CN105991009A - 一种基于串联压接型igbt的主动均压控制方法 - Google Patents

一种基于串联压接型igbt的主动均压控制方法 Download PDF

Info

Publication number
CN105991009A
CN105991009A CN201510079733.3A CN201510079733A CN105991009A CN 105991009 A CN105991009 A CN 105991009A CN 201510079733 A CN201510079733 A CN 201510079733A CN 105991009 A CN105991009 A CN 105991009A
Authority
CN
China
Prior art keywords
type igbt
crimp type
igbt
source
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510079733.3A
Other languages
English (en)
Inventor
赵东元
李卫国
张雷
蔚泉清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Smart Grid Research Institute of SGCC
Original Assignee
State Grid Corp of China SGCC
Smart Grid Research Institute of SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Smart Grid Research Institute of SGCC filed Critical State Grid Corp of China SGCC
Priority to CN201510079733.3A priority Critical patent/CN105991009A/zh
Publication of CN105991009A publication Critical patent/CN105991009A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

本发明提供一种基于串联压接型IGBT的主动均压控制方法,所述方法包括:压接型IGBT源漏电压反馈控制;压接型IGBT门极电压反馈控制;压接型IGBT源漏电压变化率反馈控制。本发明提供的基于串联压接型IGBT的主动均压控制方法,通过引入多重闭环反馈,使压接型IGBT开关过程中集射极电压跟随集射极参考电压变化而变化,从而实现压接型IGBT直接串联中开通与关断暂态过程中各串联IGBT阀端电压均衡。

Description

一种基于串联压接型IGBT的主动均压控制方法
技术领域
本发明涉及一种控制方法,具体涉及一种基于串联压接型IGBT的主动均压控制方法。
背景技术
《国家中长期科学和技术发展规划纲要(2006—2020年)》明确提出,“提高能源区域优化配置的技术能力,重点开发安全可靠的先进电力输配技术,实现大容量、远距离、高效率的电力输配”,并将“超大规模输配电和电网安全保障”列为能源领域的优先主题之一。另一方面,国家“十二五”规划明确指出,“推进智能电网建设,切实加强城乡电网建设与改造,增强电网优化配置电力能力和供电可靠性”。高压大功率电力电子技术的发展为电力系统先进电力输配电技术和大容量远距离高效率输配电技术提供了重要的支撑。高压大功率电力电子技术是可关断器件及其应用技术的基础。
随着社会和能源可持续发展越来越得到重视,可再生能源利用、节能减排、环境保护等问题正得到越来广泛的关注。使用基于IGBT的电压源换流器来进行直流功率传输,可以减少可再生能源并网存在的问题、优化系统潮流、降低电磁环境污染等。电压源换相直流输电技术是未来电力系统电力电子领域的一个重要的发展方向。然而当前IGBT的最高电压等级为6.5kV,限制了IGBT在高压大功率的场合应用。
现代电力电子技术在向高频化发展,功率器件的开关损耗严重影响器件和装置性能,而电力电子高频技术应用于高电压领域,一个重要的挑战是如何解决高频电力电子器件串联问题,传统的无源缓冲电路技术由于将导致很高的损耗,已不适用。
目前,最主流的可关断器件IGBT分为模块型IGBT和压接型IGBT。与之对应的电力系统电力电子装置分为基于模块型IGBT的多电平主电路拓扑和基于压接型IGBT的串联型两电平拓扑。国际上还提出了压接型IGBT串联阀和模块化多电平拓扑相结合的第三代换流器拓扑。由于基于压接型IGBT的串联型电压源换流器具有很多优点,因此,压接型IGBT将成为未来电网柔性直流输电、灵活交流输电、定制电力和新能源并网等领域的核心器件。压接型IGBT应用的最核心的技术是驱动保护技术。IGBT驱动保护技术作为上层控制保护系统和主电路的接口技术,发挥着重要的纽带作用。驱动单元是联系强电与弱电的中间环节,要求既具有高速信息处理能力又具有功率驱动能力和高压大电流检测保护能力。所以,压接型IGBT驱动技术是压接型IGBT应用的最核心技术,也是电力系统用电力电子装置最核心的技术之一。
解决IGBT耐压不足主要有两种方式:一是器件的直接串联,ABB公司投运的轻型直流输电工程都采用这种方式;二是模块的串联,Siemens公司在2010年投运的柔性直流输电工程采用的是MMC(模块化多电平)技术。相比于模块的串联,器件直接串联拓扑结构简单,控制相对容易,但对器件及驱动信号的一致性要求较高,IGBT电压平衡控制则显得十分重要。
发明内容
为了克服上述现有技术的不足,本发明提供一种基于串联压接型IGBT的主动均压控制方法,通过引入多重闭环反馈,使压接型IGBT开关过程中集射极电压跟随集射极参考电压变化而变化,从而实现压接型IGBT直接串联中开通与关断暂态过程中各串联IGBT阀端电压均衡。
为了实现上述发明目的,本发明采取如下技术方案:
本发明提供一种基于串联压接型IGBT的主动均压控制方法,所述方法包括:
压接型IGBT源漏电压反馈控制;
压接型IGBT门极电压反馈控制;
压接型IGBT源漏电压变化率反馈控制。
设压接型IGBT的源漏电压和源漏参考电压分别用Vce和Vce_ref表示,通过源漏电压反馈控制使得Vce能够跟随Vce_ref;具体分为以下情况:
当Vce高于Vce_ref时,产生正门极电压信号使得压接型IGBT开通;
当Vce低于Vce_ref时,产生负门极电压信号使得压接型IGBT关断。
所述压接型IGBT在开通和关断的暂态过程由式(1)和式(2)决定,有:
dI c dt ≈ g m C π I g ≈ V dr - V ge C π R g g m + L e 1 - - - ( 1 )
其中,Ic为压接型IGBT漏极电流,Ig为压接型IGBT栅极电流,Vge为压接型IGBT栅极电压,Vdr为压接型IGBT漏极电压,Cπ为压接型IGBT输入寄生电容,gm为压接型IGBT跨导,Le1为压接型IGBT源极漏感,Rg为压接型IGBT栅极电阻;
dV ce dt ≈ 1 C μ I g ≈ 1 C μ V dr - V ge R g - - - ( 2 )
其中,Vce为压接型IGBT源漏电压,Cμ为压接型IGBT栅漏电容。
所述压接型IGBT的关断时间用tdoff表示,具体有:
t doff = R g × ( C ge + C gc ) × ln ( g m V IN G m V ge ( th ) + T c ) - - - ( 3 )
其中,RG为压接型IGBT栅极电阻,Cge为压接型IGBT栅源电容,Cgc为压接型IGBT栅漏电容,gm为压接型IGBT跨导,VIN为压接型IGBT输入电压,Gm为压接型IGBT栅极电导,Vge(th)为压接型IGBT门槛电压,Ic为压接型IGBT漏极电流。
所述压接型IGBT的源漏参考电压VCE_REF的设定分为预开通阶段、主开通阶段、开通阶段、预关断阶段、主关断阶段和关断阶段。
压接型IGBT源漏电压反馈控制的输出信号需经过缓冲电路、功率放大电路及门极电阻才能到达IGBT栅极,因此压接型IGBT的源漏电压Vce与压接型IGBT源漏电压反馈控制的输出信号产生偏差,而通过引入压接型IGBT门极电压反馈控制即可提高有源电压控制的均压效果。
压接型IGBT源漏电压变化率用表示,压接型IGBT源漏电压变化率反馈控制中,通过RC电路反馈压接型IGBT开关时的过大时,RC电路向压接型IGBT栅极注入电流,防止压接型IGBT开关过程中过大损坏压接型IGBT,同时提高压接型IGBT动态均压性。
与现有技术相比,本发明的有益效果在于:
1、大功率IGBT驱动保护技术将朝着高功率密度、智能化、集成化、高稳定性和高可靠性方向发展。驱动保护单元的功能将进一步增加,不再单一具有驱动保护功能,其中还将包含本专利所提出的基于串联压接型IGBT的主动均压控制策略;
2、现有IGBT驱动方式均采用门级直接驱动,仅简单关注IGBT的通断控制,而没有对IGBT开关过程进行监测和控制,不适合于高压串联应用。压接型IGBT串联驱动保护单元必须对压接型IGBT开关暂态过程中的电压进行实时监测和控制,实现电压均衡和损耗优化;
3、未来采用该项技术,可以进一步实现压接型IGBT损耗、结温以及安全工作区的预估,实现压接型IGBT工作状况的实时、全面监控,这对提高高压大功率电力电子装置的可靠性和稳定性具有十分重要的意义。
附图说明
图1是本发明实施例中基于串联压接型IGBT的主动均压控制方法示意图;
图2是本发明实施例中压接型IGBT的源漏参考电压Vce_ref波形示意图;
图3是本发明实施例中IGBT开通时电压电流波形图;
图4是本发明实施例中IGBT关断时电压电流波形图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明中,压接型IGBT主要参数如表1:
表1
基于串联压接型IGBT的主动均压控制方法中主要器件参数如表2:
表2
如图1,本发明提供一种基于串联压接型IGBT的主动均压控制方法,所述方法包括:
压接型IGBT源漏电压反馈控制;
压接型IGBT门极电压反馈控制;
压接型IGBT源漏电压变化率反馈控制。
设压接型IGBT的源漏电压和源漏参考电压分别用Vce和Vce_ref表示,通过源漏电压反馈控制使得Vce能够跟随Vce_ref;具体分为以下情况:
当Vce高于Vce_ref时,产生正门极电压信号使得压接型IGBT开通;
当Vce低于Vce_ref时,产生负门极电压信号使得压接型IGBT关断。
IGBT器件是MOS控制晶体管,属于一种复合型功率器件,与IGCT、GTO等电流控制功率器件最大的区别在于IGBT的开通和关断由MOS的充放电决定,是一种电压型控制功率器件,这为高频功率器件的串联提供了一种可能,压接型IGBT在开通和关断的暂态过程由式(1)和式(2)决定,有:
dI c dt ≈ g m C π I g ≈ V dr - V ge C π R g g m + L e 1 - - - ( 1 )
其中,Ic为压接型IGBT漏极电流,Ig为压接型IGBT栅极电流,Vge为压接型IGBT栅极电压,Vdr为压接型IGBT漏极电压,Cπ为压接型IGBT输入寄生电容,gm为压接型IGBT跨导,Le1为压接型IGBT源极漏感,Rg为压接型IGBT栅极电阻;
dV ce dt ≈ 1 C μ I g ≈ 1 C μ V dr - V ge R g - - - ( 2 )
其中,Vce为压接型IGBT源漏电压,Cμ为压接型IGBT栅漏电容。
由上述式子可以看出,只要对门极电压的有效合理控制,IGBT串联应用中的电压平衡化是可以实现的,这是IGBT器件与IGCT、GTO等电流控制型器件的显著区别之一。
所述压接型IGBT的关断时间用tdoff表示,具体有:
t doff = R g × ( C ge + C gc ) × ln ( g m V IN G m V ge ( th ) + T c ) - - - ( 3 )
其中,RG为压接型IGBT栅极电阻,Cge为压接型IGBT栅源电容,Cgc为压接型IGBT栅漏电容,gm为压接型IGBT跨导,VIN为压接型IGBT输入电压,Gm为压接型IGBT栅极电导,Vge(th)为压接型IGBT门槛电压,Ic为压接型IGBT漏极电流。
如图2,所述压接型IGBT的源漏参考电压VCE_REF的设定分为预开通阶段t0-t2、主开通阶段t2-t3、开通阶段t3-t4、预关断阶段t4-t6、主关断阶段t6-t7和关断阶段t7-t8。
预开通阶段:当压接型IGBT内部杂散参数不同时,压接型IGBT开通延迟时间将会产生差异,这对压接型IGBT串联电压平衡化影响加大,因此预开通阶段作用是让所有压接型IGBT的端电压先变化较小值,将关断延迟产生的差异性控制在较小的范围,同时让所有的压接型IGBT均进入有源区,易于下一步的开通过程控制。
主开通阶段:压接型IGBT开通时由IGBT杂散参数和门极电压共同决定,这一阶段主要是不断调整门极电压信号,弥补压接型IGBT自身特性差异,让压接型IGBT开通时跟随参考波形的但是由于IGBT自身特性,但参考波形过大时,压接型IGBT将不能快速的跟随参考波形。
预关断阶段:从公式(3)以看出,当IGBT内部杂散参数不同时,IGBT关断延迟时间将会产生差异,这对IGBT串联电压平衡化影响加大,因此预关断阶段作用是让所有压接型IGBT的源漏电压电压先升高到较低的电压值,将关断延迟产生的差异性控制在一个较小的范围,同时让所有的IGBT均进入有源区,易于下一步的关断过程控制。
主关断阶段:从公式(2)可以看出,IGBT关断时由IGBT杂散参数和门极电压共同决定,这一阶段主要是不断调整门极电压信号,弥补IGBT自身特性差异,让IGBT关断时跟随参考波形的但是由于IGBT自身特性,但参考波形过大时,IGBT将不能快速的跟随参考波形。
压接型IGBT源漏电压反馈控制的输出信号需经过缓冲电路、功率放大电路及门极电阻才能到达IGBT栅极,因此压接型IGBT的源漏电压Vce与压接型IGBT源漏电压反馈控制的输出信号产生偏差,而通过引入压接型IGBT门极电压反馈控制即可提高有源电压控制的均压效果。
压接型IGBT源漏电压变化率用表示,压接型IGBT源漏电压变化率反馈控制中,通过RC电路反馈压接型IGBT开关时的过大时,RC电路向压接型IGBT栅极注入电流,防止压接型IGBT开关过程中过大损坏压接型IGBT,同时提高压接型IGBT动态均压性。
压接型IGBT开通时电压电流波形如图3所示,压接型IGBT关断时电压电流波形如图4所示。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (7)

1.一种基于串联压接型IGBT的主动均压控制方法,其特征在于:所述方法包括:
压接型IGBT源漏电压反馈控制;
压接型IGBT门极电压反馈控制;
压接型IGBT源漏电压变化率反馈控制。
2.根据权利要求1所述的基于串联压接型IGBT的主动均压控制方法,其特征在于:设压接型IGBT的源漏电压和源漏参考电压分别用Vce和Vce_ref表示,通过源漏电压反馈控制使得Vce能够跟随Vce_ref;具体分为以下情况:
当Vce高于Vce_ref时,产生正门极电压信号使得压接型IGBT开通;
当Vce低于Vce_ref时,产生负门极电压信号使得压接型IGBT关断。
3.根据权利要求2所述的基于串联压接型IGBT的主动均压控制方法,其特征在于:所述压接型IGBT在开通和关断的暂态过程由式(1)和式(2)决定,有:
d I c dt ≈ g m C π I g ≈ V dr - V ge C π R g g m + L e 1 - - - ( 1 )
其中,Ic为压接型IGBT漏极电流,Ig为压接型IGBT栅极电流,Vge为压接型IGBT栅极电压,Vdr为压接型IGBT漏极电压,Cπ为压接型IGBT输入寄生电容,gm为压接型IGBT跨导,Le1为压接型IGBT源极漏感,Rg为压接型IGBT栅极电阻;
d V ce dt ≈ 1 C μ I g ≈ 1 C μ V dr - V ge R g - - - ( 2 )
其中,Vce为压接型IGBT源漏电压,Cμ为压接型IGBT栅漏电容。
4.根据权利要求2所述的基于串联压接型IGBT的主动均压控制方法,其特征在于:所述压接型IGBT的关断时间用tdoff表示,具体有:
t doff = R g × ( C ge + C gc ) × ln ( g m V IN G m V ge ( th ) + I c ) - - - ( 3 )
其中,RG为压接型IGBT栅极电阻,Cge为压接型IGBT栅源电容,Cgc为压接型IGBT栅漏电容,gm为压接型IGBT跨导,VIN为压接型IGBT输入电压,Gm为压接型IGBT栅极电导,Vge(th)为压接型IGBT门槛电压,Ic为压接型IGBT漏极电流。
5.根据权利要求2所述的基于串联压接型IGBT的主动均压控制方法,其特征在于:所述压接型IGBT的源漏参考电压VCE_REF的设定分为预开通阶段、主开通阶段、开通阶段、预关断阶段、主关断阶段和关断阶段。
6.根据权利要求1所述的基于串联压接型IGBT的主动均压控制方法,其特征在于:压接型IGBT源漏电压反馈控制的输出信号需经过缓冲电路、功率放大电路及门极电阻才能到达IGBT栅极,因此压接型IGBT的源漏电压Vce与压接型IGBT源漏电压反馈控制的输出信号产生偏差,而通过引入压接型IGBT门极电压反馈控制即可提高有源电压控制的均压效果。
7.根据权利要求1所述的基于串联压接型IGBT的主动均压控制方法,其特征在于:压接型IGBT源漏电压变化率用表示,压接型IGBT源漏电压变化率反馈控制中,通过RC电路反馈压接型IGBT开关时的过大时,RC电路向压接型IGBT栅极注入电流,防止压接型IGBT开关过程中过大损坏压接型IGBT,同时提高压接型IGBT动态均压性。
CN201510079733.3A 2015-02-13 2015-02-13 一种基于串联压接型igbt的主动均压控制方法 Pending CN105991009A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510079733.3A CN105991009A (zh) 2015-02-13 2015-02-13 一种基于串联压接型igbt的主动均压控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510079733.3A CN105991009A (zh) 2015-02-13 2015-02-13 一种基于串联压接型igbt的主动均压控制方法

Publications (1)

Publication Number Publication Date
CN105991009A true CN105991009A (zh) 2016-10-05

Family

ID=57041439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510079733.3A Pending CN105991009A (zh) 2015-02-13 2015-02-13 一种基于串联压接型igbt的主动均压控制方法

Country Status (1)

Country Link
CN (1) CN105991009A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685195A (zh) * 2017-01-23 2017-05-17 全球能源互联网研究院 一种用于igbt串联的自适应均压电路及电力电子设备
CN110854985A (zh) * 2019-11-11 2020-02-28 国网山东省电力公司电力科学研究院 一种基于dsp的最大功率独立供电系统
WO2021128734A1 (zh) * 2019-12-24 2021-07-01 浙江大学 一种功率开关管串联运行门极电压幅值补偿均压方法和电路
CN113746335A (zh) * 2021-11-04 2021-12-03 深圳市创鑫激光股份有限公司 一种激光器电源控制电路及激光器设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566063A (en) * 1993-10-21 1996-10-15 Abb Management Ag Electronic power converter circuit arrangement and method for driving same
CN101728952A (zh) * 2009-12-02 2010-06-09 浙江大学 基于arm微处理器控制的igbt串联电路
CN201533296U (zh) * 2009-12-04 2010-07-21 深圳青铜剑电力电子科技有限公司 一种单个或多个串联连接的绝缘栅器件的驱动电路
CN101888229A (zh) * 2010-05-25 2010-11-17 中国电力科学研究院 一种新的igbt高压串联阀控制与监测系统
CN103166435A (zh) * 2011-12-19 2013-06-19 中国电力科学研究院 一种基于igbt串联损耗优化电压自适应控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566063A (en) * 1993-10-21 1996-10-15 Abb Management Ag Electronic power converter circuit arrangement and method for driving same
CN101728952A (zh) * 2009-12-02 2010-06-09 浙江大学 基于arm微处理器控制的igbt串联电路
CN201533296U (zh) * 2009-12-04 2010-07-21 深圳青铜剑电力电子科技有限公司 一种单个或多个串联连接的绝缘栅器件的驱动电路
CN101888229A (zh) * 2010-05-25 2010-11-17 中国电力科学研究院 一种新的igbt高压串联阀控制与监测系统
CN103166435A (zh) * 2011-12-19 2013-06-19 中国电力科学研究院 一种基于igbt串联损耗优化电压自适应控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
和巍巍等: "IGBT串联用的有源电压控制技术", 《电源世界》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685195A (zh) * 2017-01-23 2017-05-17 全球能源互联网研究院 一种用于igbt串联的自适应均压电路及电力电子设备
CN106685195B (zh) * 2017-01-23 2020-04-10 全球能源互联网研究院 一种用于igbt串联的自适应均压电路及电力电子设备
CN110854985A (zh) * 2019-11-11 2020-02-28 国网山东省电力公司电力科学研究院 一种基于dsp的最大功率独立供电系统
CN110854985B (zh) * 2019-11-11 2022-04-05 国网山东省电力公司电力科学研究院 一种基于dsp的最大功率独立供电系统
WO2021128734A1 (zh) * 2019-12-24 2021-07-01 浙江大学 一种功率开关管串联运行门极电压幅值补偿均压方法和电路
CN113746335A (zh) * 2021-11-04 2021-12-03 深圳市创鑫激光股份有限公司 一种激光器电源控制电路及激光器设备
CN113746335B (zh) * 2021-11-04 2022-04-12 深圳市创鑫激光股份有限公司 一种激光器电源控制电路及激光器设备

Similar Documents

Publication Publication Date Title
Moghaddami et al. Single-phase soft-switched AC–AC matrix converter with power controller for bidirectional inductive power transfer systems
CN103219738B (zh) 一种基于三极式结构的直流输电系统
CN204733095U (zh) 一种两级变匝比高频隔离光伏逆变器
CN103178742A (zh) 一种组合式双向dc/ac变流器拓扑结构
CN206992982U (zh) 一种t型变换电路和相应的三相变换电路
CN206698143U (zh) 一种t型变换电路及相应的三相变换电路和变换装置
CN206727904U (zh) 一种t型变换电路和相应的三相变换电路
CN102185480B (zh) 一种双向隔离直流变换器
CN207083025U (zh) 一种t型变换电路及相应的三相变换电路和变换装置
CN105991009A (zh) 一种基于串联压接型igbt的主动均压控制方法
CN206992981U (zh) 一种t型变换电路及相应的三相变换电路和变换装置
CN108111004A (zh) 一种实现Si IGBT软开关特性的混合型器件
CN204408212U (zh) 反激变压器漏感能量吸收回馈电路
CN106451406A (zh) 一种用于连接两个直流配电系统的柔性开关装置
Li et al. Recent progress of SiC power devices and applications
CN105991006A (zh) 一种压接型igbt串联的电容推挽线性隔离高电位自取能电路
CN104836274B (zh) 宽电压范围高效率高频隔离电池充放电电路及其控制方法
CN203827203U (zh) 一种大功率光储一体化变流器
Zhang et al. Comparison of RB-IGBT and normal IGBT in T-type three-level inverter
CN108964505A (zh) 一种t型变换电路及相应的三相变换电路和变换装置
CN206992983U (zh) 一种变换电路及相应的三相变换电路和变换装置
CN206547018U (zh) 一种基于碳化硅mosfet的充电模组
CN205901700U (zh) 一种有源门极控制电路
CN204696955U (zh) 一种采用变压器辅助谐振的光伏逆变器
CN208369464U (zh) 一种抑制光伏逆变器漏电流的电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161005

RJ01 Rejection of invention patent application after publication