assigning the relay subchannel pair ( ⁇ , ⁇ ' ) to MS2 is that the channel gain of MS2 using ⁇ ' is higher than the channel gain of ⁇ using MS2.
  • the channel gain of the destination terminal using the relay subchannel is higher than the channel gain of the direct terminal using the destination terminal, it indicates that the destination terminal uses the relay communication method, and the relay subchannel pair is allocated to the destination terminal, correspondingly, The direct subchannel of the terminal is reduced by one, because the direct subchannel of one relay terminal is occupied to transmit data for the destination terminal.
  • the relay terminal only uses the relay subchannel.
  • the direct subchannel of the pair is allocated to the other terminal as a direct subchannel for the direct link of the base station to the other terminal.
  • the relay subchannel pair (n, n') of the terminal MS 1 having the most subchannels, and the destination terminal being MS2, where n is a direct subchannel and n ' is a relay subchannel. If the channel gain of MS2 using n' is less than or equal to the channel gain of MS2 using n, the ⁇ of the relay subchannel pair ( ⁇ , ⁇ ') is assigned to MS2 as a direct subchannel.
  • the number of allocated subchannels can be A subchannel of a terminal having more than the average value is allocated to a terminal whose number of subchannels having the second highest channel gain is less than the average value is used as a direct subchannel.
  • Step 404 and step 405 have no necessary sequence. Based on the actual consideration of the user, there may be only one step in the two steps, and the remaining steps are taken as the inevitable execution steps of the entire process.
  • Steps 403, 404 and 405 are repeated until the number of subchannels of each terminal reaches an average or averages to a tolerable range, which is set by the administrator.
  • the remaining subchannels are allocated to the terminal in a descending order in which the terminal provides the relay link. At this time, if there are still remaining subchannels that are not allocated to any terminal, since the relay terminal performs the relay task in addition to its own communication, the burden is heavier, and the remaining subchannels are provided as relay links for other terminals. The order to the least is assigned to the relay terminal.
  • the user's quality of service weight is ⁇ , where ( t ) is the rate requirement of the user terminal i during the allocation period t, ⁇ 1 ) is the average transmission rate of the user terminal i before the period t, 4 ( ⁇ )
  • the queue delay for the service to be transmitted is the transmission delay threshold of the service. As shown in Figure 5, it includes:
  • S501 The subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal are received. S501 is similar to step 201 and will not be described here.
  • the cell-level subchannel is allocated to the terminal with the highest channel gain using the subchannel according to the subchannel information reported by the terminal and the neighbor node, and is used as a direct subchannel.
  • S502 is similar to step 402 and will not be described here.
  • the terminal with the largest service quality weight is obtained as the terminal to be adjusted in the terminal whose cumulative rate does not meet the service rate requirement.
  • Each terminal will have the lowest rate required for normal communication, which should be guaranteed first. Further, among the many terminals, the minimum rate required for normal communication of terminals with large service quality weights is preferentially guaranteed.
  • the relay subchannel pair includes a direct subchannel that has been allocated to the adjusted terminal and a relay subchannel for the relay link that is adjusted to the terminal to be adjusted, the relay subchannel is taken from the unallocated share Level subchannel.
  • the adjusted terminal is MS1, which is to be adjusted to MS2
  • the subchannel n is a direct subchannel allocated to the MSI
  • the subchannel n' is a relay subchannel of MSI to MS2.
  • the base station includes (n, n') through the relay subchannel pair of MS1 to MS2.
  • the adjusted terminal loses the direct subchannel in the relay subchannel pair, the minimum rate requirement can still be met, and the channel gain of the relay subchannel in the relay subchannel pair to be used by the to-be-adjusted terminal is higher than the
  • the channel to be adjusted uses the channel gain of the direct subchannel in the pair of relay subchannels, and the pair of relay subchannels is allocated to the terminal to be adjusted.
  • the adjusted terminal is MS1, which is to be adjusted to MS2, the subchannel n is a direct subchannel allocated to the MSI, and the subchannel n' is a relay subchannel of MSI to MS2.
  • the base station includes (n, n') through the relay subchannel pair of MS1 to MS2.
  • the channel gain of the terminal to be adjusted using the relay subchannel is higher than the channel gain of the direct subchannel to be used by the terminal to be adjusted, it indicates that the communication mode of the terminal to be adjusted is better, and the relay subchannel pair is allocated to the terminal to be adjusted.
  • the direct subchannel of the relay terminal is reduced by one, because the direct subchannel of one relay terminal is occupied to transmit data for the terminal to be adjusted. In order to ensure that the communication quality of the relay terminal is not affected, the following conditions must be met for allocating the relay subchannel pair: After the adjusted terminal loses the direct subchannel in the relay subchannel pair, the minimum rate requirement can still be met.
  • the adjusted terminal loses the direct subchannel in the relay subchannel pair, the minimum rate requirement can still be met, and the channel gain of the relay subchannel in the relay subchannel pair to be used by the to-be-adjusted terminal is less than or equal to the
  • the channel to be adjusted uses the channel gain of the direct subchannel in the pair of relay subchannels, and only the direct subchannel in the pair of relay subchannels is allocated to the terminal to be adjusted, as the direct link of the base station to the terminal to be adjusted. Direct subchannel use.
  • the channel gain of the terminal to be adjusted using the relay subchannel is less than or equal to the channel gain of the direct subchannel to be adjusted by the terminal to be adjusted, it indicates that the communication mode of the terminal to be adjusted is not very good, but based on the consideration of satisfying the minimum rate requirement of the terminal, A direct subchannel that has been allocated to a terminal that satisfies the minimum rate requirement can be allocated to a terminal that has the second highest channel gain and that does not satisfy the minimum rate requirement is used as a direct subchannel.
  • the adjusted terminal loses the direct subchannel in the relay subchannel pair and fails to meet the service rate requirement, and the adjusted service quality weight of the terminal is greater than or equal to the terminal to be adjusted, the subchannel is not used for the adjusted terminal. Adjustment, continue to find a suitable adjusted terminal for subchannel adjustment in the terminal that meets the service rate requirement. If the QoS value is smaller than the terminal of the terminal to be adjusted, and the direct subchannel in the relay subchannel pair is lost, the minimum rate requirement cannot be met, and the direct subchannel of the terminal with the smallest QoS weight is assigned to the terminal to be adjusted. The direct subchannel is used until the terminal to be adjusted meets the minimum rate requirement.
  • Step 507, step 508 and step 509 have no necessary sequence. Based on the actual consideration of the user, there may be only one step in the two steps, and the remaining steps are taken as the inevitable execution steps of the entire process.
  • the remaining subchannels are allocated to the terminal in a descending order in which the terminal provides the relay link.
  • Steps 510 and 511 are similar to steps 407 and 408, and are not described herein.
  • the subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal following the principle of ensuring that the terminal meets the minimum rate requirement as much as possible, determining that the terminal uses the subchannel of the direct link communication and adopts the relay.
  • the sub-channels of the link communication can realize sub-channel allocation quickly and the resource allocation is more reasonable without complicated calculation process.
  • Another embodiment of the method for cell resource allocation according to the present invention is based on the embodiment shown in FIG. 2, is based on a semi-detached solution of routing and resource allocation when allocating subchannels for a terminal. As shown in Figure 6, it includes:
  • the base station selects a relay terminal from the terminal according to the subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal.
  • the base station selects a part of the plurality of terminals in the local cell as the relay terminal according to the subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal, and the number and selection method of the relay terminal may be managed by the administrator. Set it yourself.
  • the base station selects L terminals that can participate in the relay to form a relay pool according to the local spectrum pool reported by the terminal that meets the reporting condition of the embodiment of FIG. 2, and then forms a relay pool according to the large-scale channel quality of the reported link.
  • the first L terminals are selected as relay terminals from all terminals, where is the path loss value of the terminal i and the base station, & is the reporting condition in the embodiment of Fig. 2.
  • the cell-level subchannel is allocated to the relay terminal with the highest channel gain using the subchannel, and is used as a direct subchannel until the number of subchannels allocated to the relay terminal is greater than or equal to the average value of the cell.
  • relay subchannel pair that is capable of providing the non-relay terminal with the largest equivalent power channel gain for each relay terminal, where the relay subchannel pair includes two subchannels, and one of the subchannels of the base station to the relay terminal adopts The allocated cell-level subchannel; the other is a sub-channel from the relay terminal to the non-relay terminal, and the shared-level sub-channel that has not been allocated is used.
  • G 0 , ,,,, considerably and 3 ⁇ 4 ′ denote the power channel gain of the link between the base station and the terminal 1, the base station and the terminal i, and the terminal 1 and the terminal i, respectively. From the relay subchannel pair with the highest equivalent power channel gain that each relay terminal can provide for the non-relay terminal, a relay subchannel pair with the largest equivalent power channel gain and the corresponding non-relay terminal are selected.
  • the channel gain of the non-relay terminal using the relay subchannel in the relay subchannel pair is set to: the channel gain of the non-relay terminal using the direct subchannel in the relay subchannel pair is ⁇ ',", If ⁇ ' ⁇ , it means that the communication mode of the terminal adopts the relay is better, and the relay subchannel pair is allocated to the non-relay terminal.
  • Steps 607 and 608 are the same as steps 407 and 408, and are not described herein.
  • the relay terminal is first determined, and then the relay terminal is determined to use direct link communication.
  • the subchannels are determined, and the subchannels of the non-relay terminal using the direct link communication and the subchannels of the non-relay terminal using the relay link communication do not require complicated calculation processes, and the subchannel allocation can be quickly realized, and the resource allocation is more reasonable. .
  • An embodiment of the device for resource allocation of the cell of the present invention includes a receiving unit 701: configured to receive subchannel information of the terminal reported by the terminal and subchannel information of the neighbor node of the terminal.
  • the determining unit 702 is configured to determine a cell-level subchannel and a shared-level subchannel according to the sub-channel information of the terminal and the sub-channel information of the neighboring node, where the cell-level sub-channel includes a sub-channel that is available in the entire cell, where
  • the shared-level subchannel includes a cell-level subchannel and a subchannel that is only available between the terminal and a portion of the terminal.
  • the configuration unit 703 is configured to allocate the cell-level subchannel to the terminal as a direct subchannel, and allocate the shared-level subchannel to the terminal as a relay subchannel, where the direct subchannel is a direct link between the terminal and the base station.
  • a subchannel used by the path, the relay subchannel being a subchannel used by a relay link between the terminal and the partial terminal.
  • the cell-level subchannel is allocated to the terminal as a direct link
  • the shared-level subchannel is allocated to the terminal as a relay link, and direct communication between the terminal and the base station is considered, and the relay is dynamically selected.
  • the resource utilization is improved, and at the same time, the subchannel suitable for use between the terminals is specifically divided into a shared-level subchannel, and is allocated to the terminal as a relay subchannel.
  • the use taking into account the advantages of relay communication, is beneficial to make full use of the link resources between the terminal and the terminal in the cell.
  • the present embodiment extends the resources available to the relay link based on the spatiality of the link and the spatiality of the spectrum resources.
  • the embodiment determines, according to the subchannel information of the terminal and the subchannel information of the neighbor node of the terminal, the subchannel and the adoption of the direct link communication of the terminal according to the environment in which the terminal is currently located.
  • Sub-channels for relay link communication resource allocation is more reasonable.
  • the method includes: an obtaining subunit 801: configured to use a relay in the maximum power allocated by the system to the terminal.
  • Capacity calculation sub-unit 802 The sub-channel capacity available for using the relay link to the terminal is only used by the terminal The subchannel capacity available for the direct link is added to obtain the total subchannel capacity available to the terminal under the seed channel allocation scheme.
  • a first allocation subunit 803 configured to select a subchannel allocation scheme that maximizes a total capacity of a subchannel of the local cell, and according to the subchannel allocation scheme, determine that the terminal uses a subchannel of direct link communication and communicates by using a relay link. Subchannel.
  • the system capacity maximization principle is adopted on the premise that the total power is limited, and the subchannel and the direct link communication of the terminal are determined. By using the sub-channels of the relay link communication, the system capacity of the cell can be maximized, and the resource allocation is more reasonable.
  • This embodiment is another embodiment of the configuration unit in the apparatus shown in FIG. 7. As shown in FIG.
  • the method includes: a second allocation subunit 901: configured to allocate a cell-level subchannel to a channel using the subchannel.
  • the terminal with the highest gain is used as a direct subchannel.
  • a relay subchannel of the relay link, the relay subchannel is taken from a shared-level subchannel that has not been allocated, and the relay subchannel with the highest channel gain and the corresponding other terminal are found therefrom.
  • a third allocation subunit 903 if the channel gain of the relay subchannel in the relay subchannel pair is higher than the channel gain of the direct subchannel in the relay subchannel pair used by the other terminal The relay subchannel pair is assigned to the other terminal.
  • a fourth allocation subunit 904 if the channel gain of the relay subchannel in the relay subchannel pair is less than or equal to the channel gain of the direct subchannel in the relay subchannel pair The direct subchannel in the pair of relay subchannels is only allocated to the other terminal as a direct subchannel for the direct link of the base station to the other terminal.
  • Fourth Provisioning Subunit 905 If there are still remaining subchannels not allocated to any of the terminals, the remaining subchannels are allocated to the terminal in descending order of providing relay links for other terminals.
  • Power allocation subunit 906 for equal power allocation or water injection power allocation to subchannels already allocated to the terminal.
  • the principle of resource fairness between the terminals is followed, and the subchannel of the terminal adopting direct link communication and the relay chain are determined.
  • Road communication Subchannels without complex computational processes, can quickly achieve subchannel allocation, and resource allocation is more reasonable.
  • This embodiment is another embodiment of the configuration unit in the apparatus shown in FIG. 7, as shown in FIG.
  • the fifth allocation subunit 1001 is configured to allocate the cell level subchannel to the terminal with the highest channel gain using the subchannel, and use it as a direct subchannel.
  • Rate calculation subunit 1002 used to calculate the rate at which the terminal accumulates after obtaining the direct subchannel.
  • the second locating sub-unit 1003 is configured to find the terminal with the largest QoS weight in the terminal that has the maximum rate of the cumulative rate that does not meet the minimum rate requirement after the cell-level sub-channel is allocated.
  • the sixth allocation subunit 1004 is configured to select, as the adjusted terminal, one terminal that has the largest number of allocated subchannels in the terminal whose cumulative rate meets the service rate requirement.
  • a third lookup subunit 1005 configured to search for a relay subchannel pair that can pass through the adjusted terminal, the relay subchannel pair including a direct subchannel that has been allocated to the adjusted terminal and one for the adjusted terminal to the terminal to be adjusted A relay subchannel of the relay link, the relay subchannel being taken from a shared level subchannel that has not been allocated.
  • the seventh allocating subunit 1006 if the adjusted terminal loses the direct subchannel in the relay subchannel pair, the minimum rate requirement can still be met, and the to-be-adjusted terminal uses the channel of the relay subchannel in the relay subchannel pair The gain is higher than the channel gain of the direct subchannel in the relay subchannel pair used by the to-be-adjusted terminal, and is used to allocate the relay subchannel pair to the to-be-tuned terminal.
  • the eighth allocating subunit 1007 if the adjusted terminal loses the direct subchannel in the relay subchannel pair, the minimum rate requirement can still be met, and the to-be-adjusted terminal uses the channel of the relay subchannel in the relay subchannel pair
  • the gain is less than or equal to the channel gain of the direct subchannel in the relay subchannel pair used by the terminal to be adjusted, and is used to allocate only the direct subchannel in the relay subchannel pair to the terminal to be adjusted, as the base station Adjust the direct subchannel usage of the direct link of the terminal.
  • the configuration unit further includes: a ninth allocation subunit 1008: if the QoS weight is smaller than the terminal to which the terminal quality of service is to be adjusted, after the direct subchannel in the relay subchannel pair is lost, the service rate requirement cannot be met. Then, continue to find a suitable adjusted terminal for subchannel adjustment in the terminal that meets the service rate requirement; if no suitable adjusted terminal is found, find the terminal with the smallest service quality weight and the terminal with the smallest service quality weight The direct subchannel is allocated to the terminal to be adjusted for use as a direct subchannel until the terminal to be adjusted satisfies the service rate requirement.
  • Power allocation subunit 1010 For performing equal power allocation or water injection power allocation on subchannels that have been allocated to the terminal.
  • the subchannel information of the terminal reported by the terminal and the subchannel information of the neighbor node of the terminal following the principle of ensuring that the terminal meets the minimum rate requirement as much as possible, determining that the terminal uses the subchannel of the direct link communication and adopts the relay.
  • the sub-channels of the link communication can realize sub-channel allocation quickly and the resource allocation is more reasonable without complicated calculation process.
  • another specific embodiment of the configuration unit includes: a selected subunit 1101: configured to use the subchannel information of the terminal and the terminal according to the terminal The sub-channel information of the neighbor node is selected as the relay terminal from the terminal; the first deployment sub-unit 1102 is configured to allocate the cell-level sub-channel to the relay terminal with the highest channel gain using the sub-channel, as a direct The subchannel is used, wherein the number of subchannels allocated for the relay terminal is greater than or equal to the average value of the cell.
  • the fourth lookup subunit 1103 is configured to search for a relay subchannel pair with the largest equivalent power channel gain that each relay terminal can provide for the non-relay terminal, the relay subchannel pair includes two subchannels, and one is a base station to the middle Following the subchannel of the terminal, the allocated cell-level subchannel is used: the other is a subchannel of the relay terminal to the non-relay terminal, and the shared-level subchannel that has not been allocated is used.
  • the second provisioning subunit 1104 is configured to: select, from a relay subchannel pair having the largest equivalent power channel gain that each relay terminal can provide for the non-relay terminal, a relay subchannel pair with the largest equivalent power channel gain Corresponding non-relay terminal, if the non-relay terminal uses the channel gain of the relay subchannel in the relay subchannel pair is higher than the channel gain of the non-relay terminal using the direct subchannel in the relay subchannel pair Assigning the relay subchannel pair to the non-relay terminal.
  • the third deployment subunit 1105 if the non-relay terminal uses the channel gain of the relay subchannel in the relay subchannel pair is less than or equal to the non-neutral terminal The channel gain of the direct subchannel in the relay subchannel pair is used by the terminal to allocate only the direct subchannel in the relay subchannel pair to the non-relay terminal as a direct connection from the base station to the non-relay terminal. Direct subchannel use of the link.
  • Fourth Provisioning Subunit 1106 If there are still remaining subchannels not allocated to any of the terminals, the remaining subchannels are allocated to the terminal in descending order of providing relay links for other terminals.
  • Power allocation subunit 1107 for equal power allocation or water injection power allocation to subchannels already allocated to the terminal.
  • the following is performed.
  • the principle of semi-separation of routing and resource allocation first determine the sub-channels in which the relay terminal uses direct link communication, and then determine the sub-channels in which the non-relay terminals use direct link communication and the sub-channels in which the non-relay terminals use the relay link communication.
  • the channel can quickly realize subchannel allocation without complicated calculation process, and the resource allocation is more reasonable.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

小区资源分配方法和装置 本申请要求于 2010年 6月 2日提交中国专利局、 申请号为 201010189872. 9、 发明名称 为 "小区资源分配方法和装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申 请中。 技术领域 本发明涉及移动网络, 尤其涉及一种小区资源分配的方法和装置。 背景技术 在现有移动通信系统的蜂窝小区中, 一个终端可以通过一个或多个其它终端中继后连接 到对应小区基站, 这些为其他终端提供中继服务的终端称作中继终端。 中继终端的使用减小 了路径损耗, 改善了每条传输链路的通信质量, 从而大大提高了整个蜂窝小区的容量和覆盖 范围。 由于使用终端进行中继通信对终端资源和小区系统容量产生了影响, 需要制定一套新的 路由和资源联合分配策略。现有技术采用的一个方案为启发式次最优方案,针对单个源终端- 多个中继终端-单个目的终端, 源终端与目的终端之间没有连接的场景,进行联合的中继选择 和子信道分配。 现有启发式次最优方案假定的场景如图 1所示, 假定源终端与目的终端之间有固定的 k 个中继终端 Rl-Rk, 检测各中继终端与目的终端之间的可用子信道的传输质量和可用子信道 的容量, 选择与目的终端之间可用子信道传输质量最高, 可用子信道容量最大的一个中继终 端承接源终端与目的终端之间的中继通信。 在实现上述路由和资源联合分配策略的过程中, 发明人发现现有技术中至少存在如下问 题: 现有路由和资源联合分配策略是建立在一个设想的静态场景的基础上, 并且限定了源终 端与目的终端必须通过固定的几个中继终端进行通信。 但是, 在实际的蜂窝小区环境中, 终 端的数量和位置都是随时变化的, 可以作为中继的终端也是随时变化的, 源终端与目的终端 之间也不一定就必须通过中继终端通信, 只要满足通信要求, 源终端与目的终端直接通信也 是可以的; 另外, 现有路由和资源联合分配策略在选定源终端到目的终端的通信路径时, 只 考虑了中继终端与目的终端之间的可用子信道传输质量和可用子信道容量等影响通信质量的 因素, 却并未考虑源终端与中继终端之间的通信质量状况。 再者, 现有路由和资源联合分配 策略都是假定源终端与中继终端之间, 以及中继终端与目的终端之间的可用资源是相同的。 实际上, 基于链路的空间性和频谱资源的空间性, 源终端与中继, 中继与目的终端的频谱资 源是可以不同的。 基于以上原因, 现有路由和资源联合分配策略不能在实际应用中合理分配 小区资源。 发明内容 本发明的实施例提供一种小区资源分配的方法和装置, 能够在实际应用中合理分配小区 资源。 为达到上述目的, 本发明的实施例采用如下技术方案: 一种小区资源分配的方法, 包括: 接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息; 根据所述终端的子信道信息和邻居节点的子信道信息确定小区级子信道和共享级子信 道, 所述小区级子信道包括在整个小区内可用的子信道, 所述共享级子信道包括小区级子信 道和只能在所述终端与部分终端之间可用的子信道; 将小区级子信道分配给所述终端作为直接子信道使用, 将共享级子信道分配给所述终端 作为中继子信道使用, 其中, 所述直接子信道为所述终端与基站之间的直接链路使用的子信 道, 所述中继子信道为所述终端与所述部分终端之间的中继链路使用的子信道。 一种小区资源分配的装置, 其特征在于, 包括: 接收单元:用于接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息; 判定单元: 用于根据所述终端的子信道信息和邻居节点的子信道信息确定小区级子信道 和共享级子信道, 所述小区级子信道包括在整个小区内可用的子信道, 所述共享级子信道包 括小区级子信道和只能在所述终端与部分终端之间可用的子信道; 配置单元: 用于将小区级子信道分配给所述终端作为直接子信道使用, 将共享级子信道 分配给所述终端作为中继子信道使用, 其中, 所述直接子信道为所述终端与基站之间的直接 链路使用的子信道, 所述中继子信道为所述终端与所述部分终端之间的中继链路使用的子信 道。 本发明实施例提供的小区资源分配的方法和装置, 根据终端上报的该终端的子信道信息 和该终端的邻居节点的子信道信息, 根据该终端当前所处的环境确定该终端采用直接链路通 信的子信道和采用中继链路通信的子信道对, 资源分配更加合理。 附图说明 图 1为现有启发式次最优方案假定的场景示意图。 图 2为本发明小区资源分配的方法的一个实施例的流程图。 图 3为本发明小区资源分配的方法的另一个实施例的流程图。 图 4为本发明小区资源分配的方法的另一个实施例的流程图。 图 5为本发明小区资源分配的方法的另一个实施例的流程图。 图 6为本发明小区资源分配的方法的另一个实施例的流程图。 图 7为本发明小区资源分配的装置的一个实施例的结构示意图。 图 8为本发明小区资源分配的装置中配置单元的一个具体实施例的结构示意图。 图 9为本发明小区资源分配的装置中配置单元的另一个具体实施例的结构示意图。 图 10为本发明小区资源分配的装置中配置单元的另一个具体实施例的结构示意图。 图 11为本发明小区资源分配的装置中配置单元的另一个具体实施例的结构示意图。
具体实施方式 下面结合附图对本发明实施例的方法和装置进行详细描述。 以认知蜂窝 adhoc网络为例, 参见图 2所示, 本发明小区资源分配的方法的一个实施例 包括:
S20K 接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息。 在认知蜂窝 adhoc网络中, 每个分配周期, 本小区的可用子信道资源都可能发生变化, 终端通过频谱感知的方法, 如能量检测, 匹配滤波等, 可以检测到可用的子信道, 然后向基 站上报终端的频谱感知结果,所述频谱感知结果中包括该终端检测到的该终端的子信道信息, 所述子信道信息包括该终端当前可用的子信道和当前不可用的子信道 (如正被本小区或者相 邻小区的其它终端使用的子信道); 同时, 终端监听邻居节点的上报结果, 所述邻居节点是与 该终端距离较近, 信号较强且能够被监听到的其他终端, 并且邻居节点与本终端至少有一个
V ; fc n≠ 0 _ -.
相同的可用子信道, 即 ^ " , 其中 表示第 i个终端 (以下称为终端 i ) 与终端 i的第 k个邻居节点 (以下称为邻居节点 k) 的第 n个子信道 (以下称为子信道 n ) 都可用, N'为终端 i与邻居节点 k之间的子信道数目。设终端 i的所有邻居节点的数目为 NBi个,子信
^ -∑∑ „Βη
道 η的带宽为 ", 则终端 i的可用资源 H , 如果终端监听邻居节点的上报结果 满足监听上报的条件, 比如邻居节点的数目很大或者本终端的可用资源很多 (具体数值可以 根据经验值或者统计值设定), 则向基站上报本地对邻居节点的监听结果。 即上报条件为 为终端 i的剩余能量, ^为终端 i的所有邻居节点的数目,
Fi为终端 i的可用资源, ¾ ^为参与上报的终端的资源条件, α为大于 0小于 1的常数。
5202、 根据所述终端的子信道信息和邻居节点的子信道信息确定小区级子信道和共享级 子信道, 所述小区级子信道包括在整个小区内可用的子信道, 所述共享级子信道包括小区级 子信道和只能在所述终端与部分终端之间可用的子信道。 基站根据各终端的频谱感知结果和对邻居节点的监听结果, 把本小区的可用子信道资源 分为两类: 小区级子信道和共享级子信道, 小区级子信道在整个小区内所有终端可用; 共享 级子信道包括了小区级子信道, 还包括只能在部分终端之间可用的子信道。 设小区级子信道 的集合为:
m ., fN、 其中 ψ代表小区级子信道的集合, '/"··',^代表小区级子信 道, Ν代表小区级子信道的个数。 则共享级子信道的集合满足 其中 代表共享级子信道的集合, ;,/2,···,Λ 代表共享级子信道, Ν' 代表共享级子信道的个数。
5203、 将小区级子信道分配给终端作为直接子信道使用, 将共享级子信道分配给终端作 为中继子信道使用, 其中,所述直接子信道为所述终端与基站之间的直接链路使用的子信道, 所述中继子信道为所述终端与所述部分终端之间的中继链路使用的子信道。 本实施例中, 基站与终端的通信方式有两种: 第一种是基站与目的终端只建立直接链路 通信; 第二种是基站通过一个中继终端与目的终端进行通信, 其中, 基站与中继终端之间通 过直接链路通信, 中继终端与目的终端之间通过中继链路通信。 直接链路建立在直接子信道 上, 中继链路建立在中继子信道上。 将小区级子信道分配给中继终端或目的终端作为直接子 信道使用, 将共享级子信道分配给目的终端作为中继子信道使用。 进一步的, 为了使小区系 统容量最大化, 基站在进行小区级子信道分配时, 可以把每个小区级子信道先分配给相应子 信道增益最高的终端 MS, 然后再根据终端的公平性或 QoS等需求, 尽量利用子信道增益最高 的终端作为中继终端 RS,结合共享级子信道在 RS-MS链路的使用,从而提高子信道的使用率。 本实施例将小区级子信道分配给终端作为直接链路使用, 将共享级子信道分配给终端作 为中继链路使用, 考虑了终端与基站的直接通信, 另外, 中继终端是动态选择的, 相比现有 事先确定中继终端的方案, 有利于资源利用率的提高, 同时, 本实施例将适合在终端之间使 用的子信道专门划分为小区级子信道和共享级子信道, 将共享级子信道分配给终端作为中继 子信道使用, 兼顾了中继通信的链路空间性和频谱子信道的空间性, 有利于充分利用本小区 内终端与终端之间的链路资源。 综上所述, 本实施例根据终端上报的该终端的子信道信息和 该终端的邻居节点的子信道信息, 根据该终端当前所处的环境确定该终端采用直接链路通信 的子信道和采用中继链路通信的子信道对, 资源分配更加合理。 本发明小区资源分配的方法的另一个实施例, 在图 2所示实施例的基础上, 在为终端分 配子信道时, 遵循总功率受限的前提下系统容量最大化原则。 如图 3所示, 本实施例包括:
S30U 接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息。 同步骤 201, 在此不做赘述。
S302、 分别获取该终端采用中继链路可获得的子信道容量和该终端只采用直接链路可获 得的子信道容量。 在系统最大功率限制下, 计算该终端采用中继链路可获得的子信道容量, 以及该终端只 采用直接链路可获得的子信道容量。在计算时可以采用现有常用计算系统子信道容量的公式, 本实施例采用香农公式计算, 在实际应用中, 包括但不限于香农公式。 对于终端采用中继方式可获得的子信道容量的情形可以归为以下情况, 终端 i通过中继 终端 1的协作, 采用中继子信道对 (n, n' ), 其中 n为基站到中继终端 1的子信道, n' 为 中继终端 1到终端 i的子信道。 终端 i实际可获得的子信道容量主要受两个条件的制约, 一 个是基站到中继终端 1的子信道 n的容量, 在这里用 X表示; 另一个是终端 i通过中继终端 1到终端 i的子信道 n' 和基站到终端 i的子信道 n可获得的容量, 在这里用 y表示。 终端 i 实际可获得的子信道容量为 X和 y两个值中的最小值。 用公式 (1 )表示以上内容如下:
Figure imgf000008_0001
( 1 ) 其中 '表示存在中继终端 1的前提下, 终端 i实际可获得的子信道容量。 n表示第 n个 直接子信道 (在此称为直接子信道 n ), n' 表示第 n' 个共享子信道 (在此称为共享子信道 η' ), Ν表示小区级子信道的数目, N' 表示共享级子信道的数目, Βη表示直接子信道 η的带 宽(这里假设子信道 η' 的带宽与 η相同), c表示小区级子信道, s表示共享级子信道, ^表 示小区级子信道的集合, ^表示共享级子信道的集合, ^,"' = 1表示中继子信道对( ^ ) 分配给终端 i和中继终端 1使用, 为基站到终端 i在直接子信道 n上的发射功率, 同时 也是基站到中继终端 1在直接子信道 n上的发射功率, 为中继终端 1发送信号给终端 i 时在中继子信道 n' 上使用的发射功率; ^, 为基站到中继终端 1的直接子信道 n的信道增 益, Q,' 为基站到终端 i的直接子信道 n的信道增益, 为中继终端 1到终端 i的直接子 信道 n的信道增益。 Γ为用户的误比特率要求, 是子信道实际容量与香农容量之间的信噪比 差异; Wo为噪声功率谱密度。 由于中继方式采用了基站到中继终端 1, 再到终端 i的通信方 式, 传输时间大致是基站直接到终端 i的两倍, 所以终端 i实际可获得的子信道容量大致为 总的子信道容量乘系数 1/2。 对于终端只采用直接链路可获得的子信道容量的情形可以归为以下情况, 基站通过直接子信道 n与终端 i通信, 用公式 (2) 表示如下:
N φ , , ,2
Ρθ,ί,η I hO,i,n I 、 t n ,
Ri = 气 n l« 2 (1 + Γ Μ 。 ~ ) ( 2 ) 其中, 表示不存在中继终端 1的前提下, 终端 i实际可获得的子信道容量, n表示第 n个直接子信道 (在此称为直接子信道 n), N表示小区级子信道的数目, Bn表示直接子信道 n的带宽, '"为基站到终端 i在直接子信道 n上的发射功率, 为基站到终端 i的直接 子信道 n的信道增益, Γ为用户的误比特率要求, 是子信道实际容量与香农容量之间的信噪 比差异; Wo为噪声功率谱密度。 "''," = 1表示直接子信道11分配给终端1。 在系统最大功率限制下, 将该终端采用中继链路可获得的子信道容量与该终端只采用直 接链路可获得的子信道容量相加, 得到该终端可获得的子信道总容量。
S303、选取使本小区子信道总容量最大的一个子信道分配方案,根据该子信道分配方案, 确定该终端只采用直接链路通信的子信道和采用中继链路通信的子信道。 设小区内的终端有 X个, 同一小区中的子信道有 y条, 将 y条子信道分配给 X个终端会 有好几种不同的分配方式, 即子信道分配方案, 本步骤选取的是使本小区子信道总容量最大 的一个子信道分配方案。 如公式 (3)所示, 公式建模如下: M L M
max
\J Σ=\Σ ,
1=\ /+Σ i=\ ■
Figure imgf000009_0001
M
{0,1}, ν» 6 ψε
'=ι (3-2) <l,¾ e{0,l} /, e{0,l},V«e¾,VieM (3—3)
∑ i=\∑l=\ ri∑=\¾«," = /,"
Figure imgf000009_0002
R. R, 其中 "表示存在中继终端 1的前提下, 终端 i实际可获得的子信道容量, 表示不存 在中继终端 1的前提下, 终端 i实际可获得的子信道容量, 为基站到终端 i在直接子信 道 n上的发射功率, 同时也是基站到中继终端 1在直接子信道 n上的发射功率, 为中继 终端 1发送信号给终端 i时在中继子信道 η' 上采用的发射功率 " ", 表示中继子信道对 (η, η' )分配给终端 i和中继终端 1使用, α''"表示信道 n直接分配给终端1, M表示小区内终端 的数目, L表示中继终端的数目。 限制条件(3-1 )表示子信道 n只能分配给一个终端; 限制条件(3-2), ( 3-3 )和 (3-4) 表示子信道 n' 只能分配给一个终端; 限制条件 (3-5 )表示系统分配给基站和终端的功率和 不得超过系统总功率。 要在以上限制条件基础上使公式 (3 ) 表示的系统容量最大化, 则有-
Ρθ,ί,η: I hQ,l,n I = Ρθ,ί,η: I hQ,i,n I l P!,i,n: I hl,i
TN0Bn ― TN0Bn N0Bn ( 4), 可得
I h0,l,n I - I h0,i.
P!,i,n = P0,.
其中 P0,i,n为基站到终端 i在直接子信道 n上的发射功率, 同时也是基站到中继终端 1在 直接子信道 n上的发射功率, '为中继终端 1发送信号给终端 i时在中继子信道 n' 上采 用的发射功率; Bn表示直接子信道 n的带宽, Γ为用户的误比特率要求, 是子信道实际容量 与香农容量之间的信噪比差异 ^为噪声功率谱密度。 A( ,"为基站到中继终端 1的信道增益,
,"为基站到终端 i的信道增益, 为中继终端 1发送信号给终端 i时在中继子信道 n' 上的信道增益。 将公式 (4)代入公式 (1 ) 和公式 (2), 再将公式 (1 )和公式 (2 ) 代入公式 (3), 可
Figure imgf000010_0001
subject to ∑∑∑α^„ = ,,„,„ , V"'e s
(5-1)
(5-2)
(5-3)
Figure imgf000010_0002
(5-4) 公式 ( 5 )和限制条件 (5-1)至(5-5)都可以使用拉格朗日对偶法和 KKT条件进行求解, 可 获得子信道总容量最大的一个子信道分配方案, 根据该子信道分配方案, 确定终端采用直接 链路通信的子信道和采用中继链路通信的子信道。 最大化系统容量下, 子信道增益高的终端将得到很多的子信道容量, 但是该终端的业务 速率可能很低, 子信道资源并没有得到有效的利用; 相反, 子信道增益低的终端将无法保证 实际需要的传输速率。 因此, 以最大化系统容量为目标的资源优化分配策略还应当考虑对终 端服务质量和公平性的保证。 作为优化, 在考虑子信道分配数量公平性的基础上, 终端获得的最大子信道分配方案可 以满足以下条件- 为该终端分配的小区级子信道数量等于每个终端可平均分配到的小区级子信道数量。 公式表达如下-
Figure imgf000011_0001
其中, 表示中继子信道对 (n, η' ) 分配给终端 i和中继终端 1使用, 表示子 信道 η直接分配给终端 i使用, n表示第 n个直接子信道(在此称为直接子信道 n), n ' 表示 第 n' 个共享子信道(在此称为共享子信道 n' ), N表示小区级子信道的数目, L表示共享级 子信道的数目, N为本小区的小区级子信道总数, M为本小区终端总数, 公式的意义为: 分配 给每个终端的直接子信道数等于 N/M取整。 作为另一种优化, 在考虑子信道分配中, 终端对传输速率的要求的基础上, 终端获得的 最大子信道分配方案还需满足以下条件: 为该终端分配的子信道的传输速率大于等于该终端的最低速率需求。 公式表达如下:
Figure imgf000011_0002
其中, '^)表示终端 i 的最低速率需求, " ", 表示中继子信道对 (η, η' ) 分配给终 端 i和中继终端 1使用, 表示子信道 η直接分配给终端 i使用, n表示第 n个直接子信道 (在此称为直接子信道 n), n' 表示第 n' 个共享子信道(在此称为共享子信道 n' ), N表示 直接子信道的数目, N' 共享子信道的数目, ^表示用户 i在直接子信道 n上可传输的速率, "'表示用户 i在中继子信道对 (n, n' ) 上通过终端 1中继可传输的速率。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 总功率受限的前提下系统容量最大化原则, 确定该终端采用直接链路通信的子信道和采用中 继链路通信的子信道, 可以使本小区系统容量最大化, 资源分配更加合理。 本发明小区资源分配的方法的另一个实施例, 在图 2所示实施例的基础上, 在为终端分 配子信道时, 基于公平性的解决方案。 如图 4所示, 包括:
S40U 接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息。 同步骤 201, 在此不做赘述。
5402、 根据终端上报的自身及邻居节点的子信道信息, 将每个小区级子信道分配给使用 该小区级子信道的信道增益最高的终端, 作为直接子信道使用。 针对每一个小区级子信道, 基站遍历本小区每一个终端, 找出使用该小区级子信道的信 道增益最高的终端, 将该小区级子信道分配给该终端作为直接子信道使用。 如果有多个终端 使用该小区级子信道的信道增益相同, 基站随机分配该小区级子信道给其中一个终端。 通过上述方法为终端分配子信道会导致为各终端分配的小区级子信道数量不同, 有的多 有的少, 在小区环境比较复杂的情况下, 这一差距有可能相当悬殊, 为了兼顾子信道分配的 公平性, 取本小区的小区级子信道总数和本小区终端总数的商, 也就是本小区每个终端应分 子信道数的平均值, 作为公平性考虑。
5403、 找到分配子信道最多的终端, 如果给该终端分配的子信道数量高于本小区每个终 端应分子信道数的平均值, 则遍历可以通过该终端的中继子信道对, 从中找出信道增益最高 的中继子信道和相应的另一终端。 所述中继子信道对包括: (1 ) 一个已经分配给该终端的直接子信道; (2 ) —个用于该终 端到其他终端的中继链路的中继子信道。 所述其他终端为已分配子信道数小于本小区平均值 的终端。 所述中继子信道取自尚未分配的共享级子信道。 优选的, 查找的另一终端 (目的终 端) 为分配子信道数量最少的终端。
5404、 如果所述另一终端使用该中继子信道对中的中继子信道的信道增益高于所述另一 终端使用该中继子信道对中的直接子信道的信道增益, 将该中继子信道对分配给所述另一终 端° 比如, 经过子信道最多的终端 MS 1 的中继子信道对 (n, n' ), 目的终端为 MS2, 其中 n 为直接子信道, n ' 为中继子信道。 那么将中继子信道对 (η, η ' ) 分配给 MS2使用的条件是 MS2使用 η' 的信道增益高于 MS2使用 η的信道增益。 如果目的终端使用中继子信道的信道增益高于目的终端使用直接子信道的信道增益, 说 明目的终端采用中继的通信方式效果较好, 将中继子信道对分配给目的终端使用, 相应的, 中继终端的直接子信道减少了一个, 因为要占用一个中继终端的直接子信道为目的终端传输 数据。
5405、 如果所述另一终端使用该中继子信道对中的中继子信道的信道增益小于等于所述 另一终端使用该中继子信道对中的直接子信道的信道增益, 只将该中继子信道对中的直接子 信道分配给所述另一终端, 作为基站到该另一终端的直接链路的直接子信道使用。 比如, 经过子信道最多的终端 MS 1 的中继子信道对 (n, n' ), 目的终端为 MS2, 其中 n 为直接子信道, n ' 为中继子信道。 如果 MS2使用 n' 的信道增益小于等于 MS2使用 n的信道 增益, 将中继子信道对 (η, η' ) 中的 η分配给 MS2作为直接子信道使用。 如果目的终端使用中继子信道的信道增益低于目的终端使用直接子信道的信道增益, 说 明目的终端采用中继的通信方式效果不是很好, 但是基于公平性的考虑, 可以将已经分配子 信道数量多于平均值的终端的子信道分配给信道增益次高的子信道数量少于平均值的终端作 为直接子信道使用。 步骤 404与步骤 405没有必然的先后顺序, 基于用户的实际考虑, 也可以在两步骤中只 有一个步骤, 以剩下的步骤作为整个流程的必然执行步骤。
5406、 直到各终端负载平衡。 重复步骤 403, 404和 405, 直到各终端的子信道数量达到平均值或者平均到可以容忍的 范围, 该范围由管理者自行设定。
5407、 如果还存在未分配给任何终端的剩余子信道, 按照终端提供中继链路由多到少的 顺序为终端分配所述剩余子信道。 此时如果还存在未分配给任何终端的剩余子信道, 由于中继终端除了自身通信之外, 还 承担中继任务, 负担较重, 将剩余子信道按照为其它终端提供中继链路由多到少的顺序分配 给中继终端。
S408、 对已分配给终端的子信道进行等功率分配或注水功率分配。 所谓注水功率分配是给信道质量更好的信道分配更多的功率。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 终端之间资源公平性的原则, 确定该终端采用直接链路通信的子信道和采用中继链路通信的 子信道, 无需复杂的计算过程, 可以快速实现子信道分配, 并且资源分配更加合理。 本发明小区资源分配的方法的另一个实施例, 在图 2所示实施例的基础上, 在为终端分 配子信道时, 基于服务质量的解决方案。 其中, 用户的服务质量权值为 ^ , 其中, (t)为用户终端 i在分配周期 t的速率需求, ^^―1)为用户终端 i的在周期 t以前的 平均传输速率, 4(^为需要传输业务的排队时延, 为该业务的传输时延门限。具体如图 5 所示, 包括:
5501、 接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息。 S501与步骤 201相似, 在此不做赘述。
5502、 根据终端上报的自身及邻居节点的子信道信息, 将小区级子信道分配给使用该子 信道的信道增益最高的终端, 作为直接子信道使用。
S502与同步骤 402相似, 在此不做赘述。
5503、 计算终端获得直接子信道后累积的速率。 每当终端获得子信道后, 都可以计算终端使用该子信道的传输速率, 从而计算出终端在 目前获得的直接子信道的基础上总共累积的速率。
5504、 小区级子信道分配完毕后, 找到累积速率未满足业务速率需求的终端中, 服务质 量权值最大的终端, 作为待调整终端。 每个终端都会有正常通信所需的最低速率, 这是首先应该保证的, 进一步的, 在众多终 端中, 优先保证服务质量权值大的终端正常通信所需的最低速率。
5505、 在累积速率满足业务速率需求的终端中, 选择分配子信道数量最多的一个终端, 作为被调整终端。
5506、 查找可以通过被调整终端的中继子信道对。 所述中继子信道对包括一个已经分配给被调整终端的直接子信道和一个用于被调整终端 到待调整终端的中继链路的中继子信道, 所述中继子信道取自尚未分配的共享级子信道。 比如, 被调整终端为 MS1, 待调整为 MS2, 子信道 n为分配给 MSI的直接子信道, 子信道 n' 为 MSI到 MS2的中继子信道。 那么, 基站通过 MS1到 MS2的中继子信道对包括(n, n' )。
5507、如果被调整终端失去该中继子信道对中的直接子信道后,仍能满足最低速率需求, 并且所述待调整终端使用该中继子信道对中的中继子信道的信道增益高于所述待调整终端使 用该中继子信道对中的直接子信道的信道增益, 将该中继子信道对分配给所述待调整终端。 比如, 被调整终端为 MS1, 待调整为 MS2, 子信道 n为分配给 MSI的直接子信道, 子信道 n' 为 MSI到 MS2的中继子信道。 那么, 基站通过 MS1到 MS2的中继子信道对包括(n, n' )。 如果 MSI失去子信道 n仍能满足最低速率需求, 并且 MS2使用子信道 n' 的信道增益高于 MS1 使用子信道 n的信道增益, 将 (η, η' )分配给 MS2。 如果待调整终端使用中继子信道的信道 增益高于待调整终端使用直接子信道的信道增益, 说明待调整终端采用中继的通信方式效果 较好, 将中继子信道对分配给待调整终端使用, 相应的, 中继终端的直接子信道减少了一个, 因为要占用一个中继终端的直接子信道为待调整终端传输数据。 为了保证不影响中继终端的 通信质量, 分配中继子信道对必须满足以下条件: 被调整终端失去该中继子信道对中的直接 子信道后, 仍能满足最低速率需求。
5508、如果被调整终端失去该中继子信道对中的直接子信道后,仍能满足最低速率需求, 并且所述待调整终端使用该中继子信道对中的中继子信道的信道增益小于等于所述待调整终 端使用该中继子信道对中的直接子信道的信道增益, 只将该中继子信道对中的直接子信道分 配给所述待调整终端, 作为基站到该待调整终端的直接链路的直接子信道使用。 如果待调整终端使用中继子信道的信道增益小于等于待调整终端使用直接子信道的信道 增益, 说明待调整终端采用中继的通信方式效果不是很好, 但是基于满足终端的最低速率需 求的考虑, 可以将已经分配给满足最低速率需求的终端的直接子信道分配给信道增益次高的 未满足最低速率需求的终端作为直接子信道使用。
5509、如果被调整终端失去该中继子信道对中的直接子信道后, 不能满足业务速率需求, 并且被调整终端的服务质量权值大于等于待调整终端, 则对该被调整终端不做子信道调整, 继续在满足业务速率需求的终端中寻找合适的被调整终端进行子信道调整。 如果服务质量权值小于待调整终端的终端中, 失去中继子信道对中的直接子信道后, 均 不能满足最低速率需求, 将服务质量权值最小的终端的直接子信道分配给待调整终端作为直 接子信道使用, 直到待调整终端满足最低速率需求。 如果注定有终端不能满足最低速率需求, 牺牲服务质量权值小的终端以保证服务质量权 值大的终端满足最低速率需求。 步骤 507、 步骤 508与步骤 509没有必然的先后顺序, 基于用户的实际考虑, 也可以两 步骤中只有一个步骤, 以剩下的步骤作为整个流程的必然执行步骤。
S510、 如果还存在未分配给任何终端的剩余子信道, 按照终端提供中继链路由多到少的 顺序为终端分配所述剩余子信道。
S511、 对已分配给终端的子信道进行等功率分配或注水功率分配。 步骤 510、 511与步骤 407、 408相似, 在此不做赘述。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 尽量保证终端满足最低速率需求的原则, 确定该终端采用直接链路通信的子信道和采用中继 链路通信的子信道, 无需复杂的计算过程, 可以快速实现子信道分配, 并且资源分配更加合 理。 本发明小区资源分配的方法的另一个实施例, 在图 2所示实施例的基础上, 在为终端分 配子信道时, 基于路由和资源分配半分离的解决方案。 如图 6所示, 包括:
5601、 接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息。 与步骤 201相似, 在此不做赘述。
5602、 基站根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息从所 述终端中选出中继终端。 基站根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 从本小区 的众多终端中选出一部分作为中继终端,中继终端的个数和选择方法可以由管理者自行设定。 例如: 基站根据满足图 2实施例的上报条件的终端上报的本地频谱池, 再根据上报链路的大 尺度信道质量,从中选出 L个可以参与中继的终端形成中继池, 即按 从高到低的顺 序, 从所有终端中选出前面 L个终端作为中继终端, 其中, 为终端 i与基站的路损值, &为图 2实施例中的上报条件。
5603、 将小区级子信道分配给使用该子信道的信道增益最高的中继终端, 作为直接子信 道使用, 直到为该中继终端分配的子信道数量大于等于本小区平均值。
5604、 查找每个中继终端能够为非中继终端提供的等效功率信道增益最大的中继子信道 对, 该中继子信道对包括两条子信道, 一条为基站到中继终端的子信道, 采用已分配的小区 级子信道; 另一条为中继终端到非中继终端的子信道, 采用尚未分配的共享级子信道。
5605、 从每个中继终端能够为非中继终端提供的等效功率信道增益最大的中继子信道对 中, 选择一个等效功率信道增益最大的中继子信道对和相应的非中继终端, 如果所述非中继 终端使用该中继子信道对中的中继子信道的信道增益高于所述非中继终端使用该中继子信道 对中的直接子信道的信道增益, 将该中继子信道对分配给所述非中继终端。 查找每个中继终端能够为非中继终端提供的等效功率信道增益最大的中继子信道对。 中 继子信道对的等效功率信道增益为-
其中 G0,,,„ 和¾„ 分别表示基站与终端 1, 基站与终端 i和终端 1与终端 i之间链路 的功率信道增益。 从每个中继终端能够为非中继终端提供的等效功率信道增益最大的中继子信道对中, 选 择一个等效功率信道增益最大的中继子信道对和相应的非中继终端。 设所述非中继终端使用 该中继子信道对中的中继子信道的信道增益为 , 设所述非中继终端使用该中继子信道对 中的直接子信道的信道增益为 ^ ',", 如果 ^' ^^ , 说明终端采用中继的通信方式效果 较好, 将该中继子信道对分配给所述非中继终端。
5606、 如果所述非中继终端使用该中继子信道对中的中继子信道的信道增益小于等于所 述非中继终端使用该中继子信道对中的直接子信道的信道增益, 只将该中继子信道对中的直 接子信道分配给所述非中继终端, 作为基站到该非中继终端的直接链路的直接子信道使用。 步骤 605与步骤 606没有必然的先后顺序, 基于用户的实际考虑, 也可以是两个步骤中 只有一个步骤, 以剩下的步骤作为整个流程的必然执行步骤。
5607、 如果还存在未分配给任何终端的剩余子信道, 按照为其它终端提供中继链路由多 到少的顺序为终端分配所述剩余子信道。
S608、 对已分配给终端的子信道进行等功率分配或注水功率分配。 步骤 607、 608同步骤 407、 408, 在此不做赘述。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 路由和资源分配半分离的原则, 先确定中继终端, 再确定中继终端使用直接链路通信的子信 道,再确定非中继终端采用直接链路通信的子信道和非中继终端采用中继链路通信的子信道, 无需复杂的计算过程, 可以快速实现子信道分配, 资源分配更加合理。 本发明小区资源分配的装置的一个实施例, 如图 7所示, 包括- 接收单元 701 : 用于接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道 信息。 判定单元 702 : 用于根据所述终端的子信道信息和邻居节点的子信道信息确定小区级子 信道和共享级子信道, 所述小区级子信道包括在整个小区内可用的子信道, 所述共享级子信 道包括小区级子信道和只能在所述终端与部分终端之间可用的子信道。 配置单元 703 : 用于将小区级子信道分配给终端作为直接子信道使用, 将共享级子信道 分配给终端作为中继子信道使用, 其中, 所述直接子信道为终端与基站之间的直接链路使用 的子信道, 所述中继子信道为所述终端与所述部分终端之间的中继链路使用的子信道。 本实施例将小区级子信道分配给终端作为直接链路使用, 将共享级子信道分配给终端作 为中继链路使用, 考虑了终端与基站的直接通信, 另外, 中继是动态选择的, 相比现有事先 确定中继的方案, 有利于资源利用率的提高,, 同时, 本实施例将适合在终端之间使用的子信 道专门划分成共享级子信道, 分配给终端作为中继子信道使用, 兼顾了中继通信的优点, 有 利于充分利用本小区内终端与终端之间的链路资源。 再者, 本实施实例基于链路的空间性和 频谱资源的空间性, 扩展了中继链路可使用的资源。 综上所述, 本实施例根据终端上报的该 终端的子信道信息和该终端的邻居节点的子信道信息, 根据该终端当前所处的环境确定该终 端采用直接链路通信的子信道和采用中继链路通信的子信道, 资源分配更加合理。 本实施例为图 7所示装置中, 配置单元的一个具体实施例, 如图 8所示, 包括: 获取子单元 801 : 用于在系统分配给终端的最大功率下, 分别该终端采用中继链路可获 得的子信道容量和该终端只釆用直接链路可获得的子信道容量。 容量计算子单元 802 : 用于对该终端采用中继链路可获得的子信道容量与该终端只采用 直接链路可获得的子信道容量相加, 得到该终端在该种子信道分配方案下可获得的子信道总 容量。 第一分配子单元 803 : 用于选取使本小区子信道总容量最大的一个子信道分配方案, 根 据该子信道分配方案,确定该终端采用直接链路通信的子信道和采用中继链路通信的子信道。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 总功率受限的前提下系统容量最大化原则, 确定该终端采用直接链路通信的子信道和采用中 继链路通信的子信道, 可以最大化本小区系统容量, 资源分配更加合理。 本实施例为图 7所示装置中, 配置单元的另一个具体实施例, 如图 9所示, 包括: 第二分配子单元 901 : 用于将小区级子信道分配给使用该子信道的信道增益最高的终端, 作为直接子信道使用。 第一查找子单元 902 : 用于找到分配小区级子信道最多的终端, 如果为该终端分配的小 区级子信道数量高于本小区中为所有终端分配的小区级子信道数量的平均值, 遍历可以通过 该终端的中继子信道对, 所述中继子信道对包括一个已经分配给该终端的直接子信道和一个 用于该终端到其他已分配小区级子信道数小于本小区平均值的终端的中继链路的中继子信 道, 所述中继子信道取自尚未分配的共享级子信道, 从中找出信道增益最高的中继子信道和 相应的另一终端。 第三分配子单元 903 : 如果所述另一终端使用该中继子信道对中的中继子信道的信道增 益高于所述另一终端使用该中继子信道对中的直接子信道的信道增益, 用于将该中继子信道 对分配给所述另一终端。 第四分配子单元 904: 如果所述另一终端使用该中继子信道对中的中继子信道的信道增 益小于等于所述另一终端使用该中继子信道对中的直接子信道的信道增益, 用于只将该中继 子信道对中的直接子信道分配给所述另一终端, 作为基站到该另一终端的直接链路的直接子 信道使用。 第四调配子单元 905 : 如果还存在未分配给任何终端的剩余子信道, 用于按照为其它终 端提供中继链路由多到少的顺序为终端分配所述剩余子信道。 功率分配子单元 906 : 用于对已分配给终端的子信道进行等功率分配或注水功率分配。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 终端之间资源公平性的原则, 确定该终端采用直接链路通信的子信道和采用中继链路通信的 子信道, 无需复杂的计算过程, 可以快速实现子信道分配, 并且资源分配更加合理。 本实施例为图 7所示装置中, 配置单元的另一个具体实施例, 如图 10所示, 包括。 第五分配子单元 1001 :用于将小区级子信道分配给使用该子信道的信道增益最高的终端, 作为直接子信道使用。 速率计算子单元 1002: 用于计算终端获得直接子信道后累积的速率。 第二查找子单元 1003: 用于找到小区级子信道分配完毕后累积速率未满足最低速率需求 的终端中, 服务质量权值最大的终端, 作为待调整终端。 第六分配子单元 1004: 用于在累积速率满足业务速率需求的终端中, 选择分配子信道数 量最多的一个终端, 作为被调整终端。 第三查找子单元 1005: 用于査找可以通过被调整终端的中继子信道对, 所述中继子信道 对包括一个已经分配给被调整终端的直接子信道和一个用于被调整终端到待调整终端的中继 链路的中继子信道, 所述中继子信道取自尚未分配的共享级子信道。 第七分配子单元 1006: 如果被调整终端失去该中继子信道对中的直接子信道后, 仍能满 足最低速率需求, 并且所述待调整终端使用该中继子信道对中的中继子信道的信道增益高于 所述待调整终端使用该中继子信道对中的直接子信道的信道增益, 用于将该中继子信道对分 配给所述待调整终端。 第八分配子单元 1007: 如果被调整终端失去该中继子信道对中的直接子信道后, 仍能满 足最低速率需求, 并且所述待调整终端使用该中继子信道对中的中继子信道的信道增益小于 等于所述待调整终端使用该中继子信道对中的直接子信道的信道增益, 用于只将该中继子信 道对中的直接子信道分配给所述待调整终端, 作为基站到该待调整终端的直接链路的直接子 信道使用。 进一步的, 配置单元还包括: 第九分配子单元 1008: 如果服务质量权值小于待调整终端服务质量权值的终端, 失去中 继子信道对中的直接子信道后, 不能满足各自业务速率需求, 则继续在满足业务速率需求的 终端中寻找合适的被调整终端进行子信道调整; 如果找不到合适的被调整终端, 则找到服务 质量权值最小的终端, 并将服务质量权值最小的终端的直接子信道分配给待调整终端作为直 接子信道使用, 直到待调整终端满足业务速率需求。 第四调配子单元 1009: 如果还存在未分配给任何终端的剩余子信道, 用于按照为其它终 端提供中继链路由多到少的顺序为终端分配所述剩余子信道。 功率分配子单元 1010: 用于对已分配给终端的子信道进行等功率分配或注水功率分配。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 尽量保证终端满足最低速率需求的原则, 确定该终端采用直接链路通信的子信道和采用中继 链路通信的子信道, 无需复杂的计算过程, 可以快速实现子信道分配, 并且资源分配更加合 理。 本实施例为图 7所示装置中, 配置单元的另一个具体实施例, 如图 11所示, 包括: 选定子单元 1101 : 用于根据终端上报的该终端的子信道信息和该终端的邻居节点的子信 道信息从所述终端中选出作为中继的终端; 第一调配子单元 1102: 用于将小区级子信道分配给使用该子信道的信道增益最高的中继 终端, 作为直接子信道使用, 其中, 为该中继终端分配的子信道数量大于等于本小区平均值。 第四查找子单元 1103: 用于査找每个中继终端能够为非中继终端提供的等效功率信道增 益最大的中继子信道对, 该中继子信道对包括两条子信道, 一条为基站到中继终端的子信道, 采用已分配的小区级子信道: 另一条为中继终端到非中继终端的子信道, 采用尚未分配的共 享级子信道。 第二调配子单元 1104: 用于从每个中继终端能够为非中继终端提供的等效功率信道增益 最大的中继子信道对中, 选择一个等效功率信道增益最大的中继子信道对和相应的非中继终 端, 如果所述非中继终端使用该中继子信道对中的中继子信道的信道增益高于所述非中继终 端使用该中继子信道对中的直接子信道的信道增益, 将该中继子信道对分配给所述非中继终 端° 第三调配子单元 1105: 如果所述非中继终端使用该中继子信道对中的中继子信道的信道 增益小于等于所述非中继终端使用该中继子信道对中的直接子信道的信道增益, 用于只将该 中继子信道对中的直接子信道分配给所述非中继终端, 作为基站到该非中继终端的直接链路 的直接子信道使用。 第四调配子单元 1106: 如果还存在未分配给任何终端的剩余子信道, 用于按照为其它终 端提供中继链路由多到少的顺序为终端分配所述剩余子信道。 功率分配子单元 1107: 用于对已分配给终端的子信道进行等功率分配或注水功率分配。 本实施例根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息, 遵循 路由和资源分配半分离的原则, 先确定中继终端采用直接链路通信的子信道, 再确定非中继 终端采用直接链路通信的子信道和非中继终端采用中继链路通信的子信道, 无需复杂的计算 过程, 可以快速实现子信道分配, 资源分配更加合理。 其中, 图 7至图 11所示的实施例所涉及的小区资源分配的具体工作过程,可以参考上述 图 2至图 6所涉及的实施例揭露的相关内容, 在此不再赘述。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计 算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可读取存储介质中, 该程 序在执行时, 可包括如上述各方法的实施例的流程。其中, 所述的存储介质可为磁碟、光盘、 只读存储记忆体(Read- Only Memory, ROM)或随机存储记忆体 (Random Access Memory, RAM) 等。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉 本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本 发明的保护范围之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种小区资源分配的方法, 其特征在于, 包括: 接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息; 根据所述终端的子信道信息和邻居节点的子信道信息确定小区级子信道和共享级子信 道, 所述小区级子信道包括在整个小区内可用的子信道, 所述共享级子信道包括小区级子信 道和只能在所述终端与部分终端之间可用的子信道; 将小区级子信道分配给所述终端作为直接子信道使用, 将共享级子信道分配给所述终端 作为中继子信道使用, 其中, 所述直接子信道为所述终端与基站之间的直接链路使用的子信 道, 所述中继子信道为所述终端与所述部分终端之间的中继链路使用的子信道。
2、根据权利要求 1所述的方法, 其特征在于, 将小区级子信道分配给终端作为直接子信 道使用, 将共享级子信道分配给终端作为中继子信道使用的步骤包括: 在系统最大功率限制下, 分别获取终端采用中继链路可获得的子信道容量和终端只采用 直接链路可获得的子信道容量; 对终端采用中继链路可获得的子信道容量与终端只采用直接链路可获得的子信道容量相 加, 得到终端可获得的子信道总容量; 选取使本小区子信道总容量最大的一个子信道分配方案, 根据该子信道分配方案, 确定 终端只采用直接链路通信的子信道和采用中继链路通信的子信道。
3、根据权利要求 2所述的方法, 其特征在于, 使本小区子信道总容量最大的一个子信道 分配方案还包括: 为终端分配的用于直接链路通信的子信道数量等于每个终端可平均分配到的小区级子信 道数量。
4、根据权利要求 2所述的方法, 其特征在于, 使本小区子信道总容量最大的一个子信道 分配方案还包括: 为终端分配的子信道的传输速率大于等于该终端的业务速率需求。
5、根据权利要求 1所述的方法, 其特征在于, 将小区级子信道分配给终端作为直接子信 道使用, 将共享级子信道分配给终端作为中继子信道使用的步骤包括: 将小区级子信道分配给使用该子信道的信道增益最高的终端, 作为直接子信道使用; 找到分配小区级子信道最多的终端, 如果为该终端分配的小区级子信道数量高于本小区 中为所有终端分配的小区级子信道数量的平均值, 则遍历可以通过该终端的中继子信道对, 所述中继子信道对包括一个已经分配给该终端的直接子信道和一个用于该终端到其他已分配 小区级子信道数小于本小区平均值的终端的中继链路的中继子信道, 所述中继子信道取自尚 未分配的共享级子信道, 从中找出信道增益最高的中继子信道对和相应的另一终端; 如果所述另一终端使用该中继子信道对中的中继子信道的信道增益高于所述另一终端使 用该中继子信道对中的直接子信道的信道增益, 则将该中继子信道对分配给所述另一终端; 如果所述另一终端使用该中继子信道对中的中继子信道的信道增益小于等于所述另一终 端使用该中继子信道对中的直接子信道的信道增益, 则将该中继子信道对中的直接子信道分 配给所述另一终端, 作为基站到该另一终端的直接链路的直接子信道使用。
6、根据权利要求 1所述的方法, 其特征在于, 将小区级子信道分配给终端作为直接子信 道使用, 将共享级子信道分配给终端作为中继子信道使用的步骤包括: 将小区级子信道分配给使用该子信道的信道增益最高的终端, 作为直接子信道使用; 计算终端获得直接子信道后累积的速率; 小区级子信道分配完毕后, 找到累积速率未满足业务速率需求的终端中, 服务质量权值 最大的终端, 作为待调整终端; 在累积速率满足业务速率需求的终端中, 选择分配子信道数量最多的一个终端, 作为被 调整终端; 查找可以通过被调整终端的中继子信道对, 所述中继子信道对包括一个已经分配给被调 整终端的直接子信道和一个用于被调整终端到待调整终端的中继链路的信道增益最高的中继 子信道, 所述中继子信道取自尚未分配的共享级子信道; 如果被调整终端失去该中继子信道对中的直接子信道后, 仍能满足业务速率需求, 并且 所述待调整终端使用该中继子信道对中的中继子信道的信道增益高于所述待调整终端使用该 中继子信道对中的直接子信道的信道增益, 则将该中继子信道对分配给所述待调整终端; 如果被调整终端失去该中继子信道对中的直接子信道后, 仍能满足业务速率需求, 并且 所述待调整终端使用该中继子信道对中的中继子信道的信道增益小于等于所述待调整终端使 用该中继子信道对中的直接子信道的信道增益, 则将该中继子信道对中的直接子信道分配给 所述待调整终端, 作为基站到该待调整终端的直接链路的直接子信道使用。
7、根据权利要求 6所述的方法, 其特征在于, 将小区级子信道分配给终端作为直接子信 道使用, 将共享级子信道分配给终端作为中继子信道使用的步骤还包括- 如果被调整终端失去该中继子信道对中的直接子信道后, 不能满足业务速率需求, 并且 被调整终端的服务质量权值大于等于待调整终端的服务质量权值, 则对该被调整终端不做子 信道调整, 继续在满足业务速率需求的终端中寻找合适的被调整终端进行子信道调整。 如果服务质量权值小于待调整终端服务质量权值的终端, 失去中继子信道对中的直接子 信道后, 不能满足各自业务速率需求, 则继续在满足业务速率需求的终端中寻找合适的被调 整终端进行子信道调整; 如果找不到合适的被调整终端, 则找到服务质量权值最小的终端, 并将服务质量权值最小的终端的直接子信道分配给待调整终端作为直接子信道使用, 直到待 调整终端满足其业务速率需求。
8、根据权利要求 1所述的方法, 其特征在于, 将小区级子信道分配给终端作为直接子信 道使用, 将共享级子信道分配给终端作为中继子信道使用的步骤包括: 基站根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息从所述终端 中选出中继终端; 将小区级子信道分配给使用该子信道的信道增益最高的中继终端,作为直接子信道使用, 其中, 为该中继终端分配的子信道数量大于等于本小区平均值; 查找每个中继终端能够为非中继终端提供的等效功率信道增益最大的中继子信道对, 该 中继子信道对包括两条子信道, 一条为基站到中继终端的子信道, 采用已分配的小区级子信 道; 另一条为中继终端到非中继终端的子信道, 采用尚未分配的共享级子信道; 从每个中继终端能够为非中继终端提供的等效功率信道增益最大的中继子信道对中, 选 择一个等效功率信道增益最大的中继子信道对和相应的非中继终端, 如果所述非中继终端使 用该中继子信道对中的中继子信道的信道增益高于所述非中继终端使用该中继子信道对中的 直接子信道的信道增益, 则将该中继子信道对分配给所述非中继终端; 如果所述非中继终端使用该中继子信道对中的中继子信道的信道增益小于等于所述非中 继终端使用该中继子信道对中的直接子信道的信道增益, 则将该中继子信道对中的直接子信 道分配给所述非中继终端, 作为基站到该非中继终端的直接链路的直接子信道使用。
9、根据权利要求 5或 6或 8所述的方法, 其特征在于, 将小区级子信道分配给终端作为 直接子信道使用, 将共享级子信道分配给终端作为中继子信道使用之后还包括: 如果还存在未分配给任何终端的剩余子信道, 按照为终端提供中继链路由多到少的顺序 为终端分配所述剩余子信道。
10、 根据权利要求 9所述的方法, 其特征在于, 将小区级子信道分配给终端作为直接子 信道使用, 将共享级子信道分配给终端作为中继子信道使用的歩骤之后还包括: 对已分配给终端的子信道进行等功率分配或注水功率分配。
11、 一种小区资源分配的装置, 其特征在于, 包括: 接收单元:用于接收终端上报的该终端的子信道信息和该终端的邻居节点的子信道信息; 判定单元: 用于根据所述终端的子信道信息和邻居节点的子信道信息确定小区级子信道 和共享级子信道, 所述小区级子信道包括在整个小区内可用的子信道, 所述共享级子信道包 括小区级子信道和只能在所述终端与部分终端之间可用的子信道; 配置单元: 用于将小区级子信道分配给所述终端作为直接子信道使用, 将共享级子信道 分配给所述终端作为中继子信道使用, 其中, 所述直接子信道为所述终端与基站之间的直接 链路使用的子信道, 所述中继子信道为所述终端与所述部分终端之间的中继链路使用的子信 道。
12、 根据权利要求 11所述的装置, 其特征在于, 配置单元包括- 获取子单元: 用于在系统最大功率限制下, 分别获取该终端采用中继链路可获得的子信 道容量和该终端只采用直接链路可获得的子信道容量; 容量计算子单元: 用于对该终端采用中继链路可获得的子信道容量与该终端只采用直接 链路可获得的子信道容量相加, 得到该终端可获得的子信道总容量; 第一分配子单元: 用于选取使本小区子信道总容量最大的一个子信道分配方案, 根据该 子信道分配方案, 确定该终端只采用直接链路通信的子信道或采用中继链路通信的子信道。
13、 根据权利要求 11所述的装置, 其特征在于, 配置单元包括: 第二分配子单元: 用于将小区级子信道分配给使用该子信道的信道增益最高的终端, 作 为直接子信道使用; 第一查找子单元: 用于找到分配小区级子信道最多的终端, 如果为该终端分配的小区级 子信道数量高于本小区中为所有终端分配的小区级子信道数量的平均值, 遍历可以通过该终 端的中继子信道对, 所述中继子信道对包括一个已经分配给该终端的直接子信道和一个用于 该终端到其他已分配小区级子信道数小于本小区平均值的终端的中继链路的中继子信道, 所 述中继子信道取自尚未分配的共享级子信道, 从中找出信道增益最高的中继子信道对和相应 的另一终端; 第三分配子单元: 如果所述另一终端使用该中继子信道对中的中继子信道的信道增益高 于所述另一终端使用该中继子信道对中的直接子信道的信道增益, 用于将该中继子信道对分 配给所述另一终端; 第四分配子单元: 如果所述另一终端使用该中继子信道对中的中继子信道的信道增益小 于等于所述另一终端使用该中继子信道对中的直接子信道的信道增益, 用于只将该中继子信 道对中的直接子信道分配给所述另一终端, 作为基站到该另一终端的直接链路的直接子信道 使用。
14、 根据权利要求 11所述的装置, 其特征在于, 配置单元包括- 第五分配子单元: 用于将小区级子信道分配给使用该子信道的信道增益最高的终端, 作 为直接子信道使用; 速率计算子单元: 用于计算终端获得直接子信道后累积的速率; 第二査找子单元: 用于找到小区级子信道分配完毕后累积速率未满足业务速率需求的终 端中, 服务质量权值最大的终端, 作为待调整终端; 第六分配子单元: 用于在累积速率满足业务速率需求的终端中, 选择分配子信道数量最 多的一个终端, 作为被调整终端; 第三查找子单元: 用于查找可以通过被调整终端的中继子信道对, 所述中继子信道对包 括一个已经分配给被调整终端的直接子信道和一个用于被调整终端到待调整终端的中继链路 的信道增益最高的中继子信道, 所述中继子信道取自尚未分配的共享级子信道; 第七分配子单元: 如果被调整终端失去该中继子信道对中的直接子信道后, 仍能满足业 务速率需求, 并且所述待调整终端使用该中继子信道对中的中继子信道的信道增益高于所述 待调整终端使用该中继子信道对中的直接子信道的信道增益, 用于将该中继子信道对分配给 所述待调整终端; 第八分配子单元: 如果被调整终端失去该中继子信道对中的直接子信道后, 仍能满足业 务速率需求, 并且所述待调整终端使用该中继子信道对中的中继子信道的信道增益小于等于 所述待调整终端使用该中继子信道对中的直接子信道的信道增益, 用于只将该中继子信道对 中的直接子信道分配给所述待调整终端, 作为基站到该待调整终端的直接链路的直接子信道 使用。
15、 根据权利要求 14所述的装置, 其特征在于, 配置单元还包括: 第九分配子单元: 如果服务质量权值小于待调整终端服务质量权值的终端, 失去中继子 信道对中的直接子信道后, 不能满足各自业务速率需求, 则继续在满足业务速率需求的终端 中寻找合适的被调整终端进行子信道调整; 如果找不到合适的被调整终端, 则找到服务质量 权值最小的终端, 并将服务质量权值最小的终端的直接子信道分配给待调整终端作为直接子 信道使用, 直到待调整终端满足业务速率需求。
16、 根据权利要求 11所述的装置, 其特征在于, 配置单元包括- 选定子单元: 用于根据终端上报的该终端的子信道信息和该终端的邻居节点的子信道信 息从所述终端中选出作为中继的终端; 第一调配子单元:用于将小区级子信道分配给使用该子信道的信道增益最高的中继终端, 作为直接子信道使用, 其中, 为该中继终端分配的子信道数量大于等于本小区平均值; 第四査找子单元: 用于査找每个中继终端能够为非中继终端提供的等效功率信道增益最 大的中继子信道对, 该中继子信道对包括两条子信道, 一条为基站到中继终端的子信道, 采 用已分配的小区级子信道; 另一条为中继终端到非中继终端的子信道, 采用尚未分配的共享 级子信道; 第二调配子单元: 用于从每个中继终端能够为非中继终端提供的等效功率信道增益最大 的中继子信道对中, 选择一个等效功率信道增益最大的中继子信道对和相应的非中继终端, 如果所述非中继终端使用该中继子信道对中的中继子信道的信道增益高于所述非中继终端使 用该中继子信道对中的直接子信道的信道增益, 将该中继子信道对分配给所述非中继终端; 第三调配子单元: 如果所述非中继终端使用该中继子信道对中的中继子信道的信道增益 小于等于所述非中继终端使用该中继子信道对中的直接子信道的信道增益, 用于只将该中继 子信道对中的直接子信道分配给所述非中继终端, 作为基站到该非中继终端的直接链路的直 接子信道使用。
17、 根据权利要求 12或 13或 14所述的装置, 其特征在于, 配置单元还包括- 第四调配子单元: 如果还存在未分配给任何终端的剩余子信道, 用于按照为其它终端提 供中继链路由多到少的顺序为终端分配所述剩余子信道。
18、 根据权利要求 17所述的装置, 其特征在于, 配置单元还包括 功率分配子单元: 用于对已分配给终端的子信道进行等功率分配或注水功率分配。
PCT/CN2011/075119 2010-06-02 2011-06-01 小区资源分配方法和装置 WO2011150853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010189872.9A CN102271398B (zh) 2010-06-02 2010-06-02 小区资源分配方法和装置
CN201010189872.9 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011150853A1 true WO2011150853A1 (zh) 2011-12-08

Family

ID=45053523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075119 WO2011150853A1 (zh) 2010-06-02 2011-06-01 小区资源分配方法和装置

Country Status (2)

Country Link
CN (1) CN102271398B (zh)
WO (1) WO2011150853A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103905330B (zh) * 2012-12-28 2018-05-11 中国电信股份有限公司 多终端协同通信业务分流比例获取方法和服务器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201846A1 (en) * 2008-02-13 2009-08-13 Qualcomm Incorporated System and method for scheduling over multiple hops
CN101527947A (zh) * 2008-03-06 2009-09-09 上海贝尔阿尔卡特股份有限公司 无线中继网络中为移动终端选择通信路径的方法和装置
CN101702825A (zh) * 2009-10-22 2010-05-05 上海交通大学 下行ofdma蜂窝系统的优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201846A1 (en) * 2008-02-13 2009-08-13 Qualcomm Incorporated System and method for scheduling over multiple hops
CN101527947A (zh) * 2008-03-06 2009-09-09 上海贝尔阿尔卡特股份有限公司 无线中继网络中为移动终端选择通信路径的方法和装置
CN101702825A (zh) * 2009-10-22 2010-05-05 上海交通大学 下行ofdma蜂窝系统的优化方法

Also Published As

Publication number Publication date
CN102271398B (zh) 2014-06-04
CN102271398A (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
Lu et al. An energy-efficient multipath routing protocol for wireless sensor networks
US8116324B2 (en) Network resource allocation system and method of the same
Deng et al. A reliable QoS-aware routing scheme for neighbor area network in smart grid
JP5079087B2 (ja) マルチキャリア、マルチホップ無線通信システムにおいてリソースを共同して割り当てる方法
JP6253129B2 (ja) ビデオデータ伝送方法及び関連デバイス
KR20100127779A (ko) 무선 멀티-홉 메시 네트워크에서 공동의 결합, 라우팅과 속도 할당
US9713056B2 (en) Switching and aggregation of small cell wireless traffic
Kosek-Szott et al. What's new for QoS in IEEE 802.11?
JP5392266B2 (ja) ネットワークシステム、公衆網リソース管理装置、公衆網無線基地局、自営網リソース管理装置、自営網無線基地局
Zhao et al. Admission control with load balancing in IEEE 802.11-based ESS mesh networks
WO2015042773A1 (zh) 一种接入点配置方法和控制器
Liu et al. Channel assignment exploiting partially overlapping channels for wireless mesh networks
Yu et al. A new joint strategy of radio channel allocation and power control for wireless mesh networks
WO2011150853A1 (zh) 小区资源分配方法和装置
JP5360653B2 (ja) 電力制御装置およびそれを備えた通信ネットワークシステム
Kim et al. Joint resource allocation and admission control in wireless mesh networks
Zeng et al. Efficient link-heterogeneous multicast for wireless mesh networks
JP2013141270A (ja) 無線マルチホップ・メッシュ・ネットワークにおけるアソシエーション、ルーティング、およびレート割当ての統合
KR20120063744A (ko) 무선 네트워크에서의 분산 송신 전력 제어 방법 및 장치
Han et al. Cross-layer protocol design for wireless communication in hybrid data center networks
Sheelavant et al. Energy efficient reliable routing through dynamic spectrum management in cognitive radio sensor networks
Ancillotti et al. Talb: A traffic-aware load balancer for throughput improvement in wireless mesh networks
WO2016169122A1 (zh) 一种数据调度方法及装置
Zhong et al. A novel load-balancing algorithm for QoS provisionings over 802.11 s wireless mesh networks
Zhou et al. Distributed Bottleneck Flow Control in Mobile Ad Hoc Networks.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789232

Country of ref document: EP

Kind code of ref document: A1