WO2011147055A1 - 一种igbt高压串联阀控制与监测系统 - Google Patents

一种igbt高压串联阀控制与监测系统 Download PDF

Info

Publication number
WO2011147055A1
WO2011147055A1 PCT/CN2010/000842 CN2010000842W WO2011147055A1 WO 2011147055 A1 WO2011147055 A1 WO 2011147055A1 CN 2010000842 W CN2010000842 W CN 2010000842W WO 2011147055 A1 WO2011147055 A1 WO 2011147055A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
unit
voltage
gate circuit
gate
Prior art date
Application number
PCT/CN2010/000842
Other languages
English (en)
French (fr)
Inventor
温家良
于坤山
荆平
吴锐
Original Assignee
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院 filed Critical 中国电力科学研究院
Publication of WO2011147055A1 publication Critical patent/WO2011147055A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • H02M1/092Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches

Definitions

  • the invention belongs to the field of power electronics and power systems, and specifically relates to a new IGBT high voltage series valve control and monitoring system. - Background technique .
  • the semiconductor power switching device (Insulated Gate Biploar Transistor), which appeared in the mid-1980s, is a composite device. Its input control part is MOSFET, and the output stage is bipolar junction transistor. Advantages of MOSFETs and power transistors: High input impedance, voltage control, low drive rate, fast switching speed, operating frequency up to 10 ⁇ 40kHz, reduced saturation voltage, large voltage and current capacity, and wide safe working area.
  • IGBT the disadvantage of IGBT is that the voltage and current allowable values of a single IGBT are difficult to increase. In order to be applied to high voltage and high power fields, the IGBT series method is usually adopted.
  • IGBT is a gate-level voltage full-controlled device, while the traditional thyristor is a gate current half-controlled device.
  • the IGBT high-voltage series valve operates at a frequency of up to kilohertz, while the thyristor high-voltage series valve operates at a frequency of 50 Hz, so the IGBT
  • the high-voltage series valve has great technical differences in realizing the balance between voltage and other parameters.
  • the IGBT high-voltage series valve not only needs to achieve voltage balancing, but also needs special consideration for loss balancing, and voltage. Balancing can't just use damping forced equalization.
  • the balance of voltage and loss requires active adjustment technology, that is, adjusting the gate input voltage to achieve voltage and loss balance.
  • the traditional thyristor high-voltage series wide trigger monitoring system mainly completes thyristor triggering and state monitoring, but does not realize the function of thyristor voltage equalization; and IGBT high-voltage series valve control monitoring system not only needs to complete IGBT turn-on and turn-off. And the state monitoring function, it is also necessary to complete the balance adjustment of the IGBT level voltage and loss. Therefore, the traditional thyristor high voltage series valve trigger monitoring system can not meet the needs of the IGBT high voltage series valve, and must be carried out by the IGBT pressure series valve control monitoring system. Redesign. In a typical measurement and control system, control signals and data signals are typically transmitted using cable lines.
  • the invention proposes a novel IGBT high-voltage series valve control monitoring system scheme, which satisfies the functions of IGBT turn-on, turn-off, voltage loss balance control, valve state monitoring and the like, and adopts a four-channel optical fiber transmission system for IGBT series application.
  • the practicality pointed out a new technological path.
  • the block diagram of the IGBT high-voltage series valve control monitoring system is shown in Figure 1. It mainly consists of three parts: IGBT gate circuit, valve control monitoring unit and fiber transmission system.
  • Insulated gate bipolar transistor IGBT gate circuit, valve control monitoring unit and optical fiber transmission system are composed of three parts; each insulated gate bipolar transistor IGBT in IGBT high voltage series valve has a separate IGBT gate circuit, each The IGBT gate circuit is connected by four optical fibers and the IGBT valve control monitoring unit. The entire IGBT high voltage series valve also has an independent optical fiber and valve control monitoring unit. All the above optical fibers form a fiber transmission system, and the valve control monitoring unit passes the optical fiber transmission system. And IGBT gate circuits transmit and receive signals to each other;
  • IGBT-level voltage states There are four fiber channels between the gate circuit and the control monitoring unit of each IGBT, two of which are high-speed analog signal transmission channels, two are high-speed digital signal transmission channels, and high-speed analog signal fiber channels are used for IGBT-level voltage states.
  • Real-time monitoring, high-speed analog signal transmission channel 2 is used for valve control and monitoring unit to send to the gate circuit. After the voltage and loss balancing algorithm is optimized, the IGBT level set-emitter reference voltage signal is optimized.
  • the high-speed digital signal fiber channel is connected to the gate.
  • Real-time monitoring of the working state of the circuit, high-speed digital signal Fibre Channel 2 is used for the wide control monitoring unit to send turn-on and turn-off commands to the gate circuit;
  • a valve current detecting unit is also disposed in each iGBT high-voltage series valve, and a valve current signal is transmitted to the valve control monitoring unit in real time through a separate analog signal fiber channel for reading and controlling the balance between the IGBT stages in the monitoring unit. Optimization calculation
  • the peripheral circuits of the IGBT mainly include capacitor, resistor and collector voltage clamping circuits, which are used to realize dynamic, static voltage equalization and collector over-voltage protection, and also cooperate with the gate circuit to realize the function of energy extraction and dynamic voltage measurement.
  • IGBT The inside of the gate circuit mainly includes an energy-carrying unit, a gate voltage clamping unit, a gate control driving unit, an IGBT-level voltage detecting and output unit, a gate circuit state encoding and output unit, an overvoltage and dv/dt protection unit, and a fault current.
  • the bit unit mainly implements gate overvoltage protection
  • the gate control driving unit mainly sends a voltage trigger signal to the IGBT gate to realize triggering and turning off of the IGBT
  • the IGBT level voltage detecting and output unit monitors the IGBT level voltage, and the state is Sending to the IGBT output unit, if a fault is detected, it is sent to the fault processing unit, and the fault processing unit realizes the function of overvoltage protection turn-on and overcurrent protection turn-off, which receives the IGBT level set from the control monitoring unit through the optical fiber.
  • - emitter reference voltage adjustment signal and trigger and shutdown commands on the other hand, to the control supervisor
  • the measuring unit returns the actual IGBT level voltage dynamic data and the gate circuit and IGBT level working state coding;
  • the above system includes the following functional units: IGBT level voltage signal receiving unit, gate circuit state detecting unit, IGBT level reference voltage output unit, IGBT turn-on and turn-off command output and distribution unit, voltage and loss balancing algorithm unit, valve
  • IGBT level voltage signal receiving unit gate circuit state detecting unit
  • IGBT level reference voltage output unit IGBT turn-on and turn-off command output and distribution unit
  • voltage and loss balancing algorithm unit valve
  • valve The current detection unit and the manual setting reference voltage unit are used to perform the following functions:
  • the IGBT level voltage signal receiving unit receives the IGBT level voltage from the IGBT gate unit, and monitors the IGBT level voltage in real time;
  • the gate circuit state detecting unit receives the working state coded signal from the gate unit, and monitors the working state of the gate circuit and the IGBT level in real time;
  • the valve current detecting unit receives the current signal from the wide current sensor to realize real-time monitoring of the current of the IGBT high voltage series valve;
  • Real-time upper-level control protection unit transmits the status of the IGBT high-voltage series valve and valve control protection unit.
  • the voltage loss double balance algorithm is used to optimize the valve performance
  • IGBT-level operation monitoring is realized by a four-channel fiber system.
  • FIG. 1 is a schematic structural view of an overall scheme of an IGBT high voltage series valve control monitoring system according to the present invention
  • FIG. 2 is a functional block diagram of an IGBT gate circuit and a schematic structural diagram of the peripheral circuit thereof according to the present invention
  • FIG. 3 is a block diagram showing the functional block diagram of the IGBT high voltage series valve control monitoring unit in accordance with the present invention. detailed description
  • the block diagram of the IGBT high-voltage series valve control monitoring system is shown in Figure 1. It mainly includes three parts: IGBT gate circuit, valve control monitoring unit and optical fiber transmission system.
  • the fiber-optic transmission system consists of two parts: four-channel fiber for each IGBT stage and control monitoring unit (two high-speed analog signal fiber channels, two high-speed digital signal fiber channels); each series is independent of the control unit Analog signal fiber channel.
  • the information between the gate circuit of each IGBT and the control monitoring unit is realized by four fiber channels, two of which are high-speed analog signal transmission channels and two of which are high-speed digital signal transmission channels.
  • a high-speed analog signal fiber channel is used for real-time monitoring of the IGBT-level voltage state, and another high-speed analog signal transmission channel is used for the valve control monitoring unit to send an IGBT-level collector-emitter reference voltage signal to the gate circuit, a high-speed digital signal fiber channel.
  • another high-speed digital signal fiber channel is used to send turn-on and turn-off commands to the gate circuit.
  • a large current detection unit is also provided in each series valve, and the valve current signal is detected and transmitted to the valve control monitoring unit in real time through a separate analog signal fiber channel.
  • the IGBT gate control circuit and its peripheral circuits are shown in Figure 2, which mainly include: peripheral circuits and gate circuits.
  • the gate circuit mainly includes: IGBT/diode level voltage detecting unit, energy absorbing unit, gate circuit working state detecting unit, state output unit, fault processing unit, IGBT level voltage signal setting unit, turn-on/turn-off command processing unit And gate control drive unit.
  • the peripheral circuits are mainly composed of a capacitor, a resistor and a collector voltage clamp circuit. Resistor capacitors are used for dynamic and static voltage equalization, and collector voltage clamp circuits are used for collector overvoltage protection.
  • the peripheral circuit also cooperates with the gate circuit to realize the functions of energy dissipation and dynamic and static voltage measurement. '
  • each unit inside the gate circuit measures the voltage from the IGBT's damping circuit (RC circuit) for the gate circuit to operate.
  • the IGBT/diode voltage detecting unit detects the voltage information of the IGBT and the diode and sends it to the output unit. If the voltage is abnormal, the information needs to be sent to the fault processing unit.
  • the gate circuit working state detecting unit detects the working condition of the gate circuit, and transmits the working state signal to the fault processing unit and the state output unit.
  • Status output unit The driving state information of the pole driving circuit is encoded, and then sent to the valve control detecting unit through the high speed digital signal fiber channel.
  • the dv/dt protection unit and the fault current protection unit are used to implement IGBT over-voltage protection turn-on and over-current protection turn-off.
  • the fault handling unit accepts the fault information sent by the other units, performs corresponding processing, and sends the processing result to the gate control driving unit.
  • the IGBT level voltage setting unit receives the IGBT level set-emitter reference voltage adjustment signal transmitted from the control monitoring unit by the high speed analog signal transmission channel, and sets the corresponding set according to the IGBT level voltage information detected by the IGBT level voltage detecting unit- The emitter reference voltage signal is sent to the gate control drive unit.
  • the turn-on/off command processing unit receives the high-speed digital signal Fibre Channel transmission, the trigger and shutdown commands from the control monitoring unit, converts to the corresponding electrical signals, and sends them to the gate control drive unit.
  • the gate control driving unit integrates the above various information to form a driving signal, which is sent to the IGBT gate to drive the IGBT to operate.
  • FIG. 3 The block diagram of the IGBT high voltage series valve control and monitoring unit system is shown in Figure 3. It is connected to the IGBT gate circuit through a four-channel fiber optic transmission system.
  • the IGBT-level voltage signal receiving unit receives the IGBT-level voltage from the IGBT gate circuit and monitors the IGBT-level voltage in real time.
  • the gate circuit state detecting unit receives the operating state coded signal from the gate circuit for real-time monitoring of the operating state of the gate circuit and the IGBT stage.
  • the IGBT-level reference voltage output unit is connected to the IGBT gate circuit through a high-speed analog signal fiber channel, and transmits the IGBT level collector-emitter reference voltage signal to the IGBT stage in real time.
  • the IGBT turn-on and turn-off command output and distribution unit receives commands from the higher-level control protection system, processes the turn-on and turn-off commands for each valve, and distributes the output to each IGBT stage.
  • the voltage and loss balancing algorithm unit optimizes the voltage and loss of the IGBT stage, and then adjusts the IGBT level collector-emitter reference voltage and transmits it to each IGBT level gate circuit to achieve balanced operation of voltage and loss.
  • the manual setting of the reference voltage unit enables manual setting of the IGBT level set-emitter reference voltage function.
  • the valve current detecting unit receives the current signal from the valve current sensor to realize real-time monitoring of the valve current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Description

一种 IGBT高压串联阀控制与监测系统 技术领域
本发明属于电力电子、 电力系统领域, 具体涉及一种新的 IGBT高压串联阀控制与监测系 统。 - 背景技术 .
20世纪 80年代中期出现的半导体电力开关器件——绝缘栅双极型晶体管 IGBT(Insulated Gate Biploar Transistor)是一种复合器件, 它的输入控制部分为 MOSFET, 输出级为双极结型 晶体管, 兼有 MOSFET和电力晶体管的优点: 高输入阻抗, 电压控制, 驱动 ¾率小, 开关速 度快, 工作频率可达 10~40kHz, 饱和压降低, 电压、 电流容量较大, 安全工作区较宽。 但是 IGBT的缺点在于单个 IGBT的电压、 电流允许值很难再提高, 为了应用于高电压、 大功率的 领域, 通常采用 IGBT串联的方法。
随着电力电子技术在电力系统中应用的逐步推广,基于 IGBT串联均压技术的高压阀正在 成为各种新型大功率电力电子装置的核心部件。 例如 VSC-HVDC、 STATCOM、 UPFC 等。 在这些场合中,由于串联的 IGBT器件运行的频率较高,开关速度较快,很容易在串联的 IGBT 器件中产生电压不平衡的情况, 而高电压、 大功率的应用领域决定了一旦出现严重的电压不 平衡, 串联的 IGBT将不可避免的出现失效甚至损坏。 而串联的 IGBT出现断路失效后, 反 过來又会损坏这些大功率电力电子装置, 造成严重的经济损失。
IGBT属于门级电压全控型器件, 而传统的晶闸管属于门极电流半控型器件, 同时 IGBT 高压串联阀的工作频率高达上千赫兹, 而晶闸管高压串联阀工作频率一般为 50赫兹, 因此 IGBT高压串联阀在实现电压和其它参数的平衡化方面存在较大的技术差异,与晶闸管高压串 联阀不同的是, IGBT高压串联阀不仅需要实现电压平衡化, 还需要特殊考虑损耗平衡化, 而 电压平衡化也不能仅仅采用阻尼强迫均压, 其电压和损耗平衡化需要采用主动调整技术, 即 调整门极输入电压, 实现电压和损耗的平衡化。
正是由于以上原因, 传统的晶闸管高压串联阔的触发监测系统主要完成晶闸管触发和状 态监测, 而没有实现晶闸管均压的功能; 而 IGBT高压串联阀控制监测系统不仅要完成 IGBT 的开通、 关断及状态监测功能, 还需要完成 IGBT级电压和损耗的平衡化调节, 因此, 传统 的晶闸管高压串联阀触发监测系统已不能满足 IGBT高压串联阀的需要, 必须 IGBT髙压串 联阀的控制监测系统进行重新设计。 在通常的测量与控制系统中, 控制信号和数据信号一般使用电缆线传输。 在强电磁场环 境中, 例如高压、 大功率的 IGBT 串联阀中, 控制信号和数据很容易受到干扰, 严重影响系 统性能。 在高共模电压和与强电相关的测量与控制系统中, 传统的隔离方法隔离度不高, 强 电部分很容易对弱电部分产生干扰, 甚至对弱电部分的电路造成损坏, 导致系统性能不稳定。 电缆线的传输损耗大, 导致传输距离不远, 质量大, 影响系统机动性等。 采用高速光纤信号 传输技术可以很好的解决这些问题。
目前国内外尚未见到类似的有关对于基于电压损耗双平衡化策略 IGBT串联的技术专禾 U。 发明内容
本发明提出了一种新型的 IGBT高压串联阀控制监测系统方案,满足了 IGBT开通、关断、 电压损耗平衡化控制、 阀状态监测等各项功能, 采用四通道光纤传输系统, 为 IGBT 串联应 用的实用化指出了一条崭新的技术路径。
IGBT高压串联阀控制监测系统框图如图 1所示, 它主要包括 IGBT门极电路, 阀控制监测 单元及光纤传输系统三部分组成。
绝缘栅双极型晶体管 IGBT门极电路, 阀控制监测单元及光纤传输系统三部分组成; IGBT 高压串联阀中的每一个绝缘栅双极型晶体管 IGBT都有一个独立的 IGBT门极电路,每一个 IGBT 门极电路都通过四条光纤和 IGBT阀控制监测单元相连接, 整个 IGBT高压串联阀还有一条独 立光纤和阀控制监测单元连接, 上述所有光纤组成光纤传输系统, 阀控制监测单元通过光纤 传输系统和 IGBT门极电路互相发送、 接收信号;
其中每个 IGBT的门极电路与控制监测单元之间有四条光纤通道, 其中两条为高速模拟信 号传输通道, 两条为高速数字信号传输通道, 高速模拟信号光纤通道一用于 IGBT级电压状态 的实时监测, 高速模拟信号传输通道二用于阀控制监测单元向门极电路发送经过电压和损耗 平衡化算法优化后 IGBT级集-射极参考电压信号, 高速数字信号光纤通道一甩于门极电路工 作状态实时监测, 高速数字信号光纤通道二用于阔控制监测单元向门极电路发送开通和关断 命令; '
每个 iGBT高压串联阀中还设置一个阀电流检测单元, 并通过一条独立的模拟信号光纤通 道向阀控制监测单元实时传送阀电流信号,用于阅控制监测单元中 IGBT级之间损耗的平衡和 优化计算;
IGBT 的外围电路主要包括电容、 电阻和集电极电压嵌位电路, 分别用于实现动态、 静态 均压和集电极过电压保护, 同时还和门极电路配合实现取能和动态电压测量的功能, IGBT的 门极电路内部主要包括取能单元、 门极电压嵌位单元、 门 控制驱动单元、 IGBT级电压检测 与输出单元、 门极电路状态编码与输出单元、 过电压与 dv/dt保护单元、 故障电流保护单元、 门极电路故障保护单元、 门极参考电压输入与设置单元以及开通关断命令接受单元等, 取能 回路从阻尼回路中量取电能, 供门极电路工作, 所述门极电压嵌位单元主要实现门极过电压 保护, 所述门极控制驱动单元主要向 IGBT门极发送电压触发信号, 实现 IGBT的触发、 关断, IGBT级电压检测与输出单元对 IGBT级电压监测, 将状态发送给 IGBT输出单元, 若监测到故 障, 则发送给故障处理单元, 故障处理单元实现包括过电压保护性开通、 过电流保护性关断 的功能, 它通过光纤接收来自控制监测单元的 IGBT级集-射极参考电压调整信号和触发与关 断命令, 另一方面, 向控制监测单元返回实际 IGBT级电压动态数据及门极电路和 IGBT级工 作状态编码;
上述的系统, 包括以下功能单元: IGBT级电压信号接收单元、 门极电路状态检测单元、 IGBT级参考电压输出单元、 IGBT开通和关断命令输出与分配单元、 电压和损耗平衡化算法单 元、 阀电流检测单元和人工设置参考电压单元等, 用于完成以下的功能:
( 1 ) IGBT级电压信号接收单元接收来自 IGBT门极单元的 IGBT级电压, 对 IGBT级电压 实时监测;
( 2 )门极电路状态检测单元接收来自门极单元的工作状态编码信号, 对门极电路及 IGBT 级的工作状态实时监测;
( 3 ) 阀电流检测单元接收来自阔电流传感器的电流信号, 实现对 IGBT高压串联阀电流 的实时监测;
(4) 对 IGBT级的电压和损耗进行优化计算, 进而调華 IGBT级集-射极电压参考电压, 并向每个 IGBT级门极电路传送, 实现电压和损耗的平衡化运行;
( 5 ) 人工设置参考电压单元实现手动调整 IGBT级集-射极参考电压的设置;
( 6) 接收来自上级控制保护系统的命令, 处理后形成每个阀的开通和关断命令, 并通过 光纤传输系统分配输出至每个 IGBT级, 触发 IGBT;
( 7 ) 实时向上级控制保护单元传送 IGBT高压串联阀和阀控制保护单元的状态。
本发明的有益效果是:
1、 IGBT高压串联阀触发监测系统整体方案完备;
2、 门极电路和阀控制监测单元功能设计完备;
3、 采用电压损耗双平衡化算法实现阀运行性能的优化;
4、 采用四通道光纤系统实现 IGBT级运行监控。 附图说明
下面结合附图对本发明进一步说明。
图 1是依据本发明的 IGBT高压串联阀控制监测系统总体方案的结构示意图;
图 2 是依据本发明的 IGBT门极电路功能框图及其外围电路的结构示意图;
图 3示出了是依据本发明的 IGBT高压串联阀控制监测单元功能框图示意图。 具体实施方式
IGBT高压串联阀控制监测系统框图如图 1所示, 它主要包括 IGBT门极电路, 阀控制监测 单元及光纤传输系统三部分。 ' 光纤传输系统由两部分组成: 每个 IGBT级和控制监测单元的四通道光纤(两条高速模拟 信号光纤通道, 两条高速数字信号光纤通道); 每个串联阔与控制检测单元的一条独立模拟信 号光纤通道。
每个 IGBT的门极电路与控制监测单元之间用四条光纤通道实现信息交互, 其中两条为高 速模拟信号传输通道, 两条为高速数字信号传输通道。 一条高速模拟信号光纤通道用于 IGBT 级电压状态的实时监测, 另一条高速模拟信号传输通道用于阀控制监测单元向门极电路发送 IGBT级集-射极参考电压信号, 一条高速数字信号光纤通道用于门极电路工作状态实时监测, 另一条高速数字信号光纤通道用于向门极电路发送开通和关断命令。
另外, 每个串联阀中还设置一个阔电流检测单元, 检测阀电流信号后通过一条独立的模 •拟信号光纤通道向阀控制监测单元实时传送。
IGBT门极控制电路及其外围电路如图 2所示, 主要包括: 外围电路和门极电路。 门极电 路内部又主要包括: IGBT/二极管级电压检测单元, 取能单元, 门极电路工作状态检测单元, 状态输出单元, 故障处理单元, IGBT 级电压信号设置单元, 开通 /关断命令处理单元和门极 控制驱动单元。
外围电路主要有电容、 电阻和集电极电压嵌位电路构成。 电阻电容用于实现动态、 静态 均压, 集电极电压钳位电路用于集电极过电压保护。 外围电路同时还和门极电路配合实现取 能和动静态电压测量的功能。 '
门极电路内部各单元的功能分别如下。 取能单元从 IGBT的阻尼回路(RC回路)中量取电 压, 供门极电路工作。 IGBT/二极管电压检测单元检测 IGBT和二级管的电压信息并送往输出 单元, 如果电压异常则还需将信息送往故障处理单元。 门极电路工作状态检测单元检测门极 电路工作情况, 并把工作状态信号传送给故障处理单元和状态输出单元。 状态输出单元对门 极驱动电路工作状态信息进行编码, 再通过高速数字信号光纤通道发送给阀控制检测单元。 dv/dt保护单元、 故障电流保护单元用于实现 IGBT过电压保护性开通、 过电流保护性关断等 功能。 故障处理单元接受其它各单元送来的故障信息, 做出相应的处理, 并把处理结果送往 门极控制驱动单元。 IGBT级电压设置单元接受由高速模拟信号传输通道传输的, 来自控制监 测单元的 IGBT级集 -射极参考电压调整信号, 并根据 IGBT级电压检测单元检测的 IGBT级电 压信息, 设置相应的集-射极参考电压信号, 送往门极控制驱动单元。 开通. /关断命令处理单 元接收高速数字信号光纤通道传输的, 来自控制监测单元的触发与关断命令, 转换成相应的 电信号, 送往门极控制驱动单元。 门极控制驱动单元综合以上各种信息, 形成驱动信号, 送 往 IGBT门极, 驱动 IGBT工作。
IGBT高压串联阀控制监测单元系统框图如图 3所示。它通过四通道光纤传输系统和 IGBT 门极电路相连接。
IGBT级电压信号接收单元接受来自 IGBT门极电路的 IGBT级电压, 对 IGBT级电压实时 监测。门极电路状态检测单元接受来自门极电路的工作状态编码信号,用于对门极电路及 IGBT 级的工作状态实时监测。 IGBT级参考电压输出单元通过高速模拟信号光纤通道和 IGBT门极 电路相接, 向 IGBT级实时发送 IGBT级集-射极参考电压信号。 IGBT开通和关断命令输出与 分配单元接收来自上级控制保护系统的命令, 处理后形成每个阀的开通和关断命令, 并分配 输出至每个 IGBT级。 电压和损耗平衡化算法单元对 IGBT级的电压和损耗进行优化计算, 进 而调整 IGBT级集-射极参考电压, 并向每个 IGBT级门极电路传送, 实现电压和损耗的平衡化 运行。 人工设置参考电压单元实现人工设置 IGBT级集-射极参考电压功能。 阀电流检测单元 接收来自阀电流传感器的电流信号, 实现阀电流的实时监测等。
此处已经根据特定的示例性实施例对本发明进行了描述。 对本领域的技术人员来说在不 脱离本发明的范围下进行适当的替换或修改将是显而易见的。 示例性的实施例仅仅是例证性 的, 而不是对本发明的范围的限制, 本发明的范围由所附的权利要求定义。

Claims

权 利 要 求
1、 一种新的 IGBT高压串联阀控制与监测系统, 其特征在于该系统包括:
绝缘栅双极型晶体管 IGBT门极电路, 阀控制监测单元及光纤传输系统三部分组成; IGBT 高压串联阀中的每一个绝缘栅双极型晶体管 IGBT都有一个独立的 IGBT门极电路,每一个 IGBT 门极电路都通过四条光纤和 IGBT阀控制监测单元相连接, 整个 IGBT高压串联阔还有一条独 立光纤和阀控制监测单元连接, 上述所有光纤组成光纤传输系统, 阀控制监测单元通过光纤 传输系统和 IGBT门极电路互相发送、 接收信号;
其中每个 IGBT的门极电路与控制监测单元之间有四条光纤通道, 其中两条为高速模拟信 号传输通道, 两条为高速数字信号传输通道, 高速模拟信号光纤通道一用于 IGBT级电压状态 的实时监测, 高速模拟信号传输通道二用于阀控制监测单元向门极电路发送经过电压和椟耗 平衡化算法优化后 IGBT级集-射极参考电压信号, 高速数字信号光纤通道一用于门极电路工 作状态实时监测, 高速数字信号光纤通道二用于阀控制监测单元向门极电路发送开通和关断 命令;
每个 IGBT高压串联阀中还设置一个阀电流检测单元, 并通过一条独立的模拟信号光纤通 道向阀控制监测单元实时传送阔电流信号,用于阀控制监测单元中 IGBT级之间损耗的平衡和 优化计算;
IGBT的外围电路主要包括电容、 电阻和集电极电压嵌位电路, 分别用于实现动态、 静态 均压和集电极过电压保护, 同时还和门极电路配合实现取能和动态电压测量的功能, IGBT的 门极电路内部主要包括取能单元、 门极电压嵌位单元、 门极控制驱动单元、 IGFT级电压检测 与输出单元、 门极电路状态编码与输出单元、 过电压与 dv/dt保护单元、 故障电流保护单元、 门极电路故障保护单元、 门极参考电压输入与设置单元以及开通关断命令接受单元等, 取能 回路从阻尼回路中量取电能, 供门极电路工作, 所述门极电压嵌位单元主要实现门极过电压 保护, 所述门极控制驱动单元主要向 IGBT门极发送电压触发信号, 实现 IGBT的触发、 关断, IGBT级电压检测与输出单元对 IGBT级电压监测, 将状态发送给 IGBT输出单元, 若监测到故 障, 则发送给故障处理单元, 故障处理单元实现包括过电压保护性开通、 过电流保护性关断 的功能, 它通过光纤接收来自控制监测单元的 IGBT级集-射极参考电压调整信号和触发与关 断命令, 另一方面, 向控制监测单元返回实际 IGBT级电压动态数据及门极电路和 IGBT级工 作状态编码。 -
2、如权利要求 1所述的系统,其特征在于包括以下功能单元: IGBT级电压信号接收单元、 元、 门极电路状态检测单元、 IGBT级参考电压输出单元、 IGBT开通和关断命令输出与分配单 元、 电压和损耗平衡化算法单元、 阀电流检测单元和人工设置参考电压―单元等, 用于完成以 下的功能:
( 1 ) IGBT级电压信号接收单元接收来自 IGBT门极单元的 IGBT级电压, 对 IGBT级电压 实时监测;
( 2 )门极电路状态检测单元接收来自门极单元的工作状态编码信号, 对门极电路及 IGBT 级的工作状态实时监测;
( 3 ) 阀电流检测单元接收来自阀电流传感器的电流信号, 实现对 IGBT 高压串联阀电流 的实时监测;
(4 ) 对 IGBT级的电压和损耗进行优化计算, 进而调整 IGBT级集-射极电压参考电压, 并向每个 IGBT级门极电路传送, 实现电压和损耗的平衡化运行; '
( 5 ) 人工设置参考电压单元实现手动调整 IGBT级集-射极参考电压的设置;
(6) 接收来自上级控制保护系统的命令, 处理后形成每个阀的开通和关断命令, 并通过 光纤传输系统分配输出至每个 IGBT级, 触发 IGBT;
( 7 ) 实时向上级控制保护单元传送 IGBT高压串联阀和阀控制保护单元的状态。
PCT/CN2010/000842 2010-05-25 2010-06-12 一种igbt高压串联阀控制与监测系统 WO2011147055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010189956.2 2010-05-25
CN201010189956.2A CN101888229B (zh) 2010-05-25 2010-05-25 一种新的igbt高压串联阀控制与监测系统

Publications (1)

Publication Number Publication Date
WO2011147055A1 true WO2011147055A1 (zh) 2011-12-01

Family

ID=43073979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000842 WO2011147055A1 (zh) 2010-05-25 2010-06-12 一种igbt高压串联阀控制与监测系统

Country Status (2)

Country Link
CN (1) CN101888229B (zh)
WO (1) WO2011147055A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497969A (en) * 2011-12-23 2013-07-03 Amantys Ltd Communicating switching data in a power semiconductor switching device control system
WO2013156749A1 (en) * 2012-04-20 2013-10-24 Amantys Ltd Communication protocol
CN105703753A (zh) * 2014-11-28 2016-06-22 西门子公司 用于igbt电路的不平衡电流检测装置、驱动器及控制igbt电路的方法
CN107994889A (zh) * 2018-01-25 2018-05-04 湘潭开元机电制造有限公司 一种igbt检测电路及保护电路
CN110022141A (zh) * 2019-03-26 2019-07-16 瓴芯电子科技(无锡)有限公司 功率器件的驱动装置与获取功率器件实时状态的方法
CN110212898A (zh) * 2019-07-05 2019-09-06 捷普科技(上海)有限公司 多通道开关控制系统及方法
CN112731093A (zh) * 2020-12-14 2021-04-30 中车永济电机有限公司 大功率igbt适配方法
CN113447790A (zh) * 2021-07-13 2021-09-28 西安交通大学 一种非接触型igbt状态监测的装置
CN114489002A (zh) * 2021-12-31 2022-05-13 上海科梁信息科技股份有限公司 一种基于fpga的柔直故障模拟系统
EP4024711A1 (en) * 2021-01-05 2022-07-06 The Boeing Company Active voltage balancing for power modulation device
CN115201649A (zh) * 2022-05-30 2022-10-18 北京交通大学 一种自发短路电流实现igbt状态监测的驱动电路

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045049A (zh) * 2010-10-18 2011-05-04 中国电力科学研究院 一种新型igbt高压串联阀控制与监测系统
CN103166435B (zh) * 2011-12-19 2014-12-03 中国电力科学研究院 一种基于igbt串联损耗优化电压自适应控制方法
CN102830651B (zh) * 2012-09-07 2014-07-30 深圳市英威腾电气股份有限公司 电气传动系统及其控制方法
CN102931822B (zh) * 2012-11-16 2014-04-16 清华大学 基于主电路脉冲的高压igbt串联主动均压装置
CN104218779A (zh) * 2014-08-26 2014-12-17 河海大学 基于拉曼激光放大器的串联igbt门极驱动单元的同步方法及系统
EP3057212B1 (en) * 2015-02-12 2018-04-11 General Electric Technology GmbH Switch apparatus
CN105991009A (zh) * 2015-02-13 2016-10-05 国家电网公司 一种基于串联压接型igbt的主动均压控制方法
CN105044581B (zh) * 2015-03-30 2018-02-13 国家电网公司 一种SiC IGBT串联阀组动态均压特性和反向恢复特性的测试方法及测试电路
CN106156379B (zh) * 2015-03-31 2019-07-19 国家电网公司 一种热电耦合igbt模块暂态模型建立方法
CN104779939B (zh) * 2015-04-23 2017-12-08 西安交通大学 一种用于igbt串联均压的延时匹配电路及方法
CN104779780B (zh) * 2015-04-23 2018-01-05 西安交通大学 一种igbt串联均压电路及方法
CN105186864B (zh) * 2015-09-08 2019-02-05 国网智能电网研究院 一种压接型igbt串联应用模式下的自取能直流变换电路
CN107664739B (zh) * 2016-07-28 2021-01-15 全球能源互联网研究院 一种hvdc晶闸管级阻尼电阻动态参数在线监测方法
CN106685195B (zh) * 2017-01-23 2020-04-10 全球能源互联网研究院 一种用于igbt串联的自适应均压电路及电力电子设备
CN107024653B (zh) * 2017-06-14 2019-09-27 南京南瑞继保电气有限公司 一种高压直流断路器的在线检测装置和方法
CN110350484A (zh) * 2019-06-25 2019-10-18 徐州中矿大传动与自动化有限公司 一种igbt短路故障快速保护方法及电路
CN110763986A (zh) * 2019-09-19 2020-02-07 潍柴动力股份有限公司 一种电子开关故障诊断方法、装置及电子开关
CN110568294A (zh) * 2019-09-29 2019-12-13 南京南瑞继保电气有限公司 一种电力电子设备测试系统及测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109780B2 (en) * 2004-05-10 2006-09-19 Abb Oy Control circuit for semiconductor component
CN101478225A (zh) * 2008-12-19 2009-07-08 中国电力科学研究院 一种高压电力电子器件串联阀触发信号的通信方法
CN101483334A (zh) * 2009-01-22 2009-07-15 合肥工业大学 串联igbt均压保护控制电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624684B2 (en) * 2001-04-13 2003-09-23 Applied Pulsed Power, Inc. Compact high voltage solid state switch
US7072196B1 (en) * 2005-01-28 2006-07-04 Applied Pulsed Power, Inc. Multi-stage high voltage solid state switch
CN201307850Y (zh) * 2008-12-08 2009-09-09 顺特电气有限公司 用于静止型无功补偿装置的晶闸管阀光电触发板
CN101478301B (zh) * 2008-12-31 2011-09-28 中国电力科学研究院 一种高电位取能装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109780B2 (en) * 2004-05-10 2006-09-19 Abb Oy Control circuit for semiconductor component
CN101478225A (zh) * 2008-12-19 2009-07-08 中国电力科学研究院 一种高压电力电子器件串联阀触发信号的通信方法
CN101483334A (zh) * 2009-01-22 2009-07-15 合肥工业大学 串联igbt均压保护控制电路

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391599B2 (en) 2011-12-23 2016-07-12 Maschinenfabrik Reinhausen Gmbh Switching control system signaling techniques
GB2497969A (en) * 2011-12-23 2013-07-03 Amantys Ltd Communicating switching data in a power semiconductor switching device control system
GB2497969B (en) * 2011-12-23 2018-08-29 Reinhausen Maschf Scheubeck Switching control system signalling techniques
KR102030099B1 (ko) 2012-04-20 2019-10-08 마쉬넨파브릭 레인하우센 게엠베하 통신 프로토콜
WO2013156749A1 (en) * 2012-04-20 2013-10-24 Amantys Ltd Communication protocol
KR20150008115A (ko) * 2012-04-20 2015-01-21 아만티스 엘티디 통신 프로토콜
US9407253B2 (en) 2012-04-20 2016-08-02 Maschinenfabrik Reinhausen Gmbh Communication protocol
CN105703753A (zh) * 2014-11-28 2016-06-22 西门子公司 用于igbt电路的不平衡电流检测装置、驱动器及控制igbt电路的方法
CN105703753B (zh) * 2014-11-28 2019-03-08 西门子公司 用于igbt电路的不平衡电流检测装置、驱动器及控制igbt电路的方法
CN107994889A (zh) * 2018-01-25 2018-05-04 湘潭开元机电制造有限公司 一种igbt检测电路及保护电路
CN110022141A (zh) * 2019-03-26 2019-07-16 瓴芯电子科技(无锡)有限公司 功率器件的驱动装置与获取功率器件实时状态的方法
CN110022141B (zh) * 2019-03-26 2023-12-12 瓴芯电子科技(无锡)有限公司 功率器件的驱动装置与获取功率器件实时状态的方法
CN110212898A (zh) * 2019-07-05 2019-09-06 捷普科技(上海)有限公司 多通道开关控制系统及方法
CN110212898B (zh) * 2019-07-05 2023-07-25 捷普科技(上海)有限公司 多通道开关控制系统及方法
CN112731093A (zh) * 2020-12-14 2021-04-30 中车永济电机有限公司 大功率igbt适配方法
CN112731093B (zh) * 2020-12-14 2024-04-19 中车永济电机有限公司 大功率igbt适配方法
EP4024711A1 (en) * 2021-01-05 2022-07-06 The Boeing Company Active voltage balancing for power modulation device
US11469754B2 (en) 2021-01-05 2022-10-11 The Boeing Company Active voltage balancing for power modulation device
CN113447790B (zh) * 2021-07-13 2022-10-25 西安交通大学 一种非接触型igbt状态监测的装置
CN113447790A (zh) * 2021-07-13 2021-09-28 西安交通大学 一种非接触型igbt状态监测的装置
CN114489002A (zh) * 2021-12-31 2022-05-13 上海科梁信息科技股份有限公司 一种基于fpga的柔直故障模拟系统
CN114489002B (zh) * 2021-12-31 2024-05-03 上海科梁信息科技股份有限公司 一种基于fpga的柔直故障模拟系统
CN115201649A (zh) * 2022-05-30 2022-10-18 北京交通大学 一种自发短路电流实现igbt状态监测的驱动电路
CN115201649B (zh) * 2022-05-30 2024-05-14 北京交通大学 一种自发短路电流实现igbt状态监测的驱动电路

Also Published As

Publication number Publication date
CN101888229B (zh) 2013-03-27
CN101888229A (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2011147055A1 (zh) 一种igbt高压串联阀控制与监测系统
WO2019170035A1 (zh) 一种电机控制器的igbt驱动电路及电机控制器
EP3185421B1 (en) Solid state power control
CN102208800B (zh) 带有过流保护功能的自适应igbt串联均压电路
US7741883B2 (en) Method of switching and switching device for solid state power controller applications
EP2797215A1 (en) Method for optimizing voltage self-adaptation control based on igbt series loss
CN102045049A (zh) 一种新型igbt高压串联阀控制与监测系统
CN103427607B (zh) 绝缘栅双极型晶体管的驱动电路
CN107171279A (zh) 一种混合型直流断路器及其分断方法
CN102710243B (zh) 一种绝缘栅器件的保护电路及其方法
CN104967292B (zh) 一种igbt串联阀段的主动均压控制方法
CN201533296U (zh) 一种单个或多个串联连接的绝缘栅器件的驱动电路
CN205377644U (zh) 一种t型三电平igbt驱动电路
CN103546020A (zh) 高压igbt驱动及保护电路
CN206389274U (zh) Igbt动态有源钳位保护电路
CN203608076U (zh) 高压igbt驱动及保护电路
CN102710103B (zh) 一种双路高压大功率igbt驱动电路
CN109995350A (zh) 一种功率场效应管的驱动级短路保护装置及保护方法
CN204424877U (zh) 一种igbt模块过流保护系统
CN104393571A (zh) 一种igbt模块过流保护系统
CN109066609B (zh) 一种基于级联SiC MOSFET的全固态直流断路器拓扑结构
CN103023002A (zh) 一种基于查表法的数字化igbt串联均压电路
CN202565155U (zh) 绝缘栅双极型晶体管的驱动电路
CN202696456U (zh) 双路高压大功率igbt驱动电路
CN102075076A (zh) 一种控制绝缘栅器件关断暂态过程的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851927

Country of ref document: EP

Kind code of ref document: A1