WO2011148944A1 - Thin film magnetic device and method for manufacturing same - Google Patents

Thin film magnetic device and method for manufacturing same Download PDF

Info

Publication number
WO2011148944A1
WO2011148944A1 PCT/JP2011/061880 JP2011061880W WO2011148944A1 WO 2011148944 A1 WO2011148944 A1 WO 2011148944A1 JP 2011061880 W JP2011061880 W JP 2011061880W WO 2011148944 A1 WO2011148944 A1 WO 2011148944A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
magnetic
alcohol
etching
Prior art date
Application number
PCT/JP2011/061880
Other languages
French (fr)
Japanese (ja)
Inventor
啓藏 木下
末光 克巳
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012517278A priority Critical patent/JP5720681B2/en
Publication of WO2011148944A1 publication Critical patent/WO2011148944A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/308Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices lift-off processes, e.g. ion milling, for trimming or patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/74Array wherein each memory cell has more than one access device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a thin film magnetic device and a manufacturing method thereof, and more particularly to a thin film magnetic device having a magnetic layer and a manufacturing method thereof.
  • a magnetoresistive effect element having a magnetic tunnel junction As one of thin film magnetic devices, a magnetoresistive effect element having a magnetic tunnel junction (MTJ) is known.
  • This magnetoresistive effect element has, for example, a structure of a free layer (magnetic material) / tunnel barrier layer (insulating material) / fixed layer (magnetic material) from the top, or a structure in which it is turned upside down.
  • a cap layer which is a conductive material that is in direct contact with the magnetic material, and an upper electrode are usually provided.
  • a mask layer having a desired pattern is further provided on the upper electrode.
  • a lower electrode is provided under this structure.
  • a current is passed between the upper electrode and the lower electrode to read the MTJ resistance value.
  • an ion milling method has been used as an etching method used for pattern formation when manufacturing such a magnetoresistive effect element.
  • the ion milling method is an etching method using a phenomenon that a workpiece is sputtered by ionizing argon gas, accelerating the argon ions by an electric field and irradiating the workpiece.
  • a photoresist pattern formed on the upper electrode Non-Patent Document 1 (K. Nagahara, et al., Jpn. J. Appl. Phys. 46 (2007) pp. 4121-4124.
  • a pattern obtained by transferring a photoresist pattern studied in (1) to an inorganic hard mask material is used.
  • the above-described ion milling method has a problem that the processed shape is tapered and it is difficult to make the structure fine.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-42143 (US7060194 (B2)) proposes a technique for etching by vaporizing alcohol and applying a bias potential to the substrate while turning it into plasma.
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-060044 (US7655282 (B2)) proposes an example in which Ru is used as a cap layer.
  • etching using alcohol plasma oxygen atoms and OH contained in molecules are generated in the plasma by electron impact dissociation in the plasma.
  • the material containing Ta or Ti exposed to the plasma is changed to an oxide, the etching rate of the material is significantly reduced.
  • Non-Patent Document 2 M. Nagamine, et al., J. Appl. Phys. 99, (2006) 08K703
  • the characteristics of the underlying magnetoresistive effect element are influenced by the material of the cap layer. It is known to receive.
  • the material of the cap layer is a material whose standard monopolar potential is lower than the standard monopolar potential of the material of the free layer, and is free. It is said that it is necessary that the material does not diffuse into the layer.
  • Ta and non-magnetic NiFeZr alloy show good characteristics.
  • the standard unipolar potential is one of the indices indicating the ease of oxidation of the material. Therefore, these materials suppress factors that oxidize the free layer in the etching process (for example, diffusion of oxygen in the ashing process of the photoresist and diffusion of halogen elements during processing of the mask layer and upper electrode layer). It is conceivable that. Note that typical magnetic materials such as Fe, Ni, and Co have very close characteristics.
  • Japanese Patent Application Laid-Open No. 2009-071321 discloses a method for manufacturing a magnetoresistive element.
  • the magnetoresistive element manufacturing method includes a first step, a second step, a third step, a fourth step, and a fifth step.
  • Ru ruthenium
  • Rh rhodium
  • Os osmium
  • Nb niobium
  • Ir iridium
  • Re iridium
  • the second layer is formed so that the second layer made of Ta is positioned on the upper side of the first layer.
  • the third step uses a resist pattern to etch the second layer, thereby forming a first mask.
  • the first layer is etched using an etching gas containing oxygen atoms using the first mask, thereby forming a second mask.
  • the magnetic multilayer film is etched using the second mask, thereby forming a magnetic multilayer film pattern.
  • the magnetoresistive element includes a substrate, a magnetic multilayer film including at least two magnetic layers, Ru (ruthenium), Rh (rhodium), Os (osmium), Nb (niobium), Ir (iridium), and Re (rhenium). And a conductive oxide layer made of any one metal oxide.
  • FIG. 1A to 1B are cross-sectional views showing an example (part) of a method of manufacturing a magnetoresistive element.
  • FIG. 1A shows the magnetoresistive element after formation of the upper and lower hard masks 8 and 9.
  • FIG. 1B shows the magnetoresistive element after the upper electrode 1 is etched.
  • this magnetoresistive element has a Ta film as the lower electrode 7 (conductive material), a CoFeB / PtMn film as the pinned layer 6 (magnetic material), and a tunnel barrier layer 5 (insulating material or non-magnetic material).
  • MgO film as the material NiFe film as the free layer 4 (magnetic material), and Ta film as the upper electrode 1 (conductive material) are stacked in this order.
  • the upper electrode 1 is a Ta film
  • a gas containing a halogen element such as F or Cl
  • F or Cl a gas containing a halogen element
  • FIG. 1B when the Ta film as the upper electrode 1 is etched using a gas containing a halogen element, a serious alteration occurs in a region exposed to plasma in the NiFe film of the underlying free layer 4. It was. That is, the deteriorated region 12 was formed by this etching plasma. This corresponds to case (2).
  • FIG. 2A to 2B are cross-sectional views showing another example (part) of the method of manufacturing the magnetoresistive effect element.
  • FIG. 2A shows the magnetoresistive element after formation of the upper and lower hard masks 8 and 9.
  • FIG. 2B shows the magnetoresistive element after the etching of the upper electrode 1a.
  • this magnetoresistive effect element uses a Ru film instead of a Ta film as the upper electrode 1a as compared with the magnetoresistive effect element of FIG. 1A.
  • the upper electrode 1a is a Ru film
  • alcohol plasma for etching the underlying free layer 4 can be used for etching the Ru film.
  • a fluorocarbon gas containing F for etching the SiNx film of the lower hard mask 8 on the upper electrode 1a.
  • FIG. 2A when the SiNx film of the lower hard mask 8 is etched using a fluorocarbon gas, the underlying free layer is further formed by F diffused in the Ru film of the upper electrode 1a along with the etching. 4 NiFe film was severely altered. That is, the deteriorated region 12a was formed in the NiFe film by F diffused in the Ru film of the upper electrode 1a.
  • FIG. 2B even if the Ru film of the upper electrode 1a is etched using alcohol plasma thereafter, the degraded region 12a formed in the NiFe film of the free layer 4 remains as it is. This corresponds to case (2).
  • FIG. 3A to 3D are cross-sectional views showing still another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 3A shows the magnetoresistive effect element after the upper and lower hard masks 8 and 9 are formed.
  • FIG. 3B shows the magnetoresistive element after the etching of the upper electrode 1b.
  • FIG. 3C shows the magnetoresistive element after the cap layer 11 is etched.
  • FIG. 3D shows the magnetoresistive element after the free layer 4 is etched.
  • this magnetoresistive effect element uses a W film instead of a Ta film as the upper electrode 1b as compared with the magnetoresistive effect element of FIG. A Ta film is inserted as a cap layer 11 therebetween.
  • a method of using a CF 4 gas that is usually used for etching the Ta film can be considered when etching the Ta film after processing the W film of the upper electrode 1b.
  • FIG. 3C in this case, when the Ta film of the cap layer 11 was etched using CF 4 gas, an altered region 12b was formed in the NiFe film of the free layer 4 immediately below. This is the same manufacturing process as in the case of FIG. 2C described above (but without the cap layer 11). Thereafter, when the free layer 4 was etched using alcohol plasma, as shown in FIG. 3D, the free layer 4 having altered regions 12b at both ends was formed. This corresponds to case (2).
  • FIG. 4A to 4D are cross-sectional views showing another example (part) of the method of manufacturing the magnetoresistive effect element.
  • FIG. 4A shows the magnetoresistive effect element after the upper and lower hard masks 8 and 9 are formed.
  • FIG. 4B shows the magnetoresistive element after the upper electrode 1 is etched.
  • FIG. 4C shows the magnetoresistive effect element after the cap layer 11a and the free layer 4 are etched.
  • FIG. 4D shows a magnetoresistive element having a thick cap layer 11a.
  • a Ru film is inserted as a cap layer 11a between the upper electrode 1 and the free layer 4 as compared with the magnetoresistive effect element of FIG. 1A.
  • the Ru film is used as the cap layer 11a, whether the Ta film is used for the upper electrode 1 or the W film is used as another material, as shown in FIG. 4B, the NiFe film of the underlying free layer 4 is used. Has been altered. That is, the deteriorated region 12c was formed in the NiFe film. Thereafter, when the cap layer 11a and the free layer 4 were etched using alcohol plasma, as shown in FIG. 4C, the free layer 4 having the altered regions 12c at both ends was formed. This is because radicals generated from a halogen-based plasma (for example, CF 4 gas plasma) used for processing the upper electrode 1 diffuse in the Ru film of the cap layer 11a and deteriorate the free layer 4 before entering the alcohol etching.
  • a halogen-based plasma for example, CF 4 gas plasma
  • Patent Document 2 The reason why the cap layer of the Ru film is used in Patent Document 2 is that the size of the magnetoresistive effect element under consideration is larger than the size under consideration here, so that the cap layer of the Ru film is thickened. This is thought to be possible. However, a technology that can be applied only to such a large magnetoresistive element causes problems in future element miniaturization and high integration.
  • cap layer 11a can be etched by alcohol plasma such as Ru film or Pt film, a material having a low barrier property of factors (oxygen and halogen) that degrade the free layer 4 is used as a single layer. It is concluded that it cannot be done.
  • An object of the present invention is to suppress characteristic deterioration during the manufacturing process of the thin film magnetic device while ensuring shape controllability by using alcohol etching for etching the magnetic material in the manufacturing process of the thin film magnetic device.
  • An object of the present invention is to provide a thin film magnetic device and a method for manufacturing the same.
  • the thin film magnetic device of the present invention includes a magnetic layer, an alcohol etchable layer, and a factor barrier layer.
  • the magnetic layer is provided above the substrate.
  • the alcohol etchable layer is provided on the magnetic layer and can be etched with alcohol plasma.
  • the factor barrier layer is provided on the alcohol-etchable layer and suppresses the factor that deteriorates the magnetic layer from diffusing into the magnetic layer.
  • the method of manufacturing a thin film magnetic device of the present invention includes a magnetic layer above a substrate, an alcohol etchable layer that can be etched with alcohol plasma, a factor barrier layer that suppresses diffusion of a factor that degrades the magnetic layer into the magnetic layer, And a step of laminating the upper layer in this order; a step of etching the upper layer with an etching gas containing at least one of a halogen-based gas and an oxygen gas; and a chemical alteration of the factor barrier layer and the magnetic layer Etching into a predetermined shape with an etching gas that is not allowed to be etched; etching the alcohol-etchable layer and the magnetic layer into a predetermined shape with an etching gas containing alcohol.
  • the present invention in the manufacturing process of a thin film magnetic device, by using alcohol etching for etching a magnetic material, shape controllability can be secured, and deterioration of characteristics during the manufacturing process of the thin film magnetic device can be suppressed.
  • FIG. 1A is a cross-sectional view showing an example (part) of a method of manufacturing a magnetoresistive element.
  • FIG. 1B is a cross-sectional view showing an example (part) of a method of manufacturing a magnetoresistive element.
  • FIG. 2A is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 2B is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 3A is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 3B is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 3C is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 3D is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 4A is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 4B is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 4C is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 4D is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 4A is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element.
  • FIG. 4B is a cross-sectional view showing another example (part) of the method
  • FIG. 5 is a cross-sectional view showing an example of the configuration of the thin film magnetic device according to the embodiment of the present invention.
  • FIG. 6A is a cross-sectional view showing an example of a method of manufacturing a thin film magnetic device according to an embodiment of the present invention.
  • FIG. 6B is a cross-sectional view illustrating the method of manufacturing the thin film magnetic device according to the embodiment of the invention.
  • FIG. 6C is a cross-sectional view illustrating the method for manufacturing the thin film magnetic device according to the embodiment of the invention.
  • FIG. 6D is a cross-sectional view illustrating the method of manufacturing the thin film magnetic device according to the embodiment of the invention.
  • FIG. 6E is a cross-sectional view showing the method for manufacturing the thin film magnetic device according to the embodiment of the present invention.
  • FIG. 6A is a cross-sectional view showing an example of a method of manufacturing a thin film magnetic device according to an embodiment of the present invention.
  • FIG. 6B is a cross-sectional view
  • FIG. 6F is a cross-sectional view illustrating the method for manufacturing the thin film magnetic device according to the embodiment of the present invention.
  • FIG. 7 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element.
  • FIG. 8 is a graph showing the relationship between the MR ratio and the film thickness of the alcohol-etchable layer of the magnetoresistive element according to the embodiment of the present invention.
  • FIG. 9 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element.
  • FIG. 10 is a block diagram showing an example of the configuration of the MRAM as the thin film magnetic device according to the embodiment of the present invention.
  • a thin film magnetic device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • a magnetoresistive effect element and a magnetic memory using the same will be described as an example of a thin film magnetic device.
  • the present invention is not limited to that example, and any thin film device having a film (layer) using a magnetic material can be applied.
  • FIG. 5 is a cross-sectional view showing an example of the configuration of the thin film magnetic device (the magnetoresistive effect element thereof) according to the embodiment of the present invention.
  • This magnetoresistive effect element 20 has a Ta film / Ru film as the upper electrode 21 (conductive material), a Ta film (example: 3 nm) as the oxidation factor barrier layer 22, and an alcohol etchable layer 23 from the upper layer to the lower layer.
  • Ru film (example: 3 nm), NiFe film as free layer 24 (magnetic material), MgO film as tunnel barrier layer 25 (insulating material or nonmagnetic material), CoFeB / PtMn film as pinned layer 26 (magnetic material), and lower part A Ta film is laminated as the electrode 27 (conductive material).
  • the oxidation factor barrier layer 22 and the alcohol etchable layer 23 are collectively referred to as a cap layer 31. These are provided on a semiconductor substrate (an element such as a transistor or a wiring may be formed).
  • the material of each layer is an example and does not need to be composed of a single material or a single element.
  • the thin film magnetic device becomes the upper electrode / cap layer / magnetic layer from the top in the step of performing alcohol etching on the film (layer) using the magnetic material in the manufacturing process.
  • the cap layer is composed of two material layers of an oxidation factor barrier layer / alcohol etchable layer from the top.
  • the upper electrode 21 upper electrode
  • Cap layer free layer 24 (magnetic layer).
  • the oxidation factor barrier layer 22 is a layer that suppresses the diffusion of a factor (eg, oxygen, halogen element) that degrades (eg, oxidization, halogenation (halogen element diffusion)) into the magnetic layer. is there.
  • a factor eg, oxygen, halogen element
  • the oxidation factor barrier layer 22 at least one elemental metal or alloy material including at least one material that is more easily oxidized than the magnetic materials Ni, Fe, and Co used for the magnetic layer below the oxidation factor barrier layer 22 and is easily passivated. It is preferable to use it. Details of the oxidation factor barrier layer will be described later.
  • the alcohol etchable layer 23 is a layer that is simultaneously etched during alcohol plasma etching of the magnetic layer as a cap layer for protecting the surface of the magnetic layer below the alcohol etchable layer 23.
  • a material other than the material used for the oxidation factor barrier layer a solid metal or alloy material containing at least one kind having a solid solubility limit of 1% or less at 400 ° C. in direct contact with the magnetic material is used. It is preferable to use at least one kind.
  • 6A to 6F are cross-sectional views showing an example of a method for manufacturing a thin film magnetic device (a method for manufacturing a magnetoresistive effect element) according to an embodiment of the present invention.
  • a Ta film as a lower electrode 27 (conductive material), a CoFeB / PtMn film as a pinned layer 26 (magnetic material), and a tunnel barrier layer 25 on a substrate (not shown) in order from the bottom.
  • NiFe film as free layer 24 (magnetic material)
  • Ru film as alcohol etchable layer 23 Ta film as oxidation factor barrier layer 22, and upper electrode 21 (conductive material)
  • a Ta film / Ru film is laminated.
  • a SiNx film is formed as the lower hard mask 28 and a SiO 2 film is formed as the upper hard mask 29 in this order.
  • a photoresist pattern 30 having a desired pattern is formed on the upper hard mask 29.
  • the photoresist pattern 30 is first transferred to the upper hard mask 29 by a reactive ion etching method using a mixed gas of Ar / C 4 F 8 / O 2 . Thereafter, the photoresist pattern 30 that has become unnecessary by O 2 ashing is removed.
  • the pattern of the upper hard mask 29 is transferred to the lower hard mask 28.
  • Such a two-layer hard mask method is a method generally used for suppressing the deterioration of the underlying material during O 2 ashing when the photoresist pattern 30 is removed.
  • the thick Ta film which is the upper film 21a of the upper electrode 21 is etched by Cl 2 plasma using the patterns of the upper hard mask 29 and the lower hard mask 28 as a mask. Then, etching is stopped on the thin Ru film that is the lower film 21b of the upper electrode 21.
  • a sufficiently large etching selectivity is obtained.
  • a thin Ru film which is the lower film 21b of the upper electrode 21, is etched by methanol plasma using the pattern of the upper film 21a from the upper hard mask 29 as a mask.
  • the oxidation factor barrier layer 22 is etched by Ar / CH 4 gas plasma using the patterns of the upper hard mask 29 to the lower film 21b as a mask.
  • a gas containing a halogen element or a gas containing oxygen gas for etching the Ta film of the oxidation factor barrier layer 22, and Ar / CH 4 gas can be used.
  • Ar / CH 4 gas is an etching gas that does not chemically alter a magnetic material such as the free layer 24 (NiFe film).
  • the alcohol etchable layer 23 and the free layer 24 are etched by methanol plasma using the pattern of the upper hard mask 29 to the oxidation factor barrier layer 22 as a mask. Then, the etching is finished on the tunnel barrier layer 25.
  • the tunnel barrier layer 25 / pinned layer 26 is etched by methanol plasma, and the lower electrode 27 is etched by Ar / CH 4 plasma.
  • pattern formation of the magnetoresistive effect element 20 is completed. That is, the method for manufacturing a thin film magnetic device (a method for manufacturing a magnetoresistive effect element) according to the present embodiment is completed.
  • FIG. 7 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element.
  • the “A” column indicates the magnetoresistive effect element according to the present embodiment
  • the “B” column indicates the conventional magnetoresistive effect element.
  • the configuration of the magnetoresistive effect element is the same for both “A” and “B”. That is, the upper electrode (Ta / Ru film), cap layer (oxidation factor barrier layer (Ta film), alcohol etchable layer (Ru film)), MTJ (free layer (NiFe film), tunnel barrier layer (MgO film), Pin layer (CoFeB / PtMn film)) and lower electrode (Ta film).
  • each film is also the same.
  • “A” is manufactured by the plasma etching method as described with reference to FIGS. 6A to 6F.
  • “B” is manufactured by the argon ion milling method described in Non-Patent Document 1.
  • the present embodiment (“A”: 52%) and the conventional technique (“B”: 53%) are equivalent.
  • the shape of the magnetoresistive effect element unlike the case of the prior art (“B”), in the case of the present embodiment (“A”), the processed shape is not tapered and can be miniaturized. There was found. That is, this embodiment can improve the shape controllability while maintaining the same characteristics as the ion milling method as compared with the ion milling method.
  • FIG. 8 is a graph showing the relationship between the MR ratio and the film thickness of the alcohol-etchable layer of the magnetoresistive element according to the embodiment of the present invention.
  • the horizontal axis represents the film thickness of the alcohol-etchable layer 23, and the vertical axis represents the MR ratio.
  • White circles and black circles indicate the cases where Ru and Ag are used as the material of the alcohol-etchable layer 23, respectively.
  • the characteristic (MR ratio) of the magnetoresistive effect element in the prior art Based on about 50%, which is the characteristic (MR ratio) of the magnetoresistive effect element in the prior art, when the Ru film is used as the alcohol etchable layer 23, the characteristic is above the standard in the region of 5 nm or less as the film thickness. It becomes. That is, characteristic deterioration (MR ratio deterioration) is suppressed in a region of 5 nm or less. Therefore, when a Ru film is used, the standard of the film thickness is 5 nm or less.
  • the characteristics are above the standard without depending on the film thickness. That is, there is no need to consider the limitation that the film thickness is 5 nm or less. This is presumably because the solid solubility limit of Ag in the NiFe film of the free layer 24 is as small as 1% or less at 400 ° C. or less.
  • FIG. 9 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element.
  • the “A” column indicates the magnetoresistive effect element according to the present embodiment
  • the “C” column indicates the magnetoresistive effect element manufactured by the manufacturing method of FIGS. 4A to 4C.
  • “A” is as described in FIG.
  • “C” is an upper electrode (Ta film), cap layer (Ru film), MTJ (free layer (NiFe film), tunnel barrier layer (MgO film), pinned layer (CoFeB / PtMn film)), lower electrode (Ta film).
  • the cap layer is not a laminated structure of an oxidation factor barrier layer (Ta film) / alcohol etchable layer (Ru film).
  • the size of each film is the same.
  • “A” and “C” are manufactured by plasma etching as described with reference to FIGS. 6A to 6F and FIGS. 4A to 4C, respectively.
  • the oxidation factor barrier layer is more easily oxidized than Ni, Fe, and Co, which are typical magnetic materials used in thin film magnetic devices (eg, magnetoresistive effect element), and is itself passivated. It is preferable to use at least one simple metal or alloy material containing at least one easy material.
  • the oxidation factor barrier layer is more easily oxidized than Ni, Fe, and Co, which are typical magnetic materials used in thin film magnetic devices, and is therefore used in the manufacturing process of thin film magnetic devices. It reacts preferentially with substances that modify the magnetic material chemically (especially halogen and oxygen). As a result, it is possible to suppress chemical alteration of the magnetic material laminated at close positions. However, if the oxidization is simply higher than that of the magnetic material, the magnetic material may be altered by diffusion in the heat treatment step of the thin film magnetic device manufacturing process. The material must be a material that becomes non-conductive by oxidation and stabilizes in situ.
  • the data of Non-Patent Document 3 (M. Pourbaix, Pergamon Press, Oxford (1966) pp. 80-81) is helpful.
  • such materials easily react with halogen-based elements often used in dry etching, and can prevent diffusion of oxygen and halogen into the lower layer due to ashing or etching above the oxidation factor barrier layer. The characteristic deterioration of the thin film magnetic device can be suppressed.
  • Examples of these materials include Nb, Ta, Ti, Ga, Zr, Hf, Be, Al, Cr, W, Y, U, Mg, Ba, Sr, Ca, La, Sc, and Si. In the inventors' investigation, they showed high diffusion barrier resistance.
  • the alcohol etchable layer needs to be a material that is not a material that is passivated by oxygen radicals generated in a small amount during alcohol etching to inhibit etching (etch stop), that is, a material other than that used for the oxidation factor barrier layer.
  • etch stop a material other than that used for the oxidation factor barrier layer.
  • materials other than those used for the oxidation factor barrier layer and having a small solid solubility limit with respect to the magnetic material are the first candidates. Examples of these materials include Pa, Ag, Tc, Po, Yb, Tb, Pr, Dy, Ce, Er, Ho, Th, and Tm.
  • the data of Non-Patent Document 4 H. Okamoto, ASM International (2000) is helpful. According to the inventor's investigation, these elements hardly observed any influence on the magnetic properties at 400 ° C. or lower.
  • the alcohol etchable layer having further characteristics affects the characteristics of the magnetic material by solid solution in the magnetic material that is in direct contact with a material other than the material used for the oxidation factor barrier layer. It is preferable to use a single metal or alloy material containing at least one kind of material that is difficult to impart a thickness of less than the thickness at which the effect of solid solution is not observed.
  • the alcohol-etchable layer can be considered as a material having a small magnetic effect even if it is dissolved in a material containing Ni, Fe, Co, which is a representative magnetic material. In that case, it is necessary to form the alcohol etchable layer with the smallest possible film thickness to minimize the influence.
  • examples of such materials include Rh, Au, Ir, Pt, Ru, Os, Re, and Pd. According to the inventor's study, characteristic deterioration was suppressed in a region where the film thickness was 5 nm or less.
  • the oxidation factor barrier layer / alcohol etchable layer / magnetic material layer are stacked in this order from the top.
  • the oxidizing factor barrier layer is etched with a gas system that does not chemically alter the magnetic material, and an alcohol etching process having an excellent processing shape is subsequently adopted for the processing process of the alcohol-etchable layer and the magnetic material.
  • gases used for etching the oxidation factor barrier layer include at least one of He, Ne, Ar, Kr, Xe, N, H, and C, which are difficult to chemically alter the magnetic material.
  • gases used for etching the oxidation factor barrier layer include at least one of He, Ne, Ar, Kr, Xe, N, H, and C, which are difficult to chemically alter the magnetic material.
  • gases used for etching the oxidation factor barrier layer include at least one of He, Ne, Ar, Kr, Xe, N, H, and C, which are difficult to chemically alter the magnetic material.
  • gases include gas systems that do not contain O, F
  • a magnetoresistive effect element is exemplified as a thin film magnetic device
  • free layer etching is exemplified as a method of manufacturing a thin film magnetic device.
  • the present invention is not limited to this example.
  • the material composition of the oxidation factor barrier layer / alcohol etchable layer that is the configuration of the cap layer, and the etching gas of the oxidation factor barrier layer that does not deteriorate the material may be used for other layers of the magnetoresistive element (for example, the pin layer) It can also be applied to the etching of the magnetic layer of other thin film magnetic devices.
  • the oxidation factor barrier layer not only Ta exemplified in the above embodiment, but also Nb, Ti, Ga, Zr, Hf, Be, Al, Cr, W, Y, U, Mg, Ba, Sr,
  • the alcohol etchable layer not only Ru exemplified in the above embodiment, but also a single metal or alloy material containing at least one of Rh, Au, Ir, Pt, Os, Re, and Pd, a film thickness of 5 nm or less. If used in the same way, the same effect can be obtained.
  • the upper electrode and the cap layer according to the embodiment of the present invention are provided with the oxidation factor barrier layer / alcohol etchable layer below the magnetic material. If the layer (example: free layer or pinned layer) can be removed without deterioration (example: chemical / mechanical polishing method (CMP method)), it may be removed as such. That is, a laminated structure of an oxidation factor barrier layer / alcohol etchable layer may be employed only in the etching process of the thin film magnetic device.
  • CMP method chemical / mechanical polishing method
  • FIG. 10 is a block diagram showing an example of the configuration of the MRAM as the thin film magnetic device according to the embodiment of the present invention.
  • an MRAM 60 has a memory cell array 61 in which a plurality of magnetic memory cells 1 are arranged in a matrix.
  • the memory cell array 61 includes a reference cell 1r that is referred to when reading data together with the magnetic memory cell 1 used for data recording.
  • the structure of the reference cell 1r is the same as that of the magnetic memory cell 1.
  • Each magnetic memory cell 1 has selection transistors TR1 and TR2 in addition to the magnetoresistive effect element 20 shown in FIG.
  • One of the source / drain of the selection transistor TR1 is connected to the upper electrode 21, and the other is connected to the first bit line BL1.
  • One of the source / drain of the selection transistor TR2 is connected to the upper electrode 21, and the other is connected to the second bit line BL2.
  • the gates of the selection transistors TR1 and TR2 are connected to the word line WL.
  • the lower electrode 27 is connected to the ground line G via the wiring 69.
  • the word line WL is connected to the X selector 62.
  • the X selector 62 selects a word line WL connected to the target memory cell 1s as a selected word line WLs during a data write operation and a read operation.
  • the first bit line BL1 is connected to the Y-side current termination circuit 64, and the second bit line BL2 is connected to the Y selector 63.
  • the Y selector 63 selects the second bit line BL2 connected to the target memory cell 1s as the selected second bit line BL2s.
  • the Y-side current termination circuit 64 selects the first bit line BL1 connected to the target memory cell 1s as the selected first bit line BL1s.
  • the Y-side current source circuit 65 supplies or draws a predetermined write current to the selected second bit line BL2s during the data write operation.
  • the Y-side power supply circuit 66 supplies a predetermined voltage to the Y-side current termination circuit 64 during the data write operation.
  • the write current passes through the path of the Y selector 63, the selected second bit line BL2s, the select transistor TR2, the wiring near the upper electrode 21, the select transistor TR1, the selected first bit line BL1s, and the Y-side current termination circuit 64. , Flowing in the direction according to the data to be written.
  • X selector 62, Y selector 63, Y side current termination circuit 64, Y side current source circuit 65, and Y side power supply circuit 66 form a “write current supply circuit” for supplying a write current to the magnetic memory cell 1. It is composed.
  • the first bit line BL1 is set to “Open”.
  • the read current load circuit 67 supplies a predetermined read current to the selected second bit line BL2s.
  • the read current load circuit 67 supplies a predetermined current to the reference second bit line BL2r connected to the reference cell 1r.
  • the sense amplifier 68 reads data from the target memory cell 1s based on the difference between the potential of the reference second bit line BL2r and the potential of the selected second bit line BL2s, and outputs the data.
  • a cap layer having a structure of an oxidation factor barrier layer / alcohol etchable layer is disposed immediately above a magnetic layer of a thin film magnetic device, and the oxidation factor barrier layer is formed in a gas system that does not chemically alter the magnetic material in the etching process. And etching the alcohol etchable layer and the magnetic layer with alcohol plasma, ensuring the shape controllability in the etching process of the thin film magnetic device, which is the effect of alcohol etching, and the characteristics of the thin film magnetic device during the entire etching process It is possible to provide a thin film magnetic device capable of simultaneously suppressing deterioration and a method for manufacturing the same.
  • a semiconductor device such as an MRAM (eg, FIG. 10) using a magnetoresistive effect element for one bit in information storage, or a non-volatile logic device using the magnetoresistive effect element as a component of a logic circuit, And a magnetic head for a magnetic recording apparatus.
  • the cap structure and the manufacturing method of the present invention are effective when microfabricating a constituent material of a thin film device whose material is modified by reaction with oxidation or halogen.
  • a resistance change type memory element that stores information by changing a resistance value by electric field diffusion of ions or a phase change of a material, or an MIM capacitor that forms a capacitance between wiring layers can be given as examples.

Abstract

Disclosed is a thin film magnetic device which comprises a magnetic layer, an alcohol etchable layer, and a factor barrier layer. The magnetic layer is provided on top of a substrate. The alcohol etchable layer is provided on the magnetic layer and can be etched by alcohol plasma. The factor barrier layer is provided on the alcohol etchable layer and inhibits diffusion of factors, which deteriorate the magnetic layer, into the magnetic layer.

Description

薄膜磁気デバイス及びその製造方法Thin film magnetic device and manufacturing method thereof
 本発明は、薄膜磁気デバイス及びその製造方法に関し、特に磁性層を有する薄膜磁気デバイス及びその製造方法に関する。 The present invention relates to a thin film magnetic device and a manufacturing method thereof, and more particularly to a thin film magnetic device having a magnetic layer and a manufacturing method thereof.
 薄膜磁気デバイスの一つとして、磁気トンネル接合(Magnetic Tunneling Junction;MTJ)を有する磁気抵抗効果素子が知られている。この磁気抵抗効果素子は、例えば上からフリー層(磁性材料)/トンネルバリア層(絶縁材料)/固定層(磁性材料)の構造、あるいはそれが上下逆転した構造を有している。この構造の上には、通常、磁性材料に直接接触する導電性材料であるキャップ層、及び上部電極が設けられている。製造時には、更に、上部電極の上に所望のパターンのマスク層が設けられる。また、この構造の下には、下部電極が設けられている。磁気抵抗効果素子の動作時には、その上部電極とその下部電極との間で電流を流してMTJの抵抗値を読み取る。 As one of thin film magnetic devices, a magnetoresistive effect element having a magnetic tunnel junction (MTJ) is known. This magnetoresistive effect element has, for example, a structure of a free layer (magnetic material) / tunnel barrier layer (insulating material) / fixed layer (magnetic material) from the top, or a structure in which it is turned upside down. Above this structure, a cap layer, which is a conductive material that is in direct contact with the magnetic material, and an upper electrode are usually provided. At the time of manufacture, a mask layer having a desired pattern is further provided on the upper electrode. A lower electrode is provided under this structure. During operation of the magnetoresistive element, a current is passed between the upper electrode and the lower electrode to read the MTJ resistance value.
 このような磁気抵抗効果素子の製造時にパターン形成のために用いるエッチング方法としては、従来からイオンミリング法が用いられている。イオンミリング法は、例えばアルゴンガスをイオン化し、電界によってそのアルゴンイオンを加速して被加工物に照射することで、被加工物がスパッタリングされる現象を用いたエッチング方法である。そのマスク層としては、上部電極の上に形成されたフォトレジストパターンや、非特許文献1(K.Nagahara,et al.,Jpn.J.Appl.Phys.46(2007)pp.4121-4124.)で検討されているフォトレジストパターンを無機ハードマスク材料に転写したパターンが用いられる。しかし、上記のイオンミリング法では加工形状がテーパー化し、微細化が困難という問題がある。 Conventionally, an ion milling method has been used as an etching method used for pattern formation when manufacturing such a magnetoresistive effect element. The ion milling method is an etching method using a phenomenon that a workpiece is sputtered by ionizing argon gas, accelerating the argon ions by an electric field and irradiating the workpiece. As the mask layer, a photoresist pattern formed on the upper electrode, Non-Patent Document 1 (K. Nagahara, et al., Jpn. J. Appl. Phys. 46 (2007) pp. 4121-4124. A pattern obtained by transferring a photoresist pattern studied in (1) to an inorganic hard mask material is used. However, the above-described ion milling method has a problem that the processed shape is tapered and it is difficult to make the structure fine.
 更に、特許文献1(特開2005-42143号公報(US7060194(B2)))に、アルコールを気化し、プラズマ化しつつ同時に基板にバイアス電位を印加してエッチングする技術も提案されている。そして特許文献2(特開2006-060044(US7652852(B2)))には、キャップ層としてRuを用いる例が提案されている。アルコールプラズマによるエッチングでは、分子に含まれる酸素原子やOHがプラズマ中での電子衝突解離によってプラズマ中に生成される。そのプラズマに曝されたTa又はTiを含む材料が酸化物に変化することで、その材料のエッチングレートが著しく低下する。そのため、これらの材料を上部電極の材料やマスク層の材料又は下地の材料とすることで、磁性材料等の被加工材料に対する高い選択比が実現され、よって被加工材料の加工形状を改善可能とされている。 Furthermore, Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-42143 (US7060194 (B2))) proposes a technique for etching by vaporizing alcohol and applying a bias potential to the substrate while turning it into plasma. Patent Document 2 (Japanese Patent Laid-Open No. 2006-060044 (US7655282 (B2))) proposes an example in which Ru is used as a cap layer. In etching using alcohol plasma, oxygen atoms and OH contained in molecules are generated in the plasma by electron impact dissociation in the plasma. When the material containing Ta or Ti exposed to the plasma is changed to an oxide, the etching rate of the material is significantly reduced. Therefore, by using these materials as the material of the upper electrode, the material of the mask layer, or the material of the base, a high selection ratio with respect to the work material such as a magnetic material is realized, and thus the work shape of the work material can be improved. Has been.
 また、非特許文献2(M.Nagamine,et al.,J.Appl.Phys.99,(2006)08K703)での検討により、キャップ層の材料によって下地となる磁気抵抗効果素子の特性が影響を受けることが知られている。非特許文献2の報告では、アルゴンイオンミリングをエッチングプロセスに適用する場合、キャップ層の材料は、その標準単極電位がフリー層の材料の標準単極電位よりも低い材料であって、かつフリー層中に拡散しない材料であることが必要であるとしている。そのような材料として、Taや非磁性NiFeZr合金が良好な特性を示している。ただし、標準単極電位は材料の酸化されやすさを示す指標の一つである。そのことから、それらの材料は、エッチングプロセスにおいてフリー層を酸化する因子(例えばフォトレジストのアッシング工程における酸素の拡散や、マスク層・上部電極層の加工時のハロゲン元素の拡散)を抑制するものと考えられる。なお、代表的な磁性材料であるFe、Ni、Coは互いに非常に近い特性を有している。 In addition, due to the study in Non-Patent Document 2 (M. Nagamine, et al., J. Appl. Phys. 99, (2006) 08K703), the characteristics of the underlying magnetoresistive effect element are influenced by the material of the cap layer. It is known to receive. According to the report of Non-Patent Document 2, when argon ion milling is applied to the etching process, the material of the cap layer is a material whose standard monopolar potential is lower than the standard monopolar potential of the material of the free layer, and is free. It is said that it is necessary that the material does not diffuse into the layer. As such a material, Ta and non-magnetic NiFeZr alloy show good characteristics. However, the standard unipolar potential is one of the indices indicating the ease of oxidation of the material. Therefore, these materials suppress factors that oxidize the free layer in the etching process (for example, diffusion of oxygen in the ashing process of the photoresist and diffusion of halogen elements during processing of the mask layer and upper electrode layer). it is conceivable that. Note that typical magnetic materials such as Fe, Ni, and Co have very close characteristics.
 関連する技術として、特開2009-071321号公報に磁気抵抗効果素子の製造方法が開示されている。この磁気抵抗効果素子の製造方法は、第一ステップ、第二ステップ、第三ステップ、第四ステップ、及び、第五ステップを含む。第一ステップは、少なくとも2層の磁性層を含む磁性多層膜の上側の位置に、Ru(ルテニウム)、Rh(ロジウム)、Os(オスミウム)、Nb(ニオブ)、Ir(イリジウム)、及びRe(レニウム)のいずれか1つの金属からなる第二のマスク材からなる第一層が位置するように、該第一層を形成する。第二ステップは、Taからなる第二層が前記第一層の上側の位置に位置するように、該第二層を形成する。第三ステップは、レジストパターンを用い、前記第二層をエッチングし、これによって、第一のマスクを形成する。第四ステップは、第一のマスクを用いて、酸素原子を含むエッチングガスを用いて前記第一層をエッチングし、これによって、第二のマスクを形成する。第五ステップは、第二のマスクを用いて、前記磁性多層膜をエッチングし、これによって、磁性多層膜パターンを形成する。 As a related technique, Japanese Patent Application Laid-Open No. 2009-071321 discloses a method for manufacturing a magnetoresistive element. The magnetoresistive element manufacturing method includes a first step, a second step, a third step, a fourth step, and a fifth step. In the first step, Ru (ruthenium), Rh (rhodium), Os (osmium), Nb (niobium), Ir (iridium), and Re (iridium) are disposed at the upper position of the magnetic multilayer film including at least two magnetic layers. The first layer is formed so that the first layer made of the second mask material made of any one metal of rhenium) is located. In the second step, the second layer is formed so that the second layer made of Ta is positioned on the upper side of the first layer. The third step uses a resist pattern to etch the second layer, thereby forming a first mask. In the fourth step, the first layer is etched using an etching gas containing oxygen atoms using the first mask, thereby forming a second mask. In the fifth step, the magnetic multilayer film is etched using the second mask, thereby forming a magnetic multilayer film pattern.
 また、関連する技術として、特開2009-81451号公報に磁気抵抗効果素子が開示されている。磁気抵抗効果素子は、基板、少なくとも2層の磁性層を含む磁性多層膜、並びに、Ru(ルテニウム)、Rh(ロジウム)、Os(オスミウム)、Nb(ニオブ)、Ir(イリジウム)及びRe(レニウム)のいずれか1つの金属の酸化物からなる導電性酸化物層を有する。 Also, as a related technique, a magnetoresistive effect element is disclosed in Japanese Patent Application Laid-Open No. 2009-81451. The magnetoresistive element includes a substrate, a magnetic multilayer film including at least two magnetic layers, Ru (ruthenium), Rh (rhodium), Os (osmium), Nb (niobium), Ir (iridium), and Re (rhenium). And a conductive oxide layer made of any one metal oxide.
 しかしながら、発明者の検討により、以下の事実が今回初めて明らかとなった。すなわち、アルコールプラズマでの薄膜磁気デバイス製造プロセスにおいて、キャップ層の材料選択によっては、デバイス特性不良が発生する以下の2つのケースがあることがわかった。
 ケース(1)そもそも薄膜磁気デバイスの微細パターン形成が困難になる場合。
 ケース(2)薄膜磁気デバイスの微細パターンは形成されるものの、製造中の材料の変質により磁性材料層の磁気特性が劣化してしまい、薄膜磁気デバイスとして用いることが困難になる場合。
 以下に、種々のキャップ構造とエッチング方法の組み合わせにおいて生じるこれら2つのケースの検討結果を、代表的な薄膜磁気デバイスの一種である磁気抵抗効果素子を用いて説明する。
However, the following facts became clear for the first time by the inventors' investigation. That is, in the thin film magnetic device manufacturing process using alcohol plasma, it was found that there are the following two cases in which device characteristic defects occur depending on the material selection of the cap layer.
Case (1) In the first place, it is difficult to form a fine pattern of a thin film magnetic device.
Case (2) When a thin pattern of a thin film magnetic device is formed, but the magnetic properties of the magnetic material layer deteriorate due to alteration of the material being manufactured, making it difficult to use as a thin film magnetic device.
Below, the examination result of these two cases which arises in the combination of various cap structures and etching methods is demonstrated using the magnetoresistive effect element which is a kind of typical thin film magnetic device.
 まず、最もシンプルな磁気抵抗効果素子の構造として、キャップ層11が存在しない場合について説明する。図1A~図1Bは、磁気抵抗効果素子の製造方法の一例(一部)を示す断面図である。図1Aは、上側及び下側ハードマスク8、9の形成後の磁気抵抗効果素子を示している。図1Bは上部電極1のエッチング後の磁気抵抗効果素子を示している。図1Aに示されるように、この磁気抵抗効果素子は、下部電極7(導電性材料)としてTa膜、ピン層6(磁性材料)としてCoFeB/PtMn膜、トンネルバリア層5(絶縁材料又は非磁性材料)としてMgO膜、フリー層4(磁性材料)としてNiFe膜、及び上部電極1(導電性材料)としてTa膜をこの順に積層した構成を有している。その上部には、下側ハードマスク8としてSiNx膜、及び上側ハードマスク9としてSiO膜が形成されている。 First, the case where the cap layer 11 is not present will be described as the simplest magnetoresistive element structure. 1A to 1B are cross-sectional views showing an example (part) of a method of manufacturing a magnetoresistive element. FIG. 1A shows the magnetoresistive element after formation of the upper and lower hard masks 8 and 9. FIG. 1B shows the magnetoresistive element after the upper electrode 1 is etched. As shown in FIG. 1A, this magnetoresistive element has a Ta film as the lower electrode 7 (conductive material), a CoFeB / PtMn film as the pinned layer 6 (magnetic material), and a tunnel barrier layer 5 (insulating material or non-magnetic material). MgO film as the material), NiFe film as the free layer 4 (magnetic material), and Ta film as the upper electrode 1 (conductive material) are stacked in this order. An SiNx film as a lower hard mask 8 and an SiO 2 film as an upper hard mask 9 are formed on the upper part.
 上部電極1がTa膜のとき、そのTa膜のエッチングにはFあるいはClといったハロゲン元素を含むガスを用いる必要がある。十分なエッチング速度を得るため、及び下側のフリー層4のNiFe膜との選択比を十分に取るためである。図1Bに示されるように、ハロゲン元素を含むガスを用いて上部電極1であるTa膜をエッチングすると、下地のフリー層4のNiFe膜のうち、プラズマに暴露された領域に深刻な変質を生じた。すなわち、このエッチングのプラズマにより劣化領域12が形成された。これはケース(2)に該当する。 When the upper electrode 1 is a Ta film, it is necessary to use a gas containing a halogen element such as F or Cl for etching the Ta film. This is because a sufficient etching rate is obtained and a sufficient selection ratio with the NiFe film of the lower free layer 4 is taken. As shown in FIG. 1B, when the Ta film as the upper electrode 1 is etched using a gas containing a halogen element, a serious alteration occurs in a region exposed to plasma in the NiFe film of the underlying free layer 4. It was. That is, the deteriorated region 12 was formed by this etching plasma. This corresponds to case (2).
 また、図2A~図2Bは、磁気抵抗効果素子の製造方法の他の例(一部)を示す断面図である。図2Aは、上側及び下側ハードマスク8、9の形成後の磁気抵抗効果素子を示している。図2Bは上部電極1aのエッチング後の磁気抵抗効果素子を示している。図2Aに示されるように、この磁気抵抗効果素子は、図1Aの磁気抵抗効果素子と比較すると、上部電極1aとして、Ta膜ではなくRu膜を用いている。 2A to 2B are cross-sectional views showing another example (part) of the method of manufacturing the magnetoresistive effect element. FIG. 2A shows the magnetoresistive element after formation of the upper and lower hard masks 8 and 9. FIG. 2B shows the magnetoresistive element after the etching of the upper electrode 1a. As shown in FIG. 2A, this magnetoresistive effect element uses a Ru film instead of a Ta film as the upper electrode 1a as compared with the magnetoresistive effect element of FIG. 1A.
 上部電極1aがRu膜のとき、そのRu膜のエッチングには下地のフリー層4をエッチングするアルコールプラズマを用いることができる。しかし、上部電極1a上にある下側ハードマスク8のSiNx膜のエッチングにはFを含むフロロカーボンガスを用いる必要がある。図2Aに示されるように、下側ハードマスク8のSiNx膜を、フロロカーボンガスを用いてエッチングすると、そのエッチングに伴って、上部電極1aのRu膜中を拡散したFにより、更に下地のフリー層4のNiFe膜に深刻な変質を生じた。すなわち、上部電極1aのRu膜中を拡散したFによりNiFe膜に劣化領域12aが形成された。そして、図2Bに示されるように、その後に上部電極1aのRu膜を、アルコールプラズマを用いてエッチングしても、フリー層4のNiFe膜に形成された劣化領域12aはそのまま残存した。これはケース(2)に該当する。 When the upper electrode 1a is a Ru film, alcohol plasma for etching the underlying free layer 4 can be used for etching the Ru film. However, it is necessary to use a fluorocarbon gas containing F for etching the SiNx film of the lower hard mask 8 on the upper electrode 1a. As shown in FIG. 2A, when the SiNx film of the lower hard mask 8 is etched using a fluorocarbon gas, the underlying free layer is further formed by F diffused in the Ru film of the upper electrode 1a along with the etching. 4 NiFe film was severely altered. That is, the deteriorated region 12a was formed in the NiFe film by F diffused in the Ru film of the upper electrode 1a. Then, as shown in FIG. 2B, even if the Ru film of the upper electrode 1a is etched using alcohol plasma thereafter, the degraded region 12a formed in the NiFe film of the free layer 4 remains as it is. This corresponds to case (2).
 次に、上述された下側ハードマスク及び上部電極のエッチングによるフリー層への影響を抑制する構造について説明する。図3A~図3Dは、磁気抵抗効果素子の製造方法の更に他の例(一部)を示す断面図である。図3Aは、上側及び下側ハードマスク8、9の形成後の磁気抵抗効果素子を示している。図3Bは上部電極1bのエッチング後の磁気抵抗効果素子を示している。図3Cはキャップ層11のエッチング後の磁気抵抗効果素子を示している。図3Dはフリー層4のエッチング後の磁気抵抗効果素子を示している。図3Aに示されるように、この磁気抵抗効果素子は、図1Aの磁気抵抗効果素子と比較して、上部電極1bとしてTa膜ではなくW膜を用いると共に、上部電極1bとフリー層4との間にキャップ層11としてTa膜を挿入している。 Next, a structure for suppressing the influence on the free layer due to the etching of the lower hard mask and the upper electrode described above will be described. 3A to 3D are cross-sectional views showing still another example (part) of the method of manufacturing a magnetoresistive element. FIG. 3A shows the magnetoresistive effect element after the upper and lower hard masks 8 and 9 are formed. FIG. 3B shows the magnetoresistive element after the etching of the upper electrode 1b. FIG. 3C shows the magnetoresistive element after the cap layer 11 is etched. FIG. 3D shows the magnetoresistive element after the free layer 4 is etched. As shown in FIG. 3A, this magnetoresistive effect element uses a W film instead of a Ta film as the upper electrode 1b as compared with the magnetoresistive effect element of FIG. A Ta film is inserted as a cap layer 11 therebetween.
 図3Bにおいて、キャップ層11としてTa膜を用いた場合、上部電極1bのW膜の加工後のTa膜のエッチング時に、下地であるフリー層4の加工形状制御性に優れるアルコールプラズマを用いる方法が考えらえる。しかし、前述のようにTa膜は酸化されやすく酸化した場合にエッチングレートが非常に低い材料に変質する。そのため、Ta膜のエッチングがストップしてしまい、図3Bのまま変わらず、磁気抵抗効果素子の試作自体が困難であった。これはケース(1)に該当する。 In FIG. 3B, when a Ta film is used as the cap layer 11, a method of using alcohol plasma that is excellent in process shape controllability of the underlying free layer 4 when etching the Ta film after processing the W film of the upper electrode 1b. I can think of it. However, as described above, the Ta film is easily oxidized, and when oxidized, the Ta film is transformed into a material having a very low etching rate. For this reason, the etching of the Ta film is stopped, and it remains the same as in FIG. 3B, and it is difficult to produce a magnetoresistive element itself. This corresponds to case (1).
 図3Bにおいて、上部電極1bのW膜の加工後のTa膜のエッチング時に、Ta膜のエッチングに通常用いるCFガスを用いる方法が考えらえる。図3Cに示されるように、この場合、キャップ層11のTa膜を、CFガスを用いてエッチングすると、直下にあるフリー層4のNiFe膜に変質領域12bが形成された。これは前述の図2C(ただしキャップ層11無し)の場合と同じ製造工程になっている。その後、アルコールプラズマを用いてフリー層4をエッチングすると、図3Dに示されるように、両端部に変質領域12bを有するフリー層4が形成された。これは、ケース(2)に該当する。 In FIG. 3B, a method of using a CF 4 gas that is usually used for etching the Ta film can be considered when etching the Ta film after processing the W film of the upper electrode 1b. As shown in FIG. 3C, in this case, when the Ta film of the cap layer 11 was etched using CF 4 gas, an altered region 12b was formed in the NiFe film of the free layer 4 immediately below. This is the same manufacturing process as in the case of FIG. 2C described above (but without the cap layer 11). Thereafter, when the free layer 4 was etched using alcohol plasma, as shown in FIG. 3D, the free layer 4 having altered regions 12b at both ends was formed. This corresponds to case (2).
 以上のことから、キャップ層11としてTa膜のようなアルコールプラズマでのエッチングレートが低い材料を単層で用いることはできないと結論される。 From the above, it is concluded that a material having a low etching rate with alcohol plasma such as a Ta film cannot be used as the cap layer 11 as a single layer.
 そこで、キャップ層11として、アルコールプラズマエッチングで下地のフリー層4と一括加工可能な材料として、Ru膜の適用を検討した。この構造は特許文献2記載の磁気抵抗効果素子の構造と同一である。図4A~図4Dは、磁気抵抗効果素子の製造方法の別の例(一部)を示す断面図である。図4Aは、上側及び下側ハードマスク8、9の形成後の磁気抵抗効果素子を示している。図4Bは上部電極1のエッチング後の磁気抵抗効果素子を示している。図4Cはキャップ層11a及びフリー層4のエッチング後の磁気抵抗効果素子を示している。図4Dはキャップ層11aが厚膜の磁気抵抗効果素子を示している。図4Aに示されるように、この磁気抵抗効果素子は、図1Aの磁気抵抗効果素子と比較して、上部電極1とフリー層4との間にキャップ層11aとしてRu膜を挿入している。 Therefore, the application of a Ru film as the cap layer 11 was examined as a material that can be batch processed with the underlying free layer 4 by alcohol plasma etching. This structure is the same as the structure of the magnetoresistive effect element described in Patent Document 2. 4A to 4D are cross-sectional views showing another example (part) of the method of manufacturing the magnetoresistive effect element. FIG. 4A shows the magnetoresistive effect element after the upper and lower hard masks 8 and 9 are formed. FIG. 4B shows the magnetoresistive element after the upper electrode 1 is etched. FIG. 4C shows the magnetoresistive effect element after the cap layer 11a and the free layer 4 are etched. FIG. 4D shows a magnetoresistive element having a thick cap layer 11a. As shown in FIG. 4A, in this magnetoresistive effect element, a Ru film is inserted as a cap layer 11a between the upper electrode 1 and the free layer 4 as compared with the magnetoresistive effect element of FIG. 1A.
 Ru膜をキャップ層11aとした場合、上部電極1にTa膜を用いた場合でも、別の材料としてW膜を用いた場合でも、図4Bに示されるように、下地のフリー層4のNiFe膜を変質してしまった。すなわち、NiFe膜に劣化領域12cが形成された。その後、アルコールプラズマを用いてキャップ層11a及びフリー層4をエッチングすると、図4Cに示されるように、両端部に変質領域12cを有するフリー層4が形成された。これは、上部電極1の加工に用いるハロゲン系プラズマ(例示:CFガスのプラズマ)から生じるラジカルが、キャップ層11aのRu膜中を拡散し、アルコールエッチングに入る前にフリー層4を劣化しているためと考えられる。従って、キャップ層11aとしてRu膜は、その化学的な性質から、エッチングプロセス中に生じるフリー層4の磁性材料の劣化因子のバリア性が不十分であると結論される。これは、ケース(2)に該当する。なおこの現象は、Ru膜の替わりにキャップ層としてPt膜を用いた場合も同じく発生した。 When the Ru film is used as the cap layer 11a, whether the Ta film is used for the upper electrode 1 or the W film is used as another material, as shown in FIG. 4B, the NiFe film of the underlying free layer 4 is used. Has been altered. That is, the deteriorated region 12c was formed in the NiFe film. Thereafter, when the cap layer 11a and the free layer 4 were etched using alcohol plasma, as shown in FIG. 4C, the free layer 4 having the altered regions 12c at both ends was formed. This is because radicals generated from a halogen-based plasma (for example, CF 4 gas plasma) used for processing the upper electrode 1 diffuse in the Ru film of the cap layer 11a and deteriorate the free layer 4 before entering the alcohol etching. It is thought that it is because. Therefore, it is concluded that the Ru film as the cap layer 11a has insufficient barrier properties against the deterioration factor of the magnetic material of the free layer 4 generated during the etching process due to its chemical properties. This corresponds to case (2). This phenomenon also occurred when a Pt film was used as the cap layer instead of the Ru film.
 もちろん、ここで、キャップ層11aのRuの厚みを著しく厚くした場合には、上部電極1の加工時の劣化因子(例示:ハロゲン系プラズマから生じるラジカル)の拡散を防ぐことができる可能性はある。しかし、元来アルコールエッチングによるRu膜のエッチングレートはCl/O系による本格的な反応性イオンエッチングの場合ほど高くない。加えて、図4Dに示すように磁気抵抗効果素子のみ厚いパターンが形成されるデバイス構造では、磁気抵抗効果素子の上部電極1と第n層配線15間との距離と、通常の第n層配線と第(n-1)層配線(例えば下部電極7)との間の距離との差が著しく大きくなる。そのため、層間ビアであるMビア13及びBビア14を形成する上で工程数が増えたり、エッチング形状制御が困難になったりする。このように、キャップ層11aのRuの厚みを著しく厚くする構成は、製造上の問題を生じてしまうため、現実的ではない。これは、ケース(1)に該当する。 Of course, here, when the thickness of Ru of the cap layer 11a is remarkably increased, there is a possibility that diffusion of deterioration factors (eg, radicals generated from halogen-based plasma) during processing of the upper electrode 1 can be prevented. . However, the etching rate of Ru film originally by alcohol etching is not as high as that of full-scale reactive ion etching by Cl 2 / O 2 system. In addition, in the device structure in which a thick pattern is formed only in the magnetoresistive effect element as shown in FIG. 4D, the distance between the upper electrode 1 of the magnetoresistive effect element and the nth layer wiring 15 and the normal nth layer wiring And the difference between the (n−1) th layer wiring (for example, the lower electrode 7) and the distance between them are remarkably increased. For this reason, the number of processes increases or the etching shape control becomes difficult when forming the M via 13 and the B via 14 which are interlayer vias. Thus, since the structure which makes the thickness of Ru of the cap layer 11a remarkably thick will produce a manufacturing problem, it is not realistic. This corresponds to case (1).
 なお、特許文献2においてRu膜のキャップ層を用いている理由は、検討している磁気抵抗効果素子のサイズが、ここで検討しているサイズよりも大きいために、Ru膜のキャップ層を厚くできるためと考えられる。しかし、そのような大型の磁気抵抗効果素子にしか適用できない技術は、将来的な素子微細化、高集積化に課題を生じる。 The reason why the cap layer of the Ru film is used in Patent Document 2 is that the size of the magnetoresistive effect element under consideration is larger than the size under consideration here, so that the cap layer of the Ru film is thickened. This is thought to be possible. However, a technology that can be applied only to such a large magnetoresistive element causes problems in future element miniaturization and high integration.
 以上の結果から、キャップ層11aとしてRu膜やPt膜のようなアルコールプラズマによるエッチングが可能ではあるものの、フリー層4を劣化する因子(酸素やハロゲン)のバリア性が低い材料を単層で用いることはできないと結論される。 From the above results, although the cap layer 11a can be etched by alcohol plasma such as Ru film or Pt film, a material having a low barrier property of factors (oxygen and halogen) that degrade the free layer 4 is used as a single layer. It is concluded that it cannot be done.
特開2005-042143号公報Japanese Patent Laying-Open No. 2005-042143 特開2006-060044号公報JP 2006-060044 A 特開2009-071321号公報JP 2009-071321 A 特開2009-081451号公報JP 2009-081451 A
 本発明の目的は、薄膜磁気デバイスの製造工程において、磁性材料のエッチングにアルコールエッチングを用いることで形状制御性を確保しつつ、該薄膜磁気デバイスの製造工程中での特性劣化を抑制することが可能な薄膜磁気デバイス及びその製造方法を提供することにある。 An object of the present invention is to suppress characteristic deterioration during the manufacturing process of the thin film magnetic device while ensuring shape controllability by using alcohol etching for etching the magnetic material in the manufacturing process of the thin film magnetic device. An object of the present invention is to provide a thin film magnetic device and a method for manufacturing the same.
 本発明の薄膜磁気デバイスは、磁性層と、アルコールエッチ可能層と、因子バリア層とを具備する。磁性層は、基板の上方に設けられている。アルコールエッチ可能層は、磁性層上に設けられ、アルコールプラズマでエッチング可能である。因子バリア層は、アルコールエッチ可能層上に設けられ、磁性層を劣化させる因子が磁性層へ拡散するのを抑制する。 The thin film magnetic device of the present invention includes a magnetic layer, an alcohol etchable layer, and a factor barrier layer. The magnetic layer is provided above the substrate. The alcohol etchable layer is provided on the magnetic layer and can be etched with alcohol plasma. The factor barrier layer is provided on the alcohol-etchable layer and suppresses the factor that deteriorates the magnetic layer from diffusing into the magnetic layer.
 本発明の薄膜磁気デバイスの製造方法は、基板の上方に磁性層、アルコールプラズマでエッチング可能なアルコールエッチ可能層、磁性層を劣化させる因子が当該磁性層へ拡散するのを抑制する因子バリア層、及び上部層をこの順に積層する工程と;上部層を、ハロゲン系ガス又は酸素ガスの少なくとも一方を含むエッチングガスで所定の形状にエッチングする工程と;因子バリア層を、磁性層を化学的に変質させないエッチングガスで所定の形状にエッチングする工程と;アルコールエッチ可能層及び磁性層をアルコールを含むエッチングガスで所定の形状にエッチングする工程とを具備する。 The method of manufacturing a thin film magnetic device of the present invention includes a magnetic layer above a substrate, an alcohol etchable layer that can be etched with alcohol plasma, a factor barrier layer that suppresses diffusion of a factor that degrades the magnetic layer into the magnetic layer, And a step of laminating the upper layer in this order; a step of etching the upper layer with an etching gas containing at least one of a halogen-based gas and an oxygen gas; and a chemical alteration of the factor barrier layer and the magnetic layer Etching into a predetermined shape with an etching gas that is not allowed to be etched; etching the alcohol-etchable layer and the magnetic layer into a predetermined shape with an etching gas containing alcohol.
 本発明により、薄膜磁気デバイスの製造工程において、磁性材料のエッチングにアルコールエッチングを用いることで形状制御性を確保しつつ、その薄膜磁気デバイスの製造行程中での特性劣化を抑制することができる。 According to the present invention, in the manufacturing process of a thin film magnetic device, by using alcohol etching for etching a magnetic material, shape controllability can be secured, and deterioration of characteristics during the manufacturing process of the thin film magnetic device can be suppressed.
図1Aは、磁気抵抗効果素子の製造方法の一例(一部)を示す断面図である。FIG. 1A is a cross-sectional view showing an example (part) of a method of manufacturing a magnetoresistive element. 図1Bは、磁気抵抗効果素子の製造方法の一例(一部)を示す断面図である。FIG. 1B is a cross-sectional view showing an example (part) of a method of manufacturing a magnetoresistive element. 図2Aは、磁気抵抗効果素子の製造方法の他の例(一部)を示す断面図である。FIG. 2A is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element. 図2Bは、磁気抵抗効果素子の製造方法の他の例(一部)を示す断面図である。FIG. 2B is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element. 図3Aは、磁気抵抗効果素子の製造方法の更に他の例(一部)を示す断面図である。FIG. 3A is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element. 図3Bは、磁気抵抗効果素子の製造方法の更に他の例(一部)を示す断面図である。FIG. 3B is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element. 図3Cは、磁気抵抗効果素子の製造方法の更に他の例(一部)を示す断面図である。FIG. 3C is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element. 図3Dは、磁気抵抗効果素子の製造方法の更に他の例(一部)を示す断面図である。FIG. 3D is a cross-sectional view showing still another example (part) of the method of manufacturing a magnetoresistive element. 図4Aは、磁気抵抗効果素子の製造方法の別の例(一部)を示す断面図である。FIG. 4A is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element. 図4Bは、磁気抵抗効果素子の製造方法の別の例(一部)を示す断面図である。FIG. 4B is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element. 図4Cは、磁気抵抗効果素子の製造方法の別の例(一部)を示す断面図である。FIG. 4C is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element. 図4Dは、磁気抵抗効果素子の製造方法の別の例(一部)を示す断面図である。FIG. 4D is a cross-sectional view showing another example (part) of the method of manufacturing a magnetoresistive element. 図5は、本発明の実施の形態に係る薄膜磁気デバイスの構成の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the configuration of the thin film magnetic device according to the embodiment of the present invention. 図6Aは、本発明の実施の形態に係る薄膜磁気デバイスの製造方法の一例を示す断面図である。FIG. 6A is a cross-sectional view showing an example of a method of manufacturing a thin film magnetic device according to an embodiment of the present invention. 図6Bは、本発明の実施の形態に係る薄膜磁気デバイスの製造方法を示す断面図である。FIG. 6B is a cross-sectional view illustrating the method of manufacturing the thin film magnetic device according to the embodiment of the invention. 図6Cは、本発明の実施の形態に係る薄膜磁気デバイスの製造方法を示す断面図である。FIG. 6C is a cross-sectional view illustrating the method for manufacturing the thin film magnetic device according to the embodiment of the invention. 図6Dは、本発明の実施の形態に係る薄膜磁気デバイスの製造方法を示す断面図である。FIG. 6D is a cross-sectional view illustrating the method of manufacturing the thin film magnetic device according to the embodiment of the invention. 図6Eは、本発明の実施の形態に係る薄膜磁気デバイスの製造方法を示す断面図である。FIG. 6E is a cross-sectional view showing the method for manufacturing the thin film magnetic device according to the embodiment of the present invention. 図6Fは、本発明の実施の形態に係る薄膜磁気デバイスの製造方法を示す断面図である。FIG. 6F is a cross-sectional view illustrating the method for manufacturing the thin film magnetic device according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る磁気抵抗効果素子と従来技術の磁気抵抗効果素子との特性を比較する表である。FIG. 7 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element. 図8は、本発明の実施の形態に係る磁気抵抗効果素子のアルコールエッチ可能層の膜厚とMR比との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the MR ratio and the film thickness of the alcohol-etchable layer of the magnetoresistive element according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る磁気抵抗効果素子と従来技術の磁気抵抗効果素子との特性を比較する表である。FIG. 9 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element. 図10は、本発明の実施の形態に係る薄膜磁気デバイスとしてのMRAMの構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of the configuration of the MRAM as the thin film magnetic device according to the embodiment of the present invention.
 以下、本発明の実施の形態に係る薄膜磁気デバイス及びその製造方法に関して、添付図面を参照して説明する。以下では、薄膜磁気デバイスの一例として、磁気抵抗効果素子及びそれを用いた磁気メモリについて説明する。ただし、本発明はその例に限定されるものではなく、磁性材料を用いた膜(層)を有する薄膜デバイスであれば適用可能である。 Hereinafter, a thin film magnetic device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the accompanying drawings. Below, a magnetoresistive effect element and a magnetic memory using the same will be described as an example of a thin film magnetic device. However, the present invention is not limited to that example, and any thin film device having a film (layer) using a magnetic material can be applied.
 本発明の実施の形態に係る薄膜磁気デバイスの構成について説明する。図5は、本発明の実施の形態に係る薄膜磁気デバイス(の磁気抵抗効果素子)の構成の一例を示す断面図である。この磁気抵抗効果素子20は、上層から下層に向かって、上部電極21(導電性材料)としてTa膜/Ru膜、酸化因子バリア層22としてTa膜(例示:3nm)、アルコールエッチ可能層23としてRu膜(例示:3nm)、フリー層24(磁性材料)としてNiFe膜、トンネルバリア層25(絶縁材料又は非磁性材料)としてMgO膜、ピン層26(磁性材料)としてCoFeB/PtMn膜、及び下部電極27(導電性材料)としてTa膜、を積層した構成を有している。ただし、酸化因子バリア層22とアルコールエッチ可能層23とをまとめてキャップ層31ともいう。これらは、半導体基板(トランジスタなどの素子や配線が形成されていても良い)上に設けられている。各層の材料は一例であり、単一の材料や単元素で構成されている必要はない。 The configuration of the thin film magnetic device according to the embodiment of the present invention will be described. FIG. 5 is a cross-sectional view showing an example of the configuration of the thin film magnetic device (the magnetoresistive effect element thereof) according to the embodiment of the present invention. This magnetoresistive effect element 20 has a Ta film / Ru film as the upper electrode 21 (conductive material), a Ta film (example: 3 nm) as the oxidation factor barrier layer 22, and an alcohol etchable layer 23 from the upper layer to the lower layer. Ru film (example: 3 nm), NiFe film as free layer 24 (magnetic material), MgO film as tunnel barrier layer 25 (insulating material or nonmagnetic material), CoFeB / PtMn film as pinned layer 26 (magnetic material), and lower part A Ta film is laminated as the electrode 27 (conductive material). However, the oxidation factor barrier layer 22 and the alcohol etchable layer 23 are collectively referred to as a cap layer 31. These are provided on a semiconductor substrate (an element such as a transistor or a wiring may be formed). The material of each layer is an example and does not need to be composed of a single material or a single element.
 本実施の形態に係る薄膜磁気デバイス(磁気抵抗効果素子)は、製造プロセスにおける磁性材料を用いた膜(層)にアルコールエッチングを実施する工程において、上から上部電極/キャップ層/磁性層となるように構成されている。ここで特にキャップ層が、上から酸化因子バリア層/アルコールエッチ可能層の異なる2つの材料層で構成されている。図5の例では、後述されるように、磁性材料のフリー層4にアルコールエッチングを実施する工程において、上から上部電極21(上部電極)/酸化因子バリア層22/アルコールエッチ可能層23(以上、キャップ層)/フリー層24(磁性層)のように構成されている。これにより、後述されるように、磁性層(図5の例ではフリー層24)での劣化領域の生成が抑制される。 The thin film magnetic device (magnetoresistance effect element) according to the present embodiment becomes the upper electrode / cap layer / magnetic layer from the top in the step of performing alcohol etching on the film (layer) using the magnetic material in the manufacturing process. It is configured as follows. Here, in particular, the cap layer is composed of two material layers of an oxidation factor barrier layer / alcohol etchable layer from the top. In the example of FIG. 5, as will be described later, in the step of performing alcohol etching on the free layer 4 of magnetic material, the upper electrode 21 (upper electrode) / oxidation factor barrier layer 22 / alcohol-etchable layer 23 (above) , Cap layer) / free layer 24 (magnetic layer). Thereby, as will be described later, the generation of a deteriorated region in the magnetic layer (the free layer 24 in the example of FIG. 5) is suppressed.
 酸化因子バリア層22は、その下方の磁性層を劣化(例示:酸化、ハロゲン化(ハロゲン元素拡散))させる因子(例示:酸素、ハロゲン元素)が当該磁性層へ拡散するのを抑制する層である。酸化因子バリア層22としては、その下方の磁性層に用いられる磁性材料Ni、Fe、Coよりも酸化しやすく、かつ自身が不動態化しやすい材料を、少なくとも一種含む単体金属あるいは合金材料を少なくとも一種用いることが好ましい。その酸化因子バリア層の詳細については後述される。 The oxidation factor barrier layer 22 is a layer that suppresses the diffusion of a factor (eg, oxygen, halogen element) that degrades (eg, oxidization, halogenation (halogen element diffusion)) into the magnetic layer. is there. As the oxidation factor barrier layer 22, at least one elemental metal or alloy material including at least one material that is more easily oxidized than the magnetic materials Ni, Fe, and Co used for the magnetic layer below the oxidation factor barrier layer 22 and is easily passivated. It is preferable to use it. Details of the oxidation factor barrier layer will be described later.
 アルコールエッチ可能層23は、その下方の磁性層の表面を保護するキャップ層として、当該磁性層のアルコールプラズマエッチングのときに、同時にエッチングされる層である。アルコールエッチ可能層としては、酸化因子バリア層に用いられる材料以外の材料で、直接接触する磁性材料への固溶限が400℃で1%以下の材料を、少なくとも一種含む単体金属あるいは合金材料を少なくとも一種用いることが好ましい。あるいは、他のアルコールエッチ可能層としては、酸化因子バリア層に用いられる材料以外の材料で、直接接触する磁性材料への固溶によって、磁性材料の特性に影響を与えにくい材料を少なくとも一種含む単体金属あるいは合金材料を、固溶による影響が観察されない膜厚以下で用いることが好ましい。そのアルコールエッチ可能層23の詳細については後述される。 The alcohol etchable layer 23 is a layer that is simultaneously etched during alcohol plasma etching of the magnetic layer as a cap layer for protecting the surface of the magnetic layer below the alcohol etchable layer 23. As the alcohol etchable layer, a material other than the material used for the oxidation factor barrier layer, a solid metal or alloy material containing at least one kind having a solid solubility limit of 1% or less at 400 ° C. in direct contact with the magnetic material is used. It is preferable to use at least one kind. Alternatively, as another alcohol etchable layer, a simple substance including at least one material which is not a material used for the oxidation factor barrier layer and hardly affects the characteristics of the magnetic material by solid solution in the magnetic material in direct contact. It is preferable to use a metal or alloy material with a film thickness or less at which no influence of solid solution is observed. Details of the alcohol-etchable layer 23 will be described later.
 次に、本発明の実施の形態に係る薄膜磁気デバイスの製造方法について説明する。図6A~図6Fは、本発明の実施の形態に係る薄膜磁気デバイスの製造方法(磁気抵抗効果素子の製造方法)の一例を示す断面図である。 Next, a method for manufacturing a thin film magnetic device according to an embodiment of the present invention will be described. 6A to 6F are cross-sectional views showing an example of a method for manufacturing a thin film magnetic device (a method for manufacturing a magnetoresistive effect element) according to an embodiment of the present invention.
 図6Aに示されるように、基板(図示されず)上に、下から順に、下部電極27(導電性材料)としてTa膜、ピン層26(磁性材料)としてCoFeB/PtMn膜、トンネルバリア層25(絶縁材料又は非磁性材料)としてMgO膜、フリー層24(磁性材料)としてNiFe膜、アルコールエッチ可能層23としてRu膜、酸化因子バリア層22としてTa膜、及び上部電極21(導電性材料)としてTa膜/Ru膜が積層される。この積層構造を形成した後、下側ハードマスク28としてSiNx膜、及び上側ハードマスク29としてSiO膜をこの順に成膜する。その後、所望のパターンを有するフォトレジストパターン30を上側ハードマスク29の上に形成する。 As shown in FIG. 6A, a Ta film as a lower electrode 27 (conductive material), a CoFeB / PtMn film as a pinned layer 26 (magnetic material), and a tunnel barrier layer 25 on a substrate (not shown) in order from the bottom. MgO film as (insulating material or nonmagnetic material), NiFe film as free layer 24 (magnetic material), Ru film as alcohol etchable layer 23, Ta film as oxidation factor barrier layer 22, and upper electrode 21 (conductive material) As a result, a Ta film / Ru film is laminated. After this stacked structure is formed, a SiNx film is formed as the lower hard mask 28 and a SiO 2 film is formed as the upper hard mask 29 in this order. Thereafter, a photoresist pattern 30 having a desired pattern is formed on the upper hard mask 29.
 次に、図6Bに示されるように、Ar/C/Oの混合ガスを用いた反応性イオンエッチング法により、そのフォトレジストパターン30をまず上側ハードマスク29に転写する。その後、Oアッシングにより不要になったそのフォトレジストパターン30を除去する。 Next, as shown in FIG. 6B, the photoresist pattern 30 is first transferred to the upper hard mask 29 by a reactive ion etching method using a mixed gas of Ar / C 4 F 8 / O 2 . Thereafter, the photoresist pattern 30 that has become unnecessary by O 2 ashing is removed.
 続いて、図6Cに示されるように、上側ハードマスク29のパターンを下側ハードマスク28に転写する。このような2層ハードマスク法は、フォトレジストパターン30除去時のOアッシング時に下層の材料が変質するのを抑制するために一般的に行われている手法である。更に、上部電極21のうちの上側膜21aである厚いTa膜を、上側ハードマスク29及び下側ハードマスク28のパターンをマスクとして、Clプラズマによりエッチングする。そして、上部電極21のうちの下側膜21bである薄いRu膜の上でエッチングを止める。ここでのエッチング選択比は十分大きいものが得られている。 Subsequently, as shown in FIG. 6C, the pattern of the upper hard mask 29 is transferred to the lower hard mask 28. Such a two-layer hard mask method is a method generally used for suppressing the deterioration of the underlying material during O 2 ashing when the photoresist pattern 30 is removed. Further, the thick Ta film which is the upper film 21a of the upper electrode 21 is etched by Cl 2 plasma using the patterns of the upper hard mask 29 and the lower hard mask 28 as a mask. Then, etching is stopped on the thin Ru film that is the lower film 21b of the upper electrode 21. Here, a sufficiently large etching selectivity is obtained.
 次に、図6Dに示されるように、まず、上部電極21のうちの下側膜21bである薄いRu膜を、上側ハードマスク29から上側膜21aのパターンをマスクとして、メタノールプラズマによりエッチングする。続いて、酸化因子バリア層22を、上側ハードマスク29から下側膜21bのパターンをマスクとして、Ar/CHガスのプラズマによりエッチングする。この場合、酸化因子バリア層22のTa膜のエッチングにはハロゲン元素を含むガスや酸素ガスを含むガスを用いる必要がなく、Ar/CHガスを用いることができる。その理由は、Ar/CHガスを用いたTa膜のエッチング速度は遅いが、酸化因子バリア層22が極めて薄い(例示:3nm)ため、その遅さが問題にならないためである。Ar/CHガスは、フリー層24(NiFe膜)のような磁性材料を化学的に変質させないエッチングガスである。 Next, as shown in FIG. 6D, first, a thin Ru film, which is the lower film 21b of the upper electrode 21, is etched by methanol plasma using the pattern of the upper film 21a from the upper hard mask 29 as a mask. Subsequently, the oxidation factor barrier layer 22 is etched by Ar / CH 4 gas plasma using the patterns of the upper hard mask 29 to the lower film 21b as a mask. In this case, it is not necessary to use a gas containing a halogen element or a gas containing oxygen gas for etching the Ta film of the oxidation factor barrier layer 22, and Ar / CH 4 gas can be used. The reason is that the etching rate of the Ta film using Ar / CH 4 gas is slow, but the oxidation factor barrier layer 22 is extremely thin (eg 3 nm), and the slowness does not become a problem. Ar / CH 4 gas is an etching gas that does not chemically alter a magnetic material such as the free layer 24 (NiFe film).
 続いて、図6Eに示されるように、アルコールエッチ可能層23及びフリー層24を、上側ハードマスク29から酸化因子バリア層22のパターンをマスクとして、メタノールプラズマによりエッチングする。そして、トンネルバリア層25の上でエッチングを終了する。 Subsequently, as shown in FIG. 6E, the alcohol etchable layer 23 and the free layer 24 are etched by methanol plasma using the pattern of the upper hard mask 29 to the oxidation factor barrier layer 22 as a mask. Then, the etching is finished on the tunnel barrier layer 25.
 この後、図6Fに示されるように、更に下層のトンネルバリア層25/ピン層26/下部電極27のエッチングを、所望のパターンの2層ハードマスク法(上側ハードマスク34及び下側ハードマスク33)により実施する。ただし、トンネルバリア層25/ピン層26はメタノールプラズマによりエッチングし、下部電極27はAr/CHプラズマによりエッチングする。それにより、磁気抵抗効果素子20のパターン形成が完了する。すなわち、本実施の形態に係る薄膜磁気デバイスの製造方法(磁気抵抗効果素子の製造方法)が完了する。 Thereafter, as shown in FIG. 6F, the tunnel barrier layer 25 / pinned layer 26 / lower electrode 27, which is a lower layer, is further etched by a two-layer hard mask method (an upper hard mask 34 and a lower hard mask 33) having a desired pattern. ). However, the tunnel barrier layer 25 / pinned layer 26 is etched by methanol plasma, and the lower electrode 27 is etched by Ar / CH 4 plasma. Thereby, pattern formation of the magnetoresistive effect element 20 is completed. That is, the method for manufacturing a thin film magnetic device (a method for manufacturing a magnetoresistive effect element) according to the present embodiment is completed.
 図7は、本発明の実施の形態に係る磁気抵抗効果素子と従来技術の磁気抵抗効果素子との特性を比較する表である。ただし、「A」欄は本実施の形態に係る磁気抵抗効果素子、「B」欄は従来技術の磁気抵抗効果素子をそれぞれ示している。磁気抵抗効果素子の構成は、「A」及び「B」のいずれも同じである。すなわち、上部電極(Ta/Ru膜)、キャップ層(酸化因子バリア層(Ta膜)、アルコールエッチ可能層(Ru膜))、MTJ(フリー層(NiFe膜)、トンネルバリア層(MgO膜)、ピン層(CoFeB/PtMn膜))、下部電極(Ta膜)である。また、各膜の膜厚やサイズも同じである。ただし、「A」は、図6A~図6Fを参照して説明したとおりプラズマによるエッチング法で製造している。しかし、「B」は、非特許文献1に記載のアルゴンイオンミリング法で製造している。 FIG. 7 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element. However, the “A” column indicates the magnetoresistive effect element according to the present embodiment, and the “B” column indicates the conventional magnetoresistive effect element. The configuration of the magnetoresistive effect element is the same for both “A” and “B”. That is, the upper electrode (Ta / Ru film), cap layer (oxidation factor barrier layer (Ta film), alcohol etchable layer (Ru film)), MTJ (free layer (NiFe film), tunnel barrier layer (MgO film), Pin layer (CoFeB / PtMn film)) and lower electrode (Ta film). The film thickness and size of each film are also the same. However, “A” is manufactured by the plasma etching method as described with reference to FIGS. 6A to 6F. However, “B” is manufactured by the argon ion milling method described in Non-Patent Document 1.
 磁気抵抗効果素子の特性(MR比)に関しては、本実施の形態(「A」:52%)と従来技術(「B」:53%)とで同等であることが判明した。また、磁気抵抗効果素子の形状に関しては、従来技術(「B」)の場合と異なり、本実施の形態(「A」)の場合では加工形状がテーパー化せず、微細化が可能であることが判明した。すなわち、本実施の形態は、イオンミリング法と比較して、イオンミリング法と同等の特性を維持しつつ、形状制御性の向上を図ることができる。 Regarding the characteristics (MR ratio) of the magnetoresistive effect element, it was found that the present embodiment (“A”: 52%) and the conventional technique (“B”: 53%) are equivalent. In addition, regarding the shape of the magnetoresistive effect element, unlike the case of the prior art (“B”), in the case of the present embodiment (“A”), the processed shape is not tapered and can be miniaturized. There was found. That is, this embodiment can improve the shape controllability while maintaining the same characteristics as the ion milling method as compared with the ion milling method.
 図8は、本発明の実施の形態に係る磁気抵抗効果素子のアルコールエッチ可能層の膜厚とMR比との関係を示すグラフである。横軸はアルコールエッチ可能層23の膜厚、縦軸はMR比をそれぞれ示している。白丸及び黒丸はアルコールエッチ可能層23の材料としてそれぞれRu及びAgを用いた場合を示している。 FIG. 8 is a graph showing the relationship between the MR ratio and the film thickness of the alcohol-etchable layer of the magnetoresistive element according to the embodiment of the present invention. The horizontal axis represents the film thickness of the alcohol-etchable layer 23, and the vertical axis represents the MR ratio. White circles and black circles indicate the cases where Ru and Ag are used as the material of the alcohol-etchable layer 23, respectively.
 従来技術での磁気抵抗効果素子の特性(MR比)である約50%程度を基準とすると、アルコールエッチ可能層23としてRu膜を採用した場合、膜厚として5nm以下の領域で特性が基準以上となる。すなわち、5nm以下の領域で特性劣化(MR比の劣化)が抑制されている。従って、Ru膜を採用した場合、膜厚の目安としては5nm以下ということになる。 Based on about 50%, which is the characteristic (MR ratio) of the magnetoresistive effect element in the prior art, when the Ru film is used as the alcohol etchable layer 23, the characteristic is above the standard in the region of 5 nm or less as the film thickness. It becomes. That is, characteristic deterioration (MR ratio deterioration) is suppressed in a region of 5 nm or less. Therefore, when a Ru film is used, the standard of the film thickness is 5 nm or less.
 一方、アルコールエッチ可能層23としてAg膜を採用した場合、膜厚に依存せずに特性が基準以上となる。すなわち、膜厚として5nm以下という制限を考えなくて良い。これは、フリー層24のNiFe膜へのAgの固溶限が400℃以下では1%以下と非常に小さいためと考えられる。 On the other hand, when an Ag film is employed as the alcohol-etchable layer 23, the characteristics are above the standard without depending on the film thickness. That is, there is no need to consider the limitation that the film thickness is 5 nm or less. This is presumably because the solid solubility limit of Ag in the NiFe film of the free layer 24 is as small as 1% or less at 400 ° C. or less.
 図9は、本発明の実施の形態に係る磁気抵抗効果素子と従来技術の磁気抵抗効果素子との特性を比較する表である。ただし、「A」欄は本実施の形態に係る磁気抵抗効果素子、「C」欄は図4A~図4Cの製造方法で製造された磁気抵抗効果素子をそれぞれ示している。磁気抵抗効果素子の構成は、「A」は図7で説明したとおりである。一方、「C」は、上部電極(Ta膜)、キャップ層(Ru膜)、MTJ(フリー層(NiFe膜)、トンネルバリア層(MgO膜)、ピン層(CoFeB/PtMn膜))、下部電極(Ta膜)である。すなわち、キャップ層が酸化因子バリア層(Ta膜)/アルコールエッチ可能層(Ru膜)の積層構造ではない。なお、各膜のサイズは同じである。ただし、「A」及び「C」は、それぞれ図6A~図6F及び図4A~図4Cを参照して説明したとおりプラズマによるエッチング法で製造している。 FIG. 9 is a table comparing the characteristics of the magnetoresistive effect element according to the embodiment of the present invention and the prior art magnetoresistive effect element. However, the “A” column indicates the magnetoresistive effect element according to the present embodiment, and the “C” column indicates the magnetoresistive effect element manufactured by the manufacturing method of FIGS. 4A to 4C. In the configuration of the magnetoresistive effect element, “A” is as described in FIG. On the other hand, “C” is an upper electrode (Ta film), cap layer (Ru film), MTJ (free layer (NiFe film), tunnel barrier layer (MgO film), pinned layer (CoFeB / PtMn film)), lower electrode (Ta film). That is, the cap layer is not a laminated structure of an oxidation factor barrier layer (Ta film) / alcohol etchable layer (Ru film). The size of each film is the same. However, “A” and “C” are manufactured by plasma etching as described with reference to FIGS. 6A to 6F and FIGS. 4A to 4C, respectively.
 磁気抵抗効果素子の特性(MR比)に関しては、本実施の形態(「A」:52%)と比較して、「C」(40%)の方が明確に低下していることが判明した。これは、図4Bにおける上部電極1の加工に用いるハロゲン系プラズマから生じるラジカルが、キャップ層11aのRu膜中を拡散し、アルコールエッチングに入る前にフリー層4を劣化しているためと考えられる。一方、本実施の形態(「A」)ではキャップ層31に酸化因子バリア層22(Ta膜)が存在する。そのため、図6Cにおいて上部電極21の上側膜21aをハロゲン系プラズマでエッチングしても、ハロゲン系プラズマから生じるラジカルがアルコールエッチ可能層(Ru膜)を拡散して、フリー層24(NiFe膜)に入ることはない。なお、磁気抵抗効果素子の形状に関しては、「C」)の場合も「A」の場合も同様に加工形状がテーパー化せず、微細化が可能であることが判明した。すなわち、本実施の形態により、アルコールエッチング法により形状制御性を確保しつつ、酸化因子バリア層(Ta膜)及びアルコールエッチ可能層23により製造工程中での特性劣化を抑制することができる。 Regarding the characteristics (MR ratio) of the magnetoresistive effect element, it has been found that “C” (40%) is clearly lower than the present embodiment (“A”: 52%). . This is considered to be because radicals generated from the halogen-based plasma used for processing the upper electrode 1 in FIG. 4B diffuse in the Ru film of the cap layer 11a and deteriorate the free layer 4 before entering the alcohol etching. . On the other hand, in the present embodiment (“A”), the oxidation factor barrier layer 22 (Ta film) is present in the cap layer 31. Therefore, even if the upper film 21a of the upper electrode 21 in FIG. 6C is etched with a halogen-based plasma, radicals generated from the halogen-based plasma diffuse in the alcohol-etchable layer (Ru film) to the free layer 24 (NiFe film). Never enter. Regarding the shape of the magnetoresistive effect element, it has been found that the processed shape is not tapered in both cases of “C”) and “A” and can be miniaturized. That is, according to the present embodiment, it is possible to suppress deterioration in characteristics during the manufacturing process by the oxidation factor barrier layer (Ta film) and the alcohol etchable layer 23 while ensuring shape controllability by the alcohol etching method.
 本実施の形態では、酸化因子バリア層として、薄膜磁気デバイス(例示:磁気抵抗効果素子)に用いられる代表的な磁性材料であるNi、Fe、Coよりも酸化しやすく、かつ自身が不動態化しやすい材料を、少なくとも一種含む単体金属あるいは合金材料を少なくとも一種用いることが好ましい。 In this embodiment, the oxidation factor barrier layer is more easily oxidized than Ni, Fe, and Co, which are typical magnetic materials used in thin film magnetic devices (eg, magnetoresistive effect element), and is itself passivated. It is preferable to use at least one simple metal or alloy material containing at least one easy material.
 その酸化因子バリア層は、薄膜磁気デバイスに用いられている代表的な磁性材料であるNi、Fe、Coよりも酸化されやすい特性を有していることから、薄膜磁気デバイスの製造プロセスで用いられる磁性材料を化学的に変質する物質(特にハロゲンや酸素)と優先的に反応する。その結果、近接した位置に積層されている磁性材料の化学的変質を抑制することができる。ただし、単に酸化されやすさが該磁性材料よりも高いだけでは薄膜磁気デバイスの製造プロセス中の熱処理工程などで拡散して磁性材料を変質する可能性があることから、酸化因子バリア層に適用する材料としては、酸化によって不導体化してその場で安定化する材料であることが必要である。 The oxidation factor barrier layer is more easily oxidized than Ni, Fe, and Co, which are typical magnetic materials used in thin film magnetic devices, and is therefore used in the manufacturing process of thin film magnetic devices. It reacts preferentially with substances that modify the magnetic material chemically (especially halogen and oxygen). As a result, it is possible to suppress chemical alteration of the magnetic material laminated at close positions. However, if the oxidization is simply higher than that of the magnetic material, the magnetic material may be altered by diffusion in the heat treatment step of the thin film magnetic device manufacturing process. The material must be a material that becomes non-conductive by oxidation and stabilizes in situ.
 すなわち、非特許文献2が提案する標準単極電位(単純な貴度)ではなく、酸素等を安定して取り込む能力=不動態化を考慮した貴度、言い換えると不動態化能とも呼ぶべきものがより重要である。このような材料については非特許文献3(M.Pourbaix,Pergamon Press,Oxford(1966)pp.80-81.)のデータが参考になる。またこのような材料はドライエッチングに用いられることの多いハロゲン系の元素とも反応しやすく、該酸化因子バリア層よりも上層でのアッシングやエッチングによる酸素やハロゲンの下層への拡散を食い止めることができ、薄膜磁気デバイスの特性劣化を抑制可能である。これらの材料として、Nb、Ta、Ti、Ga、Zr、Hf、Be、Al、Cr、W、Y、U、Mg、Ba、Sr、Ca、La、Sc、Siを挙げることができる。発明者の検討では、これらは高い拡散バリア耐性を示した。 That is, not the standard unipolar potential (simple nobility) proposed by Non-Patent Document 2, but the ability to stably take in oxygen, etc. = nobility in consideration of passivation, in other words, what should be called passivation ability Is more important. For such materials, the data of Non-Patent Document 3 (M. Pourbaix, Pergamon Press, Oxford (1966) pp. 80-81) is helpful. In addition, such materials easily react with halogen-based elements often used in dry etching, and can prevent diffusion of oxygen and halogen into the lower layer due to ashing or etching above the oxidation factor barrier layer. The characteristic deterioration of the thin film magnetic device can be suppressed. Examples of these materials include Nb, Ta, Ti, Ga, Zr, Hf, Be, Al, Cr, W, Y, U, Mg, Ba, Sr, Ca, La, Sc, and Si. In the inventors' investigation, they showed high diffusion barrier resistance.
 そして、酸化因子バリア層のエッチングガスとして、磁性材料を化学的に変質しないガスを用いることを特徴とする薄膜磁気デバイスの製造方法を採用することが好ましい。 It is preferable to employ a method of manufacturing a thin film magnetic device characterized in that a gas that does not chemically alter the magnetic material is used as an etching gas for the oxidation factor barrier layer.
 また、本実施の形態では、アルコールエッチ可能層として、酸化因子バリア層に用いられる材料以外の材料で、直接接触する磁性材料への固溶限が400℃で1%以下の材料を、少なくとも一種含む単体金属あるいは合金材料を少なくとも一種用いることが好ましい。 Further, in the present embodiment, at least one kind of a material having a solid solubility limit of 400 ° C. or less at 400 ° C., which is a material other than the material used for the oxidation factor barrier layer, is used as the alcohol etchable layer. It is preferable to use at least one elemental metal or alloy material.
 そのアルコールエッチ可能層は、アルコールエッチング中に微量生成する酸素ラジカルによって不動態化してエッチングを阻害(エッチストップ)する材料でない材料、すなわち酸化因子バリア層に用いる以外の材料である必要がある。それと同時に、磁性材料への固溶によって磁性材料の特性を劣化させない材料である必要がある。従って、酸化因子バリア層に用いた材料以外の材料で、磁性材料に対する固溶限が小さい材料が第一の候補である。それらの材料として、Pa、Ag、Tc、Po、Yb、Tb、Pr、Dy、Ce、Er、Ho、Th、Tmを挙げることができる。固溶限については、非特許文献4(H.Okamoto,ASM International(2000))のデータが参考になる。発明者の検討では、これらの元素は400℃以下において磁気特性に対する影響がほとんど観察されなかった。 The alcohol etchable layer needs to be a material that is not a material that is passivated by oxygen radicals generated in a small amount during alcohol etching to inhibit etching (etch stop), that is, a material other than that used for the oxidation factor barrier layer. At the same time, it is necessary that the material does not deteriorate the characteristics of the magnetic material due to solid solution in the magnetic material. Therefore, materials other than those used for the oxidation factor barrier layer and having a small solid solubility limit with respect to the magnetic material are the first candidates. Examples of these materials include Pa, Ag, Tc, Po, Yb, Tb, Pr, Dy, Ce, Er, Ho, Th, and Tm. Regarding the solid solubility limit, the data of Non-Patent Document 4 (H. Okamoto, ASM International (2000)) is helpful. According to the inventor's investigation, these elements hardly observed any influence on the magnetic properties at 400 ° C. or lower.
 また、本実施の形態では、更に別の特性を持つアルコールエッチ可能層として、酸化因子バリア層に用いられる材料以外の材料で、直接接触する磁性材料への固溶によって、磁性材料の特性に影響を与えにくい材料を少なくとも一種含む単体金属あるいは合金材料を、固溶による影響が観察されない膜厚以下で用いることが好ましい。 In this embodiment, the alcohol etchable layer having further characteristics affects the characteristics of the magnetic material by solid solution in the magnetic material that is in direct contact with a material other than the material used for the oxidation factor barrier layer. It is preferable to use a single metal or alloy material containing at least one kind of material that is difficult to impart a thickness of less than the thickness at which the effect of solid solution is not observed.
 そのアルコールエッチ可能層は、構成元素が代表的な磁性材料であるNi、Fe、Coを含む材料に固溶しても磁気的な影響が小さい材料を考えることができる。その場合、可能な限り薄い膜厚でアルコールエッチ可能層を構成し、影響を最小限にする必要がある。このような材料として、Rh、Au、Ir、Pt、Ru、Os、Re、Pdを挙げることができる。発明者の検討では、膜厚として5nm以下の領域で特性劣化が抑制された。 The alcohol-etchable layer can be considered as a material having a small magnetic effect even if it is dissolved in a material containing Ni, Fe, Co, which is a representative magnetic material. In that case, it is necessary to form the alcohol etchable layer with the smallest possible film thickness to minimize the influence. Examples of such materials include Rh, Au, Ir, Pt, Ru, Os, Re, and Pd. According to the inventor's study, characteristic deterioration was suppressed in a region where the film thickness was 5 nm or less.
 なお、磁性材料に対する固溶は昇温時に顕著になることから、適用する薄膜磁気デバイスの製造工程での温度履歴が低温の場合には、アルコールエッチ可能層として、より多くの種類の材料選択が可能であることは言うまでもない。 In addition, since the solid solution in the magnetic material becomes conspicuous at the time of the temperature rise, when the temperature history in the manufacturing process of the thin film magnetic device to be applied is low, more kinds of materials can be selected as the alcohol etchable layer. It goes without saying that it is possible.
 薄膜磁気デバイスの製造時には、上から酸化因子バリア層/アルコールエッチ可能層/磁性材料層の順に積層する。まず、酸化因子バリア層は磁性材料を化学的に変質しないガス系でエッチングし、引き続き加工形状に優れたアルコールエッチングプロセスをアルコールエッチ可能層と磁性材料の加工プロセスに採用する。酸化因子バリア層のエッチングに用いるガスの例としては、磁性材料を化学的に変質しにくいHe、Ne、Ar、Kr、Xe、N、H、Cのうちの少なくとも一種を含み、磁性材料を化学的に変質するO、F、Cl、Brを含まないガス系を挙げることができる。このような材料の積層構造とエッチングプロセスを適用することで初めて、製造プロセス時に磁性材料の劣化を引き起こすことのないアルコールエッチングによる薄膜磁気デバイスの製造が可能となる。 When manufacturing a thin film magnetic device, the oxidation factor barrier layer / alcohol etchable layer / magnetic material layer are stacked in this order from the top. First, the oxidizing factor barrier layer is etched with a gas system that does not chemically alter the magnetic material, and an alcohol etching process having an excellent processing shape is subsequently adopted for the processing process of the alcohol-etchable layer and the magnetic material. Examples of gases used for etching the oxidation factor barrier layer include at least one of He, Ne, Ar, Kr, Xe, N, H, and C, which are difficult to chemically alter the magnetic material. Examples thereof include gas systems that do not contain O, F, Cl, or Br, which change in quality. Only by applying such a laminated structure of materials and an etching process, it becomes possible to manufacture a thin film magnetic device by alcohol etching without causing deterioration of the magnetic material during the manufacturing process.
 なお、本実施の形態では、薄膜磁気デバイスとして磁気抵抗効果素子を例示して、及び、薄膜磁気デバイスの製造方法としてフリー層のエッチングを例示して、それぞれ説明している。しかし、本発明はこの例に限定されるものではない。例えば、キャップ層の構成である酸化因子バリア層/アルコールエッチ可能層の材料構成、及び、材料を劣化しない酸化因子バリア層のエッチングガスは、磁気抵抗効果素子の他の層(例えばピン層)や、他の薄膜磁気デバイスの磁性層のエッチングにも適用可能である。 In the present embodiment, a magnetoresistive effect element is exemplified as a thin film magnetic device, and free layer etching is exemplified as a method of manufacturing a thin film magnetic device. However, the present invention is not limited to this example. For example, the material composition of the oxidation factor barrier layer / alcohol etchable layer that is the configuration of the cap layer, and the etching gas of the oxidation factor barrier layer that does not deteriorate the material may be used for other layers of the magnetoresistive element (for example, the pin layer) It can also be applied to the etching of the magnetic layer of other thin film magnetic devices.
 その際、酸化因子バリア層としては、上記実施の形態で例示したTaだけではなく、Nb、Ti、Ga、Zr、Hf、Be、Al、Cr、W、Y、U、Mg、Ba、Sr、Ca、La、Sc、Siの少なくとも一種を含む単体金属あるいは合金材料であれば同じ効果が得られる。また、アルコールエッチ可能層としては、上記実施の形態で例示したRuだけでなく、Rh、Au、Ir、Pt、Os、Re、Pdの少なくとも一種を含む単体金属あるいは合金材料を、膜厚5nm以下で用いれば、同じ効果が得られる。更に、上記実施の形態で例示したAgだけでなく、Pa、Tc、Po、Yb、Tb、Pr、Dy、Ce、Er、Ho、Th、Tmの少なくとも一種を含む単体金属あるいは合金材料であれば、同じ効果が得られる。 At that time, as the oxidation factor barrier layer, not only Ta exemplified in the above embodiment, but also Nb, Ti, Ga, Zr, Hf, Be, Al, Cr, W, Y, U, Mg, Ba, Sr, The same effect can be obtained if it is a single metal or alloy material containing at least one of Ca, La, Sc, and Si. As the alcohol etchable layer, not only Ru exemplified in the above embodiment, but also a single metal or alloy material containing at least one of Rh, Au, Ir, Pt, Os, Re, and Pd, a film thickness of 5 nm or less. If used in the same way, the same effect can be obtained. Furthermore, not only Ag exemplified in the above embodiment, but also a single metal or alloy material containing at least one of Pa, Tc, Po, Yb, Tb, Pr, Dy, Ce, Er, Ho, Th, Tm. The same effect can be obtained.
 また、磁性層だけでなく、ハロゲンや酸素などにより材料の劣化を引き起こしやすい薄膜材料のエッチングにおいても、本実施の形態のキャップ層構成を適用することで、材料の劣化を引き起こすことなく微細加工が可能である。 In addition, not only the magnetic layer but also etching of thin film materials that are liable to cause material deterioration due to halogen, oxygen, etc., by applying the cap layer configuration of this embodiment, fine processing can be performed without causing material deterioration. Is possible.
 なお、実施の形態で示した薄膜磁気デバイスのエッチング工程終了後に、本発明の実施の形態に係る上部電極やキャップ層である酸化因子バリア層/アルコールエッチ可能層を、それより下層にある磁性材料層(例示:フリー層やピン層)を劣化することなく除去すること(例示:化学・機械研磨法(CMP法))が可能であれば、そのように除去しても良い。すなわち、該薄膜磁気デバイスのエッチング工程においてのみ酸化因子バリア層/アルコールエッチ可能層の積層構造を採用するようにしても良い。 After the completion of the etching process of the thin film magnetic device shown in the embodiment, the upper electrode and the cap layer according to the embodiment of the present invention are provided with the oxidation factor barrier layer / alcohol etchable layer below the magnetic material. If the layer (example: free layer or pinned layer) can be removed without deterioration (example: chemical / mechanical polishing method (CMP method)), it may be removed as such. That is, a laminated structure of an oxidation factor barrier layer / alcohol etchable layer may be employed only in the etching process of the thin film magnetic device.
 薄膜磁気デバイスの応用例として、磁気ランダムアクセスメモリ(Magnetic Ramdom Access Memory:MRAM)が考えられる。以下では、そのMRAMについて説明する。図10は、本発明の実施の形態に係る薄膜磁気デバイスとしてのMRAMの構成の一例を示すブロック図である。図10において、MRAM60は、複数の磁気メモリセル1がマトリックス状に配置されたメモリセルアレイ61を有している。このメモリセルアレイ61は、データの記録に用いられる磁気メモリセル1と共に、データ読み出しの際に参照されるリファレンスセル1rを含んでいる。リファレンスセル1rの構造は、磁気メモリセル1と同じである。 As an application example of a thin film magnetic device, a magnetic random access memory (MRAM) can be considered. Hereinafter, the MRAM will be described. FIG. 10 is a block diagram showing an example of the configuration of the MRAM as the thin film magnetic device according to the embodiment of the present invention. In FIG. 10, an MRAM 60 has a memory cell array 61 in which a plurality of magnetic memory cells 1 are arranged in a matrix. The memory cell array 61 includes a reference cell 1r that is referred to when reading data together with the magnetic memory cell 1 used for data recording. The structure of the reference cell 1r is the same as that of the magnetic memory cell 1.
 各磁気メモリセル1は、図5に示された磁気抵抗効果素子20に加え、選択トランジスタTR1、TR2を有している。選択トランジスタTR1のソース/ドレインの一方は、上部電極21に接続され、他方は第1ビット線BL1に接続されている。選択トランジスタTR2のソース/ドレインの一方は、上部電極21に接続され、他方は第2ビット線BL2に接続されている。選択トランジスタTR1、TR2のゲートはワード線WLに接続されている。下部電極27は配線69を介してグランド線Gに接続されている。 Each magnetic memory cell 1 has selection transistors TR1 and TR2 in addition to the magnetoresistive effect element 20 shown in FIG. One of the source / drain of the selection transistor TR1 is connected to the upper electrode 21, and the other is connected to the first bit line BL1. One of the source / drain of the selection transistor TR2 is connected to the upper electrode 21, and the other is connected to the second bit line BL2. The gates of the selection transistors TR1 and TR2 are connected to the word line WL. The lower electrode 27 is connected to the ground line G via the wiring 69.
 ワード線WLは、Xセレクタ62に接続されている。Xセレクタ62は、データの書込み動作時、及び読出し動作時において、対象メモリセル1sにつながるワード線WLを選択ワード線WLsとして選択する。第1ビット線BL1はY側電流終端回路64に接続されており、第2ビット線BL2はYセレクタ63に接続されている。Yセレクタ63は、対象メモリセル1sにつながる第2ビット線BL2を選択第2ビット線BL2sとして選択する。Y側電流終端回路64は、対象メモリセル1sにつながる第1ビット線BL1を選択第1ビット線BL1sとして選択する。 The word line WL is connected to the X selector 62. The X selector 62 selects a word line WL connected to the target memory cell 1s as a selected word line WLs during a data write operation and a read operation. The first bit line BL1 is connected to the Y-side current termination circuit 64, and the second bit line BL2 is connected to the Y selector 63. The Y selector 63 selects the second bit line BL2 connected to the target memory cell 1s as the selected second bit line BL2s. The Y-side current termination circuit 64 selects the first bit line BL1 connected to the target memory cell 1s as the selected first bit line BL1s.
 Y側電流源回路65は、データ書込み動作時、選択第2ビット線BL2sに対し、所定の書き込み電流の供給又は引き込みを行う。Y側電源回路66は、データ書き込み動作時、Y側電流終端回路64に所定の電圧を供給する。その結果、書き込み電流は、Yセレクタ63、選択第2ビット線BL2s、選択トランジスタTR2、上部電極21近傍の配線、選択トランジスタTR1、選択第1ビット線BL1s、及びY側電流終端回路64の経路を、書き込むデータに応じた向きで流れる。これらXセレクタ62、Yセレクタ63、Y側電流終端回路64、Y側電流源回路65、及びY側電源回路66は、磁気メモリセル1に書き込み電流を供給するための「書き込み電流供給回路」を構成している。 The Y-side current source circuit 65 supplies or draws a predetermined write current to the selected second bit line BL2s during the data write operation. The Y-side power supply circuit 66 supplies a predetermined voltage to the Y-side current termination circuit 64 during the data write operation. As a result, the write current passes through the path of the Y selector 63, the selected second bit line BL2s, the select transistor TR2, the wiring near the upper electrode 21, the select transistor TR1, the selected first bit line BL1s, and the Y-side current termination circuit 64. , Flowing in the direction according to the data to be written. These X selector 62, Y selector 63, Y side current termination circuit 64, Y side current source circuit 65, and Y side power supply circuit 66 form a “write current supply circuit” for supplying a write current to the magnetic memory cell 1. It is composed.
 データ読み出し動作時、第1ビット線BL1は“Open”に設定される。読み出し電流負荷回路67は、選択第2ビット線BL2sに所定の読み出し電流を流す。また、読み出し電流負荷回路67は、リファレンスセル1rにつながるリファレンス第2ビット線BL2rに所定の電流を流す。センスアンプ68は、リファレンス第2ビット線BL2rの電位と選択第2ビット線BL2sの電位の差に基づいて、対象メモリセル1sからデータを読み出し、そのデータを出力する。 During the data read operation, the first bit line BL1 is set to “Open”. The read current load circuit 67 supplies a predetermined read current to the selected second bit line BL2s. The read current load circuit 67 supplies a predetermined current to the reference second bit line BL2r connected to the reference cell 1r. The sense amplifier 68 reads data from the target memory cell 1s based on the difference between the potential of the reference second bit line BL2r and the potential of the selected second bit line BL2s, and outputs the data.
 本発明によれば、酸化因子バリア層/アルコールエッチ可能層の構造のキャップ層を薄膜磁気デバイスの磁性層直上に配し、エッチング工程において磁性材料を化学的に変質しないガス系で酸化因子バリア層をエッチングし、アルコールエッチ可能層及び磁性層をアルコールプラズマでエッチングすることで、アルコールエッチングの効果である薄膜磁気デバイスのエッチング工程における形状制御性の確保と、薄膜磁気デバイスの全エッチングプロセス中の特性劣化の抑制を両立可能な薄膜磁気デバイス及びその製造方法を提供することができる。 According to the present invention, a cap layer having a structure of an oxidation factor barrier layer / alcohol etchable layer is disposed immediately above a magnetic layer of a thin film magnetic device, and the oxidation factor barrier layer is formed in a gas system that does not chemically alter the magnetic material in the etching process. And etching the alcohol etchable layer and the magnetic layer with alcohol plasma, ensuring the shape controllability in the etching process of the thin film magnetic device, which is the effect of alcohol etching, and the characteristics of the thin film magnetic device during the entire etching process It is possible to provide a thin film magnetic device capable of simultaneously suppressing deterioration and a method for manufacturing the same.
 本発明の活用例として、磁気抵抗効果素子を情報記憶における1ビットに用いるMRAM(例示:図10)や、同じく磁気抵抗効果素子を論理回路の構成要素に用いる不揮発ロジックデバイスのような半導体装置や、磁気記録装置用の磁気ヘッドが挙げられる。また磁気抵抗効果素子に限らず、酸化やハロゲンとの反応により材料が改質してしまう薄膜デバイスの構成材料を微細加工する際に、本発明のキャップ構造や製造方法は有効である。たとえばイオンの電界拡散や材料の相変化により抵抗値を変化させることで情報記憶を行う抵抗変化型メモリ素子や、配線層間に容量を形成するMIMキャパシタが例として挙げられる。 As examples of use of the present invention, a semiconductor device such as an MRAM (eg, FIG. 10) using a magnetoresistive effect element for one bit in information storage, or a non-volatile logic device using the magnetoresistive effect element as a component of a logic circuit, And a magnetic head for a magnetic recording apparatus. In addition to the magnetoresistive effect element, the cap structure and the manufacturing method of the present invention are effective when microfabricating a constituent material of a thin film device whose material is modified by reaction with oxidation or halogen. For example, a resistance change type memory element that stores information by changing a resistance value by electric field diffusion of ions or a phase change of a material, or an MIM capacitor that forms a capacitance between wiring layers can be given as examples.
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2010年5月28日に出願された特許出願番号2010-122929号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2010-122929 filed on May 28, 2010 and claims the benefit of the priority of the application, the disclosure of which is cited Is incorporated here as it is.

Claims (14)

  1.  基板の上方に設けられた磁性層と、
     前記磁性層上に設けられ、アルコールプラズマでエッチング可能なアルコールエッチ可能層と、
     前記アルコールエッチ可能層上に設けられ、前記磁性層を劣化させる因子が当該磁性層へ拡散するのを抑制する因子バリア層と
     を具備する
     薄膜磁気デバイス。
    A magnetic layer provided above the substrate;
    An alcohol-etchable layer provided on the magnetic layer and etchable with alcohol plasma;
    A thin film magnetic device comprising: a factor barrier layer provided on the alcohol etchable layer and suppressing a factor that degrades the magnetic layer from diffusing into the magnetic layer.
  2.  請求項1に記載の薄膜磁気デバイスにおいて、
     前記因子バリア層は、前記磁性層の磁性材料よりも酸化しやすく、かつ自身が不動態化しやすい材料を含む
     薄膜磁気デバイス。
    The thin film magnetic device according to claim 1,
    The factor barrier layer includes a material that is more easily oxidized than the magnetic material of the magnetic layer and that is easily passivated.
  3.  請求項2記載の薄膜磁気デバイスにおいて、
     前記磁性層は、Ni、Fe、及びCoのうちの少なくとも一種を含み、
     前記因子バリア層は、Nb、Ta、Ti、Ga、Zr、Hf、Be、Al、Cr、W、Y、U、Mg、Ba、Sr、Ca、La、Sc、及びSiのうちの少なくとも一種の元素を含有する単体金属又は合金の材料を含む
     薄膜磁気デバイス。
    The thin film magnetic device according to claim 2.
    The magnetic layer includes at least one of Ni, Fe, and Co;
    The factor barrier layer is at least one of Nb, Ta, Ti, Ga, Zr, Hf, Be, Al, Cr, W, Y, U, Mg, Ba, Sr, Ca, La, Sc, and Si. A thin film magnetic device comprising a single metal or alloy material containing an element.
  4.  請求項2に記載の薄膜磁気デバイスにおいて、
     前記アルコールエッチ可能層は、前記因子バリア層に用いられる材料以外の材料で、前記磁性層への固溶限が400℃で1%以下の材料を含む
     薄膜磁気デバイス。
    The thin film magnetic device according to claim 2.
    The alcohol-etchable layer is a material other than the material used for the factor barrier layer, and includes a material whose solid solubility limit in the magnetic layer is 1% or less at 400 ° C.
  5.  請求項4に記載の薄膜磁気デバイスにおいて、
     前記磁性層は、Ni、Fe、及びCoのうちの少なくとも一種を含み、
     前記アルコールエッチ可能層として、Pa、Ag、Tc、Po、Yb、Tb、Pr、Dy、Ce、Er、Ho、Th、Tmのうちの少なくとも一種の元素を含有する単体金属又は合金の材料を含む
     薄膜磁気デバイス。
    The thin film magnetic device according to claim 4.
    The magnetic layer includes at least one of Ni, Fe, and Co;
    The alcohol etchable layer includes a single metal or alloy material containing at least one element of Pa, Ag, Tc, Po, Yb, Tb, Pr, Dy, Ce, Er, Ho, Th, and Tm. Thin film magnetic device.
  6.  請求項2に記載の薄膜磁気デバイスにおいて、
     前記アルコールエッチ可能層は、前記因子バリア層に用いられる材料以外の材料で、前記磁性層への固溶によって、前記磁性層の特性に影響を与え難い材料を、固溶による影響が観察されない膜厚以下で用いる
     薄膜磁気デバイス。
    The thin film magnetic device according to claim 2.
    The alcohol etchable layer is a material other than the material used for the factor barrier layer, and a material that does not easily affect the characteristics of the magnetic layer due to the solid solution in the magnetic layer is a film in which the influence of the solid solution is not observed. Thin film magnetic devices used at thicknesses below.
  7.  請求項6に記載の薄膜磁気デバイスにおいて、
     前記磁性層は、Ni、Fe、及びCoのうちの少なくとも一種を含み、
     前記アルコールエッチ可能層は、Rh、Au、Ir、Pt、Ru、Os、Re、Pdの中の少なくとも一種の元素を含有する単体金属又は合金の材料を含み、膜厚5nm以下である
     薄膜磁気デバイス。
    The thin film magnetic device according to claim 6.
    The magnetic layer includes at least one of Ni, Fe, and Co;
    The alcohol etchable layer includes a single metal or alloy material containing at least one element selected from Rh, Au, Ir, Pt, Ru, Os, Re, and Pd, and has a film thickness of 5 nm or less. .
  8.  請求項1乃至7のいずれか一項に記載の薄膜磁気デバイスにおいて、
     前記磁性層は、磁気抵抗効果素子のフリー層又はピン層である
     薄膜磁気デバイス。
    The thin film magnetic device according to any one of claims 1 to 7,
    The magnetic layer is a free layer or a pinned layer of a magnetoresistive effect element.
  9.  基板の上方に磁性層、アルコールプラズマでエッチング可能なアルコールエッチ可能層、前記磁性層を劣化させる因子が当該磁性層へ拡散するのを抑制する因子バリア層、及び上部層をこの順に積層する工程と、
     前記上部層を、ハロゲン系ガス又は酸素ガスの少なくとも一方を含むエッチングガスで所定の形状にエッチングする工程と、
     前記因子バリア層を、前記磁性層を化学的に変質させないエッチングガスで所定の形状にエッチングする工程と、
     前記アルコールエッチ可能層及び前記磁性層をアルコールを含むエッチングガスで所定の形状にエッチングする工程と
     を具備する
     薄膜磁気デバイスの製造方法。
    A step of laminating a magnetic layer, an alcohol etchable layer that can be etched with alcohol plasma, a factor barrier layer that suppresses diffusion of a factor that degrades the magnetic layer into the magnetic layer, and an upper layer in this order above the substrate; ,
    Etching the upper layer into a predetermined shape with an etching gas containing at least one of a halogen-based gas or an oxygen gas;
    Etching the factor barrier layer into a predetermined shape with an etching gas that does not chemically alter the magnetic layer;
    Etching the alcohol-etchable layer and the magnetic layer into a predetermined shape with an etching gas containing alcohol. A method of manufacturing a thin film magnetic device.
  10.  請求項9記載の薄膜磁気デバイスの製造方法において、
     前記上部層は、
      前記因子バリア層上に設けられた下側膜と、
      前記下側膜上に設けられた上側膜と
      を備え、
     前記上部層をエッチングする工程は、
      前記上側膜を、前記下側膜をストッパ膜として、ハロゲン系ガス又は酸素ガスの少なくとも一方を含むエッチングガスで所定の形状にエッチングする工程と、
      前記下側層を、磁性層を化学的に変質させないエッチングガスで所定の形状にエッチングする工程と
      を備える
     薄膜磁気デバイスの製造方法。
    The method of manufacturing a thin film magnetic device according to claim 9,
    The upper layer is
    A lower film provided on the factor barrier layer;
    An upper film provided on the lower film,
    Etching the upper layer comprises:
    Etching the upper film into a predetermined shape with an etching gas containing at least one of a halogen-based gas and an oxygen gas, using the lower film as a stopper film;
    Etching the lower layer into a predetermined shape with an etching gas that does not chemically alter the magnetic layer. A method of manufacturing a thin film magnetic device.
  11.  請求項9又は10記載の薄膜磁気デバイスの製造方法において、
     前記因子バリア層のエッチングガスは、He、Ne、Ar、Kr、Xe、N、H、及びCのうちの少なくとも一種を含み、O、F、Cl、及びBrを含まないガスである
     薄膜磁気デバイスの製造方法。
    In the manufacturing method of the thin film magnetic device according to claim 9 or 10,
    The etching gas for the factor barrier layer is a gas containing at least one of He, Ne, Ar, Kr, Xe, N, H, and C, and not containing O, F, Cl, and Br. Manufacturing method.
  12.  請求項11記載の薄膜磁気デバイスの製造方法において、
     前記磁性層は、Ni、Fe、及びCoのうちの少なくとも一種を含み、
     前記因子バリア層は、Nb、Ta、Ti、Ga、Zr、Hf、Be、Al、Cr、W、Y、U、Mg、Ba、Sr、Ca、La、Sc、及びSiのうちの少なくとも一種の元素を含有する単体金属又は合金の材料を含む
     薄膜磁気デバイスの製造方法。
    In the manufacturing method of the thin film magnetic device of Claim 11,
    The magnetic layer includes at least one of Ni, Fe, and Co;
    The factor barrier layer is at least one of Nb, Ta, Ti, Ga, Zr, Hf, Be, Al, Cr, W, Y, U, Mg, Ba, Sr, Ca, La, Sc, and Si. A method of manufacturing a thin film magnetic device comprising a single metal or alloy material containing an element.
  13.  請求項12に記載の薄膜磁気デバイスの製造方法において、
     前記磁性層は、Ni、Fe、及びCoのうちの少なくとも一種を含み、
     前記アルコールエッチ可能層は、Pa、Ag、Tc、Po、Yb、Tb、Pr、Dy、Ce、Er、Ho、Th、Tmのうちの少なくとも一種の元素を含有する単体金属又は合金の材料を含む
     薄膜磁気デバイスの製造方法。
    The method of manufacturing a thin film magnetic device according to claim 12,
    The magnetic layer includes at least one of Ni, Fe, and Co;
    The alcohol etchable layer includes a single metal or alloy material containing at least one element of Pa, Ag, Tc, Po, Yb, Tb, Pr, Dy, Ce, Er, Ho, Th, and Tm. A method of manufacturing a thin film magnetic device.
  14.  請求項11に記載の薄膜磁気デバイスの製造方法において、
     前記磁性層は、Ni、Fe、及びCoのうちの少なくとも一種を含み、
     前記アルコールエッチ可能層は、Rh、Au、Ir、Pt、Ru、Os、Re、Pdの中の少なくとも一種の元素を含有する単体金属又は合金の材料を含み、膜厚5nm以下である
     薄膜磁気デバイスの製造方法。
    The method of manufacturing a thin film magnetic device according to claim 11,
    The magnetic layer includes at least one of Ni, Fe, and Co;
    The alcohol etchable layer includes a single metal or alloy material containing at least one element selected from Rh, Au, Ir, Pt, Ru, Os, Re, and Pd, and has a film thickness of 5 nm or less. Manufacturing method.
PCT/JP2011/061880 2010-05-28 2011-05-24 Thin film magnetic device and method for manufacturing same WO2011148944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012517278A JP5720681B2 (en) 2010-05-28 2011-05-24 Thin film magnetic device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-122929 2010-05-28
JP2010122929 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148944A1 true WO2011148944A1 (en) 2011-12-01

Family

ID=45003933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061880 WO2011148944A1 (en) 2010-05-28 2011-05-24 Thin film magnetic device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5720681B2 (en)
WO (1) WO2011148944A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187409A (en) * 2012-03-08 2013-09-19 Renesas Electronics Corp Magnetic memory cell and method for manufacturing the same
JPWO2012176747A1 (en) * 2011-06-24 2015-02-23 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element
JP2015046528A (en) * 2013-08-29 2015-03-12 株式会社アルバック Method of manufacturing magnetoresistive element
CN110098320A (en) * 2018-01-30 2019-08-06 上海磁宇信息科技有限公司 A method of etching magnetic tunnel junction conductive hard mask

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551594B1 (en) 2018-09-28 2019-07-31 Tdk株式会社 Spin orbit torque type magnetoresistance effect element and magnetic memory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190780A (en) * 2005-01-05 2006-07-20 Tdk Corp Method of manufacturing magnetoresistive effect element and thin-film magnetic head
JP2007049118A (en) * 2005-07-13 2007-02-22 Tdk Corp Magnetic field detecting element, base, wafer, head gimbal assembly, harddisk device and method of manufacturing magnetic field detecting element
JP2008135432A (en) * 2006-11-27 2008-06-12 Tdk Corp Tunnel magnetoresistive effect element and manufacturing method thereof
JP2009071321A (en) * 2008-11-13 2009-04-02 Canon Anelva Corp Method of manufacturing magnetoresistance effect device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190780A (en) * 2005-01-05 2006-07-20 Tdk Corp Method of manufacturing magnetoresistive effect element and thin-film magnetic head
JP2007049118A (en) * 2005-07-13 2007-02-22 Tdk Corp Magnetic field detecting element, base, wafer, head gimbal assembly, harddisk device and method of manufacturing magnetic field detecting element
JP2008135432A (en) * 2006-11-27 2008-06-12 Tdk Corp Tunnel magnetoresistive effect element and manufacturing method thereof
JP2009071321A (en) * 2008-11-13 2009-04-02 Canon Anelva Corp Method of manufacturing magnetoresistance effect device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012176747A1 (en) * 2011-06-24 2015-02-23 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element
JP2013187409A (en) * 2012-03-08 2013-09-19 Renesas Electronics Corp Magnetic memory cell and method for manufacturing the same
JP2015046528A (en) * 2013-08-29 2015-03-12 株式会社アルバック Method of manufacturing magnetoresistive element
CN110098320A (en) * 2018-01-30 2019-08-06 上海磁宇信息科技有限公司 A method of etching magnetic tunnel junction conductive hard mask
CN110098320B (en) * 2018-01-30 2023-04-28 上海磁宇信息科技有限公司 Method for etching conductive hard mask of magnetic tunnel junction

Also Published As

Publication number Publication date
JPWO2011148944A1 (en) 2013-07-25
JP5720681B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
US9985201B2 (en) Magnetic memory based on spin hall effect
US7897412B2 (en) Method of manufacturing magnetic random access memory including middle oxide layer
TWI575788B (en) Magnetic memory and method of manufacturing magnetic memory
US8642358B2 (en) Method for fabricating magnetic tunnel junction device
WO2017208576A1 (en) Magnetic multilayer film, magnetic memory element, magnetic memory and method for producing same
JP2007005555A (en) Magnetoresistive-effect element and magnetic random-access memory
JP2013140891A (en) Manufacturing method of magnetoresistance effect element
JP5720681B2 (en) Thin film magnetic device and manufacturing method thereof
CN108780780B (en) Nonvolatile memory device and method of manufacturing the same
JP2007053315A (en) Magnetic memory device and its manufacturing method
US20170256705A1 (en) Magnetoresistive element and method of manufacturing the same
US20150072439A1 (en) Method of manufacturing magnetoresistive element
JP5895610B2 (en) Magnetoresistive memory and method of manufacturing magnetoresistive memory
US20210074762A1 (en) Magnetoresistive memory device and method of manufacturing magnetoresistive memory device
JP2005203772A (en) Method for forming magnetic tunnel junction cell of nano size without contact hole
JP2009290050A (en) Magnetoresistive element and method of manufacturing the same
JP2007294010A (en) Recording method of storage element, and memory
US9425388B2 (en) Magnetic element and method of manufacturing the same
JP2019057636A (en) Magnetic memory device
JP2005209951A (en) Magnetic memory device and magnetic storage device
JP2007324215A (en) Method of manufacturing tunnel magnetoresistance element and nonvolatile memory device
TWI778510B (en) Magnetic memory device and manufacturing method of magnetic memory device
US20240081156A1 (en) Memory device and method of manufacturing the same
JP2017212330A (en) Method of manufacturing magnetic storage element and magnetic storage element
JP2006080164A (en) Magnetic memory and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517278

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786643

Country of ref document: EP

Kind code of ref document: A1