WO2011148984A1 - 無線基地局及びその制御方法 - Google Patents

無線基地局及びその制御方法 Download PDF

Info

Publication number
WO2011148984A1
WO2011148984A1 PCT/JP2011/062011 JP2011062011W WO2011148984A1 WO 2011148984 A1 WO2011148984 A1 WO 2011148984A1 JP 2011062011 W JP2011062011 W JP 2011062011W WO 2011148984 A1 WO2011148984 A1 WO 2011148984A1
Authority
WO
WIPO (PCT)
Prior art keywords
cqi
uplink control
pmi
control information
parameter
Prior art date
Application number
PCT/JP2011/062011
Other languages
English (en)
French (fr)
Inventor
孝宜 田中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010119916A external-priority patent/JP5551968B2/ja
Priority claimed from JP2010119917A external-priority patent/JP5551969B2/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/699,544 priority Critical patent/US9197388B2/en
Publication of WO2011148984A1 publication Critical patent/WO2011148984A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/70735Code identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a radio base station that assigns parameters related to an uplink control channel to a radio terminal and a control method thereof.
  • the radio base station transmits uplink control information including information (CQI: Channel Quality Indicator) indicating reception quality (that is, downlink radio quality) of a radio signal received by the radio terminal to the uplink control channel. It periodically receives from the wireless terminal via (PUCCH: [Physical] Uplink [Control] CHannel).
  • the uplink control channel employs code division multiplexing using orthogonal sequences, and can multiplex a plurality of radio terminals with one frequency resource (RB: Resource Block).
  • the radio base station connects a timing setting parameter for determining the transmission timing of uplink control information and a control channel setting parameter for determining an orthogonal sequence used for transmission of the uplink control information to the own station. Assign to a wireless terminal.
  • a timing setting parameter is referred to as cqi-pmi-ConfigIndex or I CQI / PMI
  • the control channel setting parameter is referred to as cqi-PUCCH-ResourceIndex or n (2) PUCCH (Non-Patent Documents 1 and 2). reference).
  • 3GPP TS 36.211 Physical Channels and Modulation.
  • 3GPP TS .36.213 Physical layer procedures.
  • Non-Patent Documents 1 and 2 do not describe a specific method for assigning timing setting parameters and control channel setting parameters to wireless terminals, and the following problems may occur.
  • the same control channel setting parameter is assigned to the plurality of wireless terminals.
  • Wireless terminals use the same orthogonal sequence, and the uplink control channels of the plurality of wireless terminals cannot be multiplexed.
  • the possibility of such a problem increases.
  • nRB-CQI frequency resource number setting parameter
  • a first object of the present invention is to provide a radio base station that can multiplex uplink control channels of a large number of radio terminals with a small number of frequency resources, and a control method therefor.
  • the second object of the present invention is to provide a radio base station that facilitates management of timing setting parameters and can flexibly cope with connection and disconnection of radio terminals and a control method thereof.
  • a first feature of the radio base station according to the present invention is that uplink control information including information indicating downlink radio quality is periodically received via an uplink control channel multiplexed using orthogonal sequences.
  • a radio base station (radio base station eNB) that performs transmission of the uplink control information with a timing configuration parameter (cqi-pmi-ConfigIndex (I CQI / PMI )) that determines the transmission timing of the uplink control information
  • a storage unit (storage unit 130) that stores a plurality of combinations with a control channel setting parameter (cqi-PUCCH-ResourceIndex (n (2) PUCCH )) that defines an orthogonal sequence to be used, and the timing that the storage unit stores
  • a parameter allocating unit (parameter) that assigns one of the combination of the setting parameter and the control channel setting parameter to the radio terminal (radio terminal UE) connected to the own station.
  • the storage unit stores a combination of different control channel setting parameters in a plurality of timing setting parameters whose transmission timings of the uplink control information may overlap. To do.
  • the parameter allocating unit performs timing in ascending order of transmission timing intervals of the uplink control information among unassigned timing setting parameters.
  • the gist is to assign setting parameters.
  • the parameter allocating unit performs timing in an ascending order of transmission timing intervals of the uplink control information among unassigned timing setting parameters.
  • the gist is to assign setting parameters.
  • the storage unit groups and stores a plurality of timing setting parameters having the same transmission timing interval of the uplink control information. Is the gist.
  • the control method according to the present invention is characterized in that a radio base station that periodically receives uplink control information including information indicating downlink radio quality via an uplink control channel multiplexed using orthogonal sequences.
  • the meter and summarized in that storing a combination of different control channel configuration parameters, respectively.
  • a second feature of the radio base station according to the present invention is that radio that periodically receives uplink control information including information indicating downlink radio quality via an uplink control channel employing code division multiplexing.
  • a base station which is used for transmission of the uplink control information and a timing configuration parameter (cqi-pmi-ConfigIndex (I CQI / PMI )) that determines the transmission timing of the uplink control information
  • a storage unit storage unit 130) that stores a plurality of combinations with control channel setting parameters (cqi-PUCCH-ResourceIndex (n (2) PUCCH )) that define orthogonal sequences, and the timing setting parameter that the storage unit stores
  • a parameter allocation unit for allocating any one of the combinations of the control channel setting parameters to the radio terminal (radio terminal UE) connected to the own station.
  • An allocation unit 121 and the storage unit groups and stores a plurality of timing setting parameters having the same transmission timing interval of the uplink control information, and indicates a bit map indicating an allocation state of each timing setting parameter And the parameter allocating unit determines unassigned timing setting parameters using the bitmap for each group stored in the storage unit.
  • the parameter allocating unit performs timing in ascending order of transmission timing intervals of the uplink control information among unassigned timing setting parameters.
  • the gist is to assign setting parameters.
  • the parameter allocating unit performs timing in an ascending order of transmission timing intervals of the uplink control information among unassigned timing setting parameters.
  • the gist is to assign setting parameters.
  • the storage unit sets different control channel settings to a plurality of timing setting parameters in which transmission timings of the uplink control information can overlap.
  • the gist is to store the parameters in combination.
  • the control method according to the present invention is characterized by control of a radio base station that periodically receives uplink control information including information indicating downlink radio quality via an uplink control channel employing code division multiplexing.
  • a bitmap indicating the allocation state of each timing setting parameter is stored for each group, and in the allocation step, using the bitmap for each group stored in the storing step, unallocated
  • the main point is to determine the timing setting parameter.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system according to an embodiment of the present invention. It is a figure for demonstrating the communication frame structure used with the radio
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system according to the present embodiment.
  • a radio communication system based on 3GPP Release 8 or Release 9 (LTE) will be described.
  • an SC-FDMA Single Carrier-Frequency Division Multiple Access
  • an OFDMA Orthogonal Frequency Division Multiple Access
  • the radio base station eNB forms a cell that is a communication area that should provide a service to the radio terminal UE.
  • the radio terminal UE is a radio communication device possessed by a user, and is also referred to as a user device.
  • a plurality of radio terminals UE (A) to UE (D) in the cell of the radio base station eNB are connected to the radio base station eNB.
  • the radio base station eNB When the radio terminal UE connects to its own station, the radio base station eNB has an uplink control channel (PUCCH: Physical Uplink Control CHannel) and an uplink data channel (PUSCH: Physical) for the uplink with the radio terminal UE.
  • Uplink Shared CHannel is established, and a downlink control channel (PDCCH: Physical Downlink Control CHannel) and downlink data channel (PDSCH: Physical Downlink Shared CHannel) are established for the downlink with the radio terminal UE.
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Downlink Shared CHannel
  • PUCCH is a channel for transmitting uplink control data
  • PUSCH is a channel for transmitting uplink user data
  • the PDCCH is a channel for transmitting downlink control data
  • the PDSCH is a channel for transmitting downlink user data.
  • the uplink control data includes CQI (Channel Quality Indicator) that is information indicating downlink radio quality.
  • CQI Channel Quality Indicator
  • the radio terminal UE measures a signal-to-interference noise ratio (SINR) of a radio signal received from the radio base station eNB, and transmits the SINR index to the radio base station eNB as a CQI.
  • PUCCH that can transmit uplink control data including CQI is referred to as PUCCH format 2 / 2a / 2b (hereinafter, PUCCH format 2).
  • PUCCH format 2 is not only CQI but also a precoding matrix index (PMI) and rank index (RI) for downlink multi-antenna transmission, and an acknowledgment / denial indicating success or failure of downlink user data decoding.
  • PMI precoding matrix index
  • RI rank index
  • a response ACK / NAK may be included.
  • the radio base station eNB periodically receives uplink control information including CQI from the radio terminal UE via PUCCH (specifically, PUCCH format 2).
  • PUCCH specifically, PUCCH format 2.
  • the PUCCH is multiplexed using orthogonal sequences, and a plurality of radio terminals UE can be multiplexed with one frequency resource (hereinafter referred to as resource block).
  • FIG. 2 is a diagram for explaining a communication frame configuration used in the wireless communication system according to the present embodiment.
  • the radio frame is composed of 10 subframes, and each subframe is composed of 2 slots.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each slot includes seven SC-FDMA symbols in the time axis direction (time domain), and includes a number of resource blocks corresponding to the uplink bandwidth in the frequency axis direction (frequency domain).
  • Each resource block includes 12 subcarriers in the frequency axis direction.
  • the resource blocks at both ends of the uplink frequency band constitute the PUCCH
  • the resource block at the center of the uplink frequency band constitutes the PUSCH.
  • One PUCCH resource uses one resource block of two slots in a subframe.
  • frequency hopping using both ends of the uplink band is applied between the slots in the subframe. For example, hopping is performed on the low frequency side in the first half slot and on the high frequency side in the second half slot.
  • the PUCCH resource is shared by a plurality of radio terminals UE.
  • the radio base station eNB obtains different orthogonal sequences by assigning different phase rotations to the respective radio terminals UE and rotating the basic sequence unique to the radio base station eNB in the frequency domain.
  • Phase rotation in the frequency domain is equivalent to a cyclic shift in the time domain. For example, twelve different phase rotations (cyclic shifts) are prepared, and twelve radio terminals UE can be multiplexed with one PUCCH resource by twelve different orthogonal sequences.
  • the radio base station eNB uses the radio resource control (RRC) in the upper layer to determine the timing at which the radio terminal UE transmits uplink control information via the PUCCH and the orthogonal sequence that the radio terminal UE uses to transmit uplink control information. ) Determine for each radio terminal UE according to the protocol.
  • RRC radio resource control
  • the radio base station eNB sets an orthogonal sequence used for transmission of uplink control information and cqi-pmi-ConfigIndex (I CQI / PMI ), which is an RRC parameter that determines the transmission timing of uplink control information.
  • FIG. 3 is a diagram for explaining cqi-pmi-ConfigIndex (I CQI / PMI ).
  • cqi-pmi-ConfigIndex I CQI / PMI
  • the association with interval N P for transmitting uplink control information, offset N OFFSET period for transmitting uplink control information, to the CQI It is done.
  • the interval N P and offset N OFFSET, CQI is determined for each subframe.
  • the transmission timing of the uplink control information is determined according to cqi-pmi-ConfigIndex (I CQI / PMI ) by the following formula.
  • n f is a frame number and n S is a slot number.
  • each of the equal interval N P cqi-pmi-ConfigIndex ( I CQI / PMI), an offset N OFFSET, the CQI, configured to transmit timing do not overlap.
  • ⁇ (n S , l) corresponding to the phase rotation (cyclic shift) assigned to the radio terminal UE is determined according to cqi-PUCCH-ResourceIndex (n (2) PUCCH ) by the following equation.
  • Non-Patent Documents 1 and 2 for details of the formula.
  • the radio base station eNB can determine the number of resource blocks used as the PUCCH format 2 by the RRC parameter called N (2) RB according to the RRC protocol.
  • FIG. 4 is a block diagram showing a configuration of the radio base station eNB according to the present embodiment.
  • the radio base station eNB includes an antenna unit 101, a radio communication unit 110, a control unit 120, a storage unit 130, and a network communication unit 140.
  • the radio communication unit 110 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives radio signals to and from the radio terminal UE via the antenna unit 101.
  • the wireless communication unit 110 also modulates the transmission signal and demodulates the reception signal.
  • the control unit 120 is configured using, for example, a CPU, and controls various functions provided in the radio base station eNB.
  • the storage unit 130 is configured using, for example, a memory, and stores various types of information used for controlling the radio base station eNB.
  • the storage unit 130 stores the table related to cqi-pmi-ConfigIndex (I CQI / PMI ) shown in FIG.
  • the network communication unit 140 performs communication with a host device of the radio base station eNB and other radio base stations.
  • the storage unit 130 stores a mapping table for associating cqi-pmi-ConfigIndex (I CQI / PMI ) with cqi-PUCCH-ResourceIndex (n (2) PUCCH ). As shown in FIG. 5, in the mapping table, cqi-pmi-ConfigIndex (I CQI / PMI ) “0” to “1” are associated with cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “0”. It is done. cqi-pmi-ConfigIndex (I CQI / PMI ) “2” to “6” are associated with cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “1”.
  • the cqi-pmi-ConfigIndex (I CQI / PMI ) “7” to “16” is associated with the cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “2”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “17” to “36” is associated with cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “3”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “37” to “76” is associated with cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “4”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “77” to “156” is associated with cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “5”.
  • the cqi-pmi-ConfigIndex (I CQI / PMI ) “157” to “316” is associated with the cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “6”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “317” is reserved as reserved.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “318” to “349” are associated with cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “7”.
  • the cqi-pmi-ConfigIndex (I CQI / PMI ) “350” to “413” is associated with the cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “8”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “414” to “541” are associated with cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “9”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “542” to “1023” are reserved as reserved.
  • cqi-pmi-ConfigIndex I CQI / PMI
  • N OFFSET the CQI, configured to transmit timing do not overlap.
  • cqi-pmi-ConfigIndex interval N P are different (I CQI / PMI), the transmission timing of the uplink control information may overlap.
  • the storage unit 130, cqi-pmi-ConfigIndex interval N P are different (I CQI / PMI), i.e., a plurality of cqi-pmi-ConfigIndex the transmission timing of the uplink control information may overlap (I CQI / PMI)
  • different cqi-PUCCH-ResourceIndex (n (2) PUCCH ) are stored in combination.
  • the storage unit 130 stores by grouping interval N P is equal cqi-pmi-ConfigIndex (I CQI / PMI) , each cqi-pmi-ConfigIndex (I CQI / PMI)
  • a bitmap showing the allocation state of each group is stored for each group.
  • the storage unit 130 associates, for each group of cqi-pmi-ConfigIndex (I CQI / PMI ), an allocation management group ID for identifying the group.
  • cqi-pmi-ConfigIndex I CQI / PMI
  • 0” to “1” is associated with the allocation management group ID “0x0000”.
  • the cqi-pmi-ConfigIndex (I CQI / PMI ) “2” to “6” is associated with the allocation management group ID cqi-PUCCH-ResourceIndex (n (2) PUCCH ) “0x0002”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “7” to “16” is associated with the allocation management group ID “0x0007”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “17” to “36” is associated with the allocation management group ID “0x0011”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “37” to “76” is associated with the allocation management group ID “0x0025”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “77” to “156” is associated with the allocation management group ID “0x004D”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “157” to “316” is associated with the allocation management group ID “0x009D”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “317” is reserved as reserved.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “318” to “349” is associated with the allocation management group ID “0x013E”.
  • the cqi-pmi-ConfigIndex (I CQI / PMI ) “350” to “413” is associated with the assignment management group ID “0x015E”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “414” to “541” is associated with the allocation management group ID “0x019E”.
  • cqi-pmi-ConfigIndex (I CQI / PMI ) “542” to “1023” are reserved as reserved.
  • the lower bits of the allocation management group ID correspond to the smallest value of the cqi-pmi-ConfigIndex (I CQI / PMI ) group.
  • the upper 4 bits of the allocation management group ID are values corresponding to the number of resource blocks determined according to N (2) RB .
  • N (2) RB 1 is assumed.
  • the allocation management group ID is 0x0000, 0x0002..., 0x1000, 0x1002,. ⁇ Managed separately in groups.
  • N (2) RB is 16 or more, it cannot be expressed by the upper 4 bits, so it is necessary to expand the number of bits of the allocation management group ID.
  • the control unit 120 includes a parameter assignment unit 121, a parameter notification unit 122, and a parameter management unit 123.
  • the parameter assignment unit 121 assigns parameters related to the PUCCH to the radio terminal UE that is newly connected (position registration) to the own station. Specifically, the parameter allocating unit 121 stores any one of the combinations of cqi-pmi-ConfigIndex (I CQI / PMI ) and cqi-PUCCH-ResourceIndex (n (2) PUCCH ) stored in the storage unit 130. Allocate without overlapping to the radio terminal UE connected to its own station. The parameter assignment unit 121 determines unassigned cqi-pmi-ConfigIndex (I CQI / PMI ) using the bitmap for each assignment management group stored in the storage unit 130.
  • the parameter notification unit 122 is a wireless terminal that connects the combination of the cqi-pmi-ConfigIndex (I CQI / PMI ) and cqi-PUCCH-ResourceIndex (n (2) PUCCH ) allocated by the parameter allocation unit 121 to the own station. Notify the UE.
  • the parameter management unit 123 manages the allocation state of cqi-pmi-ConfigIndex (I CQI / PMI ). Specifically, the parameter management unit 123 updates the bitmap for each allocation management group stored in the storage unit 130 according to the connection / disconnection of the radio terminal UE.
  • the transmission interval of PUCCH format 2 is obtained by cqi-pmi-ConfigIndex (I CQI / PMI ), which is one of RRC parameters.
  • the transmission interval of PUCCH format 2 has a common divisor between each row in the table of FIG. 3, there is a possibility that PUCCH format 2 having an interval set in each row in a certain subframe may be transmitted from the radio terminal UE. . Therefore, the radio base station eNB assigns a combination of cqi-pmi-ConfigIndex (I CQI / PMI ) and cqi-PUCCH-ResourceIndex (n (2) PUCCH ) as follows when the radio terminal UE is connected.
  • FIG. 7 is a flowchart showing an example of parameter assignment operation by the radio base station eNB.
  • the parameter assignment unit 121 sets the value of cqi-pmi-ConfigIndex (I CQI / PMI ) to 0. Further, the parameter assignment unit 121 refers to the mapping table shown in FIG. 5 and sets cqi-PUCCH-ResourceIndex (n (2) PUCCH ) to a value corresponding to the value of cqi-pmi-ConfigIndex (I CQI / PMI ). To do.
  • step S13 the parameter assignment unit 121 determines the current cqi-pmi-ConfigIndex (I CQI / PMI ) and the current cqi-PUCCH.
  • -ResourceIndex (n (2) PUCCH ) is allocated to the newly connected radio terminal UE.
  • step S14 the parameter assignment unit 121 adds 1 to the current value of cqi-pmi-ConfigIndex (I CQI / PMI ). If the value of cqi-pmi-ConfigIndex (I CQI / PMI ) has not reached 317 (step S15; NO), the process returns to step S12. If the value of cqi-pmi-ConfigIndex (I CQI / PMI ) has reached 317 (step S15; YES), 1 is further added to the value of cqi-pmi-ConfigIndex (I CQI / PMI ), The process returns to step S12.
  • nRB-CQI ( N (2) RB ) 1
  • a maximum of 541 UEs can be allocated to one resource block in PUCCH format 2, and a maximum of 10 multiplexes per resource block in one subframe.
  • the detection processing load of the PUCCH format 2 in the radio base station eNB is also 10/12 in the worst case.
  • FIG. 8 is a diagram for explaining a parameter management operation by the radio base station eNB.
  • the bitmap for each allocation management group stored in the storage unit 130 is composed of a bit string having the number of bits corresponding to the number of elements of cqi-pmi-ConfigIndex (I CQI / PMI ), and the initial value of each bit is zero.
  • the bit map for the group with the allocation management group ID “0x0000” includes the bit corresponding to cqi-pmi-ConfigIndex (I CQI / PMI ) “0”, cqi-pmi-ConfigIndex (I CQI / PMI ) consists of bits corresponding to “1”.
  • the parameter assignment unit 121 assigns cqi-pmi-ConfigIndex (I CQI / PMI ) “0” to the radio terminal UE (A).
  • the parameter management unit 123 inverts the bit corresponding to cqi-pmi-ConfigIndex (I CQI / PMI ) “0” from “0” to “1”.
  • the bit being “1” indicates that the corresponding cqi-pmi-ConfigIndex (I CQI / PMI ) has been assigned. Accordingly, when the parameter allocation unit 121 searches for an unallocated cqi-pmi-ConfigIndex (I CQI / PMI ), it can be determined by looking at the bitmap.
  • the parameter assignment unit 121 sets cqi-pmi-ConfigIndex (I CQI / PMI ) “1” to the radio terminal UE (B). assign.
  • the parameter management unit 123 inverts the bit corresponding to cqi-pmi-ConfigIndex (I CQI / PMI ) “1” from “0” to “1”.
  • the parameter assignment unit 121 sets cqi-pmi-ConfigIndex (I CQI / PMI ) “2” to the radio terminal UE (C). assign.
  • the parameter management unit 123 inverts the bit corresponding to cqi-pmi-ConfigIndex (I CQI / PMI ) “2” from “0” to “1”.
  • the parameter management unit 123 sets a bit corresponding to cqi-pmi-ConfigIndex (I CQI / PMI ) assigned to the disconnected radio terminal UE to “1”. Invert from 0 to “0”. As a result, the parameter assignment unit 121 can determine that the cqi-pmi-ConfigIndex (I CQI / PMI ) assigned to the disconnected radio terminal UE has not been assigned.
  • the radio terminal UE (B) is disconnected, and the parameter management unit 123 corresponds to cqi-pmi-ConfigIndex (I CQI / PMI ) “1” assigned to the radio terminal UE (B).
  • the bit to be inverted is inverted from “1” to “0”.
  • the parameter allocating unit 121 does not have cqi-pmi-ConfigIndex (I CQI / PMI ) “1” based on the bitmap. It judges that it is assignment, and assigns cqi-pmi-ConfigIndex (I CQI / PMI ) “1” to the radio terminal UE (D).
  • the radio base station eNB has different cqi-PUCCH for each of a plurality of cqi-pmi-ConfigIndex (I CQI / PMI ) whose uplink control information transmission timing may overlap.
  • -ResourceIndex (n (2) PUCCH ) is combined and stored, and cqi-pmi-ConfigIndex (I CQI / PMI ) and cqi-PUCCH-ResourceIndex (n (2) PUCCH ) are stored in the storage unit 130
  • a parameter assignment unit 121 that assigns any one of the combinations to the wireless terminal UE connected to the own station without duplication.
  • ⁇ (n S , l) is offset even in the case where the transmission timings of the uplink control information determined according to cqi-pmi-ConfigIndex (I CQI / PMI ) overlap among the plurality of radio terminals UE.
  • the plurality of radio terminals UE use different orthogonal sequences, and the PUCCHs of the plurality of radio terminals UE can be multiplexed. Therefore, the radio base station eNB according to the present embodiment can multiplex PUCCHs of a large number of radio terminals with a small number of frequency resources.
  • the storage unit 130 stores a plurality of cqi-pmi-ConfigIndex (I CQI / PMI ) having the same transmission timing interval of the uplink control information as a group, and stores each cqi-pmi-ConfigIndex (I CQI / PMI). ) Is stored for each allocation management group.
  • the parameter assignment unit 121 determines unassigned cqi-pmi-ConfigIndex (I CQI / PMI ) using the bitmap for each assignment management group stored in the storage unit 130. Thereby, management of the allocation state of each of a large number of timing setting parameters becomes easy, and it is possible to flexibly cope with connection and disconnection of the radio terminal UE.
  • the parameter assigning unit 121 among the unassigned cqi-pmi-ConfigIndex (I CQI / PMI), in order of short distance transmission timing of uplink control information cqi-pmi-ConfigIndex (I CQI / PMI ).
  • the radio base station eNB can perform communication control on the radio terminal UE with high accuracy, and can provide a good communication service to the radio terminal UE.
  • the parameter assigning unit 121 among the unassigned cqi-pmi-ConfigIndex (I CQI / PMI), is a short sequence interval transmission timing of uplink control information cqi-pmi-ConfigIndex (I CQI / PMI ).
  • the parameter allocation unit 121 determines that cqi-pmi-pmi-pmi- is the unassigned cqi-pmi-ConfigIndex (I CQI / PMI ) in the descending order of the uplink control information transmission timing.
  • ConfigIndex (I CQI / PMI ) may be assigned.
  • the radio base station eNB can reduce the processing load related to the communication control for the radio terminal UE.
  • the wireless communication system based on 3GPP Release 8 or Release 9 has been described.
  • the present invention may be applied to 3GPP Release 10 (LTE Advanced).
  • the uplink control channels of a large number of radio terminals can be multiplexed with a small number of frequency resources, which is useful in radio communications such as mobile communications. .

Abstract

 PUCCHを介して、CQIを含む上りリンク制御情報を周期的に受信する無線基地局eNBは、上りリンク制御情報の送信タイミングを定めるcqi-pmi-ConfigIndex(ICQI/PMI)と、前記上りリンク制御情報の送信に使用される直交系列を定めるcqi-PUCCH-ResourceIndex(n(2) PUCCH)との組み合わせを複数記憶する記憶部130と、記憶部130が記憶する、cqi-pmi-ConfigIndex(ICQI/PMI)とcqi-PUCCH-ResourceIndex(n(2) PUCCH)との組み合わせの何れかを、自局に接続する無線端末UEに割り当てるパラメータ割り当て部121とを有する。記憶部130は、上りリンク制御情報の送信タイミングが重複し得るcqi-pmi-ConfigIndex(ICQI/PMI)に、それぞれ異なるcqi-PUCCH-ResourceIndex(n(2) PUCCH)を組み合わせて記憶する。

Description

無線基地局及びその制御方法
 本発明は、上りリンク制御チャネルに関するパラメータを無線端末に割り当てる無線基地局及びその制御方法に関する。
 現在運用されている第3世代及び第3.5世代セルラ無線通信システムよりも高速・大容量の通信を実現する次世代システムとして、標準化団体である3GPP(3rd Generation Partnership Project)で標準化されているLTE(Long Term Evolution)がある。
 LTEシステムにおいて、無線基地局は、無線端末が受信した無線信号の受信品質(すなわち、下りリンクの無線品質)を示す情報(CQI: Channel Quality Indicator)を含む上りリンク制御情報を、上りリンク制御チャネル(PUCCH: Physical Uplink Control CHannel)を介して当該無線端末から周期的に受信する。上りリンク制御チャネルは、直交系列を用いた符号分割多重が採用されており、1つの周波数リソース(RB: Resource Block)で複数の無線端末を多重化できる。
 また、LTEシステムにおいて、無線基地局は、上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータと、上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータとを、自局に接続する無線端末に割り当てる。そのようなタイミング設定パラメータは、cqi-pmi-ConfigIndex又はICQI/PMIと称され、制御チャネル設定パラメータは、cqi-PUCCH-ResourceIndex又はn(2) PUCCHと称される(非特許文献1及び2参照)。
3GPP TS 36.211, Physical Channels and Modulation. 3GPP TS 36.213, Physical layer procedures.
 しかしながら、非特許文献1及び2には、タイミング設定パラメータ及び制御チャネル設定パラメータを無線端末に割り当てる具体的な手法について記載されておらず、次のような問題が生じ得る。
 例えば、複数の無線端末間で、タイミング設定パラメータに応じて定まる上りリンク制御情報の送信タイミングが重複するケースにおいて、当該複数の無線端末に同一の制御チャネル設定パラメータが割り当てられている場合、当該複数の無線端末が同一の直交系列を使用することになり、当該複数の無線端末の上りリンク制御チャネルを多重化できない。特に、1つの無線基地局に接続する無線端末の数が多いほど、このような問題が生じる可能性が高くなる。
 このような問題を回避するためには、上りリンク制御チャネルとして使用する周波数リソースを増やすことによって、当該複数の無線端末を周波数分割により多重化することが考えられる。なお、上りリンク制御チャネルとして使用する周波数リソースの数は、nRB-CQI又はN(2) RBと称される周波数リソース数設定パラメータにより定められる。
 しかしながら、周波数リソース数設定パラメータにより、上りリンク制御チャネルとして使用する周波数リソースを増やす場合には、ユーザデータを伝送するための上りリンクデータチャネル(PUSCH: Physical Uplink Shared CHannel)として使用可能な周波数リソースが減ってしまい、且つ、上りリンク制御チャネルが上りリンクデータチャネルに与える干渉が大きくなるため、上りリンクのスループットが低下する問題がある。
 また、上述した問題を回避するためには、上りリンク制御情報の送信タイミングが重複し得る複数のタイミング設定パラメータに、それぞれ異なる制御チャネル設定パラメータを組み合わせて割り当てることが考えられる。このような割り当て手法により、複数の無線端末間で、タイミング設定パラメータに応じて定まる上りリンク制御情報の送信タイミングが重複するケースにおいても、当該複数の無線端末が異なる直交系列を使用することになり、当該複数の無線端末に係る上りリンク制御チャネルを多重化できるようになる。
 しかしながら、タイミング設定パラメータの数は多く、無線端末の接続及び切断に伴うタイミング設定パラメータの割り当て状態の管理が煩雑であり、上記のような割り当て手法を採用することが難しいという問題がある。
 そこで、本発明は、少ない周波数リソースで多数の無線端末の上りリンク制御チャネルを多重化できる無線基地局及びその制御方法を提供することを第1の目的とする。
 また、本発明は、タイミング設定パラメータの管理を容易にし、無線端末の接続及び切断に柔軟に対応できる無線基地局及びその制御方法を提供することを第2の目的とする。
 上述した第1の目的を達成するために、本発明は以下のような特徴を有している。本発明に係る無線基地局の第1の特徴は、直交系列を用いて多重化される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局(無線基地局eNB)であって、前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータ(cqi-pmi-ConfigIndex(ICQI/PMI))と、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータ(cqi-PUCCH-ResourceIndex(n(2) PUCCH))との組み合わせを複数記憶する記憶部(記憶部130)と、前記記憶部が記憶する、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの組み合わせの何れかを、自局に接続する無線端末(無線端末UE)に割り当てるパラメータ割り当て部(パラメータ割り当て部121)とを有し、前記記憶部は、前記上りリンク制御情報の送信タイミングが重複し得る複数のタイミング設定パラメータに、それぞれ異なる制御チャネル設定パラメータを組み合わせて記憶することを要旨とする。
 本発明に係る無線基地局の他の特徴は、上述した第1の特徴において、前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が短い順にタイミング設定パラメータを割り当てることを要旨とする。
 本発明に係る無線基地局の他の特徴は、上述した第1の特徴において、前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が長い順にタイミング設定パラメータを割り当てることを要旨とする。
 本発明に係る無線基地局の他の特徴は、上述した第1の特徴において、前記記憶部は、前記上りリンク制御情報の送信タイミングの間隔が等しい複数のタイミング設定パラメータをグループ化して記憶することを要旨とする。
 本発明に係る制御方法の特徴は、直交系列を用いて多重化される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局の制御方法であって、前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータと、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータとの組み合わせを複数記憶するステップと、前記記憶するステップで記憶された、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの複数の組み合わせの何れかを、自局に接続する無線端末に割り当てるステップとを有し、前記記憶するステップでは、前記上りリンク制御情報の送信タイミングが重複し得る複数のタイミング設定パラメータに、それぞれ異なる制御チャネル設定パラメータを組み合わせて記憶することを要旨とする。
 上述した第2の目的を達成するために、本発明は以下のような特徴を有している。本発明に係る無線基地局の第2の特徴は、符号分割多重が採用される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局(無線基地局eNB)であって、前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータ(cqi-pmi-ConfigIndex(ICQI/PMI))と、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータ(cqi-PUCCH-ResourceIndex(n(2) PUCCH))との組み合わせを複数記憶する記憶部(記憶部130)と、前記記憶部が記憶する、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの組み合わせの何れかを、自局に接続する無線端末(無線端末UE)に割り当てるパラメータ割り当て部(パラメータ割り当て部121)とを有し、前記記憶部は、前記上りリンク制御情報の送信タイミングの間隔が等しい複数のタイミング設定パラメータをグループ化して記憶するとともに、各タイミング設定パラメータの割り当て状態を示すビットマップをグループ毎に記憶し、前記パラメータ割り当て部は、前記記憶部が記憶するグループ毎の前記ビットマップを用いて、未割り当てのタイミング設定パラメータを判別することを要旨とする。
 本発明に係る無線基地局の他の特徴は、上述した第2の特徴において、前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が短い順にタイミング設定パラメータを割り当てることを要旨とする。
 本発明に係る無線基地局の他の特徴は、上述した第2の特徴において、前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が長い順にタイミング設定パラメータを割り当てることを要旨とする。
 本発明に係る無線基地局の他の特徴は、上述した第2の特徴において、前記記憶部は、前記上りリンク制御情報の送信タイミングが重複し得る複数のタイミング設定パラメータに、それぞれ異なる制御チャネル設定パラメータを組み合わせて記憶することを要旨とする。
 本発明に係る制御方法の特徴は、符号分割多重が採用される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局の制御方法であって、前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータと、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータとの組み合わせを複数記憶するステップと、前記記憶するステップで記憶された、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの組み合わせの何れかを、自局に接続する無線端末に割り当てるステップとを有し、前記記憶するステップでは、前記上りリンク制御情報の送信タイミングの間隔が等しい複数のタイミング設定パラメータをグループ化して記憶するとともに、各タイミング設定パラメータの割り当て状態を示すビットマップをグループ毎に記憶し、前記割り当てるステップでは、前記記憶するステップで記憶されたグループ毎の前記ビットマップを用いて、未割り当てのタイミング設定パラメータを判別することを要旨とする。
本発明の実施形態に係る無線通信システムの全体概略構成図である。 本発明の実施形態に係る無線通信システムで使用される通信フレーム構成を説明するための図である(その1)。 本発明の実施形態に係る無線通信システムで使用される通信フレーム構成を説明するための図である(その2)。 本発明の実施形態に係るcqi-pmi-ConfigIndex(ICQI/PMI)を説明するための図である。 本発明の実施形態に係る無線基地局の構成を示すブロック図である。 本発明の実施形態に係るマッピングテーブルを説明するための図である。 本発明の実施形態に係る割り当て管理グループを説明するための図である。 本発明の実施形態に係る無線基地局によるパラメータ割り当て動作の一例を示すフローチャートである。 本発明の実施形態に係る無線基地局によるパラメータ管理動作を説明するための図である(その1)。 本発明の実施形態に係る無線基地局によるパラメータ管理動作を説明するための図である(その2)。
 図面を参照して、本発明の実施形態を説明する。具体的には、(1)無線通信システムの概要、(2)無線基地局の構成、(3)無線基地局の動作、(4)実施形態の効果、(5)その他の実施形態について説明する。以下の実施形態における図面において、同一又は類似の部分には同一又は類似の符号を付す。
 (1)無線通信システムの概要
 図1は、本実施形態に係る無線通信システムの全体概略構成図である。本実施形態では、3GPP Release8又はRelease9(LTE)に基づく無線通信システムを説明する。
 当該無線通信システムは、上りリンクにSC-FDMA(Single Carrier-Frequency Division Multiple Access)方式が適用され、且つ下りリンクにOFDMA(Orthogonal Frequency Division Multiple Access)方式が適用される。
 無線基地局eNBは、無線端末UEにサービスを提供すべき通信エリアであるセルを形成する。無線端末UEは、ユーザが所持する無線通信装置であり、ユーザ装置とも称される。無線基地局eNBのセル内にある複数の無線端末UE(A)~UE(D)は、無線基地局eNBに接続する。
 無線基地局eNBは、無線端末UEが自局に接続する際、当該無線端末UEとの間の上りリンクについて、上りリンク制御チャネル(PUCCH: Physical Uplink Control CHannel)及び上りリンクデータチャネル(PUSCH: Physical Uplink Shared CHannel)を確立し、当該無線端末UEとの間の下りリンクについて、下りリンク制御チャネル(PDCCH: Physical Downlink Control CHannel)及び下りリンクデータチャネル(PDSCH: Physical Downlink Shared CHannel)を確立する。
 PUCCHは上りリンク制御データを伝送するためのチャネルであり、PUSCHは上りリンクユーザデータを伝送するためのチャネルである。また、PDCCHは下りリンク制御データを伝送するためのチャネルであり、PDSCHは下りリンクユーザデータを伝送するためのチャネルである。
 上りリンク制御データは、下りリンクの無線品質を示す情報であるCQI(Channel Quality Indicator)を含む。無線端末UEは、例えば無線基地局eNBから受信する無線信号の信号対干渉雑音比(SINR)を測定し、当該SINRのインデックスをCQIとして無線基地局eNBに送信する。CQIを含む上りリンク制御データを伝送できるPUCCHは、PUCCHフォーマット2/2a/2b(以下、PUCCHフォーマット2)と称される。なお、PUCCHフォーマット2は、CQIだけでなく、下りリンクのマルチアンテナ送信のためのプリコーディングマトリクス指標(PMI)及びランク指標(RI)や、下りリンクユーザデータの復号の成否を示す肯定応答/否定応答(ACK/NAK)を含んでもよい。
 無線基地局eNBは、CQIを含む上りリンク制御情報をPUCCH(具体的には、PUCCHフォーマット2)を介して無線端末UEから周期的に受信する。PUCCHは、直交系列を用いて多重化されており、1つの周波数リソース(以下、リソースブロック)で複数の無線端末UEを多重化できる。
 図2は、本実施形態に係る無線通信システムで使用される通信フレーム構成を説明するための図である。
 図2Aに示すように、無線フレームは、10個のサブフレームで構成され、各サブフレームは2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。また、各スロットは、時間軸方向(time domain)で7個のSC-FDMAシンボルを含み、周波数軸方向(frequency domain)で上りリンク帯域幅に応じた数のリソースブロックを含む。各リソースブロックは周波数軸方向で12個のサブキャリアを含む。
 図2Bに示すように、上りリンクで使用されるサブフレームにおいて、上りリンク周波数帯の両端部のリソースブロックはPUCCHを構成し、上りリンク周波数帯の中央部のリソースブロックはPUSCHを構成する。1つのPUCCHリソースは、サブフレーム内の2つのスロットの1リソースブロックずつを使用する。このとき、サブフレーム内のスロット間では、上りリンク帯域の両端を使用する周波数ホッピングが適用される。例えば、前半のスロットでは低周波数側、後半のスロットでは高周波数側といったようにホッピングする。
 PUCCHリソースは、複数の無線端末UEで共有される。具体的には、無線基地局eNBは、異なる位相回転を各無線端末UEに割り当て、無線基地局eNBに固有の基本系列を周波数領域で位相回転することによって、異なる直交系列を得る。周波数領域における位相回転は、時間領域におけるサイクリックシフトと等価である。例えば、12個の異なる位相回転(サイクリックシフト)が用意されており、12個の異なる直交系列により1つのPUCCHリソースで12個の無線端末UEを多重化できる。
 無線基地局eNBは、無線端末UEがPUCCHを介して上りリンク制御情報を送信するタイミングと、無線端末UEが上りリンク制御情報の送信に使用する直交系列とを、上位レイヤにおける無線リソース制御(RRC)プロトコルに従って、無線端末UE毎に決定する。
 具体的には、無線基地局eNBは、上りリンク制御情報の送信タイミングを定めるRRCパラメータであるcqi-pmi-ConfigIndex(ICQI/PMI)と、上りリンク制御情報の送信に使用される直交系列を定めるRRCパラメータであるcqi-PUCCH-ResourceIndex(n(2) PUCCH)とを、自局に接続する無線端末UE毎に割り当てる。
 図3は、cqi-pmi-ConfigIndex(ICQI/PMI)を説明するための図である。
 図3に示すように、cqi-pmi-ConfigIndex(ICQI/PMI)は、上りリンク制御情報を送信する間隔Nと、上りリンク制御情報を送信する周期のオフセットNOFFSET,CQIとに対応付けられる。ここで、間隔N及びオフセットNOFFSET,CQIは、サブフレーム単位で定められる。上りリンク制御情報の送信タイミングは、下記の数式により、cqi-pmi-ConfigIndex(ICQI/PMI)に応じて定められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、nはフレーム番号であり、nはスロット番号である。cqi-pmi-ConfigIndex(ICQI/PMI)の詳細については、非特許文献1及び2を参照されたい。
 なお、間隔Nが等しいcqi-pmi-ConfigIndex(ICQI/PMI)のそれぞれは、オフセットNOFFSET,CQIにより、送信タイミングが重複しないように構成される。
 無線端末UEに割り当てられる位相回転(サイクリックシフト)に相当するα(n,l)は、下記の数式により、cqi-PUCCH-ResourceIndex(n(2) PUCCH)に応じて定められる。
Figure JPOXMLDOC01-appb-M000002
 当該数式の詳細については、非特許文献1及び2を参照されたい。
 また、無線基地局eNBは、RRCプロトコルに従って、PUCCHフォーマット2として使用するリソースブロックの数を、N(2) RBと称されるRRCパラメータにより定めることができる。
 (2)無線基地局の構成
 次に、本実施形態に係る無線基地局eNBの構成を説明する。図4は、本実施形態に係る無線基地局eNBの構成を示すブロック図である。
 図4に示すように、無線基地局eNBは、アンテナ部101、無線通信部110、制御部120、記憶部130、及びネットワーク通信部140を有する。
 無線通信部110は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、アンテナ部101を介して無線端末UEと無線信号の送受信を行う。また、無線通信部110は、送信信号の変調と受信信号の復調とを行う。
 制御部120は、例えばCPUを用いて構成され、無線基地局eNBが備える各種の機能を制御する。記憶部130は、例えばメモリを用いて構成され、無線基地局eNBの制御等に用いられる各種の情報を記憶する。記憶部130は、図3に示した、cqi-pmi-ConfigIndex(ICQI/PMI)に関するテーブルを記憶する。ネットワーク通信部140は、無線基地局eNBの上位装置や、他の無線基地局との通信を行う。
 記憶部130は、cqi-pmi-ConfigIndex(ICQI/PMI)とcqi-PUCCH-ResourceIndex(n(2) PUCCH)とを対応付けるためのマッピングテーブルを記憶する。図5に示すように、当該マッピングテーブルにおいては、cqi-pmi-ConfigIndex(ICQI/PMI)“0”~“1”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“0”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“2”~“6”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“1”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“7”~“16”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“2”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“17”~“36”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“3”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“37”~“76”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“4”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“77”~“156”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“5”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“157”~“316”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“6”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“317”は予約済みとして確保される。cqi-pmi-ConfigIndex(ICQI/PMI)“318”~“349”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“7”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“350”~“413”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“8”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“414”~“541”はcqi-PUCCH-ResourceIndex(n(2) PUCCH)“9”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“542”~“1023”は予約済みとして確保される。
 このように、間隔Nが等しいcqi-pmi-ConfigIndex(ICQI/PMI)に対して、同一のcqi-PUCCH-ResourceIndex(n(2) PUCCH)が組み合わされる。また、間隔Nが異なるcqi-pmi-ConfigIndex(ICQI/PMI)に対して、異なるcqi-PUCCH-ResourceIndex(n(2) PUCCH)が組み合わされる。
 上述したように、間隔Nが等しいcqi-pmi-ConfigIndex(ICQI/PMI)は、オフセットNOFFSET,CQIにより、送信タイミングが重複しないように構成される。一方、間隔Nが異なるcqi-pmi-ConfigIndex(ICQI/PMI)は、上りリンク制御情報の送信タイミングが重複し得る。
 したがって、記憶部130は、間隔Nが異なるcqi-pmi-ConfigIndex(ICQI/PMI)、すなわち、上りリンク制御情報の送信タイミングが重複し得る複数のcqi-pmi-ConfigIndex(ICQI/PMI)に対して、それぞれ異なるcqi-PUCCH-ResourceIndex(n(2) PUCCH)を組み合わせて記憶する。
 さらに、記憶部130は、図6に示すように、間隔Nが等しいcqi-pmi-ConfigIndex(ICQI/PMI)をグループ化して記憶するとともに、各cqi-pmi-ConfigIndex(ICQI/PMI)の割り当て状態を示すビットマップ(図8及び図9参照)をグループ毎に記憶する。
 具体的には、記憶部130は、cqi-pmi-ConfigIndex(ICQI/PMI)のグループ毎に、当該グループを識別するための割り当て管理グループIDを対応付ける。本実施形態では、cqi-pmi-ConfigIndex(ICQI/PMI)“0”~“1”は割り当て管理グループID“0x0000”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“2”~“6”は割り当て管理グループIDcqi-PUCCH-ResourceIndex(n(2) PUCCH)“0x0002”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“7”~“16”は割り当て管理グループID“0x0007”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“17”~“36”は割り当て管理グループID“0x0011”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“37”~“76”は割り当て管理グループID“0x0025”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“77”~“156”は割り当て管理グループID“0x004D”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“157”~“316”は割り当て管理グループID“0x009D”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“317”は予約済みとして確保される。cqi-pmi-ConfigIndex(ICQI/PMI)“318”~“349”は割り当て管理グループID“0x013E”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“350”~“413”は割り当て管理グループID“0x015E”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“414”~“541”は割り当て管理グループID“0x019E”に対応付けられる。cqi-pmi-ConfigIndex(ICQI/PMI)“542”~“1023”は予約済みとして確保される。
 このように、割当て管理グループIDの下位ビットは、cqi-pmi-ConfigIndex(ICQI/PMI)グループの最も小さい値に相当する。また、割当て管理グループIDの上位4ビットは、N(2) RBに応じて定められるリソースブロック数に対応した値である。上記の例ではN(2) RB=1を想定しているが、N(2) RB=2のときは、割当て管理グループIDは、0x0000,0x0002・・・のグループと、0x1000,0x1002・・・のグループとに分けて管理される。N(2) RBが16以上のときは、上位4ビットでは表現できなくなるので、割当て管理グループIDのビット数を拡張する必要がある。
 制御部120は、パラメータ割り当て部121、パラメータ通知部122、及びパラメータ管理部123を有する。
 パラメータ割り当て部121は、自局に新規に接続(位置登録)する無線端末UEに対して、PUCCHに関するパラメータを割り当てる。具体的には、パラメータ割り当て部121は、記憶部130が記憶する、cqi-pmi-ConfigIndex(ICQI/PMI)とcqi-PUCCH-ResourceIndex(n(2) PUCCH)との組み合わせの何れかを、自局に接続する無線端末UEに重複なく割り当てる。パラメータ割り当て部121は、記憶部130が記憶する割り当て管理グループ毎のビットマップを用いて、未割り当てのcqi-pmi-ConfigIndex(ICQI/PMI)を判別する。
 パラメータ通知部122は、パラメータ割り当て部121によって割り当てられたcqi-pmi-ConfigIndex(ICQI/PMI)とcqi-PUCCH-ResourceIndex(n(2) PUCCH)との組み合わせを、自局に接続する無線端末UEに通知する。
 パラメータ管理部123は、cqi-pmi-ConfigIndex(ICQI/PMI)の割り当て状態を管理する。具体的には、パラメータ管理部123は、記憶部130が記憶する割り当て管理グループ毎のビットマップを、無線端末UEの接続・切断に応じて更新する。
 (3)無線基地局の動作
 次に、本実施形態に係る無線基地局eNBの動作について、(3.1)パラメータ割り当て動作、(3.2)パラメータ管理動作の順に説明する。
 (3.1)パラメータ割り当て動作
 上述のように、PUCCHフォーマット2の送信間隔はRRCパラメータの1つであるcqi-pmi-ConfigIndex(ICQI/PMI)によって求められる。また、PUCCHフォーマット2の送信間隔は、図3のテーブルの各行間で公約数を持つので、あるサブフレームにおいて各行で設定された間隔のPUCCHフォーマット2が無線端末UEから送信される可能性がある。そのため、無線基地局eNBは、無線端末UEの接続時に、以下のようにcqi-pmi-ConfigIndex(ICQI/PMI)及びcqi-PUCCH-ResourceIndex(n(2) PUCCH)の組み合わせを割り当てる。
 図7は、無線基地局eNBによるパラメータ割り当て動作の一例を示すフローチャートである。
 ステップS11において、パラメータ割り当て部121は、cqi-pmi-ConfigIndex(ICQI/PMI)の値を0に設定する。また、パラメータ割り当て部121は、図5に示すマッピングテーブルを参照し、cqi-PUCCH-ResourceIndex(n(2) PUCCH)をcqi-pmi-ConfigIndex(ICQI/PMI)の値に対応する値に設定する。ここでは、cqi-pmi-ConfigIndex(ICQI/PMI)=0に対応するcqi-PUCCH-ResourceIndex(n(2) PUCCH)=0に設定する。
 無線基地局eNBに新規に無線端末UEが接続した場合(ステップS12;YES)、ステップS13において、パラメータ割り当て部121は、現在のcqi-pmi-ConfigIndex(ICQI/PMI)及び現在のcqi-PUCCH-ResourceIndex(n(2) PUCCH)を、新規に接続した無線端末UEに割り当てる。
 ステップS14において、パラメータ割り当て部121は、現在のcqi-pmi-ConfigIndex(ICQI/PMI)の値に1を加算する。そして、cqi-pmi-ConfigIndex(ICQI/PMI)の値が317に達していない場合(ステップS15;NO)には、処理がステップS12に戻る。cqi-pmi-ConfigIndex(ICQI/PMI)の値が317に達している場合(ステップS15;YES)には、cqi-pmi-ConfigIndex(ICQI/PMI)の値にさらに1を加算した後、処理がステップS12に戻る。
 このように、cqi-pmi-ConfigIndex(ICQI/PMI)をインクリメントで割り当てる際に、図3及び図4に示すテーブルの各行において、異なるcqi-PUCCH-ResourceIndex(n(2) PUCCH)を割り当てる。その結果、複数の無線端末UE間で上りリンク制御情報の送信タイミングが重複するケースにおいても、当該複数の無線端末UEのそれぞれのα(n,l)をオフセットし、当該複数の無線端末UEを多重化している。
 このような手法により、nRB-CQI( (2) RB)=1である場合、最大541UEまでPUCCHフォーマット2の1リソースブロック割当てに収まり、1サブフレームの1リソースブロック当たり、最大10多重となる。無線基地局eNBにおける、PUCCHフォーマット2の検出処理負荷もワーストケースで10/12となる。なお、1000UEに対応するには、nRB-CQI( (2) RB)=2とすれば良い。
 (3.2)パラメータ管理動作
 図8は、無線基地局eNBによるパラメータ管理動作を説明するための図である。
 記憶部130に記憶される割り当て管理グループ毎のビットマップは、cqi-pmi-ConfigIndex(ICQI/PMI)の要素数に対応したビット数のビット列からなり、各ビットの初期値は0である。図8Aの例では、割り当て管理グループID“0x0000”のグループについてのビットマップは、cqi-pmi-ConfigIndex(ICQI/PMI)“0”に対応するビットと、cqi-pmi-ConfigIndex(ICQI/PMI)“1”に対応するビットとからなる。
 無線基地局eNBに無線端末UE(A)が新規に接続した場合を想定すると、パラメータ割り当て部121がcqi-pmi-ConfigIndex(ICQI/PMI)“0”を無線端末UE(A)に割り当てる。パラメータ管理部123は、cqi-pmi-ConfigIndex(ICQI/PMI)“0”に対応するビットを“0”から“1”に反転させる。ここでビットが“1”であるということは、対応するcqi-pmi-ConfigIndex(ICQI/PMI)が割り当て済みであることを表している。これにより、パラメータ割り当て部121が、未割り当てのcqi-pmi-ConfigIndex(ICQI/PMI)をサーチする際に、ビットマップを見る事で判断可能である。
 また、無線基地局eNBに無線端末UE(B)が新規に接続した場合を想定すると、パラメータ割り当て部121がcqi-pmi-ConfigIndex(ICQI/PMI)“1”を無線端末UE(B)に割り当てる。パラメータ管理部123は、cqi-pmi-ConfigIndex(ICQI/PMI)“1”に対応するビットを“0”から“1”に反転させる。
 さらに、無線基地局eNBに無線端末UE(C)が新規に接続した場合を想定すると、パラメータ割り当て部121がcqi-pmi-ConfigIndex(ICQI/PMI)“2”を無線端末UE(C)に割り当てる。パラメータ管理部123は、cqi-pmi-ConfigIndex(ICQI/PMI)“2”に対応するビットを“0”から“1”に反転させる。
 パラメータ管理部123は、ある無線端末UEが切断した(ハンドオーバも含む)場合には、切断した無線端末UEに割り当てていたcqi-pmi-ConfigIndex(ICQI/PMI)に対応するビットを“1”から“0”に反転させる。これにより、切断した無線端末UEに割り当てていたcqi-pmi-ConfigIndex(ICQI/PMI)が未割り当てとなったことをパラメータ割り当て部121が判断可能になる。
 図8Bの例では、無線端末UE(B)が切断しており、パラメータ管理部123は、無線端末UE(B)に割り当てていたcqi-pmi-ConfigIndex(ICQI/PMI)“1”に対応するビットを“1”から“0”に反転させる。そして、無線基地局eNBに無線端末UE(D)が新規に接続した場合を想定すると、パラメータ割り当て部121は、ビットマップに基づき、cqi-pmi-ConfigIndex(ICQI/PMI)“1”が未割り当てであると判断し、cqi-pmi-ConfigIndex(ICQI/PMI)“1”を無線端末UE(D)に割り当てる。
 (4)実施形態の効果
 以上説明したように、無線基地局eNBは、上りリンク制御情報の送信タイミングが重複し得る複数のcqi-pmi-ConfigIndex(ICQI/PMI)に、それぞれ異なるcqi-PUCCH-ResourceIndex(n(2) PUCCH)を組み合わせて記憶する記憶部130と、記憶部130が記憶する、cqi-pmi-ConfigIndex(ICQI/PMI)とcqi-PUCCH-ResourceIndex(n(2) PUCCH)との組み合わせの何れかを、自局に接続する無線端末UEに重複なく割り当てるパラメータ割り当て部121とを有する。これにより、複数の無線端末UE間で、cqi-pmi-ConfigIndex(ICQI/PMI)に応じて定まる上りリンク制御情報の送信タイミングが重複するケースにおいても、α(n,l)をオフセットさせることで、当該複数の無線端末UEが異なる直交系列を使用することになり、当該複数の無線端末UEのPUCCHを多重化できる。したがって、本実施形態に係る無線基地局eNBは、少ない周波数リソースで多数の無線端末のPUCCHを多重化できる。
 また、記憶部130は、上りリンク制御情報の送信タイミングの間隔が等しい複数のcqi-pmi-ConfigIndex(ICQI/PMI)をグループ化して記憶するとともに、各cqi-pmi-ConfigIndex(ICQI/PMI)の割り当て状態を示すビットマップを割り当て管理グループ毎に記憶する。パラメータ割り当て部121は、記憶部130が記憶する割り当て管理グループ毎のビットマップを用いて、未割り当てのcqi-pmi-ConfigIndex(ICQI/PMI)を判別する。これにより、多数のタイミング設定パラメータそれぞれの割り当て状態の管理が容易になり、無線端末UEの接続及び切断に柔軟に対応できる。
 本実施形態では、パラメータ割り当て部121は、未割り当てのcqi-pmi-ConfigIndex(ICQI/PMI)のうち、上りリンク制御情報の送信タイミングの間隔が短い順にcqi-pmi-ConfigIndex(ICQI/PMI)を割り当てる。これにより、無線基地局eNBは、無線端末UEに対する通信制御を高精度に行うことができ、無線端末UEに良好な通信サービスを提供できる。
 (5)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、パラメータ割り当て部121は、未割り当てのcqi-pmi-ConfigIndex(ICQI/PMI)のうち、上りリンク制御情報の送信タイミングの間隔が短い順にcqi-pmi-ConfigIndex(ICQI/PMI)を割り当てていた。しかしながら、このような割り当て順序に限らず、パラメータ割り当て部121は、未割り当てのcqi-pmi-ConfigIndex(ICQI/PMI)のうち、上りリンク制御情報の送信タイミングの間隔が長い順にcqi-pmi-ConfigIndex(ICQI/PMI)を割り当ててもよい。これにより、無線基地局eNBは、無線端末UEに対する通信制御に係る処理負荷を軽減できる。
 さらに、上述した実施形態では、3GPP Release8又はRelease9(LTE)に基づく無線通信システムについて説明したが、3GPP Release10(LTE Advanced)に本発明を適用してもよい。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。
 なお、日本国特許出願第2010-119916号(2010年5月25日出願)及び第2010-119917号(2010年5月25日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線基地局及びその制御方法によれば、少ない周波数リソースで多数の無線端末の上りリンク制御チャネルを多重化できるため、移動体通信などの無線通信において有用である。

Claims (10)

  1.  直交系列を用いて多重化される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局であって、
     前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータと、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータとの組み合わせを複数記憶する記憶部と、
     前記記憶部が記憶する、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの組み合わせの何れかを、自局に接続する無線端末に割り当てるパラメータ割り当て部と、
    を有し、
     前記記憶部は、前記上りリンク制御情報の送信タイミングが重複し得る複数のタイミング設定パラメータに、それぞれ異なる制御チャネル設定パラメータを組み合わせて記憶する無線基地局。
  2.  前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が短い順にタイミング設定パラメータを割り当てる請求項1に記載の無線基地局。
  3.  前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が長い順にタイミング設定パラメータを割り当てる請求項1に記載の無線基地局。
  4.  前記記憶部は、前記上りリンク制御情報の送信タイミングの間隔が等しい複数のタイミング設定パラメータをグループ化して記憶する請求項1に記載の無線基地局。
  5.  直交系列を用いて多重化される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局の制御方法であって、
     前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータと、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータとの組み合わせを複数記憶するステップと、
     前記記憶するステップで記憶された、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの複数の組み合わせの何れかを、自局に接続する無線端末に割り当てるステップと、
    を有し、
     前記記憶するステップでは、前記上りリンク制御情報の送信タイミングが重複し得る複数のタイミング設定パラメータに、それぞれ異なる制御チャネル設定パラメータを組み合わせて記憶する制御方法。
  6.  符号分割多重が採用される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局であって、
     前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータと、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータとの組み合わせを複数記憶する記憶部と、
     前記記憶部が記憶する、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの組み合わせの何れかを、自局に接続する無線端末に割り当てるパラメータ割り当て部と、
    を有し、
     前記記憶部は、前記上りリンク制御情報の送信タイミングの間隔が等しい複数のタイミング設定パラメータをグループ化して記憶するとともに、各タイミング設定パラメータの割り当て状態を示すビットマップをグループ毎に記憶し、
     前記パラメータ割り当て部は、前記記憶部が記憶するグループ毎の前記ビットマップを用いて、未割り当てのタイミング設定パラメータを判別する無線基地局。
  7.  前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が短い順にタイミング設定パラメータを割り当てる請求項6に記載の無線基地局。
  8.  前記パラメータ割り当て部は、未割り当てのタイミング設定パラメータのうち、前記上りリンク制御情報の送信タイミングの間隔が長い順にタイミング設定パラメータを割り当てる請求項6に記載の無線基地局。
  9.  前記記憶部は、前記上りリンク制御情報の送信タイミングが重複し得る複数のタイミング設定パラメータに、それぞれ異なる制御チャネル設定パラメータを組み合わせて記憶する請求項6に記載の無線基地局。
  10.  符号分割多重が採用される上りリンク制御チャネルを介して、下りリンクの無線品質を示す情報を含む上りリンク制御情報を周期的に受信する無線基地局であって、
     前記上りリンク制御情報の送信タイミングを定めるタイミング設定パラメータと、前記上りリンク制御情報の送信に使用される直交系列を定める制御チャネル設定パラメータとの組み合わせを複数記憶するステップと、
     前記記憶するステップで記憶された、前記タイミング設定パラメータと前記制御チャネル設定パラメータとの組み合わせの何れかを、自局に接続する無線端末に割り当てるステップと、
    を有し、
     前記記憶するステップでは、前記上りリンク制御情報の送信タイミングの間隔が等しい複数のタイミング設定パラメータをグループ化して記憶するとともに、各タイミング設定パラメータの割り当て状態を示すビットマップをグループ毎に記憶し、
     前記割り当てるステップでは、前記記憶するステップで記憶されたグループ毎の前記ビットマップを用いて、未割り当てのタイミング設定パラメータを判別する制御方法。
PCT/JP2011/062011 2010-05-25 2011-05-25 無線基地局及びその制御方法 WO2011148984A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/699,544 US9197388B2 (en) 2010-05-25 2011-05-25 Radio base station and control method for the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010119916A JP5551968B2 (ja) 2010-05-25 2010-05-25 無線基地局及びその制御方法
JP2010119917A JP5551969B2 (ja) 2010-05-25 2010-05-25 無線基地局及びその制御方法
JP2010-119916 2010-05-25
JP2010-119917 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011148984A1 true WO2011148984A1 (ja) 2011-12-01

Family

ID=45003973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062011 WO2011148984A1 (ja) 2010-05-25 2011-05-25 無線基地局及びその制御方法

Country Status (2)

Country Link
US (1) US9197388B2 (ja)
WO (1) WO2011148984A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286467A (zh) * 2017-07-19 2019-01-29 大唐移动通信设备有限公司 共享信道cqi的获取方法及装置、上报方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
JP6394919B2 (ja) 2013-06-19 2018-09-26 シャープ株式会社 端末装置、基地局装置、集積回路、および、無線通信方法
US10248087B2 (en) * 2017-07-12 2019-04-02 Hall Labs Llc System and device using spectrum-impact-smoothed channel sequencing and deferred acknowledgments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086137A (ja) * 1999-09-17 2001-03-30 Hitachi Kokusai Electric Inc 無線通信システム
JP2009272827A (ja) * 2008-05-02 2009-11-19 Ntt Docomo Inc 移動通信システムにおける基地局装置、ユーザ装置及び方法
US20090303956A1 (en) * 2008-04-29 2009-12-10 Huawei Technologies Co., Ltd. Method, device and system for assigning ack channels to users

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045599A4 (en) 1998-10-26 2004-03-31 Mitsubishi Electric Corp METHOD FOR SELECTING THE COMMUNICATION LINE AND MOBILE COMMUNICATION DEVICE
WO2007007380A1 (ja) 2005-07-08 2007-01-18 Fujitsu Limited 無線リソース割り当て方法、通信装置
EP1947783A4 (en) * 2005-10-17 2015-08-19 Nec Corp RADIO COMMUNICATION PROCEDURE, RADIO COMMUNICATION SYSTEM, BASIC STATION AND MOBILE STATION
US8077693B2 (en) 2007-09-19 2011-12-13 Samsung Electronics Co., Ltd. Resource remapping and regrouping in a wireless communication system
WO2010039908A1 (en) * 2008-09-30 2010-04-08 Spridercloud Wireless Methods and apparatus for generating, reporting and/or using interference cancellation information
WO2010078365A1 (en) * 2008-12-30 2010-07-08 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
WO2011049286A1 (en) * 2009-10-23 2011-04-28 Lg Electronics Inc. Method and apparatus for controlling uplink power in a wireless communication system
WO2011085230A2 (en) * 2010-01-08 2011-07-14 Interdigital Patent Holdings, Inc. Channel state information transmission for multiple carriers
RU2519409C2 (ru) * 2010-02-12 2014-06-10 Интердиджитал Пэйтент Холдингз, Инк. Обратная связь посылки многочисленных несущих нисходящей линии связи
KR101699493B1 (ko) * 2010-05-03 2017-01-26 주식회사 팬택 Mimo 환경에서 직교성을 제공하는 사이클릭 쉬프트 파라메터를 송수신하는 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086137A (ja) * 1999-09-17 2001-03-30 Hitachi Kokusai Electric Inc 無線通信システム
US20090303956A1 (en) * 2008-04-29 2009-12-10 Huawei Technologies Co., Ltd. Method, device and system for assigning ack channels to users
JP2009272827A (ja) * 2008-05-02 2009-11-19 Ntt Docomo Inc 移動通信システムにおける基地局装置、ユーザ装置及び方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286467A (zh) * 2017-07-19 2019-01-29 大唐移动通信设备有限公司 共享信道cqi的获取方法及装置、上报方法及装置

Also Published As

Publication number Publication date
US9197388B2 (en) 2015-11-24
US20130064211A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP6596155B2 (ja) 上りリンクのスケジューリングのための方法及び装置
JP4728301B2 (ja) ユーザ装置、送信方法、及び通信システム
US9749074B2 (en) Resource mapping method and apparatus of OFDM system
US20190260559A1 (en) Wireless communications method and apparatus
US9602255B2 (en) System and method for data channel transmission and reception
US11949619B2 (en) Short physical downlink control channel (sPDCCH) mapping design
US20130301562A1 (en) Methods for Resource Multiplexing of Distributed and Localized transmission in Enhanced Physical Downlink Control Channel
WO2013141214A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線リソース割当て方法
JP2015122792A (ja) 移動通信システム、基地局装置、移動局装置、および、通信方法
JP5574872B2 (ja) 基地局装置、移動局装置、および、通信方法
US11432272B2 (en) Assignment of short physical downlink control channel (sPDCCH) candidates for short transmission time interval (sTTI)
US11902193B2 (en) Search space configuration for short transmission time interval
WO2018230137A1 (ja) 端末及び通信方法
WO2011148984A1 (ja) 無線基地局及びその制御方法
JP5551968B2 (ja) 無線基地局及びその制御方法
CN105684476A (zh) 用户终端以及终端间通信方法
JP6170112B2 (ja) 無線ネットワークにおけるアップリンク制御データの処理方法及び装置
JP5551969B2 (ja) 無線基地局及びその制御方法
EP2767103B1 (en) System and method for data channel transmission and reception
WO2023170713A1 (en) "method for communication in a multi-transmission /reception point system"
JP2018182573A (ja) 無線基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13699544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786683

Country of ref document: EP

Kind code of ref document: A1