WO2011147230A1 - 一种微波等离子体点燃器 - Google Patents

一种微波等离子体点燃器 Download PDF

Info

Publication number
WO2011147230A1
WO2011147230A1 PCT/CN2011/072582 CN2011072582W WO2011147230A1 WO 2011147230 A1 WO2011147230 A1 WO 2011147230A1 CN 2011072582 W CN2011072582 W CN 2011072582W WO 2011147230 A1 WO2011147230 A1 WO 2011147230A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
microwave plasma
rectangular waveguide
pulverized coal
quartz glass
Prior art date
Application number
PCT/CN2011/072582
Other languages
English (en)
French (fr)
Inventor
白野
蒲力萌
Original Assignee
Bai Ye
Pu Limeng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bai Ye, Pu Limeng filed Critical Bai Ye
Publication of WO2011147230A1 publication Critical patent/WO2011147230A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/02Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs for igniting solid fuel

Definitions

  • the invention belongs to the technical field of high-power microwave application, and relates to a microwave plasma igniter for generating a plasma torch by using high-power microwave.
  • Microwave plasma is a quasi-equilibrium plasma with high charge density and temperature generated by electrodeless discharge. Compared with DC and RF plasma, it has the characteristics of high conversion efficiency, high temperature and large volume.
  • the microwave field strength to generate discharge should be greater than 3 ⁇ 104. v/cm, more than two orders of magnitude greater than the microwave field strength required for ex vivo excitation. Therefore, under atmospheric pressure ( ⁇ 105 Pa), the microwave plasma torch produces a microwave plasma torch (APT) that requires high-power microwaves to increase the microwave electric field in the plasma generating region and excite the microwave plasma.
  • APT microwave plasma torch
  • the microwave plasma generating device of the prior art is disclosed in FIG. 2 and FIG. 3, published on March 4, 2009, and the bulletin number is CN. 101378615A, entitled "A Microwave Plasma Torch Waveguide Excitation Cavity" Chinese invention patent application publication specification.
  • the microwave plasma igniter of the patent application not only eliminates the igniter or the igniter, but also greatly improves the narrow side height of the waveguide and the microwave field strength of the double-increased discharge area constituting the TE103 type resonator.
  • the utilization of microwave power that is, the conversion efficiency of microwave discharge.
  • the small microwave power can excite the microwave plasma torch under atmospheric pressure ( ⁇ 105 Pa) by the excitation cavity, the device structure is simple, the conversion efficiency is high, and the torch electronic High temperature and electron density, stable operation.
  • the existing microwave plasma igniter cannot be used for a long time, and cannot function as a combustion-supporting or stable combustion.
  • the object of the present invention is to overcome the technical problems and deficiencies of the prior art microwave plasma igniter which cannot be used for a long time, and to provide a microwave plasma igniter which can be used for a long time.
  • the microwave plasma igniter of the present invention comprises:
  • a microwave resonant cavity is connected to the microwave power feeding system, and the microwave power feeding system inputs a high power microwave into the microwave resonant cavity;
  • the microwave field strength passing through the microwave cavity is at a maximum, and is used for providing a space generated and maintained by the microwave plasma torch, wherein the microwave field intensity is at most the microwave plasma generating region;
  • All the air supply device is located at the bottom end of the quartz glass tube, and is sent obliquely upward along the circumferential line of the inner wall of the quartz glass tube to form a protective gas film between the inner wall of the quartz glass tube and the generated microwave plasma torch to avoid
  • the quartz glass tube is in direct contact with high temperature;
  • the pulverized coal flow blowing outlet is located at the center of the bottom end of the quartz glass tube, and is used for axially feeding the pulverized coal flow into the microwave plasma generating region in the quartz glass tube; when the microwave power is fed into the system input
  • the microwave power exceeds the critical value
  • the initial ionization discharge occurs in the microwave plasma generation zone under the excitation of the micro pulverized coal in the pulverized coal flow, and the microwave plasma torch is generated through the avalanche effect to generate the microwave plasma torch, and the pulverized coal is ignited at the same time.
  • the flow forms a pulverized coal microwave plasma torch and is blown out from the upper end of the quartz glass tube along the axial direction of the quartz glass tube.
  • the pulverized coal stream into the microwave plasma generating region on the one hand, through the excitation of the micro pulverized coal, that is, under the guidance, the initial ionization discharge, through the avalanche effect, the entire plasma glass tube is generated, and the microwave plasma torch is generated, and the microwave plasma is reduced.
  • the body excitation produces the required microwave field strength; meanwhile, on the other hand, the pulverized coal interacts with the microwave plasma, so that the axial pulverized coal flow is completely burned in the quartz glass tube, which improves the power density of the igniter output torch.
  • a large amount of heat is taken out of the burner through the pulverized coal flow, which realizes the protection of the burner device, and increases the ignition, combustion and stable combustion ability of the microwave plasma igniter.
  • the pulverized coal stream is excited in the microwave plasma generating region, the region is isolated by the spiral airflow film, and the torch that produces the output is not in direct contact with the microwave plasma igniter itself, and thus can be used for a long time.
  • the combustion system it plays the role of combustion-supporting and stable combustion, and overcomes the prior art to insert a coaxial plasma inner conductor into the coaxial plasma generating region to generate a microwave plasma torch, and the high-temperature plasma torch will melt the coaxial inner conductor.
  • the microwave plasma and the pulverized coal flow have sufficient action and the conversion efficiency is high, and the pulverized coal microwave plasma torch has a high temperature and a large volume, and can be used for a large-scale combustion system, such as a thermal power generation boiler, an incineration boiler, etc. Ignite, combustion and steady combustion to replace existing igniters, such as fuel igniters, DC plasma igniters, etc.
  • FIG. 1 is a schematic structural view of a specific embodiment of a microwave plasma igniter according to the present invention, wherein (a) is a side cross-sectional view, (b) is a plan view, (c) is a bottom view, and (d) is a field intensity distribution map. ;
  • Figure 2 is a side cross-sectional view of a prior art microwave plasma igniter
  • FIG 3 is a schematic diagram of the operation of the microwave plasma igniter shown in Figure 2.
  • the microwave cavity 100 includes:
  • a standard rectangular waveguide 101 having a start end connected to the microwave power feeding system and having an equivalent short-circuit surface forming device; the microwave power feeding system inputs a high-power microwave to the standard rectangular waveguide 101;
  • a gradual rectangular waveguide 102 whose beginning is connected to the end of the standard rectangular waveguide 101; the gradual rectangular waveguide 102 is compressed from the beginning to the end, and its narrow side is linearly compressed;
  • a narrow-sided compressed rectangular waveguide 103 having a start end connected to the end of the gradual rectangular waveguide 102 and having the same height as the narrow end of the gradual rectangular waveguide 102, the end being a metal short-circuiting plate 1031; and the upper and lower sides of the narrow-side compressed rectangular waveguide 103 respectively having one
  • the circular hole 1032, 1033, the center of the circle is about the wavelength of the end 1/4 waveguide on the central axis of the broad side of the waveguide, and the center line of the two circular holes 1032, 1033 is perpendicular to the upper and lower sides of the narrow-sided compressed rectangular waveguide;
  • the length of the microwave cavity satisfies the resonance condition.
  • the total length of the three-section rectangular waveguides 101, 102, 103 satisfies an integral multiple of the wavelength of the half-waveguide.
  • the quartz glass tube 200 is inserted into the narrow-sided compression rectangular waveguide through the circular hole 1032 on the narrow-side compression rectangular waveguide, at least to the lower side of the narrow-sided compression rectangular waveguide.
  • the microwave plasma igniter further includes a lower metal cylinder 301 located on the outer side of the circular hole 1033 below the narrow-sided compressed rectangular waveguide 103 to function as a cut-off circular waveguide.
  • a metal ring 400 is provided on the bottom end surface of the lower metal cylinder for use together with the metal cylinder 301 for preventing microwave leakage in the microwave cavity 100.
  • the tangential air supply device is a wall of the lower metal cylinder 301, and a plurality of small holes 501 are opened obliquely upward along the circumferential tangential line, and each of the small holes 501 is welded to the metal pipe 502 obliquely upward along the circumferential line of the cylindrical wall.
  • the outer wall port 5021 of the metal pipe 502 is connected to a supply means (not shown) such as an air compressor or the like.
  • the airflow is sent from the inner wall nozzle 5022 of the metal tube 502, and enters the quartz tube obliquely upward along the circumferential line of the inner wall of the quartz glass tube 200 for use between the inner wall of the quartz glass tube 200 and the generated pulverized coal microwave plasma torch 800.
  • a protective gas film is formed to prevent the quartz glass tube 200 from directly contacting the high temperature.
  • the pulverized coal flow outlet 601 of the pulverized coal flow blowing device 600 is located at the center of the bottom end of the quartz glass tube 200. In the present embodiment, it is located at the center of the metal ring 400 for the quartz glass tube.
  • the microwave plasma generating region in 200 is axially fed into the pulverized coal stream 700; when the microwave power feeding system input microwave power exceeds the critical value, it is generated in the microwave plasma generating region under the excitation of the micro pulverized coal in the pulverized coal stream 700.
  • the initial ionization discharge transitions into the entire quartz glass tube 200 through the avalanche effect, generates a microwave plasma torch, simultaneously ignites the pulverized coal stream, forms a pulverized coal microwave plasma torch 800, and passes along the quartz glass tube 200 axially from the quartz glass tube 200. The upper end is blown out.
  • the microwave resonant cavity 100 composed of a standard rectangular waveguide 101, a tapered rectangular waveguide 102, and a narrow-sided compressed rectangular waveguide 103 is disclosed in the prior art, that is, the publication number is CN, published on March 4, 2009.
  • the structure and principle of the microwave cavity in the microwave plasma igniter disclosed in the Chinese Patent Application Publication No. 101378615A is the same.
  • the equivalent short-circuit surface forming device of the standard rectangular waveguide 2 adopts the starting metal diaphragm 5, and the frequency error of the high-power microwave and the manufacturing error of the resonant cavity structure are transmitted due to the microwave power feeding system. It is often impossible to form a resonance in the microwave cavity 100 so that the microwave glass field of the quartz glass tube 11 passes through the microwave cavity is large. Therefore, in the present embodiment, the microwave cavity 100 is improved:
  • a pin adapter 1011 is mounted on the wide-width central axis L of the standard rectangular waveguide 101, and the initial end of the standard rectangular waveguide 101 is formed into an equivalent short-circuited surface by adjusting the pin adapter 1011.
  • the adjustment pin adapter 1011 is a three-pin adapter commonly used in the microwave field, and includes three equally spaced adjustable up and down pins, which are sequentially mounted in the axial direction at the center of the wide side of the standard rectangular waveguide 101.
  • An equivalent short-circuit surface is formed at the beginning of the standard rectangular waveguide 101 by a combination of three pins in different insertion depths in the standard rectangular waveguide 101.
  • the equivalent rectangular short-circuit surface at the beginning of the standard rectangular waveguide 101 and the metal short-circuiting plate 1031 at the end of the narrow-sided compressed rectangular waveguide 103 constitute a closed TE10n mode resonant cavity.
  • the microwave plasma igniter of the present invention operates in this manner:
  • the microwave feeding system enters the standard rectangular waveguide 101 through the flange 900, is assembled by the three-pin adapter 1011, and then enters the gradual rectangular waveguide 102 for compression, and the compressed microwave is sent into the narrow-side compressed rectangular waveguide 103; when the microwave is narrow After the metal short circuit plate 1031 at the end of the rectangular waveguide 103 is compressed, total reflection is generated, and the microwave narrow-edge compression rectangular waveguide 103 is reversely returned to the progressive rectangular waveguide 102 and the standard rectangular waveguide 101 to input the microwave feeding system, but most of the microwave power passes through the three pins.
  • the equivalent short-circuit surface formed by the adapter 1011 is returned, and is again transmitted in the direction of the standard rectangular waveguide 101, the gradual rectangular waveguide 102, and the narrow-side compressed rectangular waveguide 103. Since the total length of the three-section rectangular waveguides 101, 102, 103 satisfies an integral multiple of the waveguide wavelength, resonance occurs in the microwave cavity 100. At the time of resonance, since the quartz glass tube 200 is located at the center of the broad side of the waveguide of the narrow-sided compression rectangular waveguide 103 and is about the wavelength of the end 1/4 of the waveguide, the standing wave of the standing wave after the resonance, that is, the point A in FIG. 1(d) The microwave field strength passing through the microwave cavity is large, and the microwave field intensity in the quartz glass tube 200 is a microwave plasma generation region, that is, the B region in FIG. 1(a).
  • the pulverized coal flow outlet 601 of the pulverized coal flow blowing device 600 feeds the pulverized coal flow 700 axially into the microwave plasma generating region in the quartz glass tube 200.
  • the initial ionization discharge is generated in the microwave plasma generating region B under the excitation of the micro pulverized coal in the pulverized coal stream 700, and the microwave plasma torch is generated by the avalanche effect transition to the entire quartz glass tube 200.
  • the pulverized coal stream is ignited to form a pulverized coal microwave plasma torch 800, which is blown out from the upper end of the quartz glass tube 200 along the axial direction of the quartz glass tube 200.
  • the size of the pulverized coal microwave plasma torch 800 is related to the input microwave power. The greater the power, the larger the torch volume and the higher the temperature. After the formation of the pulverized coal microwave plasma torch 800, the microwave power of the torch can be greatly reduced.
  • the microwave plasma igniter further includes an upper metal cylinder 302 located on the outer side circular hole 1032 of the narrow-side compressed rectangular waveguide 103, the central axis of which coincides with the center of the circular hole 1032, and serves as a fixed quartz glass tube. 200 and the role of the cut-off circular waveguide.
  • the waveguide is made of high-gloss aluminum and requires silver plating on the inner surface to improve the inherent quality factor (Qo value) of the cavity.
  • the standard rectangular waveguide 101 is larger than 300 mm.
  • the length of the gradation rectangular waveguide 102 and the microwave narrow-side compression rectangular waveguide 103 are both 220 mm.
  • the center of the wide side of the standard rectangular waveguide 101 is axially mounted with three diameters of 15 mm.
  • the adjustment pin constitutes a pin adapter stapler 1011.
  • the pin axes are 60 mm apart from each other, and the position of the pin screwed in can be adjusted up and down.
  • the gradual rectangular waveguide 102 is a rectangular waveguide compressed in a linear manner with a narrow side, and its narrow side is 124 from the beginning. Mm to compression to the end 62mm.
  • the upper metal cylinder 302 has a length of 30 mm, an inner diameter of 100 mm, and an outer diameter of the quartz glass tube 200 of 100 mm.
  • the narrow side compression rectangular waveguide 103 is inserted through the upper metal cylinder 302 until the other side of the narrow side compressed rectangular waveguide 103, and the axial direction of the lower metal cylinder 301
  • the length is about 50 mm
  • the outer diameter is 100 mm
  • the circular hole 1033 is inserted.
  • the end face and the narrow-side compressed rectangular waveguide 103 are kept in the same plane, functioning as a cut-off circular waveguide, and also a flow passage for the pulverized coal flow 700.
  • a torch having a diameter of 80 mm and a length of 300 mm or more can be produced at a power of 20 kw, and the temperature is 3000 k or more.
  • the microwave plasma igniter of the present invention can also be applied to other frequency bands, such as L-band, S-band, C-band, X-band, or different waveguide sizes of the same frequency band, such as BJ22, etc., which are all within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Description

一种微波等离子体点燃器 技术领域
本发明属于大功率微波应用技术领域,涉及一种利用大功率微波产生等离子体火炬的微波等离子体点燃器。
背景技术
微波等离子体是一种通过无极放电产生的高电荷密度和温度的准平衡等离子体。它与直流、射频等离子体相比,具有转换效率高、温度高、体积大等特点。
在微波工业应用领域,国际相关组织给出了两个工作频率窗口,即915MHz、2450MHz。在这些工作频率窗口,对于微波等离体的激励,1个大气压或更高气压时,要产生放电的微波场强需大于3×104 v/cm,超过低气压等离体激励所需微波场强两个数量级之多。因此,在大气压强(≧105帕)下,微波等离子点燃器产生微波等离子体火炬(APT)需要大功率的微波,以提高等离子体产生区域的微波电场,激励微波等离子体产生。
为提高放电位置的微波电场,现有技术中的微波等离子体产生装置,如图2、3所示的、2009年03月04日公开的、公告号为CN 101378615A、名称为“一种微波等离子体火炬波导激励腔” 的中国发明专利申请公开说明书。该专利申请中的微波等离子体点燃器通过压缩波导窄边高度和构成TE103型谐振腔的双重提高放电区的微波场强措施,从而不仅省去了点火器或引燃极,而且也大大提高了微波功率的利用率,即微波放电的转换效率。实现了不采用任何点火器或引燃极的情况下,较小微波功率就能借助此激励腔激发大气压强(≧105帕)下的微波等离子体火炬,装置结构简单,转换效率高,火炬电子温度及电子密度高,工作稳定。
然而,在上述微波等离子体点燃器中,由于火炬电子温度高,同轴线内导体经不起长时间的高温,会出现熔化现象。因此,现有的微波等离子体点燃器不能长时间使用,不能起到助燃、稳燃的作用。
技术问题
本发明的目的在于克服现有的微波等离子体点燃器不能长时间使用的技术问题和不足,提供一种可以长时间使用的微波等离子体点燃器。
技术解决方案
为实现上述发明目的,本发明的微波等离子体点燃器,包括:
一微波谐振腔,与微波功率馈入系统连接,微波功率馈入系统向微波谐振腔输入大功率微波;
一石英玻璃管,穿过微波谐振腔的微波场强最大处,用于提供微波等离子体火炬产生并维持的空间,其内微波场强最大处为微波等离子体产生区域;
一切向送风装置,位于石英玻璃管底端,沿石英玻璃管内壁圆周切线斜向上方向送入气流,用于在石英玻璃管内壁与与产生的微波等离子体火炬之间形成保护气膜,避免石英玻璃管直接接触高温;
其特征在于,还包括:
一煤粉流吹入装置,其煤粉流吹出口位于石英玻璃管底端中心位置,用于向石英玻璃管中微波等离子体产生区域轴向送入煤粉流;当微波功率馈入系统输入微波功率超过临界值时,在煤粉流中的微小煤粉激励下,在微波等离子体产生区出现初始电离放电,通过雪崩效应过渡到整个石英玻璃管内,产生微波等离子体火炬,同时点燃煤粉流,形成煤粉微波等离子体火炬,并沿石英玻璃管轴向从石英玻璃管上端吹出。
有益效果
本发明的发明目的是这样实现的:
将煤粉流引入微波等离子体产生区域,一方面可以通过微小煤粉的激励,即导引下,初始电离放电,通过雪崩效应过渡到整个石英玻璃管内,产生微波等离子体火炬,降低了微波等离子体激发产生所需微波场强;同时,另一方面,煤粉与微波等离子体相互作用,使得轴向煤粉流在石英玻璃管中处于完全燃烧状态,既提高了点燃器输出火炬的功率密度,又将大量热量通过煤粉流带出燃烧器,实现了对燃烧器装置的保护,增加了微波等离子体点燃器的点燃、助燃和稳燃能力。
在本发明中,由于是煤粉流在微波等离子体产生区域进行激励,该区域被螺旋气流膜隔离,产生输出的火炬不与微波等离子体点燃器本身直接接触,因而,能长时间使用,在燃烧系统中,起到助燃、稳燃的作用,克服了现有技术在微波等离子体产生区域放入同轴线内导体来产生微波等离子体火炬,高温等离子体火炬会将同轴线内导体熔化的缺点。
同时,在本发明中,微波等离子体与煤粉流作用充分,转换效率高,构成的煤粉微波等离子体火炬温度高且体积大,可用于大型燃烧系统,如火力发电锅炉、焚烧锅炉等的点燃、助燃和稳燃,以取代现有的点燃器,如燃油点燃器、直流等离子体点燃器等。
附图说明
图1是本发明微波等离子体点燃器的一种具体实施方式下的结构示意图,其中(a)为侧面剖视图、(b)为俯视图、(c)为仰视图、(d)为场强分布图;
图2是现有技术的一种微波等离子体点燃器侧剖面图;
图3是图2所示的微波等离子体点燃器的工作原理图。
本发明的最佳实施方式
下面结合附图对本发明的最佳具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
在本实施例中,如图1(a)所示,微波谐振腔100包括:
一标准矩形波导101,其始端与微波功率馈入系统连接,并具有一等效短路面形成装置;微波功率馈入系统向标准矩形波导101输入大功率微波;
一渐变矩形波导102,其始端与标准矩形波导101的末端连接;渐变矩形波导102从始端到末端,其窄边按线性规律压缩;
一窄边压缩矩形波导103,其始端与渐变矩形波导102末端相连,并且与渐变矩形波导102末端窄边高度一致,末端为金属短路板1031;窄边压缩矩形波导103的上下两面分别开有一个圆孔1032、1033,其圆心在波导宽边中心轴线上距离末端1/4波导波长左右,且两个圆孔1032、1033的圆心连线与窄边压缩矩形波导的上下两面垂直;
微波谐振腔长度满足谐振条件,在本实施例中,三段矩形波导101、102、103总长度满足半波导波长的整数倍。
在本实施中,如图1(b)、(c)所示,石英玻璃管200通过窄边压缩矩形波导上面的圆孔1032插入窄边压缩矩形波导内,至少到达窄边压缩矩形波导下面的圆孔1033,用于提供微波等离子体火炬产生并维持的空间。
在本实施例中,微波等离子体点燃器还包括一下金属筒301,位于窄边压缩矩形波导103下面圆孔1033外侧上,起着截止圆波导的作用。在下金属筒的底端端面上有一金属圆环400,与金属筒301一起用于防止微波谐振腔100中的微波泄漏。
在本实施中,切向送风装置为在下金属筒301的筒壁,沿圆周切线斜向上方向开有数个小孔501,每个小孔501沿筒壁圆周切线斜向上方向焊接一金属管502,金属管502的筒壁外管口5021与供风装置(未画出),如空气压缩机等连接。气流从金属管502的筒壁内管口5022送出,沿石英玻璃管200内壁圆周切线斜向上方向进入石英管,用于在石英玻璃管200内壁与与产生的煤粉微波等离子体火炬800之间形成保护气膜,避免石英玻璃管200直接接触高温。
在本实施例中,煤粉流吹入装置600的煤粉流吹出口601位于石英玻璃管200底端中心位置,在本实施中,位于金属圆环400的圆心处,用于向石英玻璃管200中微波等离子体产生区域轴向送入煤粉流700;当微波功率馈入系统输入微波功率超过临界值时,在煤粉流700中的微小煤粉激励下,在微波等离子体产生区产生初始电离放电,通过雪崩效应过渡到整个石英玻璃管200内,产生微波等离子体火炬,同时点燃煤粉流,形成煤粉微波等离子体火炬800,并沿石英玻璃管200轴向从石英玻璃管200上端吹出。
在本实施中,由标准矩形波导101、渐变矩形波导102、窄边压缩矩形波导103构成的微波谐振腔100与现有技术,即2009年03月04日公开的、公告号为CN 101378615A的中国发明专利申请公开说明书公开的微波等离子体点燃器中微波谐振腔结构和原理一致。但如图3所示,其标准矩形波导2的等效短路面形成装置采用的是始端金属膜片5,由于微波功率馈入系统送入大功率微波的频率误差以及谐振腔结构的制造误差,往往不能在微波谐振腔100形成谐振,使石英玻璃管11穿过微波谐振腔的微波场强较大处。因此,在本实施中,对微波谐振腔100进行了改进:
在标准矩形波导101始端宽边中心轴线L上安装有销钉调配器1011,通过调节销钉调配器1011使标准矩形波导101始端形成等效短路面。在本实施例中,调节销钉调配器1011为微波领域常用的三销钉调配器,包括三个等间距排列的可上下调节的销钉,在标准矩形波导101宽边中心沿轴向依次安装。
通过三个销钉在标准矩形波导101内不同插入深度的配合,在标准矩形波导101始端形成等效短路面。此时,标准矩形波导101始端等效短路面以及窄边压缩矩形波导103末端金属短路板1031的作用,微波谐振腔100构成一个封闭的TE10n模式的谐振腔。
在本实施中,如图1所示,本发明的微波等离子体点燃器是这样工作的:
微波馈入系统通过法兰盘900,进入标准矩形波导101中,经三销钉调配器1011调配后进入渐变矩形波导102进行压缩,压缩后的微波送入窄边压缩矩形波导103中;当微波窄边压缩矩形波导103末端的金属短路板1031后产生全反射,逆向经微波窄边压缩矩形波导103向渐变矩形波导102、标准矩形波导101返回输入微波馈入系统,但大部分微波功率通过三销钉调配器1011调配形成的等效短路面返回,重新向标准矩形波导101、渐变矩形波导102、窄边压缩矩形波导103方向传输。由于三段矩形波导101、102、103总长度满足波导波长整数倍,在微波谐振腔100产生谐振。谐振时,由于石英玻璃管200位于窄边压缩矩形波导103波导宽边中心轴线距离末端1/4波导波长左右处,处于谐振后的驻波波腹位置,即图1(d)中的A处,穿过微波谐振腔的微波场强较大处,石英玻璃管200中微波场强较大处为微波等离子体产生区域,即图1(a)中的B区域。
煤粉流吹入装置600的煤粉流吹出口601向石英玻璃管200中微波等离子体产生区域轴向送入煤粉流700。
当输入微波功率大于临界值,在煤粉流700中的微小煤粉激励下,在微波等离子体产生区域B产生初始电离放电,通过雪崩效应过渡到整个石英玻璃管200内,产生微波等离子体火炬,同时点燃煤粉流,形成煤粉微波等离子体火炬800,并沿石英玻璃管200轴向从石英玻璃管200上端吹出。
煤粉微波等离子体火炬800体积大小与输入微波功率相关,功率越大,火炬体积越大、温度越高。煤粉微波等离子体火炬800形成后,维持火炬的微波功率可大大降低。
在本实施例中,微波等离子体点燃器还包括一上金属筒302,位于窄边压缩矩形波导103上面外侧面圆孔1032上,其中心轴线与圆孔1032圆心重合,起着固定石英玻璃管200以及截止圆波导的作用。
在本实施例中,根据微波馈入系统的工作频率为915MHz设计的,标准矩形波导101采用BJ-9标准矩形波导,其波导内壁尺寸为:宽边a=248mm,窄边b=124mm。波导采用高光洁度的铝制成,要求内表面镀银,以提高谐振腔的固有品质因数(Qo值),标准矩形波导101大于300mm。渐变矩形波导102、微波窄边压缩矩形波导103的长度均为220mm。
标准矩形波导101宽边中心沿轴向加装三个直径为15mm 的调节销钉,构成销钉调配器钉调配器1011。销钉轴心彼此相距60mm,用螺纹旋入的销钉位置可上下调节。
渐变矩形波导102为窄边按线性规律压缩的矩形波导,其窄边从始端的124 mm到压缩到末端62mm。
窄边压缩矩形波导103的窄边b1=62mm,宽边中心轴上、距末端120mm处、波导宽边上下两面开孔径为100mm的同心圆孔1032、1033。
上金属筒302长度为30mm,内径为100mm,石英玻璃管200外径100mm,通过上金属筒302插入窄边压缩矩形波导103,直至窄边压缩矩形波导103另一面,下金属筒301的轴向长度约为50mm,外径为100mm,插入圆孔1033,端面与窄边压缩矩形波导103保持在同一平面,起着截止圆波导作用,同时也为煤粉流700输入通道。
在本实施例中,在20kw功率下可产生直径80mm,长度300mm以上的火炬,其温度在3000k以上。
本发明微波等离子体点燃器也可以应用到其它频段,如L波段,S波段,C波段,X波段,或同一频段的不同波导尺寸如BJ22等的激励腔均属于本发明所要求保护的范围。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (6)

  1. 一种微波等离子体点燃器,包括:
    一微波谐振腔,与微波功率馈入系统连接,微波功率馈入系统向微波谐振腔输入大功率微波;
    一石英玻璃管,穿过微波谐振腔的微波场强较大处,用于提供微波等离子体火炬产生并维持的空间,其内微波场强最大处为微波等离子体产生区域;
    一切向送风装置,位于石英玻璃管底端,沿石英玻璃管内壁圆周切线斜向上方向送入气流,用于在石英玻璃管内壁与与产生的微波等离子体火炬之间形成保护气膜,避免石英玻璃管直接接触高温;
    其特征在于,还包括:
    一煤粉流吹入装置,其煤粉流吹出口位于石英玻璃管底端中心位置,用于向石英玻璃管中微波等离子体产生区域轴向送入煤粉流;当微波功率馈入系统输入微波功率超过临界值时,在煤粉流中的微小煤粉激励下,在微波等离子体产生区产生初始电离放电,通过雪崩效应过渡到整个石英玻璃管内,产生微波等离子体火炬,同时点燃煤粉流,形成煤粉微波等离子体火炬,并沿石英玻璃管轴向从石英玻璃管上端吹出。
  2. 据权利要求 1 所述的 微波等离子体点燃器 ,其特征在于,所述的微波谐振腔包括:
    一标准矩形波导,其始端与微波功率馈入系统连接,并具有一等效短路面形成装置;微波功率馈入系统向标准矩形波导输入大功率微波;
    一渐变矩形波导,其始端与标准矩形波导的末端连接;渐变矩形波导从始端到末端,其窄边按线性规律压缩;
    一窄边压缩矩形波导,其始端与渐变矩形波导末端相连,并且与渐变矩形波导末端窄边高度一致,末端为金属短路板;窄边压缩矩形波导的上下两面分别开有一个圆孔,其圆心在波导宽边中心轴线上距离末端 1/4 波导波长左右处,且两个圆孔的圆心连线与窄边压缩矩形波导的上下两面垂直;
    微波谐振腔长度满足谐振条件;
    石英玻璃管通过窄边压缩矩形波导上面的圆孔插入窄边压缩矩形波导内,至少到达窄边压缩矩形波导下面的圆孔,用于提供微波等离子体火炬产生并维持的空间。
  3. 根据权利要求 2 所述的 微波等离子体点燃器 ,其特征在于,所述的等效短路面形成装置为销钉调配器,安装在标准矩形波导始端宽边中心轴线上,用于调节销钉调配器使标准矩形波导始端形成等效短路面。
  4. 据权利要求 3 所述的 微波等离子体点燃器 ,其特征在于,所述的销钉调配器为三销钉调配器,包括三个等间距排列的可上下调节的销钉,在标准矩形波导宽边中心沿轴向依次安装;
    通过三个销钉在标准矩形波导内不同插入深度的配合,在标准矩形波导始端形成等效短路面。
  5. 根据权利要求 2 所述的 微波等离子体点燃器 ,其特征在于,所述的微波等离子体点燃器还包括一下金属筒,位于窄边压缩矩形波导下面外侧面圆孔上,其中心轴线与圆孔圆心重合,起着截止圆波导的作用;在下金属筒的底端端面上有一金属圆环,与下金属筒一起用于防止微波谐振腔中的微波泄漏。
  6. 据权利要求 5 所述的 微波等离子体点燃器 ,其特征在于,所述的切向送风装置为在下金属筒的筒壁,沿圆周切线斜向上方向开有数个小孔,每个小孔沿筒壁圆周切线斜向上方向焊接一金属管,金属管的筒壁外管口与供风装置连接,气流从金属管的筒壁内管口送出。
PCT/CN2011/072582 2010-05-26 2011-04-11 一种微波等离子体点燃器 WO2011147230A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101831057A CN101852444B (zh) 2010-05-26 2010-05-26 一种微波等离子体点燃器
CN201010183105.7 2010-05-26

Publications (1)

Publication Number Publication Date
WO2011147230A1 true WO2011147230A1 (zh) 2011-12-01

Family

ID=42804052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072582 WO2011147230A1 (zh) 2010-05-26 2011-04-11 一种微波等离子体点燃器

Country Status (2)

Country Link
CN (1) CN101852444B (zh)
WO (1) WO2011147230A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104661423A (zh) * 2015-02-09 2015-05-27 清华大学 一种大气压低温等离子体射流发生器
CN106061090A (zh) * 2016-05-31 2016-10-26 吉林大学 一种二次耦合微波等离子体重整装置
CN107801286A (zh) * 2017-11-21 2018-03-13 清华大学 一种基于介质阻挡放电预电离的微波等离子体激发系统
CN109640505A (zh) * 2019-02-25 2019-04-16 成都新光微波工程有限责任公司 一种大功率高效多用途微波等离子体炬
CN112105136A (zh) * 2020-10-22 2020-12-18 四川大学 一种微波等离子体炬点火方法
DE102021111188A1 (de) 2020-05-22 2021-11-25 Anton Paar Gmbh Hohlleiter-Einkoppeleinheit
CN113719861A (zh) * 2021-09-10 2021-11-30 中国联合重型燃气轮机技术有限公司 燃烧室和具有该燃烧室的燃气轮机
CN114477197A (zh) * 2022-03-11 2022-05-13 瓮福(集团)有限责任公司 一种微波等离子体炬制备白炭黑的方法
CN113194594B (zh) * 2021-04-21 2023-06-23 电子科技大学 一种介质喷嘴增强的手持医疗用低功率微波等离子体炬

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852444B (zh) * 2010-05-26 2012-06-13 白野 一种微波等离子体点燃器
CN102287349A (zh) * 2011-06-03 2011-12-21 哈尔滨工业大学 飞秒激光诱导等离子体提高气体碳氢燃料稳燃极限的方法及实现该方法的装置
CN102933016A (zh) * 2012-11-28 2013-02-13 吉林大学 车载燃料的等离子体微波功率合成系统
CN104566454A (zh) * 2014-12-16 2015-04-29 广东新优威印刷装备科技有限公司 一种锅炉点火方法
CN104612835A (zh) * 2015-01-07 2015-05-13 大连理工大学 微波同轴谐振腔等离子体点火助燃装置
CN106322433A (zh) * 2016-09-29 2017-01-11 南京三乐微波技术发展有限公司 一种自动点火的微波等离子作用腔
CN107366928B (zh) * 2017-06-20 2019-07-16 中国人民解放军空军工程大学 一种发动机燃烧室的等离子体助燃方法
CN108980922B (zh) * 2018-08-16 2024-07-26 清华大学 一种微波等离子火炉装置
CN110030551B (zh) * 2019-04-04 2024-08-16 山东师范大学 氩气微波放电等离子体辅助甲烷空气旋流燃烧装置及方法
US20230003380A1 (en) * 2019-11-07 2023-01-05 Ecosys Pte. Ltd. Apparatus for treating gaseous pollutant with plasma
CN113982620B (zh) 2021-10-29 2022-08-02 东北大学 一种不敏感岩石微波等离子体自适应破岩装置及使用方法
CN116040933A (zh) * 2023-01-31 2023-05-02 武汉友美科自动化有限公司 管外微波等离子体化学气相沉积制备光纤预制棒的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2937841Y (zh) * 2005-11-01 2007-08-22 雍占锋 微波等离子燃烧器
US20080296294A1 (en) * 2007-05-30 2008-12-04 Han Sup Uhm Pure steam torch by microwaves for reforming of hydrocarbon fuels
CN101378615A (zh) * 2008-10-13 2009-03-04 电子科技大学 一种微波等离子体火炬波导激励腔
CN101852444A (zh) * 2010-05-26 2010-10-06 白野 一种微波等离子体点燃器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007257A1 (en) * 2005-07-05 2007-01-11 Uhm Han S Microwave plasma burner
EP2065592A4 (en) * 2006-09-20 2015-10-14 Imagineering Inc IGNITION DEVICE, COMBUSTION ENGINE, SPARK PLUG, PLASMA DEVICE, EMISSION CONTROL DEVICE, OZONE GENERATION / STERILIZATION / DISINFECTING DEVICE AND DESODORIZING DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2937841Y (zh) * 2005-11-01 2007-08-22 雍占锋 微波等离子燃烧器
US20080296294A1 (en) * 2007-05-30 2008-12-04 Han Sup Uhm Pure steam torch by microwaves for reforming of hydrocarbon fuels
CN101378615A (zh) * 2008-10-13 2009-03-04 电子科技大学 一种微波等离子体火炬波导激励腔
CN101852444A (zh) * 2010-05-26 2010-10-06 白野 一种微波等离子体点燃器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104661423A (zh) * 2015-02-09 2015-05-27 清华大学 一种大气压低温等离子体射流发生器
CN106061090A (zh) * 2016-05-31 2016-10-26 吉林大学 一种二次耦合微波等离子体重整装置
CN107801286A (zh) * 2017-11-21 2018-03-13 清华大学 一种基于介质阻挡放电预电离的微波等离子体激发系统
CN107801286B (zh) * 2017-11-21 2024-03-22 清华大学 一种基于介质阻挡放电预电离的微波等离子体激发系统
CN109640505A (zh) * 2019-02-25 2019-04-16 成都新光微波工程有限责任公司 一种大功率高效多用途微波等离子体炬
DE102021111188A1 (de) 2020-05-22 2021-11-25 Anton Paar Gmbh Hohlleiter-Einkoppeleinheit
US11602040B2 (en) 2020-05-22 2023-03-07 Anton Paar Gmbh Waveguide injecting unit
CN112105136A (zh) * 2020-10-22 2020-12-18 四川大学 一种微波等离子体炬点火方法
CN112105136B (zh) * 2020-10-22 2021-07-27 四川大学 一种微波等离子体炬点火方法
CN113194594B (zh) * 2021-04-21 2023-06-23 电子科技大学 一种介质喷嘴增强的手持医疗用低功率微波等离子体炬
CN113719861A (zh) * 2021-09-10 2021-11-30 中国联合重型燃气轮机技术有限公司 燃烧室和具有该燃烧室的燃气轮机
CN114477197A (zh) * 2022-03-11 2022-05-13 瓮福(集团)有限责任公司 一种微波等离子体炬制备白炭黑的方法

Also Published As

Publication number Publication date
CN101852444A (zh) 2010-10-06
CN101852444B (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2011147230A1 (zh) 一种微波等离子体点燃器
CA2442356C (en) A combined type cathode and a plasma ignition device using the same
CN107087339A (zh) 一种双腔激励的增强型微波等离子体炬发生装置
CN106304602B (zh) 一种微波耦合等离子体谐振腔
US6388225B1 (en) Plasma torch with a microwave transmitter
CN107801286B (zh) 一种基于介质阻挡放电预电离的微波等离子体激发系统
US4609808A (en) Plasma generator
CN110708853B (zh) 波导馈入式微波耦合等离子体发生装置
US6683272B2 (en) Plasma source for spectrometry
CN101346032A (zh) 大气压微波等离子体发生装置
CN207070436U (zh) 一种双腔激励的增强型微波等离子体炬发生装置
CN202979451U (zh) 一种大气压微波等离子体炬装置
CN201230400Y (zh) 一种大气压微波等离子体发生装置
CN206442573U (zh) 一种自动点火的微波等离子体炬装置
CN109104808B (zh) 一种长使用寿命的新型微波等离子体激发装置
CN209845424U (zh) 一种大功率高效多用途微波等离子体炬
CN209196937U (zh) 一种微波等离子火炉装置
JP3237450U (ja) 複合プラズマ源
CN114845454A (zh) 一种微波耦合等离子体与高温火焰融合激发源
CN107702096A (zh) 一种单阳极双介质气源等离子体燃烧器
CN210274654U (zh) 一种无阴极等离子发生器
CN208836438U (zh) 一种长使用寿命的新型微波等离子体激发装置
CN108980922B (zh) 一种微波等离子火炉装置
CN112013385A (zh) 一种等离子体射流耦合微波放电的辅助燃烧装置及方法
CN107893994A (zh) 一种双阴极双介质气等离子体燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786002

Country of ref document: EP

Kind code of ref document: A1