WO2011148815A1 - Exhaust gas purification system - Google Patents

Exhaust gas purification system Download PDF

Info

Publication number
WO2011148815A1
WO2011148815A1 PCT/JP2011/061218 JP2011061218W WO2011148815A1 WO 2011148815 A1 WO2011148815 A1 WO 2011148815A1 JP 2011061218 W JP2011061218 W JP 2011061218W WO 2011148815 A1 WO2011148815 A1 WO 2011148815A1
Authority
WO
WIPO (PCT)
Prior art keywords
regeneration
exhaust gas
automatic
purification system
dpd
Prior art date
Application number
PCT/JP2011/061218
Other languages
French (fr)
Japanese (ja)
Inventor
卓史 池田
哲也 村田
謙三 柳沼
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201180025424.8A priority Critical patent/CN102939454B/en
Priority to EP11786514.7A priority patent/EP2578858B1/en
Priority to US13/699,492 priority patent/US8978365B2/en
Publication of WO2011148815A1 publication Critical patent/WO2011148815A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/604Engine control mode selected by driver, e.g. to manually start particle filter regeneration or to select driving style
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1489Replacing of the control value by a constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2487Methods for rewriting
    • F02D41/2493Resetting of data to a predefined set of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas purification system that collects PM (Particulate Matter) in exhaust gas of a diesel engine and purifies NOx and exhausts the exhaust gas.
  • PM Porate Matter
  • the present invention relates to a case where DPD is temporarily stopped during automatic regeneration and idle automatic regeneration is performed.
  • the present invention relates to an exhaust gas purification system.
  • An exhaust gas purification system in which a DPD (Diesel Particulate Defuser) and an SCR (Selective Catalytic Reduction) device are connected to an exhaust pipe has been developed as an exhaust gas purification system for purifying exhaust gas from a diesel engine.
  • This clogging is detected when the exhaust pressure sensor detects the differential pressure before and after the DPD, and when the differential pressure reaches the upper limit, it is automatically or manually performed by the ECU (Engine Control Unit). Then, the DPD warning lamp provided in the cabin is turned on, and the driver pushes the reproduction execution switch, so that DPD reproduction is started.
  • the DPD consists of a DOC consisting of an active catalyst that oxidizes unburned fuel and a CSF (Catalyzed Soot Filter) that collects PM in the exhaust gas.
  • CSF Catalyzed Soot Filter
  • multiple fuel injections pilot injection, pre-injection, After the exhaust temperature is raised above the catalyst activation temperature of the DOC by performing main injection and after injection), post injection is added to raise the exhaust temperature to about 500 ° C and 600 ° C.
  • the PM collected in is burned, removed and regenerated.
  • ⁇ DPD playback may be performed automatically during driving or manually by idle rotation with the vehicle stopped. Normally, it automatically regenerates while driving, but post-injection causes fuel oil to enter the cylinder's lubricating oil, resulting in a lubricant dilution, so the amount of dilution is reduced by manual regeneration. ing.
  • the exhaust brake valve is closed to prevent regeneration of the exhaust temperature so that it can be regenerated even at idling rotation when the car is stopped, and regeneration is continued.
  • the exhaust gas temperature flowing into the CSF is detected by an exhaust gas temperature sensor provided on the downstream side of the DOC, and a deviation between the exhaust gas temperature and the regeneration target temperature (as an example, 500 ° C., 600 ° C.) is obtained.
  • the post-injection amount is PID controlled so as to reach the regeneration target temperature.
  • JP 2000-303826 A Japanese Patent No. 4175281
  • the regeneration temperature often does not reach the regeneration target temperature because the amount of exhaust gas flowing through the DOC is small.
  • the unburned fuel that has been post-injected remains accumulated in the DOC.
  • PID control is control that converges a proportional control term (P term), an integral control term (I term), and a differential control term (D term) to a set value, and a deviation is caused by the proportional control term (P term).
  • P term proportional control term
  • I term integral control term
  • D term differential control term
  • the regeneration temperature does not reach the target temperature as described above. Therefore, if the post-injection amount is controlled by the PID control, the proportional control term is based on the deviation and a certain operation amount. In addition, since there is no deviation in the differential control term, a constant manipulated variable is outputted, so that there is no trouble in idling control even when the deviation is unchanged. However, in the integral control term, the deviation is added in a predetermined integration time. Therefore, when the idle control becomes long, the operation amount of the integral control term increases and increases to the upper limit value. Further, since the exhaust gas amount differs greatly during running and idling, it is necessary to take an optimum integral control term for each.
  • an object of the present invention is to solve the above-described problems, accurately control automatic idle regeneration at the time of stoppage from automatic running regeneration, and exhaust gas temperature overshoots even when shifting from automatic idle regeneration to automatic running regeneration.
  • the object is to provide an exhaust gas purification system that does not occur.
  • a DPD that collects PM in exhaust gas is connected to an exhaust pipe of a diesel engine, and when the PM amount of the DPD becomes a predetermined amount or more, post-injection
  • an exhaust gas purification system that automatically regenerates DPD by raising the exhaust gas temperature of the diesel engine, the exhaust gas temperature during DPD regeneration during automatic regeneration is detected, and the deviation between the detected exhaust gas temperature and the regeneration target temperature is obtained Based on this deviation, when performing PID control of the post injection amount, when shifting from automatic regeneration to automatic idle regeneration by stopping the vehicle, the integral control term in PID control is reset to zero to control the post injection amount.
  • the post-injection amount is directly maintained in the PID control after the integral control term is reset to zero by the idle automatic regeneration. It is an exhaust gas purification system of Claim 1 which controls.
  • the invention according to claim 3 is the exhaust gas purification system according to claim 1, wherein the integral control term of the PID control is reset to zero again when the automatic idle regeneration after the stop is started and the automatic traveling regeneration is shifted beyond a predetermined time. It is.
  • the invention of claim 4 is the exhaust gas purification system according to claim 2 or 3, wherein the predetermined time is 3 minutes.
  • the invention of claim 6 is the exhaust gas purification system according to any one of claims 1 to 4, wherein the exhaust brake valve is closed when the idle automatic regeneration is started and the exhaust brake is opened when the automatic travel regeneration is started.
  • the present invention it is possible to eliminate the adverse effects caused by the PID control during idle automatic regeneration and to exhibit the excellent effect of preventing the exhaust gas overshoot in the DPD.
  • FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. It is a figure which shows the control chart at the time of the automatic reproduction
  • an intake manifold 11 and an exhaust manifold 12 of a diesel engine 10 are connected to a compressor 14 and a turbine 15 of a supercharger 13, respectively, and air from an upstream intake pipe 16a is boosted by the compressor 14, and downstream intake Cooled through the intercooler 17 of the pipe 16 b and supplied to the diesel engine 10 from the intake manifold 11 via the intake throttle valve 18, exhaust gas from the diesel engine 10 drives the turbine 15 and then enters the exhaust pipe 20. Exhausted.
  • the upstream intake pipe 16a is provided with an air mass flow sensor (MAF) 19 for measuring the intake air amount.
  • the air mass flow sensor (MAF) controls the opening of the intake throttle valve 18 to adjust the intake air amount.
  • the exhaust pipe 20 and the upstream intake pipe 16a are connected to an EGR (Exhaust Gas Recirculation) pipe 21 for returning a part of the exhaust gas to the intake system of the engine 10 to reduce NOx.
  • the EGR pipe 21 is connected to the EGR pipe 21.
  • the cooler 22 and the EGR valve 23 are connected.
  • the exhaust pipe 20 is connected to an exhaust brake valve 24, a DPD 25, an exhaust throttle valve 26, and a silencer 27.
  • the DPD 25 includes a DOC 28 that is an active catalyst that oxidizes unburned fuel and a CSF (Catalyzed Soot Filter) 29 that collects PM in exhaust gas.
  • DOC 28 is an active catalyst that oxidizes unburned fuel
  • CSF Catalyzed Soot Filter
  • an SCR device for denitrating NOx with ammonia is connected between the exhaust throttle valve 26 and the silencer 27.
  • Exhaust gas temperature sensors 30 a and 30 b are provided before and after the DOC 28, a differential pressure sensor 31 for detecting the PM accumulation amount of the CSF 29 is provided, and these detected values are input to an ECU (engine control unit) 32.
  • ECU engine control unit
  • the ECU 32 receives the detection value of the rotation sensor 33 that detects the engine speed, the detection value of the vehicle speed sensor 34, and the detection value of the atmospheric pressure sensor 35.
  • the ECU 32 is configured to control the fuel injection amount in the fuel injector 38 according to the accelerator opening degree while traveling, and appropriately control the intake throttle valve 18, the exhaust brake valve 24, and the exhaust throttle valve 26.
  • the ECU 32 determines that a certain amount of PM has accumulated on the DPD 25 based on the detection value of the differential pressure sensor 31 that detects the differential pressure before and after the CSF 29, or the travel distance after the previous regeneration is predetermined. When the value is reached, the exhaust gas temperature from the diesel engine 10 is finally raised to about 600 ° C., and PM is burned and regenerated.
  • the post-injection is performed and the exhaust gas temperature is set to 500 as an example.
  • the temperature is raised to 600 ° C. and the PM is combusted.
  • the post-injection mixes the fuel oil into the cylinder lubricating oil, resulting in a dilution of the lubricating oil ( Dilution) occurs, so the amount of dilution is reduced by manual regeneration.
  • the ECU 32 throttles the intake throttle valve 18, closes the EGR valve 23, performs multi-injection, raises the exhaust gas temperature above the catalyst activation temperature, and raises the temperature of the catalyst of the DOC 28.
  • the post-injection is added to the multi-injection, and the exhaust gas temperature is raised to 500 ° C. and 600 ° C. as an example, and PM is burned to regenerate the DPD 25.
  • the intake throttle valve 18 and the EGR valve 23 are returned to normal control.
  • the regeneration idle rotation speed is increased when the transmission gear is neutral, and when the gear is in, the vehicle travels from the stop.
  • the regeneration idle speed is set lower than the regeneration idle speed when the gear is neutral.
  • the ECU 32 turns on the automatic regeneration warning lamp 36b.
  • the initial regeneration target temperature is set to 500 ° C. to prevent the accumulated PM from burning at once. If the PM in the DPD is burned to some extent, the target temperature is changed, and the post-injection amount is controlled so that the final regeneration target temperature is 600 ° C. as an example.
  • the exhaust gas temperature is detected by the exhaust gas temperature sensor 30b described with reference to FIG. 1, and the ECU 32 obtains a deviation e between the regeneration target temperature and the exhaust gas temperature, and performs post-injection by the fuel injector 38 by PID control based on the deviation e.
  • the operation amount M is determined.
  • M Kp ⁇ e + Ki ⁇ (1 / Ti) ⁇ ⁇ edt + Kd ⁇ Td (de / dt)
  • Kp is a proportional constant for proportional control
  • Ki is a proportional constant for integral control
  • Kd is a proportional constant for differential control
  • Ti is an integration time
  • Td is a differentiation time
  • t is time.
  • the manipulated variable M is determined by the sum of the proportional control term, the integral control term, and the differential control term.
  • the actual post-injection amount is determined by adding the operation amount of the base term to this operation amount M, and the fuel pressure of the fuel injector 38 and the valve opening time.
  • the engine speed is high during automatic running regeneration, and the exhaust gas temperature can be increased in accordance with the post-injection amount. Therefore, the regeneration target temperature can be accurately controlled.
  • the car stops and the exhaust brake valve 24 and the exhaust throttle The exhaust gas temperature in the DPD 25 is controlled not to decrease by closing the valve 26 and increasing the injection amount, and the engine speed is increased from the normal idle speed to the regenerative idle speed, even though the gear is neutral and gear-in. Since the regeneration idle speed is lower than the engine speed during traveling, the intake air amount and exhaust gas amount to the engine are also reduced, and it becomes difficult to maintain or raise the regeneration target temperature. As a result, the deviation e is further increased.
  • the proportional control term and the differential control term are constant.
  • the integral control term integrates the increased deviation e, post injection is performed during idle regeneration. The amount will rise to the upper limit.
  • the intake air amount increases as the engine speed increases, and the exhaust gas temperature may rise rapidly, causing the DPD 25 to melt. Occurs.
  • the integral control term in the control expression of the PID control is reset to zero together with the closing operation of the exhaust brake valve 24.
  • the vehicle travels within a predetermined time (within 3 minutes) from the stop while performing automatic idle regeneration after this zero reset.
  • the vehicle travels by controlling the post injection amount by PID control after the zero reset.
  • PID control By performing automatic regeneration, automatic traveling regeneration can be performed without any problem.
  • the stoppage time exceeds 3 minutes, the amount of operation due to the integral control term will increase. Therefore, the integral control term is reset to zero again and automatic running regeneration prevents the occurrence of exhaust gas temperature overshoot. can do.
  • the present invention can perform stable idle automatic regeneration by resetting the integral control term of PID control to zero. Determines whether to reset the integral control term to zero again or continue control without resetting according to the stop time of the car, so there is no problem even if the automatic idle regeneration is switched to the automatic traveling regeneration. You can switch between them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Provided is an exhaust gas purification system which can accurately control an automatic driving regeneration and an automatic idling regeneration when a vehicle is stopped, and prevents the exhaust gas temperature from overshooting even when the automatic idling regeneration is shifted to the automatic driving regeneration. In the exhaust gas purification system, a diesel particulate defuser (DPD) (25) for collecting particulate matter (PM) in exhaust gas is connected to an exhaust pipe (20) of a diesel engine (10); and, when the quantity of PM in the DPD (25) reaches or exceeds a predetermined quantity, a post-injection is performed to increase the exhaust gas temperature of the diesel engine (10), so that the DPD is automatically regenerated. In order that the exhaust gas temperature is detected when the DPD is automatically regenerated, and a deviation between the detected exhaust gas temperature and a regeneration target temperature is obtained to PID-control the post-injection quantity on the basis of the deviation, integral control terms in the PID-control are reset to zero to control the post-injection quantity, when the automatic driving regeneration is shifted to the automatic idling regeneration because a vehicle is stopped.

Description

排ガス浄化システムExhaust gas purification system
 本発明は、ディーゼルエンジンの排気ガス中のPM(Particulate Matter)を捕集すると共にNOxを浄化して排気する排ガス浄化システムに係り、特にDPDを自動再生時に一時停車してアイドル自動再生する際の排ガス浄化システムに関するものである。 The present invention relates to an exhaust gas purification system that collects PM (Particulate Matter) in exhaust gas of a diesel engine and purifies NOx and exhausts the exhaust gas. In particular, the present invention relates to a case where DPD is temporarily stopped during automatic regeneration and idle automatic regeneration is performed. The present invention relates to an exhaust gas purification system.
 ディーゼルエンジンの排気ガスを浄化して排気する排ガス浄化システムとして、排気管にDPD(Diesel Particulate Defuser)及びSCR(Selective Catalytic Reduction)装置を接続した排ガス浄化システムが開発されている。 An exhaust gas purification system in which a DPD (Diesel Particulate Defuser) and an SCR (Selective Catalytic Reduction) device are connected to an exhaust pipe has been developed as an exhaust gas purification system for purifying exhaust gas from a diesel engine.
 この排ガス浄化システムでは、DPDで、排気ガス中のPMを捕集する。また、排ガス浄化システムでは、SCR装置を備えたSCRシステムで、尿素タンクに貯留された尿素水をSCRの排気ガス上流に供給し、排気ガスの熱でアンモニアを生成し、このアンモニアによって、SCR触媒上でNOxを還元して浄化する(例えば、特許文献1、2参照)。 In this exhaust gas purification system, PM in exhaust gas is collected by DPD. In the exhaust gas purification system, the urea water stored in the urea tank is supplied upstream of the exhaust gas of the SCR, and ammonia is generated by the heat of the exhaust gas. The NOx is reduced and purified (see, for example, Patent Documents 1 and 2).
 DPDで捕集したPMは、フィルタの目詰まりの原因となるため、捕集堆積したPMを適宜酸化させ、除去して再生する必要がある。 Since PM collected by DPD causes clogging of the filter, it is necessary to appropriately oxidize, remove, and regenerate the collected PM.
 この目詰まりの検出は、排気圧センサがDPD前後の差圧を検知し、その差圧が上限値に達したときに、ECU(Engine Control Unit)が自動的に、或いは手動で行う場合には、キャビン内に設けられたDPD警告灯を点灯し、ドライバーが再生実行スイッチを押すことで、DPD再生が開始される。 This clogging is detected when the exhaust pressure sensor detects the differential pressure before and after the DPD, and when the differential pressure reaches the upper limit, it is automatically or manually performed by the ECU (Engine Control Unit). Then, the DPD warning lamp provided in the cabin is turned on, and the driver pushes the reproduction execution switch, so that DPD reproduction is started.
 DPDは、未燃焼燃料を酸化する活性触媒からなるDOCと排ガス中のPMを捕集するCSF(Catalyzed Soot Filter)からなり、DPD再生の際には、燃料のマルチ噴射(パイロット噴射、プレ噴射、メイン噴射、アフタ噴射)を行って排気温度をDOCの触媒活性温度以上に上げた後、ポスト噴射を追加して、排気温度を500℃、600℃程度に上昇させ、この高温の排気ガスでCSFに捕集されたPMを燃焼させ、除去して再生するものである。 The DPD consists of a DOC consisting of an active catalyst that oxidizes unburned fuel and a CSF (Catalyzed Soot Filter) that collects PM in the exhaust gas. During DPD regeneration, multiple fuel injections (pilot injection, pre-injection, After the exhaust temperature is raised above the catalyst activation temperature of the DOC by performing main injection and after injection), post injection is added to raise the exhaust temperature to about 500 ° C and 600 ° C. The PM collected in is burned, removed and regenerated.
 DPD再生は、走行中に自動再生を行う場合と、車を停止してアイドル回転で手動再生する場合とがある。通常は走行中に自動再生するが、ポスト噴射により、気筒の潤滑油中に燃料油が混入し、潤滑油のダイリューションが生じるため、手動再生にてダイリューション量を低減するようになっている。 ¡DPD playback may be performed automatically during driving or manually by idle rotation with the vehicle stopped. Normally, it automatically regenerates while driving, but post-injection causes fuel oil to enter the cylinder's lubricating oil, resulting in a lubricant dilution, so the amount of dilution is reduced by manual regeneration. ing.
 また走行中の自動再生で、車の停止時には、アイドル回転でも再生できるように排気ブレーキバルブを閉じて排気温度の低下を防止して、再生を継続するようにしている。 Also, with automatic regeneration while driving, the exhaust brake valve is closed to prevent regeneration of the exhaust temperature so that it can be regenerated even at idling rotation when the car is stopped, and regeneration is continued.
 この自動再生は、DOCの下流側に設けた排気温度センサでCSFに流入する排ガス温度を検知し、その排ガス温度と再生目標温度(一例として500℃、600℃)との偏差を求め、その偏差に基づいて再生目標温度となるようポスト噴射量がPID制御される。 In this automatic regeneration, the exhaust gas temperature flowing into the CSF is detected by an exhaust gas temperature sensor provided on the downstream side of the DOC, and a deviation between the exhaust gas temperature and the regeneration target temperature (as an example, 500 ° C., 600 ° C.) is obtained. The post-injection amount is PID controlled so as to reach the regeneration target temperature.
特開2000-303826号公報JP 2000-303826 A 特許第4175281号公報Japanese Patent No. 4175281
 ところで、停車時のアイドル自動再生は、再生アイドル回転数に落すと共に排気ブレーキバルブを閉じることで、回転数が低く排気ガス量が少ないアイドル中であってもDPD内の排ガスの保温を図りながらポスト噴射を行って自動再生できるようにしている。 By the way, automatic idle regeneration when the vehicle is stopped is reduced to the regeneration idle speed and closed by the exhaust brake valve, while keeping the exhaust gas in the DPD warm while idling with a low rotational speed and a small exhaust gas amount. It can be automatically regenerated by spraying.
 しかしながら、上述のように排気ブレーキバルブを閉じて、ポスト噴射を行っても、DOCに流れる排ガス量が少ないため、再生温度が再生目標温度に達しない場合が多く。またポスト噴射された未燃燃料は、DOCに蓄積されたままとなる。 However, even if the exhaust brake valve is closed and post injection is performed as described above, the regeneration temperature often does not reach the regeneration target temperature because the amount of exhaust gas flowing through the DOC is small. The unburned fuel that has been post-injected remains accumulated in the DOC.
 一般に、PID制御は、比例制御項(P項)、積分制御項(I項)、微分制御項(D項)を組み合わせて設定値に収束させる制御であり、比例制御項(P項)で偏差に比例させて操作量を変え、積分制御項で偏差を足していき、その値に比例して操作量を変えることで、比例制御での残存偏差(定常偏差)を解消させ、さらに微分制御では、偏差の変化率を速度に変え、これに比例した操作量を出すことで、応答速度を速くしていち早く設定値に収束させるように制御するものである。 In general, PID control is control that converges a proportional control term (P term), an integral control term (I term), and a differential control term (D term) to a set value, and a deviation is caused by the proportional control term (P term). By changing the operation amount in proportion to the value, adding the deviation in the integral control term, and changing the operation amount in proportion to that value, the residual deviation in the proportional control (steady deviation) is eliminated, and in the differential control By changing the rate of change of deviation to speed and outputting an operation amount proportional to this, control is performed so that the response speed is increased and converged quickly to the set value.
 ここで、アイドル自動再生時には、上述したように再生温度が目標温度に達しないため、PID制御でポスト噴射量を制御していると、比例制御項では、その偏差に基づいて、一定の操作量を出力し、また微分制御項も偏差がないため一定の操作量を出力するため、偏差に変化のない状態でも制御的にはアイドル制御時に支障を来すことはない。しかし、積分制御項では、所定の積分時間で偏差を足していくため、アイドル制御が長くなると、積分制御項の操作量が増大し、上限値まで上昇してしまう。また、走行中とアイドル時では排気ガス量が大きく異なるため、それぞれにおいて最適な積分制御項をとる必要がある。 Here, at the time of automatic idle regeneration, the regeneration temperature does not reach the target temperature as described above. Therefore, if the post-injection amount is controlled by the PID control, the proportional control term is based on the deviation and a certain operation amount. In addition, since there is no deviation in the differential control term, a constant manipulated variable is outputted, so that there is no trouble in idling control even when the deviation is unchanged. However, in the integral control term, the deviation is added in a predetermined integration time. Therefore, when the idle control becomes long, the operation amount of the integral control term increases and increases to the upper limit value. Further, since the exhaust gas amount differs greatly during running and idling, it is necessary to take an optimum integral control term for each.
 このように積分制御項が上限値まで上昇してアイドル自動再生から走行自動再生になった場合、排気ブレーキバルブを開き、それまでのPID制御で決定した操作量で、ポスト噴射を行うと、大量の排気ガスがエンジンからDPDに流れ、しかもDOCに蓄積された未燃燃料も燃焼し、再生温度が目標温度に対して過大なオーバーシュートが発生してしまう問題がある。この場合、過大なオーバーシュートが発生するのは、アイドル自動再生時間が長い場合であり、またアイドル停止時間が短い場合は、積分制御項による影響は少ないと考えられる。 In this way, when the integral control term rises to the upper limit value and the automatic regeneration is switched from the idle automatic regeneration to the automatic traveling regeneration, the exhaust brake valve is opened and the post-injection is performed with the operation amount determined by the previous PID control. Exhaust gas flows from the engine to the DPD, and unburned fuel accumulated in the DOC also burns, resulting in an excessive overshoot of the regeneration temperature with respect to the target temperature. In this case, an excessive overshoot occurs when the idle automatic regeneration time is long, and when the idle stop time is short, it is considered that the influence of the integral control term is small.
 そこで、本発明の目的は、上記課題を解決し、走行自動再生から停止時の自動アイドル再生の制御を的確に行え、しかも自動アイドル再生から走行自動再生に移行しても排ガス温度がオーバーシュートすることがない排ガス浄化システムを提供することにある。 Accordingly, an object of the present invention is to solve the above-described problems, accurately control automatic idle regeneration at the time of stoppage from automatic running regeneration, and exhaust gas temperature overshoots even when shifting from automatic idle regeneration to automatic running regeneration. The object is to provide an exhaust gas purification system that does not occur.
 上記目的を達成するために請求項1の発明は、ディーゼルエンジンの排気管に排気ガス中のPMを捕集するDPDを接続し、前記DPDのPM量が一定量以上になったとき、ポスト噴射を行ってディーゼルエンジンの排ガス温度を上昇させてDPDを自動再生する排ガス浄化システムにおいて、自動再生する際のDPD再生中の排ガス温度を検知し、検出した排ガス温度と再生目標温度との偏差を求め、この偏差に基づいて、ポスト噴射量をPID制御するに際して、走行自動再生から停車によるアイドル自動再生に移行したとき、PID制御での積分制御項をゼロにリセットしてポスト噴射量を制御することを特徴とする排ガス浄化システムである。 In order to achieve the above object, according to the first aspect of the present invention, a DPD that collects PM in exhaust gas is connected to an exhaust pipe of a diesel engine, and when the PM amount of the DPD becomes a predetermined amount or more, post-injection In an exhaust gas purification system that automatically regenerates DPD by raising the exhaust gas temperature of the diesel engine, the exhaust gas temperature during DPD regeneration during automatic regeneration is detected, and the deviation between the detected exhaust gas temperature and the regeneration target temperature is obtained Based on this deviation, when performing PID control of the post injection amount, when shifting from automatic regeneration to automatic idle regeneration by stopping the vehicle, the integral control term in PID control is reset to zero to control the post injection amount. An exhaust gas purification system characterized by
 請求項2の発明は、前記停車後のアイドル自動再生開始から所定時間以内に走行自動再生に移行したときには、前記アイドル自動再生で積分制御項をゼロにリセットした後のPID制御でそのままポスト噴射量を制御する請求項1記載の排ガス浄化システムである。 According to the second aspect of the present invention, when the automatic idle regeneration after the stop is started and the automatic running regeneration is started within a predetermined time, the post-injection amount is directly maintained in the PID control after the integral control term is reset to zero by the idle automatic regeneration. It is an exhaust gas purification system of Claim 1 which controls.
 請求項3の発明は、前記停車後のアイドル自動再生開始から、所定時間を超えて走行自動再生に移行したときには、再度PID制御の積分制御項をゼロにリセットする請求項1記載の排ガス浄化システムである。 The invention according to claim 3 is the exhaust gas purification system according to claim 1, wherein the integral control term of the PID control is reset to zero again when the automatic idle regeneration after the stop is started and the automatic traveling regeneration is shifted beyond a predetermined time. It is.
 請求項4の発明は、前記所定時間が3分である請求項2又は3記載の排ガス浄化システムである。 The invention of claim 4 is the exhaust gas purification system according to claim 2 or 3, wherein the predetermined time is 3 minutes.
 請求項5の発明は、走行自動再生から車を減速して停車した際に、減速時は、そのままPID制御によるポスト噴射を継続し、停車後にPID制御の積分制御項をゼロにリセットする請求項1記載の排ガス浄化システムである。 According to a fifth aspect of the present invention, when the vehicle is decelerated from the automatic running regeneration and stopped, the post-injection by the PID control is continued as it is during deceleration, and the integral control term of the PID control is reset to zero after the vehicle stops. 1. An exhaust gas purification system according to 1.
 請求項6の発明は、アイドル自動再生を開始する際に排気ブレーキバルブを閉じ、走行自動再生に移行したとき排気ブレーキを開とする請求項1~4いずれかに記載の排ガス浄化システムである。 The invention of claim 6 is the exhaust gas purification system according to any one of claims 1 to 4, wherein the exhaust brake valve is closed when the idle automatic regeneration is started and the exhaust brake is opened when the automatic travel regeneration is started.
 本発明によれば、アイドル自動再生時のPID制御による弊害を解消でき、DPD内での排ガスのオーバーシュートを防止できるという優れた効果を発揮するものである。 According to the present invention, it is possible to eliminate the adverse effects caused by the PID control during idle automatic regeneration and to exhibit the excellent effect of preventing the exhaust gas overshoot in the DPD.
本発明の一実施の形態を示す全体構成図である。1 is an overall configuration diagram showing an embodiment of the present invention. 本発明における自動再生時の制御チャートを示す図である。It is a figure which shows the control chart at the time of the automatic reproduction | regeneration in this invention.
 以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
 図1において、ディーゼルエンジン10の吸気マニホールド11と排気マニホールド12は、過給機13のコンプレッサ14とタービン15にそれぞれ連結され、上流側吸気管16aからの空気がコンプレッサ14で昇圧され、下流側吸気管16bのインタークーラ17を通って冷却されて吸気スロットルバルブ18を介して吸気マニホールド11からディーゼルエンジン10に供給され、ディーゼルエンジン10からの排気ガスは、タービン15を駆動した後、排気管20に排気される。 In FIG. 1, an intake manifold 11 and an exhaust manifold 12 of a diesel engine 10 are connected to a compressor 14 and a turbine 15 of a supercharger 13, respectively, and air from an upstream intake pipe 16a is boosted by the compressor 14, and downstream intake Cooled through the intercooler 17 of the pipe 16 b and supplied to the diesel engine 10 from the intake manifold 11 via the intake throttle valve 18, exhaust gas from the diesel engine 10 drives the turbine 15 and then enters the exhaust pipe 20. Exhausted.
 上流側吸気管16aには、吸気量を測定するエアマスフローセンサ(MAF)19が設けられ、そのエアマスフローセンサ(MAF)で、吸気スロットルバルブ18の開度が制御されて吸気量が調整される。また排気管20と上流側吸気管16aには排気ガスの一部をエンジン10の吸気系に戻してNOxを低減するためのEGR(Exhaust Gas Recirculation)管21が接続され、そのEGR管21にEGRクーラ22とEGRバルブ23とが接続される。 The upstream intake pipe 16a is provided with an air mass flow sensor (MAF) 19 for measuring the intake air amount. The air mass flow sensor (MAF) controls the opening of the intake throttle valve 18 to adjust the intake air amount. . The exhaust pipe 20 and the upstream intake pipe 16a are connected to an EGR (Exhaust Gas Recirculation) pipe 21 for returning a part of the exhaust gas to the intake system of the engine 10 to reduce NOx. The EGR pipe 21 is connected to the EGR pipe 21. The cooler 22 and the EGR valve 23 are connected.
 排気管20には、排気ブレーキバルブ24、DPD25、排気スロットルバルブ26、サイレンサー27が接続される。DPD25は、未燃焼燃料を酸化する活性触媒からなるDOC28と排ガス中のPMを捕集するCSF(Catalyzed Soot Filter)29からなる。また図には示していないが、排気スロットルバルブ26とサイレンサー27間に、NOxをアンモニアで脱硝するSCR装置が接続される。 The exhaust pipe 20 is connected to an exhaust brake valve 24, a DPD 25, an exhaust throttle valve 26, and a silencer 27. The DPD 25 includes a DOC 28 that is an active catalyst that oxidizes unburned fuel and a CSF (Catalyzed Soot Filter) 29 that collects PM in exhaust gas. Although not shown in the figure, an SCR device for denitrating NOx with ammonia is connected between the exhaust throttle valve 26 and the silencer 27.
 DOC28の前後には、排ガス温度センサ30a、30bが設けられ、CSF29のPM堆積量を検出する差圧センサ31が設けられ、これら検出値がECU(エンジンコントロールユニット)32に入力される。 Exhaust gas temperature sensors 30 a and 30 b are provided before and after the DOC 28, a differential pressure sensor 31 for detecting the PM accumulation amount of the CSF 29 is provided, and these detected values are input to an ECU (engine control unit) 32.
 ECU32には、エンジンの回転数を検出する回転センサ33の検出値、車速センサ34の検出値、大気圧センサ35の検出値が入力される。 The ECU 32 receives the detection value of the rotation sensor 33 that detects the engine speed, the detection value of the vehicle speed sensor 34, and the detection value of the atmospheric pressure sensor 35.
 ECU32は、走行中、アクセル開度に応じて燃料インジェクタ38での燃料噴射量を制御すると共に、吸気スロットルバルブ18、排気ブレーキバルブ24、排気スロットルバルブ26を適宜制御するようになっている。 The ECU 32 is configured to control the fuel injection amount in the fuel injector 38 according to the accelerator opening degree while traveling, and appropriately control the intake throttle valve 18, the exhaust brake valve 24, and the exhaust throttle valve 26.
 この排ガス処理システムにおいて、ECU32は、CSF29の前後の差圧を検出する差圧センサ31の検出値により、DPD25にPMが一定量堆積した判断したとき、又は前回の再生後からの走行距離が所定値に達したときに、ディーゼルエンジン10からの排ガス温度を最終的に600℃程度に昇温してPMを燃焼させて再生するようになっている。 In this exhaust gas treatment system, the ECU 32 determines that a certain amount of PM has accumulated on the DPD 25 based on the detection value of the differential pressure sensor 31 that detects the differential pressure before and after the CSF 29, or the travel distance after the previous regeneration is predetermined. When the value is reached, the exhaust gas temperature from the diesel engine 10 is finally raised to about 600 ° C., and PM is burned and regenerated.
 この再生は、DOC28の触媒活性温度以上になるよう、燃料インジェクタ38でマルチ噴射(パイロット噴射、プレ噴射、メイン噴射、アフタ噴射)を行った後、ポスト噴射を行って排ガス温度を、一例として500℃、600℃に昇温してPMを燃焼させるものであり、通常は走行中に自動再生するが、ポスト噴射により、気筒の潤滑油中に燃料油が混入し、潤滑油のダイリューション(希釈)が生じるため、手動再生にてダイリューション量を低減するようになっている。 In this regeneration, after the multi-injection (pilot injection, pre-injection, main injection, and after-injection) is performed by the fuel injector 38 so as to be equal to or higher than the catalyst activation temperature of the DOC 28, the post-injection is performed and the exhaust gas temperature is set to 500 as an example. The temperature is raised to 600 ° C. and the PM is combusted. Usually, it is automatically regenerated during traveling. However, the post-injection mixes the fuel oil into the cylinder lubricating oil, resulting in a dilution of the lubricating oil ( Dilution) occurs, so the amount of dilution is reduced by manual regeneration.
 さて、自動再生する際のECU32の制御チャートを図2により説明する。 Now, a control chart of the ECU 32 for automatic regeneration will be described with reference to FIG.
 自動再生する際には、ECU32は、吸気スロットルバルブ18を絞り、EGRバルブ23を閉じ、マルチ噴射を行って排気ガス温度を触媒活性温度以上に昇温してDOC28の触媒の温度を上げ、次にマルチ噴射にポスト噴射を加えて排ガス温度を一例として500℃、600℃に昇温してPMを燃焼させてDPD25を再生する。再生終了後は、吸気スロットルバルブ18とEGRバルブ23を通常制御に戻す。 When the automatic regeneration is performed, the ECU 32 throttles the intake throttle valve 18, closes the EGR valve 23, performs multi-injection, raises the exhaust gas temperature above the catalyst activation temperature, and raises the temperature of the catalyst of the DOC 28. The post-injection is added to the multi-injection, and the exhaust gas temperature is raised to 500 ° C. and 600 ° C. as an example, and PM is burned to regenerate the DPD 25. After regeneration, the intake throttle valve 18 and the EGR valve 23 are returned to normal control.
 この自動再生中、車が信号待ちなどで停車しているときには、エンジン回転を通常アイドル回転から、変速機のギヤがニュートラルのときには再生アイドル回転数を上昇させ、ギヤインのときには、停止から走行する際の急発進を防止するために再生アイドル回転数をギヤがニュートラルのときの再生アイドル回転数より低く設定される。また自動再生中は、ECU32が自動再生警告ランプ36bを点灯させる。 During this automatic regeneration, when the car is stopped due to a signal or the like, the engine rotation is increased from the normal idle rotation, the regeneration idle rotation speed is increased when the transmission gear is neutral, and when the gear is in, the vehicle travels from the stop. In order to prevent sudden start of the engine, the regeneration idle speed is set lower than the regeneration idle speed when the gear is neutral. During automatic regeneration, the ECU 32 turns on the automatic regeneration warning lamp 36b.
 マルチ噴射からポスト噴射に切り替えてDPDを再生する際には、排ガス温度を600℃に昇温すると堆積したPMが一気に燃焼するのを防止すべく、例えば、初期の再生目標温度を一例として500℃とし、DPD内のPMをある程度燃焼させたならば、目標温度を変更して最終再生目標温度を一例として600℃になるようにポスト噴射量を制御する。 When regenerating DPD by switching from multi-injection to post-injection, if the exhaust gas temperature is raised to 600 ° C., for example, the initial regeneration target temperature is set to 500 ° C. to prevent the accumulated PM from burning at once. If the PM in the DPD is burned to some extent, the target temperature is changed, and the post-injection amount is controlled so that the final regeneration target temperature is 600 ° C. as an example.
 次に、ポスト噴射量のPID制御について説明する。 Next, the post injection amount PID control will be described.
 先ず自動再生中に図1で説明した排ガス温度センサ30bで排ガス温度が検知され、ECU32は、再生目標温度と排ガス温度の偏差eを求めその偏差に基づいてPID制御により、燃料インジェクタ38によるポスト噴射の操作量Mを決定する。 First, during the automatic regeneration, the exhaust gas temperature is detected by the exhaust gas temperature sensor 30b described with reference to FIG. 1, and the ECU 32 obtains a deviation e between the regeneration target temperature and the exhaust gas temperature, and performs post-injection by the fuel injector 38 by PID control based on the deviation e. The operation amount M is determined.
 この操作量Mは、次式で表される。
  M=Kp・e+Ki・(1/Ti)・∫edt+Kd・Td(de/dt)
This manipulated variable M is expressed by the following equation.
M = Kp · e + Ki · (1 / Ti) · ∫edt + Kd · Td (de / dt)
 上式中、Kpは、比例制御の比例定数、Kiは積分制御の比例定数、Kdは微分制御の比例定数、Tiは積分時間、Tdは微分時間、tは時間である。 In the above equation, Kp is a proportional constant for proportional control, Ki is a proportional constant for integral control, Kd is a proportional constant for differential control, Ti is an integration time, Td is a differentiation time, and t is time.
 ここで、操作量Mは、比例制御項と積分制御項と微分制御項の総和で決定される。実際のポスト噴射量は、この操作量Mにベース項の操作量を足し合わせ、燃料インジェクタ38の燃圧と開弁時間にて決定される。 Here, the manipulated variable M is determined by the sum of the proportional control term, the integral control term, and the differential control term. The actual post-injection amount is determined by adding the operation amount of the base term to this operation amount M, and the fuel pressure of the fuel injector 38 and the valve opening time.
 このPID制御で、走行自動再生中は、エンジン回転数も高いため、ポスト噴射量に見合って排ガス温度を高くすることができるため、再生目標温度に対し正確に制御することができる。 With this PID control, the engine speed is high during automatic running regeneration, and the exhaust gas temperature can be increased in accordance with the post-injection amount. Therefore, the regeneration target temperature can be accurately controlled.
 しかし、信号待ちや交通事情で、車が停車する直前では、エンジン回転数が落ち、排ガス量も少なくなり、偏差eが大きくなり、その状態で、車が停止して排気ブレーキバルブ24と排気スロットルバルブ26を閉じて噴射量を増すことによりDPD25内の排気ガス温度が下がらないように制御し、エンジン回転は、通常のアイドル回転から再生アイドル回転数に、ギヤがニュートラル、ギヤインでも上げるものの、この再生アイドル回転数では、走行時のエンジン回転数より低いため、エンジンへの吸気量及び排ガス量も少なくなるため、再生目標温度を維持又は上げることが難しくなる。その結果偏差eがさらに大きくなる。 However, just before the car stops due to traffic lights or traffic conditions, the engine speed decreases, the amount of exhaust gas decreases, and the deviation e increases. In this state, the car stops and the exhaust brake valve 24 and the exhaust throttle The exhaust gas temperature in the DPD 25 is controlled not to decrease by closing the valve 26 and increasing the injection amount, and the engine speed is increased from the normal idle speed to the regenerative idle speed, even though the gear is neutral and gear-in. Since the regeneration idle speed is lower than the engine speed during traveling, the intake air amount and exhaust gas amount to the engine are also reduced, and it becomes difficult to maintain or raise the regeneration target temperature. As a result, the deviation e is further increased.
 ここで、偏差eが一定とした場合は、比例制御項と微分制御項は、一定であるが、積分制御項は、その増大した偏差eを積分していくため、アイドル再生中にはポスト噴射量が上限値まで上昇してしまう。この制御状態で、停止から走行して走行自動再生に移行した際には、エンジン回転数の上昇とともに吸気量も増大してしまい、排ガス温度が急激に上昇し、DPD25を溶損させてしまうおそれが生じる。 Here, when the deviation e is constant, the proportional control term and the differential control term are constant. However, since the integral control term integrates the increased deviation e, post injection is performed during idle regeneration. The amount will rise to the upper limit. In this control state, when the vehicle travels from the stop and shifts to the automatic travel regeneration, the intake air amount increases as the engine speed increases, and the exhaust gas temperature may rise rapidly, causing the DPD 25 to melt. Occurs.
 そこで、本発明においては、車が停止してアイドル自動再生を開始する際に、排気ブレーキバルブ24の閉動作と合わせて、PID制御の制御式中の積分制御項をゼロにリセットするようにする。このように積分制御項をゼロにリセットすることで、停車直前の車の走行状態による偏差eの積分がなくなり、停車時の偏差eに基づいたPID制御によりポスト噴射量を決定してアイドル自動再生を行うことで、安定したアイドル自動再生が行える。 Therefore, in the present invention, when the vehicle is stopped and the automatic idle regeneration is started, the integral control term in the control expression of the PID control is reset to zero together with the closing operation of the exhaust brake valve 24. . By resetting the integral control term to zero in this way, there is no integration of the deviation e due to the running state of the vehicle immediately before stopping, and the post injection amount is determined by PID control based on the deviation e at the time of stopping and automatic idle regeneration is performed. By performing, stable idle automatic reproduction can be performed.
 また、このゼロリセット後にアイドル自動再生を行っている間に、車が停車から所定時間以内(3分以内)に走行した場合には、そのゼロリセット後のPID制御によるポスト噴射量の制御で走行自動再生を行うことで、走行自動再生が支障なく行える。また停車時間が3分を超える場合には、積分制御項による操作量が増大するため、その積分制御項を再度ゼロにリセットして走行自動再生することで、排ガス温度のオーバーシュートの発生を防止することができる。 In addition, if the vehicle travels within a predetermined time (within 3 minutes) from the stop while performing automatic idle regeneration after this zero reset, the vehicle travels by controlling the post injection amount by PID control after the zero reset. By performing automatic regeneration, automatic traveling regeneration can be performed without any problem. Also, if the stoppage time exceeds 3 minutes, the amount of operation due to the integral control term will increase. Therefore, the integral control term is reset to zero again and automatic running regeneration prevents the occurrence of exhaust gas temperature overshoot. can do.
 以上本発明は、アイドル自動再生時に、PID制御でポスト噴射量を制御する際に、PID制御の積分制御項をゼロにリセットすることで、安定したアイドル自動再生が行え、またそのアイドル自動再生後は、車の停止時間に応じて、積分制御項を再度ゼロにリセットするかリセットせずにそのまま制御を継続するかを判断することで、アイドル自動再生から走行自動再生に移行しても支障なくその切り替えが行える。 As described above, when the post injection amount is controlled by PID control during automatic idle regeneration, the present invention can perform stable idle automatic regeneration by resetting the integral control term of PID control to zero. Determines whether to reset the integral control term to zero again or continue control without resetting according to the stop time of the car, so there is no problem even if the automatic idle regeneration is switched to the automatic traveling regeneration. You can switch between them.
 10 ディーゼルエンジン
 20 排気管
 25 DPD
 32 ECU
 33 回転センサ
 35 大気圧センサ
10 Diesel engine 20 Exhaust pipe 25 DPD
32 ECU
33 Rotation sensor 35 Atmospheric pressure sensor

Claims (6)

  1.  ディーゼルエンジンの排気管に排気ガス中のPMを捕集するDPDを接続し、前記DPDのPM量が一定量以上になったとき、ポスト噴射を行ってディーゼルエンジンの排ガス温度を上昇させてDPDを自動再生する排ガス浄化システムにおいて、自動再生する際のDPD再生の排ガス温度を検知し、検出した排ガス温度と再生目標温度との偏差を求め、この偏差に基づいて、ポスト噴射量をPID制御するに際して、走行自動再生から停車によるアイドル自動再生に移行したとき、PID制御での積分制御項をゼロにリセットしてポスト噴射量を制御することを特徴とする排ガス浄化システム。 When a DPD that collects PM in exhaust gas is connected to the exhaust pipe of the diesel engine, and the PM amount of the DPD exceeds a certain amount, post injection is performed to raise the exhaust gas temperature of the diesel engine and In an exhaust gas purification system that automatically regenerates, the exhaust gas temperature of DPD regeneration at the time of automatic regeneration is detected, the deviation between the detected exhaust gas temperature and the regeneration target temperature is obtained, and the post injection amount is subjected to PID control based on this deviation An exhaust gas purification system that controls the post-injection amount by resetting the integral control term in PID control to zero when shifting from automatic running regeneration to idle automatic regeneration by stopping.
  2.  前記停車後のアイドル自動再生開始から所定時間以内に走行自動再生に移行したときには、前記アイドル自動再生で積分制御項をゼロにリセットした後のPID制御でそのままポスト噴射量を制御する請求項1記載の排ガス浄化システム。 The post-injection amount is directly controlled by PID control after resetting the integral control term to zero by the idle automatic regeneration when the automatic transition to idle regeneration is started within a predetermined time after the start of the idle automatic regeneration after the stop. Exhaust gas purification system.
  3.  前記停車後のアイドル自動再生開始から、所定時間を超えて走行自動再生に移行したときには、再度PID制御の積分制御項をゼロにリセットする請求項1記載の排ガス浄化システム。 The exhaust gas purification system according to claim 1, wherein the integral control term of the PID control is reset to zero again when the automatic idle regeneration after the stop is started and the automatic traveling regeneration is shifted beyond a predetermined time.
  4.  前記所定時間が3分である請求項2又は3記載の排ガス浄化システム。 The exhaust gas purification system according to claim 2 or 3, wherein the predetermined time is 3 minutes.
  5.  走行自動再生から車を減速して停車した際に、減速時は、そのままPID制御によるポスト噴射を継続し、停車後にPID制御の積分制御項をゼロにリセットする請求項1記載の排ガス浄化システム。 2. The exhaust gas purification system according to claim 1, wherein when the vehicle is decelerated from the automatic running regeneration and stopped, post injection by PID control is continued as it is, and the integral control term of PID control is reset to zero after the vehicle stops.
  6.  アイドル自動再生を開始する際に排気ブレーキバルブを閉じ、走行自動再生に移行したとき排気ブレーキを開とする請求項1~4いずれかに記載の請求項1記載の排ガス浄化システム。 The exhaust gas purification system according to any one of claims 1 to 4, wherein the exhaust brake valve is closed when the automatic idle regeneration is started, and the exhaust brake is opened when the automatic travel regeneration is started.
PCT/JP2011/061218 2010-05-25 2011-05-16 Exhaust gas purification system WO2011148815A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180025424.8A CN102939454B (en) 2010-05-25 2011-05-16 Exhaust gas purification system
EP11786514.7A EP2578858B1 (en) 2010-05-25 2011-05-16 Exhaust gas purification system
US13/699,492 US8978365B2 (en) 2010-05-25 2011-05-16 Exhaust gas purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010119720A JP5440384B2 (en) 2010-05-25 2010-05-25 Exhaust gas purification system
JP2010-119720 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011148815A1 true WO2011148815A1 (en) 2011-12-01

Family

ID=45003806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061218 WO2011148815A1 (en) 2010-05-25 2011-05-16 Exhaust gas purification system

Country Status (5)

Country Link
US (1) US8978365B2 (en)
EP (1) EP2578858B1 (en)
JP (1) JP5440384B2 (en)
CN (1) CN102939454B (en)
WO (1) WO2011148815A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256847A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd Exhaust emission control system
JP2014114700A (en) * 2012-12-06 2014-06-26 Kubota Corp Exhaust treatment device of diesel engine
CN104033215A (en) * 2013-03-04 2014-09-10 通用汽车环球科技运作有限责任公司 Method Of Controlling Exhaust Gas Temperature Of Internal Combustion Engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074912B2 (en) * 2012-05-11 2017-02-08 いすゞ自動車株式会社 Exhaust gas purification system and exhaust gas purification method
DE102014209420A1 (en) * 2014-05-19 2015-11-19 Volkswagen Aktiengesellschaft Method for controlling and / or regulating an internal combustion engine and engine control unit for carrying out the method
JP6233492B1 (en) * 2016-11-14 2017-11-22 マツダ株式会社 Exhaust purification device regeneration control device
CN107100703A (en) * 2017-05-26 2017-08-29 凯龙高科技股份有限公司 A kind of non-rice habitats diesel combustion device dpf regeneration temprature control method
CN113006950B (en) * 2021-02-24 2023-05-05 中国重汽集团济南动力有限公司 Control method and system for engine exhaust butterfly valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (en) 1999-04-16 2000-10-31 Isuzu Motors Ltd Exhaust emission control device for diesel engine
JP2005282479A (en) * 2004-03-30 2005-10-13 Isuzu Motors Ltd Method for controlling exhaust emission control system and exhaust emission control system
JP2007205223A (en) * 2006-02-01 2007-08-16 Isuzu Motors Ltd Control method for exhaust emission control system and exhaust emission control system
JP4175281B2 (en) 2004-03-31 2008-11-05 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP2010112251A (en) * 2008-11-06 2010-05-20 Nippon Soken Inc Exhaust purification system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175281A (en) 1990-11-09 1992-06-23 Nippon Chem Ind Co Ltd Glazed molded article of cement having transfer decoration and production thereof
JPH0777089A (en) * 1993-09-07 1995-03-20 Zexel Corp Smoke reducing device for diesel engine
JP3829699B2 (en) * 2001-11-28 2006-10-04 いすゞ自動車株式会社 Exhaust gas purification system and its regeneration control method
JP4075573B2 (en) * 2002-06-13 2008-04-16 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP2004116332A (en) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JP4135495B2 (en) * 2002-12-20 2008-08-20 いすゞ自動車株式会社 Fuel injection control device
JP4228690B2 (en) * 2002-12-25 2009-02-25 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4345359B2 (en) * 2003-05-28 2009-10-14 いすゞ自動車株式会社 Exhaust gas purification system
JP4186734B2 (en) * 2003-08-04 2008-11-26 いすゞ自動車株式会社 Feedback control device
JP4333289B2 (en) * 2003-09-03 2009-09-16 いすゞ自動車株式会社 Exhaust gas purification system
JP4161930B2 (en) * 2004-04-06 2008-10-08 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP4148178B2 (en) * 2004-04-08 2008-09-10 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP3824003B2 (en) * 2005-02-24 2006-09-20 いすゞ自動車株式会社 Exhaust gas purification system
US7389773B2 (en) * 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
EP2208872B1 (en) * 2007-11-06 2017-12-13 Hitachi Construction Machinery Co., Ltd. Work vehicle with exhaust purification system
EP2184475B1 (en) * 2008-11-10 2012-03-07 Ford Global Technologies, LLC Enhanced diesel particulate filter service regeneration method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303826A (en) 1999-04-16 2000-10-31 Isuzu Motors Ltd Exhaust emission control device for diesel engine
JP2005282479A (en) * 2004-03-30 2005-10-13 Isuzu Motors Ltd Method for controlling exhaust emission control system and exhaust emission control system
JP4175281B2 (en) 2004-03-31 2008-11-05 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP2007205223A (en) * 2006-02-01 2007-08-16 Isuzu Motors Ltd Control method for exhaust emission control system and exhaust emission control system
JP2010112251A (en) * 2008-11-06 2010-05-20 Nippon Soken Inc Exhaust purification system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256847A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd Exhaust emission control system
JP2014114700A (en) * 2012-12-06 2014-06-26 Kubota Corp Exhaust treatment device of diesel engine
CN104033215A (en) * 2013-03-04 2014-09-10 通用汽车环球科技运作有限责任公司 Method Of Controlling Exhaust Gas Temperature Of Internal Combustion Engine

Also Published As

Publication number Publication date
JP2011247142A (en) 2011-12-08
JP5440384B2 (en) 2014-03-12
EP2578858B1 (en) 2020-12-16
CN102939454A (en) 2013-02-20
EP2578858A1 (en) 2013-04-10
US8978365B2 (en) 2015-03-17
CN102939454B (en) 2015-07-08
EP2578858A4 (en) 2018-03-28
US20130067896A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5440384B2 (en) Exhaust gas purification system
JP5585225B2 (en) Exhaust gas purification system
JP5573391B2 (en) Exhaust gas purification system
JP5440385B2 (en) Exhaust gas purification system
JP5585226B2 (en) Exhaust gas purification system
EP1998015B1 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
WO2011155587A1 (en) Dpf system
JP5914963B2 (en) Exhaust gas purification system at high altitude
JP6405858B2 (en) DPF regeneration system for vehicles with PTO device
EP2578824B1 (en) System for purifying exhaust gas in upland area
JP5625476B2 (en) DPF system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025424.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13699492

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011786514

Country of ref document: EP