WO2011150574A1 - Cmos图像传感器及其时序控制方法和曝光方法 - Google Patents

Cmos图像传感器及其时序控制方法和曝光方法 Download PDF

Info

Publication number
WO2011150574A1
WO2011150574A1 PCT/CN2010/073543 CN2010073543W WO2011150574A1 WO 2011150574 A1 WO2011150574 A1 WO 2011150574A1 CN 2010073543 W CN2010073543 W CN 2010073543W WO 2011150574 A1 WO2011150574 A1 WO 2011150574A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
exposure
sub
pixel
pixel row
Prior art date
Application number
PCT/CN2010/073543
Other languages
English (en)
French (fr)
Inventor
师丹玮
周琨
吴迪
Original Assignee
深圳泰山在线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳泰山在线科技有限公司 filed Critical 深圳泰山在线科技有限公司
Priority to EP10852372.1A priority Critical patent/EP2579567A4/en
Priority to CN201080067022.XA priority patent/CN102907084B/zh
Priority to JP2013512719A priority patent/JP5655137B2/ja
Priority to PCT/CN2010/073543 priority patent/WO2011150574A1/zh
Priority to US13/701,741 priority patent/US8964083B2/en
Priority to AU2010354500A priority patent/AU2010354500B2/en
Publication of WO2011150574A1 publication Critical patent/WO2011150574A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time

Definitions

  • the present invention relates to the field of image sensors, and more particularly to a CMOS image transmission method and a method for exposing the same, which can be applied to a real-time object detection system.
  • FIG. 1 a schematic diagram of the process for an existing target detection method.
  • the working principle is as follows: The light source emits light and illuminates the target object. At the same time, under the control of the synchronization mechanism, the image sensor captures an image of the entire scene. The image of the scene includes the target object and the background object behind.
  • the target object can be an ordinary diffuse surface object or a pre-defined special object whose surface is directional to the light, which can reflect the light from the light source to the image sensor. Since the target object is closer to the light source, or has a special reflective surface, the brightness of the target object in the image is much higher than the brightness of the background.
  • the image processor receives the image and performs image segmentation. The portion where the brightness is higher than a certain threshold is considered to be the target object, and the portion where the brightness is lower than the threshold is considered to be the background. Therefore, subsequent operations are performed according to the division of the target area, such as extracting location information.
  • a disadvantage of the above-described detection methods currently employed is that the extraction of the target is susceptible to interference from ambient light. If ambient light is illuminated such that a certain area of the background is higher than the target object, then the above method will fail.
  • the general solution is to modulate the light source to a specific wavelength ⁇ (in order not to affect the observation of the human eye, a J3 ⁇ 4 is outside the visible wavelength direction), increase the output power, and A bandpass wave plate of the corresponding wavelength ⁇ is mounted between the image sensor and the target object, allowing only light of the wavelength ⁇ to pass.
  • This method can suppress the influence of ambient light to a certain extent and improve the contrast of the target object and the background.
  • ambient light is usually full-wavelength (such as sunlight and incandescent lamps), and its illumination intensity at ⁇ wavelength may be greater than that from the source, so the method of selecting a specific wavelength may also fail.
  • a new method has been proposed to solve the above problems.
  • This method uses a conventional CMOS (Complementary Metal Oxide Semiconductor) image sensor to continuously capture two frames of images Ii and 1 2 in the same scene (assuming that the position of the target object and the background object hardly changes throughout the process). ).
  • CMOS Complementary Metal Oxide Semiconductor
  • the light source emits light, and when the light is ⁇ 2 , the light source does not emit light. Since the closer the target object from the light source, or with a special reflector surface, such that the brightness in the image ⁇ much higher than the luminance of the target object 12 in the image of the target object; far from the light source and the background object, and no special reflective surfaces, such that Ii little difference image and the luminance image 12 background object.
  • the image processor receives the image U l 2 and performs a difference operation on it, resulting in an image I. Then the brightness of the target object in I will be much larger than the brightness of the background object.
  • the image is segmented by I, the portion whose brightness is higher than a certain threshold is considered to be the target object, and the portion whose brightness is lower than the threshold is considered as the background. Therefore, subsequent operations are performed according to the division of the target area, such as extracting location information and the like.
  • Figure 2 Please refer to Figure 2 for the working mode diagram of the existing CMOS image transmission.
  • the exposure time of each line is different.
  • the horizontal axis in Figure 2 is the time axis.
  • the second line L2 starts to be exposed, and then the exposure of each line is sequentially started.
  • the end of exposure time also ends in sequence.
  • flash 1 In this exposure mode, to make the amount of light emitted by each line to the light source equal, there are only two types of light sources that can be selected, such as “Flash 1" and “Flash 2" in Figure 2.
  • the flash 1 scheme starts to flash at the beginning of the last line of exposure, and ends at the end of the first line of exposure.
  • the flash 2 scheme starts flashing at the start of the first line of exposure and ends at the end of the last line of exposure. Neither of these options has optimized time and efficiency.
  • the flash time of the light source is less than the exposure time of the CMOS image sensor, and the exposure time is not fully utilized to increase the brightness of the target object.
  • the flash time of the light source In the flash 2 scheme, the flash time of the light source is greater than the exposure time of the CMOS image, and the energy of the light source is not fully utilized.
  • the exposure time is increased, the difference between the flash time and the exposure time will gradually increase. Zoom out. In the extreme case, the flash time will be approximately equal to the exposure time. But this is also not desirable. Because the solution is applied to the real-time target detection system, the target will have a certain moving speed. The theory of the new method proposed before is based on the assumption that "the target position is almost not moved in two consecutive frames.” Increasing the exposure time will make such an assumption impossible, thus invalidating this scheme.
  • CMOS transmission is an array of several such pixel units.
  • the pixel unit includes a photocell B, a reset tube R, a charge overflow tube T, a source follower FD, and an employee X.
  • each column of pixel units is commonly connected to a pair of signal output tubes, a signal output tube SH1 and a second signal output tube SH2.
  • the reset tube R, the charge overflow tube T and the photocell B are sequentially connected in series between the active power source and the ite.
  • the source follower FD is connected to the active power supply at one end, and the one end is connected to the row strobe X, and the gate of the source follower FD is connected to the node between the reset pipe R and the charge overflow pipe T.
  • the other end of the charge overflow tube T is connected to one end of the first signal output tube SH1 and the second signal output tube SH2 of the pixel column in which the pixel unit is located, respectively.
  • FIG. 5 is a control timing diagram of a pixel unit in an existing CMOS image.
  • the reset tube R and the charge overflow tube T are turned on, and the charges in the source follower FD and the photocell B are cleared. Thereafter, the reset tube R and the charge overflow tube T are turned off, and the exposure starts.
  • Photocell B begins to accumulate charge.
  • the line tube X and the first signal output tube SH1 turn on the sampling source follower FD reference level, and then immediately turn off.
  • the charge overflow tube T is turned on to transfer the charge of the photocell B to the source follower FD, after which the charge overflow tube T is immediately turned off.
  • the line tube X and the second signal output tube SH2 turn on the sampling source follower FD signal level.
  • the second signal output tube SH2 and the first signal output tube SH1 are compared and converted into digital signals. It should be pointed out that this is only the exposure control timing of the circuit included in a pixel unit in the CMOS image transmission, due to the CMOS image.
  • the image transmission requires serial output data.
  • the exposure control timing of the pixel units in the same row is synchronized, and the exposure control timing of the pixel units between different rows is sequentially performed in chronological order, so that The time at which each line outputs data does not conflict.
  • the row strobe X starts to sample the level, that is, the data of the line is started to be output. Therefore, in the prior art, such a method of time must output data immediately after exposure. Since the CMOS image sensor requires serial output data, only the lines are sequentially turned on to enable the lines to sequentially output data at the end of the exposure. When the exposure time of each line is synchronized, the time at which the data is outputted by the Bellow line is also synchronized, which inevitably causes the image data to be output normally.
  • the technical problem to be solved by the present invention is that, in view of the defect that each pixel row of the existing CMOS image sensor must output data immediately after exposure so as to be unable to synchronize exposure, a pixel row can be outputted after waiting for a preset time after exposure.
  • Another technical problem to be solved by the present invention is that the different pixel rows of the image sensor in the existing target detection system can only be sequentially exposed, resulting in low energy utilization of the light source and poor real-time performance of the set image.
  • a CMOS image sensor with time output data provides two CMOS image sensor exposure methods, so that different pixel rows can be simultaneously exposed and effectively capture the target image for target detection.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a CMOS image transmission, the CMOS image sensor comprising: a pixel array composed of a plurality of pixel rows, and a control chip for controlling the pixel array;
  • the control chip controls the pixel row to be exposed during the exposure time in one exposure period of each pixel row, and then controls the pixel row to wait for a preset waiting time to output data after the exposure time.
  • each of the plurality of pixel rows includes an equal number of pixel cells, and each pixel cell includes a photocell, a reset tube, a charge overflow gate tube, a row ship tube, and a source follower. And each pixel is escaping to the first signal output tube and the second signal output tube of the pixel column to output data; the control core The slice transmits the following control signals within one exposure period of each pixel row to control respective elements of each of the pixel rows:
  • the control chip further controls exposure time synchronization of at least two pixel rows in the pixel array, and the control chip then controls the at least two pixel rows to be respectively at the end of exposure After waiting for different preset waiting times to start outputting data, the difference between the preset waiting times of the at least two pixel rows is not less than the time required for the output data of the single pixel row.
  • the control chip further controls exposure time synchronization of all pixel rows in the pixel array, and the control chip then controls all pixel rows to wait for different presets after exposure ends respectively.
  • the waiting time begins to output data, and the preset waiting time of each pixel row in the pixel array is sequentially incremented, and the incremental difference is not less than the time required for the output data of a single pixel row.
  • the present invention also provides a method for CMOS image transmission, the CMOS image transmission comprising: a pixel array composed of a plurality of pixel rows, and a control chip for controlling the pixel array; Perform the following steps within one exposure period of each pixel row:
  • the output data step is controlled by the control chip to wait for the preset waiting time to output data after the exposure time.
  • the invention also provides a CMOS image transmission exposure method for the first light source state and the second light source
  • the target image is respectively captured in the state and output to the first frame buffer and the second frame buffer for target detection
  • the CMOS image is transmitted as the above CMOS image transmission, and the exposure includes the following steps:
  • A0 dividing the CMOS image into a plurality of sub-arrays composed of an equal number of pixel rows;
  • Al setting the first sub-array as a current exposure sub-array;
  • A2 in the first light source state and the second light source state, respectively, controlling the synchronized exposure of each pixel row in the current exposure sub-array and outputting data
  • step A3 determining whether the current exposure sub-array is the last sub-array, if yes, otherwise, go to step A4;
  • the present invention also provides an exposure method of another CMOS image sensor for respectively capturing a target image in a first light source state and a second light source state and outputting to a first frame buffer and a second frame buffer for target detection
  • the CMOS image is transmitted as the CMOS image transmission, and the exposure includes the following steps:
  • step B5 When the data output of the lower half pixel row in the current exposure sub-array is completed, the current exposure sub-array is moved down by the position of the half sub-array, and the process proceeds to step B2.
  • the present invention also provides an exposure method of another CMOS image sensor for use in a first light source state and a second light
  • the target image is respectively captured in the source state and output to the first frame buffer and the second frame buffer for target detection
  • the CMOS image is transmitted as the CMOS image transmission described above, and the exposure includes the following steps:
  • the CMOS image sensor is divided into a plurality of sub-arrays composed of a plurality of rows of pixels; B, 1, the first sub-array is set as a current exposure sub-array;
  • B' 4 in the second light source state, control each pixel row in the current exposure sub-array for the second synchronous exposure, and then output the data of the upper half pixel row in the current exposure sub-array to the second frame buffer, and then output the current Exposing data of the lower half of the pixel row in the sub-array to the second frame buffer;
  • the CMOS image sensor and the method for manufacturing the same according to the present invention have the following beneficial effects:
  • the present invention controls the pixel row exposure by controlling the chip during the exposure period of each pixel row, and then controls the pixel row to wait for the preview time after the exposure time. Waiting time to start outputting data, thereby separating the exposure time of the CMOS image sensor from the output data time, so that the pixel pixel operation mode in the CMOS image transmission can be more flexibly controlled, so as to facilitate the CMOS image transmission in various ways.
  • the exposure for example, controls the exposure time synchronization of at least two pixel rows or controls the exposure time synchronization of all pixel rows.
  • the exposure method of the CMOS image sensor implemented by the CMOS image transmission of the present invention has the following advantageous effects:
  • the exposure method provided by the present invention divides a CMOS image into sub-arrays and controls each pixel row in each sub-array. Synchronous exposure can make the flash time of the light source equal to the exposure time of the single sub-array, improve the energy utilization of the light source, and reduce the interval of exposure time of the same sub-array between the first light source state and the second light source state, so that The target image is effectively captured for target detection.
  • FIG. 1 is a schematic diagram of a process of a conventional target detection method
  • FIG. 3 is a view showing an operation mode of a CMOS image sensor in the case where each pixel is in a synchronized exposure
  • FIG. 4 is a circuit schematic diagram of a pixel unit in a conventional CMOS image sensor
  • FIG. 5 is a control timing diagram of a pixel unit in a conventional CMOS image transmission
  • Figure ⁇ is a control timing diagram of a pixel unit of a CMOS image transmission in the embodiment of the leg of the present invention.
  • Figure 7 is a diagram showing the operation of a CMOS image sensor in a preferred embodiment of the present invention.
  • Figure 8 is a flow chart showing a first embodiment of the exposure method of the CMOS image transmission of the present invention.
  • Figure 9 is a schematic view showing the process of the first embodiment of the exposure method of the CMOS image transmission of the present invention.
  • Figure 10 is a view showing the operation of the first sub-array in the first embodiment of the exposure method of the CMOS image sensor of the present invention.
  • Figure 11 is a flow chart showing a second embodiment of the exposure method of the CMOS image sensor of the present invention.
  • Figure 12 is a schematic view showing the process of the second embodiment of the exposure method of the CMOS image transmission of the present invention
  • Figure 13 is a flow chart showing the third embodiment of the exposure method of the CMOS image transmission of the present invention.
  • Figure 14 is a schematic view showing the process of the third embodiment of the exposure method of the CMOS image transmission of the present invention
  • Figure 15 is a view showing the operation of the third embodiment of the exposure method of the CMOS image transmission of the present invention
  • Figure 17 is a schematic view showing the process of the fourth embodiment of the exposure method of the CMOS image sensor of the present invention.
  • the invention provides a CMOS image transmission, the CMOS image sensor comprising a pixel array and a control core Film.
  • the pixel array is composed of a plurality of pixel rows, and the control chip is configured to control the plurality of pixel rows to be exposed and output data.
  • the invention is unique in that the control chip controls the pixel row to be exposed during the exposure time T1 in one exposure period of each pixel row, and then controls the pixel row to wait for a preset waiting time T2 after the exposure time T1. Start outputting data.
  • the preset waiting time T2 can be greater than or equal to zero.
  • FIG. 6 is a control timing diagram of a pixel unit of a CMOS image transmission in the leg embodiment of the present invention.
  • Each of the pixel units of the present invention includes a photocell ⁇ reset tube R, a charge overflow gate tube T, an employee X, and a source follower FD; and the pixel units of each pixel column are also shared to the signal output tube, for example, to Each of the pixel units is connected to the first signal output tube SH1 and the second signal output tube SH2 in the pixel column to output data.
  • the connection relationship of the above components is the same as that of the circuit of Fig. 5, except that the present invention can realize different exposure processes by changing the timing of the control signals transmitted from the control chip.
  • control chip of the present invention transmits the following control signals to control corresponding elements of each pixel unit in the pixel row in one exposure period of each pixel row:
  • step S1 at the beginning of the exposure time T1, a high-level pulse is sent to turn on the reset tube R and the charge overflow gate tube ⁇ . Thereby the charge in the photocell ⁇ and the source follower FD is cleared. After the reset tube R and the charge overflow gate T are turned off, the pixel row starts to be exposed.
  • step S2 at the end of the exposure time T1 of the pixel row, a high level pulse is sent to turn on the charge overflow gate T; the charge of the photocell B is transferred to the source follower FD, after which the charge overflow gate T is turned off.
  • step S3 when the preset waiting time T2 ends after the end of the exposure time T1 of the pixel row, a high-level pulse is turned on to turn on the row strobe tube X and the first signal output tube of the pixel column in which the pixel unit is located. SH1, to sample the signal level. Then, the row strobe tube X and the first signal output tube SH1 of the pixel column in which the pixel unit is located are turned off.
  • step S4 a high level pulse is sent to turn on the reset transistor R to clear the charge in the source follower FD.
  • the reset tube R is then closed.
  • step S5 a high level pulse is respectively sent to turn on the row tube X and the pixel column of the pixel unit
  • the second signal output tube SH2 is to sample the reference level.
  • the first signal output tube SH1 and the second signal output tube SH2 of the pixel column in which the pixel unit is located are compared and converted into digital signal outputs.
  • each pixel row can be controlled to wait for the preset waiting time T2 after the exposure time T1 to start outputting data, thereby separating the exposure time of the CMOS image transmission from the output data time, thereby controlling the CMOS more flexibly.
  • the mode of operation of each pixel row in the image sensor facilitates the various forms of exposure of the CMOS image sensor.
  • the CMOS image transmission may enable synchronization of an exposure time T1 of at least two pixel rows in the pixel array by the control chip, and the control chip subsequently controls the At least two pixel rows respectively wait for different preset waiting times T2 to start outputting data after the end of exposure.
  • the control process of the embodiment will be specifically described below. It is assumed that the at least two pixel rows include L1 and L2. The preset waiting times of the two pixel rows are different, respectively T2-1 and T2-2. And the difference between the two is not less than the time required for the output data of a single pixel row, so that the serial output can be performed. Since the exposure time T1 of the pixel row L1 and the pixel row L2 are synchronized, the corresponding control process is as follows:
  • control chip simultaneously sends a high-level pulse to turn on the reset tube R and the charge overflow gate ⁇ of all the pixel cells in L1 and L2, and the exposure starts after the reset tube R and the charge overflow gate ⁇ are turned off.
  • control chip simultaneously sends a high-level pulse to turn on the charge overflow gates of all the pixel cells in L1 and L2; transfer the charge of the photocell ⁇ to the source follower FD, and then the charge overflows the gate tube T shut down.
  • control chip transmits the control signal output data of the pixel row L1 and the pixel row L2 at the end of the preset waiting time T2-1 and the preset waiting time T2-2 after the end of the exposure time T1.
  • a high-level pulse is sent to turn on the row tube X of all the pixel units in the pixel row L1 and the pixel column in which the pixel unit is located.
  • the first signal output tube SH1 is to sample the signal level.
  • the row strobe tube X of all the pixel units in the pixel row L1 and the first signal output tube SH1 of the pixel column in which the pixel unit is located are turned off.
  • the control chip then sends a high level pulse to turn on the reset transistor R of all pixel cells in the pixel row L1 to clear the charge in the source follower FD.
  • the reset tube R is then closed.
  • the chip sends a high level pulse to turn on the row tube X of all the pixel units in the pixel row L1 and the second signal output tube SH2 of the pixel column in which the pixel unit is located to sample the reference level.
  • the first signal output tube SH1 and the second signal output tube SH2 corresponding to all the pixel units in the pixel row L1 are compared and converted into digital signals, and output as data of the pixel row L1.
  • a high-level pulse is respectively sent to turn on the row tube X of all the pixel units in the pixel row L1 and the pixel column in which the pixel unit is located.
  • the first signal output tube SH1 is to sample the signal level.
  • the row X of all the pixel cells in the pixel row L2 and the first signal output pipe SH1 of the pixel column in which the pixel cell is located are turned off.
  • the control chip then sends a high level pulse to turn on the reset transistor R of all pixel cells in pixel row L2 to clear the charge in source follower FD.
  • the reset tube R is then closed.
  • the control chip respectively sends a high level pulse to turn on the row tube X of all the pixel units in the pixel row L2 and the second signal output tube SH2 of the pixel column in the pixel unit to sample the reference level.
  • the first signal output tube SH1 and the second signal output tube SH2 corresponding to all the pixel units in the pixel row L2 are compared and converted into digital signals, and output as data of the pixel row L2.
  • FIG. 7 in which the exposure time T1 of all pixel rows in the CMOS image transmission is synchronized.
  • the control chip controls all the pixel rows to wait for different preset waiting times T2 to start outputting data after the end of the exposure, and the preset waiting time of each pixel row in the pixel array is sequentially incremented. , and the increment difference is not less than the time of the output data of a single pixel row.
  • the difference between ⁇ 2-2 and T2-1 should not be less than the time when the pixel row L1 outputs data; the same as the preset waiting time of pixel row L3 ⁇ 2-3
  • the difference of ⁇ 2-2 should not be less than the time of the output data of the pixel row L2; and so on, the difference between the preset waiting time T2-n of the pixel row Ln and the preset waiting time ⁇ 2- ⁇ -1 of the pixel row Ln-1
  • the value is greater than the time at which the pixel row Ln-1 outputs data.
  • the time at which a single pixel row outputs data in the same image sensor can be equal. If the image sensor provided in this embodiment is applied in the field of target detection, since each pixel row is synchronously exposed, the flash time can be The exposure time is equal, which improves the energy efficiency of the light source.
  • the present invention also provides a timing method for the above-described CMOS image transmission, which performs an exposure step and an output data step in one exposure period of each pixel row.
  • the exposing step is: controlling, by the control chip, the pixel row to be exposed during the exposure time T1.
  • the output data is as follows: the pixel is controlled by the control chip to wait for a preset waiting time T2 after the exposure time T1 to start outputting data.
  • the exposing step includes transmitting, by the control chip, the following control signals to respectively control corresponding components of each pixel unit in the pixel row:
  • step S1 at the beginning of the exposure time T1, a high level pulse is turned on to turn on the reset tube R and the charge overflow gate tube T.
  • step S2 at the end of the exposure time T1, sending a high level pulse to turn on the charge overflow gate 1 ⁇ output data step includes the following control signals sent by the control chip to control each pixel unit in the pixel row Corresponding components:
  • step S3 when the preset waiting time ends after the end of the exposure time T1, a high-level pulse is turned on to turn on the row strobe tube X and the first signal output tube SH1 of the pixel column in which the pixel unit is located, to sample the signal. Level.
  • step S4 a high level pulse is sent to turn on the reset tube 1.
  • step S5 a high level pulse is turned on to open the tube X and the first signal output tube SH2 of the pixel column in which the pixel unit is located to sample the reference level.
  • the invention also provides an exposure method of a CMOS image sensor based on the above-mentioned post-exposure waitable time output data, in combination with the target detection system, for respectively capturing a target image and outputting in the first light source state and the second light source state.
  • the first frame buffer and the second frame buffer are used for target detection.
  • the first light source state and the second light source state may respectively represent the flashing and non-flashing states of the light source in the target detection, and may also provide two different light source states according to the actual needs of the target detection.
  • the light source can be fired at the same time as the exposure, so that the flash time and the exposure time are equal. This can make full use of the exposure time to increase the brightness of the target object, and make full use of the energy of the light source.
  • the exposure method it is first necessary to divide the CMOS image sensor into a plurality of sub-arrays in order to perform exposure processing according to a certain rule, and these sub-arrays usually have an equal number of pixel rows. Due to the real-time nature of the target detection system, the target object and the background object cannot be displaced too much during the continuous shooting of the same scene. Therefore, the time interval between the two shots is required to be as small as possible. Therefore, the present invention divides the array of the entire pixel unit of the CMOS image sensor into sub-arrays according to fi3 ⁇ 4". Since the number of lines is reduced, the sub-array takes less time to shoot than the entire pixel array, and the time between consecutive frames is reduced.
  • FIG. 8 is a flowchart of a first embodiment of an exposure method for CMOS image transmission according to the present invention. As shown in FIG. 8, the exposure side of this embodiment includes the following steps:
  • step AO the CMOS image is divided into a plurality of sub-arrays composed of an equal number of pixel rows.
  • step A1 the first sub-array is set to the current exposure sub-array.
  • step A2 in the first light source state and the second light source state, respectively, the respective pixel rows in the current exposure sub-array are controlled to be simultaneously exposed and output data.
  • step A2 further includes: step A21, controlling each pixel row in the current exposure sub-array to perform the first synchronous exposure in the first light source state, and controlling the respective pixel rows to sequentially output data to The first frame buffer is output until all pixel row data in the current exposure sub-array is completed; step A22, controlling each pixel row in the current exposure sub-array to perform a second synchronous exposure in the second light source state, and controlling the respective pixel rows The data is sequentially output to the second frame buffer until all pixel row data in the current exposure sub-array is output.
  • step A3 it is judged whether the current exposure sub-array is: sub-array, if yes, go to step A5, otherwise go to step A4.
  • step A4 the next subarray of the current exposure sub-array is set to the current exposure sub-array and the process proceeds to step A2. Finally, in step A5, it ends.
  • the exposure process of the first embodiment will be specifically described below with reference to the drawings.
  • FIG. 9 is a schematic diagram of the process of the first embodiment of the CMOS image transmission exposure method of the present invention.
  • the CMOS image sensing « is divided into K sub-arrays, respectively M1, M2, M3, ... Mk .
  • Each of the subarrays contains the same pixel row.
  • each successive 16 acts as a subarray.
  • each time the shed is shot twice in the same sub-array, one of which is the first light source state, that is, the light source flashes, and the other time is the second light source state, that is, the light source is not. flash.
  • the next subarray uses the next subarray to shoot twice in succession.
  • the first sub-array M1 is the current exposure sub-array, and is exposed in the first light source state, and then each row sequentially outputs data to the first frame buffer; during the second time, the first sub-array M1 is still The current exposure sub-array is exposed in a second light source state, and then each row sequentially outputs data to the second frame buffer; determining that the first sub-array is not the last sub-array, thus the second sub-array of the next sub-array of the current exposure sub-array Set to the current exposure sub-array; during the third time period, the second sub-array M2 is the current exposure sub-array, exposed in the first light source state, and then each row sequentially outputs data to the first frame buffer; during the fourth time period, The two sub-arrays M2 are still the current exposure sub-array, exposed in the second light source state, and then each row sequentially outputs data to the second frame buffer; ...
  • the k-th sub-array M k is the current exposure
  • the sub-array is exposed in the first light source state, and then each row sequentially outputs data to the first frame buffer; during the 2kth time, the k-th sub-array M k is still current
  • the exposure sub-array is exposed in the second light source state, and then each row sequentially outputs data to the second frame buffer; determining that the k-th sub-array M k is a sub-array, the exposure process ends.
  • FIG. 10 is a schematic diagram showing the operation of the first sub-array in the first embodiment of the CMOS image transmission exposure method of the present invention.
  • the first sub-array M1 performs a synchronous exposure once during the first time period and the second time period 3 ⁇ 4, respectively.
  • the pixel rows L1 to L16 of the first sub-array M1 are first subjected to the first simultaneous exposure in the state of the first light source, that is, the exposure time is T1.
  • the pixel row L1 to the pixel row L16 are sequentially outputted with data.
  • the preset waiting time T2-1 of the pixel row L1 can be 0, and the preset waiting time ⁇ 2-2 of the pixel row L2 is not different from T2-1.
  • the output data time is smaller than the pixel row L1... and so on, the preset waiting time of the pixel row is continuously increased, and the difference from the previous pixel row is not less than the time of outputting data of a single pixel row.
  • the second synchronization exposure is started in the second light source state.
  • the first light source state and the second light source state described in the present invention may be interchanged, that is, the image may be captured first when the light source is flashing, or the image may be captured without the light source flashing, and the order of the two does not affect further.
  • the result of the target test may be interchanged, that is, the image may be captured first when the light source is flashing, or the image may be captured without the light source flashing, and the order of the two does not affect further.
  • Each pixel unit of such a CMOS image is exposed twice, with one light source flashing and the other light source not flashing. Moreover, the time difference between the maps of the two sets is about the time of outputting data of the single sub-array, which effectively reduces the time interval and ensures the real-time performance of image acquisition.
  • the image processor further subtracts the results stored in the two frame buffers, and divides the target area and the background area by a certain threshold, thereby calculating the characteristics of the target object.
  • the sub-array is exposed in a top-down manner, and the bottom-up manner may also be adopted according to the replacement principle. Expose the sub-array.
  • FIG. 11 is a schematic diagram of a process of a second embodiment of an exposure method for CMOS image transmission according to the present invention.
  • the CMOS image is divided into a plurality of sub-arrays composed of an equal number of pixel rows; then in step A, 1, the sub-array is set as the current exposure sub-array.
  • step A'2 in the first light source state and the second light source state, respectively, the respective pixel rows in the current exposure sub-array are controlled to be simultaneously exposed and output data.
  • step A' 2 further includes: Step A' 21: controlling, in the first light source state, each pixel row in the current exposure sub-array to perform the first synchronous exposure, and controlling the respective pixel rows to be sequentially output.
  • step A'22 controlling each pixel row in the current exposure sub-array to perform a second simultaneous exposure in the second light source state, and controlling the Each pixel row sequentially outputs data to the second frame buffer until all pixel row data in the current exposure sub-array is output.
  • step A'3 it is judged whether the current exposure sub-array is the first sub-array, if yes, go to step A'5, otherwise go to steps A, 4.
  • step A' 4 the previous sub-array of the current exposure sub-array is set as the current exposure sub-array and step A'
  • the kth sub-array Mk is the current exposure sub-array, exposed in the first light source state, and then each row sequentially outputs data to the first frame buffer, which can be from top to bottom. The data may also be output from bottom to top; during the second time period, the kth sub-array Mk is still the current exposure sub-array, exposed in the second light source state, and then each row sequentially outputs data to the second frame buffer;
  • the sub-array M k is not the first sub-array, so the k-1 sub-array M k-1 of the previous sub-array of the current exposure sub-array is set as the current exposure sub-array; ...
  • the array M1 is a current exposure sub-array, and is exposed in a first light source state, and then each row sequentially outputs data to the first frame buffer; during the 2kth time, the first sub-array M1 is still the current exposure sub-array, and the second light source The state is exposed, and then each row sequentially outputs data to the second frame buffer; it is judged that the first sub-array M1 is the first sub-array, and thus the exposure process ends.
  • FIG. 13 is a flowchart of a third embodiment of the exposure method of the CMOS image transmission of the present invention.
  • the method also divides the CMOS image sensor into sub-arrays for exposure.
  • the exposure steps of the embodiment are as follows:
  • step B0 the CMOS image is divided into a plurality of sub-arrays composed of an equal number of pixel rows.
  • step B1 the first sub-array is set to the current exposure sub-array.
  • step B2 is performed, specifically including step B21 and step B22 in FIG.
  • each pixel row in the current exposure sub-array is controlled to perform the first simultaneous exposure in the first light source state, and then the data of the lower half-pixel row of the current exposure sub-array is first outputted to the first frame buffer.
  • step B22 the data of the half-pixel row on the current exposure sub-array is output to the first frame buffer.
  • step B3 is performed, which specifically includes step B31 and step B32 in FIG.
  • step B31 when the data output of the lower half pixel row of the current exposure sub-array is completed, it is determined whether the current exposure sub-array is: a sub-array, which is a step B6, otherwise, the process proceeds to step B32.
  • step B32 the current exposure sub-array is shifted down by the position of the half sub-array.
  • step B4 is performed, specifically including step B41 and step B42 in FIG.
  • step B41 in the second light source In the state, each pixel row in the current exposure sub-array is controlled to perform a second synchronous exposure, and then the data of the lower half-pixel row of the current exposure sub-array is first output to the second frame buffer.
  • step B42 the data of the half pixel row on the current exposure sub-array is output to the second frame buffer.
  • step B5 when the data output of the lower half pixel row of the current exposure sub-array is completed, the current exposure sub-array is moved down to the position of the half sub-array, and the process proceeds to step B2.
  • step B22 and step B31 are executed in parallel after step B21, that is, while the data of the upper half pixel row is output, the lower half pixel row of the data has been input into the next exposure, Save time difference between exposures.
  • step B42 and step B5 are executed in parallel after step B41.
  • step B2 after the first simultaneous exposure is performed in step B2, the data of each pixel row in the current exposure sub-array is sequentially output to the first frame buffer in order from bottom to top.
  • step B4 the data of each pixel row in the current exposure sub-array is sequentially output from the bottom to the top to the second frame buffer.
  • FIG. 14 is a schematic diagram of a process of a third embodiment of the CMOS image transmission exposure method of the present invention.
  • the CMOS image is transferred into K sub-arrays, which are respectively M1, M2, M3, ... M k .
  • the first sub-array M1 is the current exposure sub-array, and is exposed in the first light source state, and then the rows sequentially output data from the bottom to the top to the first frame buffer, that is, the data of the lower half pixel row MD1 is output first.
  • the first sub-array M1 is not: a sub-array, so the current The position of the exposure sub-array shifting down the half sub-array, that is, the lower half-pixel row MD1 of the first sub-array M1 and the upper-half pixel row MU2 of the second sub-array M2 constitute a new current exposure sub-array, so that in the second light source state Controlling each pixel row in the new current exposure sub-array for a second simultaneous exposure...
  • the k-th sub-array M k is the current exposure sub-array, exposed in the first light source state, and then each row The data is sequentially output from the bottom to the top to the first frame buffer, and the kth sub-array Mk is judged to be the last sub-array, so the exposure process ends.
  • Each sub-array is photographed once per shed, and the output order is sequentially output from the 32nd line to the 1st line. Then move the array down 16 lines to form a new sub-array, then shoot one Times. Loop back and forth until the pixel array is taken.
  • the light source is in the first lighting state; the light source is in the second lighting state in the even number of times of shooting, that is, the light source is flashing and not flashing, respectively.
  • the first time a sub-array of behaviors 1st to 32th, the light source emits light when shooting; the second time acts as a sub-array with lines 17 to 48, the light source does not emit light when shooting; the third time is the 33rd line
  • the CMOS image is transmitted except for the upper half pixel row 16 rows of the first sub-array and the lower half pixel row 16 rows of the last sub-array, each pixel cell undergoes two exposures, one of which emits light, and the other once The light source does not emit light.
  • the control chip of the CMOS image processor subtracts the results of the two times and divides the target area and the background area by a certain threshold to calculate the characteristics of the target object.
  • FIG. 15 is a schematic diagram of the operation of the first sub-array in the third embodiment of the exposure method for CMOS image transmission according to the present invention.
  • the pixel row L1 to the pixel row L32 of the first sub-array M1 are first subjected to the first simultaneous exposure in the first light source state during the first time t1, that is, the exposure time is T1.
  • the pixel row L32 to the pixel row L1 sequentially output data.
  • the preset waiting time ⁇ 2-32 of the pixel row L32 can be 0, and the difference between the preset waiting time T2-31 of the pixel row L31 and ⁇ 2-32 is greater than
  • the output data time of the pixel row L32... and so on, the preset waiting time from the bottom to the top pixel row is continuously increased, and the difference from the previous pixel row is greater than the time of the previous pixel row output data.
  • the second synchronization exposure is started for the pixel rows L17 to L48 in the second light source state. And repeat the above process.
  • this method can make the first 16 rows and the last 16 rows of the CMOS image sensor cannot be utilized, when the 16 rows of the 32-row sub-array are completed, the exposure of the next sub-array can be started immediately, so that the next one
  • the exposure time of the sub-array overlaps with the output time of the last 16 lines of the previous sub-array, which saves time and expenditure, and can improve the frame rate of the entire system, which is very helpful for constructing a real-time target detection system.
  • the sub-array is also exposed in a top-down manner, and the bottom-up manner may also be adopted according to the replacement principle.
  • the sub-array is exposed.
  • FIG. 16 is a schematic diagram of a process of a fourth embodiment of an exposure method for CMOS image transmission according to the present invention.
  • the CMOS image is divided into a plurality of sub-arrays composed of an equal number of pixel rows.
  • step B'1 the sub-array is set to the current exposure sub-array.
  • steps B, 2 are performed, including steps B, 21 and steps B, 22.
  • steps B, 21 each pixel row in the current exposure sub-array is controlled for the first simultaneous exposure in the first light source state, and then the data of the half-pixel row on the current exposure sub-array is first output to the first frame buffer.
  • step B'22 the data of the lower half pixel row of the current exposure sub-array is output to the first frame buffer.
  • step B' 3 is performed, which specifically includes step B' 31 and step B' 32.
  • step B'31 when the data output of the upper half pixel row of the current exposure sub-array is completed, it is determined whether the current exposure sub-array is the first sub-array, and then the step B'6 is returned to the step B'. 32.
  • step B'32 the current exposure sub-array is shifted up by the position of the half sub-array.
  • steps B, 4 are performed, including steps B, 41 and steps B, 42.
  • steps B, 41 each pixel row in the current exposure sub-array is controlled to perform a second simultaneous exposure in the second light source state, and then the data of the half-pixel row on the current exposure sub-array is first output to the second frame buffer.
  • step B'42 the data of the lower half pixel row of the current exposure sub-array is output to the second frame buffer.
  • step B'5 when the data output of the upper half pixel row of the current exposure sub-array is completed, the current exposure sub-array is shifted up by the position of the half sub-array, and steps B, 2 are performed.
  • step B' 22 and step B' 31 are also performed in parallel after step B' 21, that is, while the data of the lower half pixel row is output, the upper half pixel row of the data has been input. Invest in the next exposure to save time difference between exposures. Similarly, after step B'41, step B'42 and step B'5 are performed in parallel.
  • the data of each pixel row in the current exposure sub-array is sequentially output to the first frame buffer in order from top to bottom.
  • the data of each pixel row in the current exposure sub-array is sequentially output from top to bottom to the second frame buffer.
  • the specific implementation process of the fourth embodiment is as shown in FIG. First, the CMOS image is transferred into K sub-arrays, which are respectively M1, M2, M3, ... M k .
  • the data of the lower half pixel row MD k is outputted; during the second time period, that is, when the data output of the upper half pixel row MU k of the kth sub-array Mk is completed, it is judged that the kth sub-array M k is not the first a sub-array, the current position of the half subarrays shift the exposure subarray i.e.
  • the MD k -1 constitutes a new current exposure sub-array, thereby controlling each pixel row in the new current exposure sub-array to perform a second simultaneous exposure in the second light source state...
  • the first sub-array M1 is current The exposure sub-array is exposed in the first light source state, and then the rows sequentially output data from the top to the bottom to the first frame buffer, and the first sub-array M1 is determined to be the first sub-array, so that the exposure process ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

本发明涉及一种CMOS图像传感器及其时序控制方法和曝光方法,所述CMOS图像传感器包括:由若干像素行构成的像素阵列,以及用于控制所述像素阵列的控制芯片;所述控制芯片在每个像素行的一个曝光周期内控制所述像素行在曝光时间内曝光,随后控制所述像素行在曝光时间后等待预设等待时间输出数据。本发明将CMOS图像传感器的曝光时间与输出数据时间分离开,因此可以更灵活地控制CMOS图像传感器的工作模式;此外,本发明提供的曝光方法采取控制CMOS图像传感器中子阵列的各个像素行同步曝光的方式,可使光源的闪光时间与单个子阵列的曝光时间相等,提高了光源能量利用率,且确保了图像采集的实时性。

Description

说明书
CMOS图像传藤及其时赚制雄和曝光雄 餘领域
本发明涉及图像传感器领域, 更具体地说, 涉及一种可以应用于实时目标检测系统的 CMOS图像传 及其时雜制方法和曝光方法。
背景脉
利用主动光源照明雄行目标检测是一项常用的技术。 请参阅图 1, 为现有目标检测方 法的过程示意图。 如图 1所示, 一般包括几个主要模块: 光源、 图像传 、 同步机制和图 像处理器。可以通过这几个模块实时检测目标物体的位置、形状、速度、颜色、纹理等特征。 其工作原理如下: 光源发出光线, 照射到目标物体。 同时, 在同步机制的控制下, 图像传感 器拍摄整个场景的图像。场景的图像包括目标物体和后方的背景物体。 目标物体可以是普通 的漫反射表面的物体, 也可以是预先制定的特殊物体(其表面对光线的反射具有方向性, 可 以将光源发出的光线反射到图像传感器上)。 由于目标物体距离光源较近, 或具有特殊反光 表面,使得在图像中目标物体的亮度远高于背景的亮度。 图像处理器接收至画像并进行图像 分割, 亮度高于某一阈值的部分认为是目标物体, 亮度低于阈值的部分则认为是背景。从而 根据目标区域的划分进行后续的运算, 如提取位置信息。
目前采用的上述检测方法的缺点在于, 目标的提取很容易受到环境光的干扰。如果环境 光的照射使得背景中的某一区域比目标物体亮度还高, 那么上述方法将会失效。
在现有技术中, 对于环境光的干扰, 一般的解决办法是, 将光源调制到特定波长 λ (为 了不影响人目艮的观察, 一 J¾在可见光波长方位之外), 加大输出功率, 并在图像传感器和 目标物体之间安装相应波长 λ的带通 波片, 只允许波长 λ的光线通过。这种方法可以在一 定程度上抑制环境光的影响, 提高目标物体和背景的对比度。但是, 环境光通常是全波长的 (如阳光和白炽灯), 其在 λ波长上的光照强度也可能 ^大于光源发出的光线, 所以选用 特定波长的方法也有可能失效。 目前, 已经提出了一种新的方法可以解决上述问题。 该方法使用普通 CMOS (Complementary Metal Oxide Semiconductor, 互补金属氧化物半导体)图像传感器, 在同一 场景中连续拍摄两帧图像 Ii和 12 (假设在整个过程中目标物体和背景物体的位置几乎没有发 生改变)。 其中 U白摄时光源发光, ι2拍摄时光源不发光。 由于目标物体距离光源较近, 或 具有特殊反光表面,使得在 ^图像中目标物体的亮度远高于 12图像中目标物体的亮度;而背 景物体距离光源较远,且没有特殊反光表面,使得 Ii图像和 12图像中背景物体的亮度差别不 大。 图像处理器接收到图像 U l2, 并对其做差值运算, 结果为图像 I。 则 I中目标物体的 亮度会远大于背景物体的亮度。 对 I进行图像分割, 亮度高于某一阈值的部分认为是目标物 体, 亮度低于阈值的部分则认为是背景。从而根据目标区域的划分进行后续的运算, 如提取 位置信息等。
这种新的方法解决了环境光照的问题,但其缺点在于 系统的实时性和光源能量的利 用率上。 这与 CMOS图像传 的工作模式相关。
请参阅图 2, 为现有 CMOS图像传 的工作模式图。 对于多数 CMOS图像传 而 言, 其每一行的曝光时间是不同时的。 图 2中的横轴为时间轴。 如图 2所示, 第一行 L1开 始曝光一段时间之后, 第二行 L2才开始曝光, 之后依次开始各行的曝光。 曝光结束时间也 是依次结束的。
在这种曝光方式下, 要使各行接收到光源发射的光线的量相等, 则可以选择的光源闪光 时间只有两种,如图 2中的"闪光 1 "和"闪光 2"。闪光 1方案在最后一行曝光开始时刻开始闪 光, 在第一行曝光结束的时刻结束闪光。 闪光 2方案在第一行曝光开始时刻开始闪光, 在最 后一行曝光结束的时刻结束闪光。这两种方案都没有达到时间和效率的最优化。在闪光 1方 案中光源的闪光时间小于 CMOS图像传感器的曝光时间, 没有充分利用曝光时间提高目标 物体的亮度。 而在闪光 2方案中, 光源的闪光时间大于 CMOS图像传 的曝光时间, 没 有充分利用光源的能量。
此外, 如果加大曝光时间, 贝 lj闪光时间和曝光时间的差距占整个曝光时间的比例会逐渐 縮小。极限的情况下, 闪光时间会约等于曝光时间。但这也是不可取的。 因为该方案是应用 在实时的目标检测系统上的, 目标会有一定的移动速度。之前提出的新方法的理论是建立在 "连续拍摄两帧图像中目标位置几乎没有移动"这样的假设基础上的。加大曝光时间会使这样 的假设不能够成立, 从而使这种方案失效。
因此, 如果可以保证各行的曝光同时进行, 则可以解决上述问题。 请参阅图 3, 为各像 素行曝光时间同步情况下的 CMOS图像传 的工作模式图。 通过将闪光时间设置成与曝 光时间同步, 贝何以使各行接收到光源发射的光线的量相等。
然而, 目前的 CMOS图像传 难以实现各行的曝光同步。 下面具体结合 CMOS传感 器中像素单元的电路原理进行说明。请参阅图 4,为现有 CMOS传感器的像素单元的电路原 理图。 CMOS传 是由若干个这样的像素单元构成的阵列。如图 4所示,像素单元包括光 电池 B、 复位管 R、 电荷溢出管 T、 源跟随器 FD和行雇管 X。 此外, 每列像素单元共同 连接至一对信号输出管, 艮嗨一信号输出管 SH1和第二信号输出管 SH2。 其中, 复位管 R、 电荷溢出管 T和光电池 B依次串联在主动电源与 ite间。源跟随器 FD一端接主动电源,一 端与行选通管 X相连, 且所述源跟随器 FD的栅极连至复位管 R和电荷溢出管 T之间的节 点。 电荷溢出管 T另一端分别连接至该像素单元所处像素列的第一信号输出管 SH1和第二 信号输出管 SH2的一端。
请参阅图 5, 为现有 CMOS图像传 中像素单元的控制时序图。如图 5所示, 在每行 像素开始曝光之前, 复位管 R和电荷溢出管 T开启, 清空源跟随器 FD和光电池 B中的电 荷。 之后复位管 R和电荷溢出管 T关闭, 曝光开始。 光电池 B开始积累电荷。 曝光时间 T1 结束之前, 行 管 X和第一信号输出管 SH1开启采样源跟随器 FD参考电平, 之后立即 关闭。在曝光结束时, 电荷溢出管 T开启将光电池 B的电荷转移到源跟随器 FD, 之后电荷 溢出管 T立即关闭。 行 管 X和第二信号输出管 SH2开启采样源跟随器 FD信号电平。 第二信号输出管 SH2和第一信号输出管 SH1经过比较后转换为数字信号。 需要指出的是, 这只是 CMOS图像传 中某一个像素单元所包含的电路的曝光控制时序, 由于 CMOS图 像传 需要串行输出数据, 在¾^ CMOS图像传感器中, 同一行的像素单元的曝光控制 时序是同步的, 不同行之间的像素单元的曝光控制时序是按时间顺序依次执行的, 以使各行 输出数据的时间不发生冲突。
结合图 2至图 5可知,在曝光时间结束之前,行选通管 X便开始采样电平, 即开始输出 该行的数据。 因此, 在现有技术中, 这种时 制的方法必须在曝光后立即输出数据。 由于 CMOS图像传感器需要串行输出数据,所以只有使各行依次开始曝光,才能使各行在曝光结 束时依次输出数据。 当使各行的曝光时间同步时, 贝恪行输出数据的时间也同步, 必然导致 无法正常输出图像数据。
发明内容
本发明要解决的技术问题在于, 针对现有 CMOS 图像传感器的各个像素行在曝光后必 须立即输出数据从而不能同步曝光的缺陷,提供一种可以使像素行在曝光后等待预设时间后 再输出数据的 CMOS图像传 及其时 制方法, 从而使该 CMOS图像传 的任意两 行可以同步曝光。
本发明要解决的另一技术问题在于,针对现有目标检测系统中图像传感器的不同像素行 只能依次曝光, 导致光源能量利用率低、 集图像的实时性差的缺陷, 利用上述各行可以 等待预设时间输出数据的 CMOS图像传感器, 提供了两种 CMOS图像传感器的曝光方法, 从而使不同像素行可以同时曝光并有效地拍摄目标图像以进行目标检测。
因此, 本发明解决其技术问题所采用的技术方案是: 构造一种 CMOS 图像传 , 所 述 CMOS图像传感器包括: 由若干像素行构成的像素阵列, 以及用于控制所述像素阵列的 控制芯片; 所述控制芯片在每个像素行的一个曝光周期内控制所述像素行在曝光时间内曝 光, 随后控制所述像素行在曝光时间后等待预设等待时间输出数据。
在本发明所述的 CMOS 图像传感器中, 所述若干像素行中的每一行包括数量相等的像 素单元, 且每个像素单元包括光电池、 复位管、 电荷溢出门管、行舰管和源跟随器; 且每 个像素单避接至所在像素列的第一信号输出管和第二信号输出管以输出数据;所述控制芯 片在每个像素行的一个曝光周期内发送以下控制信号分别控制所述像素行中每个像素单元 的对应元件:
51、 在曝光时间开始时, 分别发送一高电平脉冲开启复位管和电荷溢出门管;
52、 在曝光时间结束时, 发送一高电平脉冲开启电荷溢出门管;
53、在曝光时间结束后预设等待时间结束时, 分别发送一高电平脉冲开启行雇管和该 像素单元所在像素列的第一信号输出管, 以采样信号电平;
54、 发送一高电平脉冲开启复位管;
55、 分别发送一高电平脉冲开启行选通管和该像素单元所在像素列的第二信号输出管, 以采样参考电平。
在本发明所述的 CMOS 图像传感器中, 所述控制芯片还控制所述像素阵列中的至少两 个像素行的曝光时间同步,所述控制芯片随后控制所述至少两个像素行分别在曝光结束后等 待不同的预设等待时间开始输出数据,且所述至少两个像素行的预设等待时间的差值不小于 单个像素行输出数据所需的时间。
在本发明所述的 CMOS 图像传感器中, 所述控制芯片还控制所述像素阵列中的所有像 素行的曝光时间同步,所述控制芯片随后控制所有像素行分别在曝光结束后等待不同的预设 等待时间开始输出数据, 且所述像素阵列中的每个像素行的预设等待时间依次递增, 且递增 的差值不小于单个像素行输出数据所需的时间。
本发明还提供了一种 CMOS图像传 的时 制方法,所述 CMOS图像传 包括: 由若干像素行构成的像素阵列, 以及用于控制所述像素阵列的控制芯片; 所述时 制方法 包括在每个像素行的一个曝光周期内执行以下步骤:
曝光步骤、 由所述控制芯片控制所述像素行在曝光时间内曝光;
输出数据步骤、 由所述控制芯片控制所述像素行在曝光时间后等待预设等待时间输出数 据。
本发明还提供了一种 CMOS 图像传 的曝光方法, 用于在第一光源状态和第二光源 状态下分别拍摄目标图像并输出至第一帧缓存器和第二帧缓存器以进行目标检测, 所述
CMOS图像传 为上述 CMOS图像传 , 所述曝光方 括以下步骤:
A0、将所述 CMOS图像传 划分为由数量相等的像素行构成的若干子阵列; Al、将第一子阵列设为当前曝光子阵列;
A2、分别在第一光源状态和第二光源状态下,控制当前曝光子阵列中各个像素行同步曝 光并输出数据;
A3、判断当前曝光子阵列是否为最末子阵列, 是则结束, 否则转步骤 A4;
A4、将当前曝光子阵列的下一子阵列设为当前曝光子阵列并转步骤 A2。
本发明还提供了另一种 CMOS图像传感器的曝光方法, 用于在第一光源状态和第二光 源状态时分别拍摄目标图像并输出至第一帧缓存器和第二帧缓存器以进行目标检测, 所述 CMOS图像传 为上述 CMOS图像传 , 所述曝光方 括以下步骤:
B0、将所述 CMOS图像传 划分为由数量相等的像素行构成的若干子阵列;
Bl、将第一子阵列设为当前曝光子阵列;
B2、在第一光源状态下控制当前曝光子阵列中各个像素行进行第一次同步曝光,随后先 输出当前曝光子阵列中下半像素行的数据至第一帧缓存器,再输出当前曝光子阵列中上半像 素行的数据至第一帧缓存器;
B3、在所述当前曝光子阵列中下半像素行的数据输出完毕时,判断当前曝光子阵列是否 为: 子阵列, 是则结束, 否贝幡当前曝光子阵列下移半个子阵列的位置;
B4、在第二光源状态下控制当前曝光子阵列中各个像素行进行第二次同步曝光,随后先 输出当前曝光子阵列中下半像素行的数据至第二帧缓存器,再输出当前曝光子阵列中上半像 素行的数据至第二帧缓存器;
B5、在所述当前曝光子阵列中下半像素行的数据输出完毕时,将当前曝光子阵列下移半 个子阵列的位置, 转步骤 B2。
本发明还提供了另一种 CMOS图像传感器的曝光方法, 用于在第一光源状态和第二光 源状态时分别拍摄目标图像并输出至第一帧缓存器和第二帧缓存器以进行目标检测, 所述
CMOS图像传 为前面所述的 CMOS图像传 , 所述曝光方 括以下步骤:
B' 0、 将所述 CMOS图像传感器划分为由数量相等的像素行构成的若干子阵列; B, 1、 将第末子阵列设为当前曝光子阵列;
B' 2、在第一光源状态下控制当前曝光子阵列中各个像素行进行第一次同步曝光, 随后 先输出当前曝光子阵列中上半像素行的数据至第一帧缓存器,再输出当前曝光子阵列中下半 像素行的数据至第一帧缓存器;
B' 3、在所述当前曝光子阵列中上半像素行的数据输出完毕时, 判断当前曝光子阵列是 否为第一子阵列, 是则结束, 否贝幡当前曝光子阵列上移半个子阵列的位置;
B' 4、在第二光源状态下控制当前曝光子阵列中各个像素行进行第二次同步曝光, 随后 先输出当前曝光子阵列中上半像素行的数据至第二帧缓存器,再输出当前曝光子阵列中下半 像素行的数据至第二帧缓存器;
B' 5、在所述当前曝光子阵列中上半像素行的数据输出完毕时, 将当前曝光子阵列上移 半个子阵列的位置, 转步骤 B' 2。 实施本发明的 CMOS图像传感器及其时 制方法, 具 有以下有益效果: 本发明通过控制芯片在每个像素行的曝光周期内控制所述像素行曝光, 随 后控制该像素行在曝光时间后等待预设等待时间再开始输出数据, 从而将 CMOS图像传感 器的曝光时间与输出数据时间分离开, 因此可以更灵活地控制 CMOS图像传 中各个像 素行工作模式, 以便于利于该 CMOS图像传 进行各种方式的曝光, 例如控制至少两个 像素行的曝光时间同步或者控制所有像素行的曝光时间同步。
一步地, 采用本发明的 CMOS图像传 实施的 CMOS图像传感器的曝光方法, 具有以下有益效果: 本发明提供的曝光方法, 通过将 CMOS图像传 分成若干子阵列, 并控制每个子阵列中各个像素行同步曝光,可使光源的闪光时间与单个子阵列的曝光时间相 等,提高了光源能量利用率, 且减小了同一子阵列在第一光源状态与第二光源状态下的曝光 时间的间隔, 以便于有效地拍摄目标图像以进行目标检测。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是现有目标检测方法的过程示意图;
图 2是现有 CMOS图像传 的工作模式图;
图 3是各像素行同步曝光情况下的 CMOS图像传感器的工作模式图;
图 4是现有 CMOS图像传感器中像素单元的电路原理图;
图 5是现有 CMOS图像传 中像素单元的控制时序图;
图 ό是本发明腿实施例中 CMOS图像传 的像素单元的控制时序图;
图 7是本发明优选实施例中 CMOS图像传感器的工作模式图;
图 8是本发明 CMOS图像传 的曝光方法的第一实施例的流程图;
图 9是本发明 CMOS图像传 的曝光方法的第一实施例的过程示意图;
图 10是本发明 CMOS 图像传感器的曝光方法的第一实施例中第一子阵列的工作模式 图;
图 11是本发明 CMOS图像传感器的曝光方法的第二实施例的流程图;
图 12是本发明 CMOS图像传 的曝光方法的第二实施例的过程示意图; 图 13是本发明 CMOS图像传 的曝光方法的第三实施例的流程图;
图 14是本发明 CMOS图像传 的曝光方法的第三实施例的过程示意图; 图 15是本发明 CMOS图像传 的曝光方法的第三实施例的工作模式图; 图 16是本发明 CMOS图像传 的曝光方法的第四实施例的流程图;
图 17是本发明 CMOS图像传感器的曝光方法的第四实施例的过程示意图。
具体
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例, 对本发 明进行进一步详细说明。
本发明提供了一种 CMOS图像传 , 所述 CMOS图像传感器包括像素阵列和控制芯 片。其中所述像素阵列由若干像素行构成, 控制芯片用于控制所述若干像素行曝光并输出数 据。
本发明的独特之处在于所述控制芯片在每个像素行的一个曝光周期内控制所述像素行 在曝光时间 T1内曝光, 随后控制所述像素行在曝光时间 T1后等待预设等待时间 T2开始输 出数据。 该预设等待时间 T2可以大于等于 0。
请参阅图 6, 为本发明腿实施例中 CMOS图像传 的像素单元的控制时序图。本发 明的每个像素单元包括光电池^ 复位管 R、 电荷溢出门管 T、 行雇管 X, 以及源跟随器 FD; 且每个像素列的像素单元同样共用以对信号输出管, 例如连接至每个像素单元连接至 所在像素列的第一信号输出管 SH1和第二信号输出管 SH2以输出数据。 上述元件的连接关 系与图 5中电路的连接关系相同, 区别仅在于, 本发明可以通过改变控制芯片所发送的控制 信号的时序, 来实现不同的曝光过程。
如图 6所示,本发明的控制芯片在每个像素行的一个曝光周期内发送以下控制信号分别 控制所述像素行中每个像素单元的对应元件:
首先在步骤 S1中, 在曝光时间 T1开始时, 分别发送一高电平脉冲开启复位管 R和电 荷溢出门管 Τ。从而清空光电池 Β和源跟随器 FD中的电荷。之后复位管 R和电荷溢出门管 T关闭, 该像素行开始曝光。
随后在步骤 S2中,在该像素行的曝光时间 T1结束时,发送一高电平脉冲开启电荷溢出 门管 T; 将光电池 B的电荷转移到源跟随器 FD, 之后电荷溢出门管 T关闭。
随后在步骤 S3中, 在该像素行的曝光时间 T1结束后预设等待时间 T2结束时, 分别发 送一高电平脉冲开启行选通管 X和该像素单元所在像素列的第一信号输出管 SH1, 以采样 信号电平。 之后行选通管 X和该像素单元所在像素列的第一信号输出管 SH1关闭。
随后在步骤 S4中,发送一高电平脉冲开启复位管 R, 以清空源跟随器 FD中的电荷。之 后复位管 R关闭。
随后在步骤 S5中, 分别发送一高电平脉冲开启行 管 X和该像素单元所在像素列的 第二信号输出管 SH2, 以采样参考电平。 该像素单元所在像素列的第一信号输出管 SH1和 第二信号输出管 SH2经过比较后转换为数字信号输出。
通过上述时序控制方法, 可以控制每个像素行在曝光时间 T1 后等待预设等待时间 T2 再开始输出数据, 从而将 CMOS图像传 的曝光时间与输出数据时间分离开, 因此可以 更灵活地控制 CMOS图像传感器中各个像素行的工作模式, 以便于利于该 CMOS图像传感 器进行各种形式的曝光。
在本发明提供的进一步实施例中, 所述 CMOS 图像传 还可以实现由所述控制芯片 控制所述像素阵列中的至少两个像素行的曝光时间 T1同步, 且所述控制芯片随后控制所述 至少两个像素行分别在曝光结束后等待不同的预设等待时间 T2开始输出数据。 下面对该实 施例的控制过程进行具体说明。设所述至少两个像素行包括 L1和 L2。则两个像素行的预设 等待时间不同,分别为 T2-1和 T2-2。且两者的差值不小于单个像素行输出数据所需的时间, 从而能够串行输出。 由于像素行 L1和像素行 L2的曝光时间 T1同步, 所以相应的控制过程 如下:
首先控制芯片同时发送一高电平脉冲开启 L1和 L2中所有像素单元的复位管 R和电荷 溢出门管 Τ, 在复位管 R和电荷溢出门管 Τ关闭后开始曝光。
随后在曝光时间 T1结束时, 控制芯片同时发送一高电平脉冲开启 L1和 L2中所有像素 单元的电荷溢出门管 Τ;将光电池 Β的电荷转移到源跟随器 FD,之后电荷溢出门管 T关闭。
随后控制芯片分别在曝光时间 T1结束后预设等待时间 T2-1和预设等待时间 T2-2结束 时发送控制信号输出像素行 L1和像素行 L2的数据。
例如, 控制芯片在曝光时间 T1结束后像素行 L1的预设等待时间 T2-1结束时, 分别发 送一高电平脉冲开启像素行 L1中所有像素单元的行 管 X和该像素单元所在像素列的第 一信号输出管 SH1, 以采样信号电平。之后像素行 L1中所有像素单元的行选通管 X和该像 素单元所在像素列的第一信号输出管 SH1 关闭。 随后控制芯片发送一高电平脉冲开启像素 行 L1中所有像素单元的复位管 R, 以清空源跟随器 FD中的电荷。 之后复位管 R关闭。 控 制芯片分别发送一高电平脉冲开启像素行 LI中所有像素单元的行 管 X和该像素单元所 在像素列的第二信号输出管 SH2, 以采样参考电平。 像素行 L1中所有像素单元分别对应的 第一信号输出管 SH1和第二信号输出管 SH2经过比较后转换为数字信号, 作为像素行 L1 的数据输出。
同样, 控制芯片在曝光时间 T1结束后像素行 L2的预设等待时间 T2-2结束时, 分别发 送一高电平脉冲开启像素行 L1中所有像素单元的行 管 X和该像素单元所在像素列的第 一信号输出管 SH1, 以采样信号电平。之后像素行 L2中所有像素单元的行雇管 X和该像 素单元所在像素列的第一信号输出管 SH1 关闭。 随后控制芯片发送一高电平脉冲开启像素 行 L2中所有像素单元的复位管 R, 以清空源跟随器 FD中的电荷。 之后复位管 R关闭。 控 制芯片分别发送一高电平脉冲开启像素行 L2中所有像素单元的行 管 X和该像素单元所 在像素列的第二信号输出管 SH2, 以采样参考电平。 像素行 L2中所有像素单元分别对应的 第一信号输出管 SH1和第二信号输出管 SH2经过比较后转换为数字信号, 作为像素行 L2 的数据输出。
在本发明提供的更进一步地实施例中,请结合参阅图 7,所述 CMOS图像传 中所有 像素行的曝光时间 T1同步。在曝光时间 T1结束后,所述控制芯片控制所有像素行分别在曝 光结束后等待不同的预设等待时间 T2开始输出数据, 且所述像素阵列中的每个像素行的预 设等待时间依次递增, 且递增的差值不小于单个像素行输出数据的时间。 例如, 像素行 L1 在曝光时间 T1后可以立即输出数据, 即像素行 L1的预设等待时间可以为 T2-l=0; 像素行 L2在曝光时间 Τ2后, 需要等待像素行 L1输出数据完毕才能开始输出, 因此为其预设等待 时间 Τ2-2, 该 Τ2-2与 T2-1的差值应不小于像素行 L1输出数据的时间; 同理像素行 L3的 预设等待时间 Τ2-3与 Τ2-2的差值应不小于像素行 L2输出数据的时间; 以此类推, 像素行 Ln的预设等待时间 T2-n与像素行 Ln-1的预设等待时间 Τ2-Π-1的差值大于像素行 Ln-1输出 数据的时间。在此, 同一图像传感器中单个像素行输出数据的时间可以相等。如果本实施例 提供的图像传感器应用在目标检测领域中, 由于各个像素行同步曝光, 因此闪光时间可以与 曝光时间相等, 从而提高了光源能量利用率。
本发明还相应提供了上述 CMOS 图像传 的时 制方法, 所述时 制方 ¾&括 在每个像素行的一个曝光周期内执行曝光步骤和输出数据步骤。
其中, 曝光步骤为: 由所述控制芯片控制所述像素行在曝光时间 T1 内曝光。 输出数据 步骤为:由所述控制芯片控制所述像素行在曝光时间 T1后等待预设等待时间 T2开始输出数 据。
更具体地方法步骤如下所述。其中曝光步骤包括由所述控制芯片发送以下控制信号分别 控制所述像素行中每个像素单元的对应元件:
首先在步骤 S1中, 在曝光时间 T1开始时, 分别发送一高电平脉冲开启复位管 R和电 荷溢出门管 T。
随后在步骤 S2中, 在曝光时间 T1结束时, 发送一高电平脉冲开启电荷溢出门管1\ 输出数据步骤包括由所述控制芯片发送以下控制信号分别控制所述像素行中每个像素 单元的对应元件:
首先在步骤 S3中,在曝光时间 T1结束后预设等待时间结束时,分别发送一高电平脉冲 开启行选通管 X和该像素单元所在像素列的第一信号输出管 SH1, 以采样信号电平。
随后在步骤 S4中, 发送一高电平脉冲开启复位管1 。
最后在步骤 S5中, 分别发送一高电平脉冲开启行 管 X和该像素单元所在像素列的 第一信号输出管 SH2, 以采样参考电平。
本发明还结合目标检测系统的需求,提供了一种基于上述曝光后可等待时间输出数据的 CMOS图像传感器的曝光方法,用于在第一光源状态和第二光源状态下分别拍摄目标图像并 输出至第一帧缓存器和第二帧缓存器以进行目标检测。所述第一光源状态和第二光源状态可 以分别代表目标检测中需要棚的光源闪光和不闪光状态,也可以根据目标检测的实际需要 提供两种不同的光源状态。本发明提供的上述 CMOS图像传感器的优势在于,可以使 CMOS 图像传 的某些行或所有行的曝光同时开始和结束。 因此, 在本发明提供的曝光方法中, 可以在曝光的同时令光源闪光, 从而使闪光时间和曝光时间相等。这样做既可以充分利用曝 光时间提高目标物体的亮度, 又可以充分利用光源的能量。
在本发明提供的曝光方法中, 首先需要把 CMOS 图像传感器分成若干个子阵列以便于 按照一定规则进行曝光处理, 这些子阵列通常具有数量相等的像素行。 由于目标检测系统的 实时性,连续对同一场景进行两次拍摄的过程中,目标物体及背景物体都不能有过大的位移, 所以要求这两次拍摄的时间间隔要尽可能小。 因此本发明将 CMOS图像传感器的整个像素 单元构成的阵列按 fi¾」分为子阵列。 由于行数减少, 子阵列的拍摄时间比整个像素阵列小, 连续拍摄两帧所间隔的时间也随之减小。
请参阅图 8, 为本发明的 CMOS图像传 的曝光方法的第一实施例的流程图。 如图 8 所示, 本实施例的曝光方 ¾fe括以下步骤:
首先在步骤 AO中,将所述 CMOS图像传 划分为由数量相等的像素行构成的若干子 阵列。
随后在步骤 A1中, 将第一子阵列设为当前曝光子阵列。
随后在步骤 A2中, 分别在第一光源状态和第二光源状态下, 控制当前曝光子阵列中各 个像素行同步曝光并输出数据。在本发明的腿实施例中,步骤 A2进一步包括:步骤 A21、 在第一光源状态下控制当前曝光子阵列中各个像素行进行第一次同步曝光,并控制所述各个 像素行依次输出数据至第一帧缓存器直至当前曝光子阵列中所有像素行数据输出完毕;步骤 A22、 在第二光源状态下控制当前曝光子阵列中各个像素行进行第二次同步曝光, 并控制所 述各个像素行依次输出数据至第二帧缓存器直至当前曝光子阵列中所有像素行数据输出完 毕。
随后在步骤 A3中,判断当前曝光子阵列是否为: 子阵列, 是则转步骤 A5, 否则转步 骤 A4。
随后在步骤 A4中, 将当前曝光子阵列的下一子阵列设为当前曝光子阵列并转步骤 A2。 最后在步骤 A5中, 结束。 下面结合附图对第一实施例的曝光过程进行具体说明。
请参阅图 9,为本发明 CMOS图像传 的曝光方法的第一实施例的过程示意图。首先, 该 CMOS图像传感«分成 K个子阵列, 分别为 Ml、 M2、 M3…… Mk。其中每个子阵列 所包含的像素行相等。例如, 每连续的 16行为一个子阵列。 为了分别拍摄第一光源状态和 第二光源状态下的目标图像,这里每次棚同一个子阵列连续拍摄两次,其中一次为第一光 源状态即光源闪光,另一次为第二光源状态即光源不闪光。然后使用下一个子阵列连续拍摄 两次。直到 像素阵列拍摄完毕。例如, 第一时刻 期间, 第一子阵列 Ml为当前曝光子 阵列, 在第一光源状态下曝光, 随后各行依次输出数据至第一帧缓存器; 第二时刻 期间, 第一子阵列 Ml仍然为当前曝光子阵列,在第二光源状态下曝光, 随后各行依次输出数据至 第二帧缓存器;判断第一子阵列不是最末子阵列, 因此将当前曝光子阵列的下一子阵列第二 子阵列设为当前曝光子阵列; 第三时刻 ¾期间, 第二子阵列 M2为当前曝光子阵列, 在第一 光源状态下曝光, 随后各行依次输出数据至第一帧缓存器; 第四时刻 期间, 第二子阵列 M2仍然为当前曝光子阵列, 在第二光源状态下曝光, 随后各行依次输出数据至第二帧缓存 器;……第 2k-l时刻 ^期间,第 k子阵列 Mk为当前曝光子阵列,在第一光源状态下曝光, 随后各行依次输出数据至第一帧缓存器; 第 2k时刻 ½期间, 第 k子阵列 Mk仍然为当前曝 光子阵列,在第二光源状态下曝光, 随后各行依次输出数据至第二帧缓存器; 判断第 k子阵 列 Mk为: 子阵列, 因此 曝光过程结束。
请参阅图 10, 为本发明 CMOS图像传 的曝光方法的第一实施例中第一子阵列的工 作模式图。 如图 10所示, 第一子阵列 Ml在第一时刻 期间和第二时刻 ¾期间分别进行了 一次同步曝光。例如第一子阵列 Ml的像素行 L1至 L16首先在第一光源状态下进行了第一 次同步曝光, 即曝光时间为 Tl。随后像素行 L1至像素行 L16依次输出数据。这是通过对各 个像素行设置不同的预设等待时间,即像素行 L1的预设等待时间 T2-1可以为 0,像素行 L2 的预设等待时间 Τ2-2与 T2-1的差值不小于像素行 L1的输出数据时间……以此类推, 像素 行的预设等待时间不断递增,且与前一像素行的差值不小于单个像素行输出数据的时间。在 像素行 L16输出数据完毕后,则开始在第二光源状态下进行第二次同步曝光。本发明中所述 的第一光源状态和第二光源状态可以互换, 即可以先在光源闪光情况下拍摄图像, 也可以先 在光源不闪光的情况下拍摄图像, 两者的顺序不影响进一步目标检测的结果。
这样 CMOS 图像传 的每个像素单元都经过两次曝光, 其中一次光源闪光, 另一次 光源不闪光。且两^ ¾集的图 间的时间差约为单个子阵列输出数据的时间,有效地减小 了时间间隔, 保障了图像采集的实时性。 图像处理器再将两个帧缓存器中存储的结果相减, 并以某一阈值来划分目标区域和背景区域, 进而计算目标物体的特征。
需要说明地是, 在本发明提供的 CMOS 图像传感器的曝光方法的第一实施例中, 采用 由上而下的方式对子阵列进亍曝光,这里也可以依据替换原则采用由下而上的方式对子阵列 进行曝光。
请参阅图 11, 为本发明 CMOS图像传 的曝光方法的第二实施例的过程示意图。 首 先在步骤 A' O中,将所述 CMOS图像传 划分为由数量相等的像素行构成的若干子阵列; 随后在步骤 A, 1中, 将: 子阵列设为当前曝光子阵列。
随后在步骤 A' 2中, 分别在第一光源状态和第二光源状态下, 控制当前曝光子阵列中 各个像素行同步曝光并输出数据。 在第三实施例中, 步骤 A' 2进一步包括: 步骤 A' 21、 在第一光源状态下控制当前曝光子阵列中各个像素行进行第一次同步曝光,并控制所述各个 像素行依次输出数据至第一帧缓存器直至当前曝光子阵列中所有像素行数据输出完毕;步骤 A' 22、 在第二光源状态下控制当前曝光子阵列中各个像素行进行第二次同步曝光, 并控制 所述各个像素行依次输出数据至第二帧缓存器直至当前曝光子阵列中所有像素行数据输出 完毕。
随后在步骤 A' 3中, 判断当前曝光子阵列是否为第一子阵列, 是则转步骤 A' 5, 否则 转步骤 A, 4。
随后在步骤 A' 4中,将当前曝光子阵列的上一子阵列设为当前曝光子阵列并转步骤 A'
2。 最后在步骤 A, 5中, 结束。
第二实施例的具体的实现过程如图 12所示。在第二实施例中,在第一时刻 期间,第 k 子阵列 Mk为当前曝光子阵列, 在第一光源状态下曝光, 随后各行依次输出数据至第一帧缓 存器, 可以从上至下也可以从下至上输出数据; 第二时刻 ½期间, 第 k子阵列 Mk仍然为当 前曝光子阵列, 在第二光源状态下曝光, 随后各行依次输出数据至第二帧缓存器; 判断第 k 子阵列 Mk不是第一子阵列, 因此将当前曝光子阵列的上一子阵列第 k-1子阵列 Mk-1设为当 前曝光子阵列; ……第 2k-l时刻 期间,第一子阵列 Ml为当前曝光子阵列,在第一光源 状态下曝光, 随后各行依次输出数据至第一帧缓存器; 第 2k时刻 ^期间, 第一子阵列 Ml 仍然为当前曝光子阵列, 在第二光源状态下曝光, 随后各行依次输出数据至第二帧缓存器; 判断第一子阵列 Ml为第一子阵列, 因此 ¾ ^曝光过程结束。
请参阅图 13, 为本发明的 CMOS图像传 的曝光方法的第三实施例的流程图。 该方 法同样将 CMOS图像传感器分成若干子阵列来进行曝光。如图 13所示, 本实施例的曝光方 細舌以下步骤:
首先在步骤 B0中,将所述 CMOS图像传 划分为由数量相等的像素行构成的若干子 阵列。
随后在步骤 B1中, 将第一子阵列设为当前曝光子阵列。
随后执行步骤 B2,具体包括图 13中步骤 B21和步骤 B22。在步骤 B21中,在第一光源 状态下控制当前曝光子阵列中各个像素行进行第一次同步曝光,随后先输出当前曝光子阵列 下半像素行的数据至第一帧缓存器。在步骤 B22中,输出当前曝光子阵列上半像素行的数据 至第一帧缓存器。
随后执行步骤 B3,具体包括图 13中步骤 B31和步骤 B32。在步骤 B31中,所述当前曝 光子阵列的下半像素行的数据输出完毕时,判断当前曝光子阵列是否为: 子阵列,是贝啭 步骤 B6, 否则转步骤 B32。在步骤 B32中, 将当前曝光子阵列下移半个子阵列的位置。
随后执行步骤 B4,具体包括图 13中步骤 B41和步骤 B42。在步骤 B41中,在第二光源 状态下控制当前曝光子阵列中各个像素行进行第二次同步曝光,随后先输出当前曝光子阵列 下半像素行的数据至第二帧缓存器。在步骤 B42中,输出当前曝光子阵列上半像素行的数据 至第二帧缓存器。
随后在步骤 B5中, 在所述当前曝光子阵列的下半像素行的数据输出完毕时, 将当前曝 光子阵列下移半个子阵列的位置, 转歩骤 B2。
需要说明地是,在上述过程中,在步骤 B21后并行执行步骤 B22和步骤 B31, 即在输出 上半像素行的数据同时,将已经输完数据的下半像素行投入下一次的曝光, 以节省两次曝光 之间的时间差。 同理, 在步骤 B41后并行执行步骤 B42和步骤 B5。
在本发明的进一步实施例中, 在步骤 B2中在进行第一次同步曝光后, 按照从下至上的 顺序依次输出当前曝光子阵列中各个像素行的数据至第一帧缓存器。在步骤 B4中在进行第 二次同步曝光后, 从下至上依次输出当前曝光子阵列中各个像素行的数据至第二帧缓存器。
请参阅图 14, 为本发明 CMOS图像传 的曝光方法的第三实施例的过程示意图。 首 先, 该 CMOS图像传翻皮分成 K个子阵列, 分别为 Ml、 M2、 M3…… Mk。第一时刻 期间, 第一子阵列 Ml为当前曝光子阵列, 在第一光源状态下曝光, 随后各行从下至上依次 输出数据至第一帧缓存器, 即下半像素行 MD1的数据先输出完毕, 上半像素行 MU1的数 据后输出完毕; 在第二时刻 期间, 即第一子阵列 Ml的下半像素行 MD1的数据输出完毕 时,判断第一子阵列 Ml不是: 子阵列, 因此将当前曝光子阵列下移半个子阵列的位置即 由第一子阵列 Ml的下半像素行 MD1和第二子阵列 M2的上半像素行 MU2构成新的当前曝 光子阵列,从而在第二光源状态下控制新的当前曝光子阵列中各个像素行进行第二次同步曝 光……第 2k-l时刻 t2k4期间, 第 k子阵列 Mk为当前曝光子阵列, 在第一光源状态下曝光, 随后各行从下至上依次输出数据至第一帧缓存器, 判断第 k子阵列 Mk为最末子阵列, 因此 暴光过程结束。
以每 32行为一个子阵列为例进行说明。每次棚一个子阵列拍摄一次, 输出顺序由第 32行开始至第 1行依次输出。 随后将阵列向下移动 16行, 形成一个新的子阵列, 再拍摄一 次。 循环往复, 直到 像素阵列拍摄完毕。 其中第奇数次拍摄时, 光源为第一发光状态; 第偶数次拍摄时光源为第二发光状态, 即分别为光源闪光和不闪光。更具体一点说: 第一次 以第 1至 32行为一个子阵列, 拍摄时光源发光; 第二次以第 17行至 48行为一个子阵列, 拍摄时光源不发光; 第三次以第 33行至 64行为一个子阵列, 拍摄时光源发光; 直到 CMOS传 拍摄完毕。 此时, CMOS图像传 除了第一子阵列的上半像素行 16行和最 末子阵列的下半像素行 16行之外, 每个像素单元都经过了两次曝光, 其中一次光源发光, 另一次光源不发光。 CMOS图像处理器的控制芯片再将两次的结果相减,并以某一阈值来划 分目标区域和背景区域, 进而计算目标物体的特征。
请参阅图 15, 为本发明 CMOS图像传 的曝光方法的第三实施例中第一子阵列的工 作模式图。 如图 15所示, 首先, 第一子阵列 Ml的像素行 L1至像素行 L32在第一时刻 tl 期间首先在第一光源状态下进行了第一次同步曝光, 即曝光时间为 Tl。 随后像素行 L32至 像素行 L1依次输出数据。 这是通过对各个像素行设置不同的预设等待时间, 即像素行 L32 的预设等待时间 Τ2-32可以为 0, 像素行 L31的预设等待时间 T2-31与 Τ2-32的差值大于像 素行 L32的输出数据时间……以此类推,从下至上像素行的预设等待时间不断递增,且与前 一像素行的差值大于前一像素行输出数据的时间。在像素行 L17输出数据完毕后,则开始对 像素行 L17至 L48在第二光源状态下进行第二次同步曝光。并重复上述过程。虽然这种方法 会使 CMOS图像传感器的头 16行和最后 16行不能够得以利用,但当 32行的子阵列中的 16 行输出完毕之后就可以立即开始下一个子阵列的曝光,使下一个子阵列的曝光时间和上一个 子阵列的后 16行输出时间相重叠, 节省了时间上的开支, 可以使整个系统的帧率提高, 对 构造实时的目标检测系统有很大帮助。
同理, 在本发明提供的 CMOS 图像传 的曝光方法的第三实施例中, 也采用由上而 下的方式对子阵列进亍曝光,这里也可以依据替换原则采用由下而上的方式对子阵列进亍曝 光。
请参阅图 16, 为本发明 CMOS图像传 的曝光方法的第四实施例的过程示意图。 在 第四实施例中, 首先在步骤 B' 0中, 将所述 CMOS图像传 划分为由数量相等的像素行 构成的若干子阵列。
随后在步骤 B' 1中, 将: 子阵列设为当前曝光子阵列。
随后执行步骤 B, 2, 具体包括步骤 B, 21和步骤 B, 22。 在步骤 B, 21中, 在第一光 源状态下控制当前曝光子阵列中各个像素行进行第一次同步曝光,随后先输出当前曝光子阵 列上半像素行的数据至第一帧缓存器。在步骤 B' 22中,输出当前曝光子阵列下半像素行的 数据至第一帧缓存器。
随后执行步骤 B' 3, 具体包括步骤 B' 31和步骤 B' 32。 在步骤 B' 31中, 所述当前 曝光子阵列的上半像素行的数据输出完毕时, 判断当前曝光子阵列是否为第一子阵列, 是则 转步骤 B' 6, 否贝啭步骤 B' 32。 在步骤 B' 32中, 将当前曝光子阵列上移半个子阵列的 位置。
随后执行步骤 B, 4, 具体包括步骤 B, 41和步骤 B, 42。 在步骤 B, 41中, 在第二光 源状态下控制当前曝光子阵列中各个像素行进行第二次同步曝光,随后先输出当前曝光子阵 列上半像素行的数据至第二帧缓存器。在步骤 B' 42中,输出当前曝光子阵列下半像素行的 数据至第二帧缓存器。
随后在步骤 B' 5中, 在所述当前曝光子阵列的上半像素行的数据输出完毕时, 将当前 曝光子阵列上移半个子阵列的位置, 转步骤 B, 2。
需要说明地是,在上述过程中, 同样在步骤 B' 21后并行执行步骤 B' 22和步骤 B' 31, 即在输出下半像素行的数据同时, 将已经输完数据的上半像素行投入下一次的曝光, 以节省 两次曝光之间的时间差。 同理, 在步骤 B' 41后并行执行步骤 B' 42和步骤 B' 5。
在本发明的进一步实施例中, 在步骤 B, 2中在进行第一次同步曝光后, 按照从上至下 的顺序依次输出当前曝光子阵列中各个像素行的数据至第一帧缓存器。 在步骤 B' 4中在进 行第二次同步曝光后,从上至下依次输出当前曝光子阵列中各个像素行的数据至第二帧缓存 第四实施例的具体实现过程如图 17所示。首先, 该 CMOS图像传翻皮分成 K个子阵 列, 分别为 Ml、 M2、 M3…… Mk。 第一时刻 期间, 第 k子阵列 Mk为当前曝光子阵列, 在第一光源状态下曝光, 随后各行从上至下依次输出数据至第一帧缓存器, 即上半像素行 MUk的数据先输出完毕, 下半像素行 MDk的数据后输出完毕; 在第二时刻 期间, 即第 k 子阵列 Mk的上半像素行 MUk的数据输出完毕时, 判断第 k子阵列 Mk不是第一子阵列, 因 此将当前曝光子阵列上移半个子阵列的位置即由第 k子阵列 Mk的上半像素行 MUk和第 k-1 子阵列 Mk-1的下半像素行 MDk-1构成新的当前曝光子阵列,从而在第二光源状态下控制新的 当前曝光子阵列中各个像素行进行第二次同步曝光……第 2k-l 时刻 期间, 第一子阵列 Ml为当前曝光子阵列, 在第一光源状态下曝光, 随后各行从上至下依次输出数据至第一帧 缓存器, 判断第一子阵列 Ml为第一子阵列, 因此 ¾ ^曝光过程结束。
本发明是根据特定实施例进行描述的,但本领域的技术人员应明白在不脱离本发明范围 时, 可进行各种变化和等同替换。此外, 为适应本发明技术的特定场合或材料, 可对本发明 进行诸多修改而不脱离其保护范围。 因此, 本发明并不限于在此公开的特定实施例, 而包括 所有落入到权利要求保护范围的实施例。

Claims

权利要求书
1、 一种 CMOS图像传感器, 所述 CMOS图像传感器包括: 由若干像素 行构成的像素阵列, 以及用于控制所述像素阵列的控制芯片; 其特征在于, 所 述控制芯片在每个像素行的一个曝光周期内控制所述像素行在曝光时间 (T1 ) 内曝光, 随后控制所述像素行在曝光时间 (T1 )后等待预设等待时间 (T2) 输出数据。
2、根据权利要求 1所述的 CMOS图像传感器, 其特征在于,所述若干像 素行中的每一行包括数量相等的像素单元, 且每个像素单元包括光电池(B)、 复位管(R)、 电荷溢出门管(T)、 行选通管(X)和源跟随器 (FD); 且每个 像素单避接至所在像素列的第一信号输出管 (SH1 )和第二信号输出管 (SH2) 以输出数据;所述控制芯片在每个像素行的一个曝光周期内发送以下控制信号 分别控制所述像素行中每个像素单元的对应元件:
51、 在曝光时间 (T1 )开始时, 分别发送一高电平脉冲开启复位管(R) 和电荷溢出门管(T);
52、在曝光时间(T1 )结束时,发送一高电平脉冲开启电荷溢出门管(T);
53、 在曝光时间 (T1 ) 结束后预设等待时间 (T2) 结束时, 分别发送一 高电平脉冲开启行选通管 (X) 和该像素单元所在像素列的第一信号输出管
(SH1 ), 以采样信号电平;
54、 发送一高电平脉冲开启复位管(R);
55、分别发送一高电平脉冲开启行选通管 (X)和该像素单元所在像素列 的第二信号输出管(SH2), 以采样参考电平。
3、根据权利要求 1或 2所述的 CMOS图像传感器, 其特征在于,所述控 制芯片还控制所述像素阵列中的至少两个像素行的曝光时间(T1 )同步,所述 控制芯片随后控制所述至少两个像素行分别在曝光结束后等待不同的预设等 待时间 (T2) 开始输出数据, 且所述至少两个像素行的预设等待时间 (Τ2) 的差值不小于单个像素行输出数据所需的时间。
4、根据权利要求 3所述的 CMOS图像传感器, 其特征在于,所述控制芯 片还控制所述像素阵列中的所有像素行的曝光时间(T1 )同步,所述控制芯片 随后控制所有像素行分别在曝光结束后等待不同的预设等待时间(T2)开始输 出数据,且所述像素阵列中的每个像素行的预设等待时间依次递增,且递增的 差值不小于单个像素行输出数据所需的时间。
5、 一种 CMOS图像传感器的时序控制方法, 所述 CMOS图像传感器包 括: 由若干像素行构成的像素阵列, 以及用于控制所述像素阵列的控制芯片; 其特征在于,所述时序控制方法包括在每个像素行的一个曝光周期内执行以下 步骤:
曝光步骤、 由所述控制芯片控制所述像素行在曝光时间 (T1 ) 内曝光; 输出数据步骤、 由所述控制芯片控制所述像素行在曝光时间 (T1 )后等 待预设等待时间 (T2)输出数据。
6、根据权利要求 5所述的 CMOS图像传感器的时序控制方法,其特征在 于,所述若干像素行中的每一行包括数量相等的像素单元,且每个像素单元包 括光电池 (B)、 复位管 (R)、 电荷溢出门管 (T)、 行选通管 (X)和源跟随 器 (FD); 且每个像素单元连接至所在像素列的第一信号输出管(SH1 )和第 二信号输出管(SH2) 以输出数据; 所述曝光步骤包括由所述控制芯片发送以 下控制信号分别控制所述像素行中每个像素单元的对应元件:
51、 在曝光时间 (T1 )开始时, 分别发送一高电平脉冲开启复位管(R) 和电荷溢出门管(T);
52、在曝光时间(T1 )结束时,发送一高电平脉冲开启电荷溢出门管(T)。
7、根据权利要求 6所述的 CMOS图像传感器的时序控制方法,其特征在 于,所述输出数据步骤包括由所述控制芯片发送以下控制信号分别控制所述像 素行中每个像素单元的对应元件:
53、 在曝光时间 (T1 ) 结束后预设等待时间 (T2) 结束时, 分别发送一 高电平脉冲开启行选通管 (X) 和该像素单元所在像素列的第一信号输出管
(SH1 ), 以采样信号电平;
54、 发送一高电平脉冲开启复位管(R);
55、分别发送一高电平脉冲开启行选通管 (X)和该像素单元所在像素列 的第二信号输出管(SH2), 以采样参考电平。
8、一种 CMOS图像传感器的曝光方法,用于在第一光源状态和第二光源 状态下分别拍摄目标图像并输出至第一帧缓存器和第二帧缓存器以进行目标 检测, 其特征在于, 所述 CMOS图像传感器为权利要求 1至 3中任意一项所 述的 CMOS图像传感器, 所述曝光方法包括以下步骤:
A0、将所述 CMOS图像传感器划分为由数量相等的像素行构成的若干子 阵列;
Al、 将第一子阵列设为当前曝光子阵列;
A2、 分别在第一光源状态和第二光源状态下, 控制当前曝光子阵列中各 个像素行同步曝光并输出数据;
A3、判断当前曝光子阵列是否为最末子阵列,是则结束,否则转步骤 A4; A4、 将当前曝光子阵列的下一子阵列设为当前曝光子阵列并转步骤 A2。
9、 根据权利要求 8所述的 CMOS图像传感器的曝光方法, 其特征在于, 所述步骤 A2进一步包括以下顺序执行的步骤:
A21、在第一光源状态下控制当前曝光子阵列中各个像素行进行第一次同 步曝光,并控制所述各个像素行依次输出数据至第一帧缓存器直至当前曝光子 阵列中所有像素行数据输出完毕; A22、在第二光源状态下控制当前曝光子阵列中各个像素行进行第二次同 步曝光,并控制所述各个像素行依次输出数据至第二帧缓存器直至当前曝光子 阵列中所有像素行数据输出完毕。
10、 一种 CMOS图像传感器的曝光方法, 用于在第一光源状态和第二光 源状态时分别拍摄目标图像并输出至第一帧缓存器和第二帧缓存器以进行目 标检测, 其特征在于, 所述 CMOS图像传感器为权利要求 1至 3中任意一项 所述的 CMOS图像传感器, 所述曝光方法包括以下步骤:
B0、将所述 CMOS图像传感器划分为由数量相等的像素行构成的若干子 阵列;
Bl、 将第一子阵列设为当前曝光子阵列;
B2、 在第一光源状态下控制当前曝光子阵列中各个像素行进行第一次同 步曝光, 随后先输出当前曝光子阵列中下半像素行的数据至第一帧缓存器,再 输出当前曝光子阵列中上半像素行的数据至第一帧缓存器;
B3、 在所述当前曝光子阵列中下半像素行的数据输出完毕时, 判断当前 曝光子阵列是否为最末子阵列, 是则结束,否则将当前曝光子阵列下移半个子 阵列的位置;
B4、 在第二光源状态下控制当前曝光子阵列中各个像素行进行第二次同 步曝光, 随后先输出当前曝光子阵列中下半像素行的数据至第二帧缓存器,再 输出当前曝光子阵列中上半像素行的数据至第二帧缓存器;
B5、 在所述当前曝光子阵列中下半像素行的数据输出完毕时, 将当前曝 光子阵歹 U下移半个子阵列的位置, 转步骤 Β2。
11、根据权利要求 10所述的 CMOS图像传感器的曝光方法,其特征在于: 所述步骤 B2包括在进行第一次同步曝光后,从下至上依次输出当前曝光 子阵列中各个像素行的数据至第一帧缓存器; 所述步骤 B4包括在进行第二次同步曝光后,从下至上依次输出当前曝光 子阵列中各个像素行的数据至第二帧缓存器。
12、 一种 CMOS图像传感器的曝光方法, 用于在第一光源状态和第二光 源状态时分别拍摄目标图像并输出至第一帧缓存器和第二帧缓存器以进行目 标检测, 其特征在于, 所述 CMOS图像传感器为权利要求 1至 3中任意一项 所述的 CMOS图像传感器, 所述曝光方法包括以下步骤:
B' 0、将所述 CMOS图像传感器划分为由数量相等的像素行构成的若干 子阵列;
B' 1、 将第末子阵列设为当前曝光子阵列;
B, 2、 在第一光源状态下控制当前曝光子阵列中各个像素行进行第一次 同步曝光, 随后先输出当前曝光子阵列中上半像素行的数据至第一帧缓存器, 再输出当前曝光子阵列中下半像素行的数据至第一帧缓存器;
B' 3、 在所述当前曝光子阵列中上半像素行的数据输出完毕时, 判断当 前曝光子阵列是否为第一子阵列,是则结束,否则将当前曝光子阵列上移半个 子阵列的位置;
B, 4、 在第二光源状态下控制当前曝光子阵列中各个像素行进行第二次 同步曝光, 随后先输出当前曝光子阵列中上半像素行的数据至第二帧缓存器, 再输出当前曝光子阵列中下半像素行的数据至第二帧缓存器;
B' 5、 在所述当前曝光子阵列中上半像素行的数据输出完毕时, 将当前 曝光子阵列上移半个子阵列的位置, 转步骤 B' 2。
13、根据权利要求 12所述的 CMOS图像传感器的曝光方法,其特征在于: 所述步骤 B' 2包括在进行第一次同步曝光后, 从上至下依次输出当前曝 光子阵列中各个像素行的数据至第一帧缓存器;
所述步骤 B' 4包括在进行第二次同步曝光后, 从上至下依次输出当前曝 光子阵列中各个像素行的数据至第二帧缓存器 ^
PCT/CN2010/073543 2010-06-04 2010-06-04 Cmos图像传感器及其时序控制方法和曝光方法 WO2011150574A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10852372.1A EP2579567A4 (en) 2010-06-04 2010-06-04 CMOS IMAGE SENSOR, SYNCHRONIZATION CONTROL METHOD AND EXPOSURE METHOD THEREOF
CN201080067022.XA CN102907084B (zh) 2010-06-04 2010-06-04 Cmos图像传感器及其时序控制方法和曝光方法
JP2013512719A JP5655137B2 (ja) 2010-06-04 2010-06-04 Cmos画像センサーの露光方法
PCT/CN2010/073543 WO2011150574A1 (zh) 2010-06-04 2010-06-04 Cmos图像传感器及其时序控制方法和曝光方法
US13/701,741 US8964083B2 (en) 2010-06-04 2010-06-04 CMOS image sensor, timing control method and exposure method thereof
AU2010354500A AU2010354500B2 (en) 2010-06-04 2010-06-04 CMOS image sensor, timing control method and exposure method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/073543 WO2011150574A1 (zh) 2010-06-04 2010-06-04 Cmos图像传感器及其时序控制方法和曝光方法

Publications (1)

Publication Number Publication Date
WO2011150574A1 true WO2011150574A1 (zh) 2011-12-08

Family

ID=45066132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073543 WO2011150574A1 (zh) 2010-06-04 2010-06-04 Cmos图像传感器及其时序控制方法和曝光方法

Country Status (6)

Country Link
US (1) US8964083B2 (zh)
EP (1) EP2579567A4 (zh)
JP (1) JP5655137B2 (zh)
CN (1) CN102907084B (zh)
AU (1) AU2010354500B2 (zh)
WO (1) WO2011150574A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014056991A1 (de) * 2012-10-12 2014-04-17 Carl Zeiss Microscopy Gmbh Bildaufnahmevorrichtung und verfahren zur aufnahme einer bildersequenz
CN104135908A (zh) * 2012-03-28 2014-11-05 富士胶片株式会社 摄像装置以及具备其的内窥镜装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402438B2 (ja) * 2013-09-27 2018-10-10 株式会社ニコン 撮像装置
IN2013CH05374A (zh) 2013-11-21 2015-05-29 Nokia Corp
CN105657284A (zh) * 2014-11-19 2016-06-08 力钜电子股份有限公司 控制外挂闪光灯闪光时间的方法
TWI563845B (en) * 2014-11-19 2016-12-21 Method for taking photo with extension flash module of mobile device
DE102015109645B3 (de) * 2015-06-17 2016-09-08 Carl Zeiss Microscopy Gmbh Verfahren zur Multiliniendetektion
CN109561264B (zh) * 2017-09-26 2020-12-22 普里露尼库斯股份有限公司 固体摄像装置、固体摄像装置的驱动方法以及电子设备
CN109040623B (zh) * 2018-08-22 2020-07-31 中国电子科技集团公司第四十四研究所 Cmos图像传感器曝光时序控制装置
CN109040622B (zh) * 2018-08-22 2020-07-31 中国电子科技集团公司第四十四研究所 Cmos图像传感器曝光时序控制方法
CN110493535B (zh) * 2019-05-31 2021-09-28 杭州海康威视数字技术股份有限公司 图像采集装置和图像采集的方法
CN112014318A (zh) * 2020-08-25 2020-12-01 深圳大学 一种随机光学重建显微成像系统
CN113286092B (zh) * 2021-04-16 2023-05-02 维沃移动通信(杭州)有限公司 像素处理电路、方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030007088A1 (en) * 2001-06-01 2003-01-09 Nokia Corporation Control of a flash unit in a digital camera
US20030122946A1 (en) * 2001-12-28 2003-07-03 Fuji Photo Film Co., Ltd. Solid-state electronic image pickup apparatus and method of driving the same
WO2008152647A2 (en) * 2007-06-15 2008-12-18 Ben Gurion University Of The Negev Research And Development Authority Three-dimensional imaging method and apparatus
JP2009100381A (ja) * 2007-10-18 2009-05-07 Sony Corp 固体撮像素子およびその駆動方法、並びにカメラシステム
US20100080549A1 (en) * 2008-09-30 2010-04-01 Fujifilm Corporation Imaging apparatus and method for controlling flash emission
CN201440274U (zh) * 2009-07-22 2010-04-21 深圳泰山在线科技有限公司 一种目标检测设备及其使用的图像采集装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855937B2 (en) * 2001-05-18 2005-02-15 Canon Kabushiki Kaisha Image pickup apparatus
US7800675B2 (en) * 2004-08-25 2010-09-21 Aptina Imaging Corporation Method of operating a storage gate pixel
JP4325557B2 (ja) * 2005-01-04 2009-09-02 ソニー株式会社 撮像装置および撮像方法
JP2007028337A (ja) * 2005-07-19 2007-02-01 Canon Inc 撮像装置及びその制御方法及びプログラム及び記憶媒体
JP4695541B2 (ja) * 2006-04-28 2011-06-08 三星電子株式会社 撮像装置
JP2009081808A (ja) * 2007-09-27 2009-04-16 Fujifilm Corp 撮影制御装置、撮影制御方法、撮影制御プログラム、および撮影装置
JP5058840B2 (ja) * 2008-02-05 2012-10-24 オリンパスイメージング株式会社 撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030007088A1 (en) * 2001-06-01 2003-01-09 Nokia Corporation Control of a flash unit in a digital camera
US20030122946A1 (en) * 2001-12-28 2003-07-03 Fuji Photo Film Co., Ltd. Solid-state electronic image pickup apparatus and method of driving the same
WO2008152647A2 (en) * 2007-06-15 2008-12-18 Ben Gurion University Of The Negev Research And Development Authority Three-dimensional imaging method and apparatus
JP2009100381A (ja) * 2007-10-18 2009-05-07 Sony Corp 固体撮像素子およびその駆動方法、並びにカメラシステム
US20100080549A1 (en) * 2008-09-30 2010-04-01 Fujifilm Corporation Imaging apparatus and method for controlling flash emission
CN201440274U (zh) * 2009-07-22 2010-04-21 深圳泰山在线科技有限公司 一种目标检测设备及其使用的图像采集装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579567A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135908A (zh) * 2012-03-28 2014-11-05 富士胶片株式会社 摄像装置以及具备其的内窥镜装置
WO2014056991A1 (de) * 2012-10-12 2014-04-17 Carl Zeiss Microscopy Gmbh Bildaufnahmevorrichtung und verfahren zur aufnahme einer bildersequenz

Also Published As

Publication number Publication date
US8964083B2 (en) 2015-02-24
AU2010354500B2 (en) 2014-07-03
CN102907084B (zh) 2015-09-23
US20130076952A1 (en) 2013-03-28
EP2579567A1 (en) 2013-04-10
AU2010354500A1 (en) 2013-01-10
CN102907084A (zh) 2013-01-30
JP5655137B2 (ja) 2015-01-14
JP2013531420A (ja) 2013-08-01
EP2579567A4 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2011150574A1 (zh) Cmos图像传感器及其时序控制方法和曝光方法
US7630015B2 (en) Light emission control method of flash device, light emission control program, and image sensing apparatus
US9204056B2 (en) Image pickup apparatus, image pickup apparatus control method, and program
CN100338945C (zh) 闪烁检测装置和摄像装置
CN103916575B (zh) 摄像元件、摄像设备及其控制方法
CN108401118A (zh) 控制红外灯开灯时间的虹膜采集装置及方法
CN103581625A (zh) 一种分时并行图像采集装置及其标定方法
CN105991933B (zh) 图像传感器
CN101360192A (zh) 一种数字光学成像系统及其成像方法
WO2021184795A1 (zh) 一种相机多线分时曝光处理方法及系统
JP2007318708A (ja) 撮像装置
CN109104547A (zh) 一种超高速序列成像装置及方法
CN109040622A (zh) Cmos图像传感器曝光时序控制方法
CN115361494B (zh) 一种多线扫描图像传感器的高速频闪图像处理系统及方法
US7760265B2 (en) Shutter module for use in image sensor employing line scan and method for controlling the same
CN109040623A (zh) Cmos图像传感器曝光时序控制装置
TWI612283B (zh) 偵測發光二極體之方法及系統
CN1317601C (zh) 静止图像摄影装置
JP3542312B2 (ja) 電子的撮像装置
CN108495065A (zh) 一种帧转移型面阵ccd的驱动时序控制方法
CN114071023B (zh) 图像传感器曝光时序切换方法及装置
CN100393105C (zh) 一种超短脉冲激光照明的同步摄像装置
TWI835535B (zh) 影像感測裝置
CN114040132B (zh) 图像传感器及其曝光时序控制方法、系统及介质
KR101575628B1 (ko) 디지털 영상신호 처리장치에서 플래시 광량을 제어하는 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067022.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512719

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13701741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010852372

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010354500

Country of ref document: AU

Date of ref document: 20100604

Kind code of ref document: A