WO2011145883A2 - 기둥형 집광장치를 구비한 태양광 발전 장치 - Google Patents

기둥형 집광장치를 구비한 태양광 발전 장치 Download PDF

Info

Publication number
WO2011145883A2
WO2011145883A2 PCT/KR2011/003682 KR2011003682W WO2011145883A2 WO 2011145883 A2 WO2011145883 A2 WO 2011145883A2 KR 2011003682 W KR2011003682 W KR 2011003682W WO 2011145883 A2 WO2011145883 A2 WO 2011145883A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
cell modules
solar
rod
Prior art date
Application number
PCT/KR2011/003682
Other languages
English (en)
French (fr)
Other versions
WO2011145883A3 (ko
Inventor
신유빈
신유현
Original Assignee
Shin Yu Bin
Shin Yu Hyun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Yu Bin, Shin Yu Hyun filed Critical Shin Yu Bin
Priority to JP2013511116A priority Critical patent/JP5876873B2/ja
Priority to DE112011101719T priority patent/DE112011101719T5/de
Priority to US13/699,295 priority patent/US9316414B2/en
Priority to CN201180025004.XA priority patent/CN102959343B/zh
Publication of WO2011145883A2 publication Critical patent/WO2011145883A2/ko
Publication of WO2011145883A3 publication Critical patent/WO2011145883A3/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/834Other shapes trough-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • Photovoltaic technology is a technology that directly converts infinite solar energy into electrical energy. Despite the increasing demands for practical applications due to the reduction of greenhouse gases, environmental protection, and the expansion of alternative energy, large quantities of expensive solar cell modules are available. As it is a high-cost technology that uses it, it must accurately track the sun and rotate it, it requires national policies, environmental regulations, and subsidies.
  • the present invention is to reduce the investment cost, operating cost of the solar power generation, and simplify the structure, and even though the incident angle of the photovoltaic solar cell changes depending on the path of the solar light, the light collecting device designed to be independent of the incident angle
  • the present invention relates to a photovoltaic device having a solar cell module moving on a focal orbit along the path of the sun, and a device for adjusting the movement thereof.
  • photovoltaic power generation generally includes a method of directly using a large area flat panel solar cell modules and a method of using solar cell modules having a light collecting device.
  • the fixed type is a method in which the hairs are fixed in one direction regardless of the movement of the sun and can be applied only to the flat type.
  • the solar incidence angle tracking type tracks the sun in the east-west direction from morning to evening, so that the light concentrator and the solar cell module rotate up to 180 degrees.
  • the angle of rotation is 120 degrees.
  • the single-axis tracking type solar altitude tracking type has a rotation angle of about 40 degrees in the north-south direction depending on the sun's altitude.
  • the two-axis tracking method is to perform altitude tracking and angle tracking simultaneously.
  • the usage of the solar cell module can be reduced, but the solar power generating device must be rotated according to the movement of the sun. Even if it is out of the vertical, the solar absorption efficiency is drastically reduced, so a precise solar tracking device is required to maintain the vertical at all times, and it is heavier including the condenser, solar cell modules, and the solar tracking device as the sun moves. Since the entire solar power generator has to rotate, it requires a large rotation space and a complicated driving device, and a rigid, complicated and strong structure that can hold the solar power generator so that it does not fall behind by weight, wind, rain or snow. There is a disadvantage to be supported.
  • the present invention has a lamp-type light concentrator designed to be independent of the incident angle of sunlight according to the movement of the sun in order to solve the economic and mechanical problems of the photovoltaic device equipped with a conventional light concentrator, and the solar path Accordingly, there is provided a photovoltaic device having a solar cell module moving in a direction opposite to the sun on a focal orbit generated on the opposite side of a light collecting device and a device for adjusting the movement thereof.
  • the usage of the solar cell modules can be significantly reduced, and the mechanically moving part of the whole device is only the solar cell modules and the machine that moves them, so the moving part is minimized and the solar cell is in the focal locus.
  • the modules it is possible to absorb the maximum amount of solar light, which greatly simplifies the structure of the photovoltaic device and can be installed firmly so that the investment cost and operating cost of the photovoltaic power plant can be significantly reduced.
  • FIG. 1 is a perspective view of a set of photovoltaic devices comprising a light concentrator and a module according to the present invention, wherein each unit group is arranged in parallel on one plane
  • FIG. 2 is a focal orbital change of the light concentrator according to the position of the sun according to the present invention.
  • FIG. 3 is a model of incidence of sunlight. Apparatus A is sunlight incident on a large amount of light. Device B is sunlight incident on a small amount of light. Apparatus C is solar light incident on a small quantity of modules in which the light concentrator according to the present invention is installed, while device A and device B are directly incident on the light, but device C causes the light to penetrate the light concentrator. Condensed onto the field.
  • FIG. 4 is a schematic view according to the position of the sun in the morning of the photovoltaic device according to the present invention
  • FIG. 5 is a schematic view according to the position of the sun at noon of the photovoltaic device according to the present invention
  • FIG. 7 is a schematic view of a solar cell module with a small reflector according to the invention.
  • FIG. 8 is a solar tracking pattern of a conventional photovoltaic device having a convex lens condenser.
  • the concentrator and the module must move along the sunlight, and the convex lens must accurately track the sunlight and is not perpendicular to the sunlight. Power generation efficiency is significantly reduced
  • FIG. 9 is a solar tracking schematic diagram of a photovoltaic device having a light collecting device according to the present invention. Can easily be vertically preferred embodiment of the invention
  • the solar power generation device provided with the light-concentrating light concentrator 10 of the present invention, the column condenser no matter where the sun is located in the day Is a structure that does not need to track and move the sun, so that the sunlight passing through the light condenser is concentrated at a focal point located on the opposite side of the concentrator, and the focal point moves in the opposite direction to the sun,
  • An efficient photovoltaic power generation is possible through the installation of small solar cell modules 11 and their movement.
  • the light concentrating device plays a very important role in the present invention, and focuses on a position separated by the focal length of the light concentrator from the rear of the light concentrator due to the difference in refractive index when the sunlight incident on the front of the light concentrator passes through the light concentrator. It is.
  • the lamp-type light collecting device has a structure in which a plurality of lamps are arranged in parallel on a plane at regular intervals. If the gaps between the lamps are too narrow, the incident of sunlight is interrupted by adjacent pillars. Since there is much light loss, 0.5 to 2 times the column diameter is preferable.
  • the cross section of the lamp can be circular, elliptical, or partial circle and can be any shape that does not need to be moved by tracking the sun.
  • the geometrical diameter of the lamp is determined by the complexity of the device. 2 ⁇ 20 cm is preferable because it does not reduce greatly or the scattering amount of solar light is large, and the diameter is too large, because the load of the equipment is large.
  • the length of the lamp can be arbitrarily determined as long as the structure allows.
  • the sunlight passing through the lamp-type light collecting device is smaller than the diameter of the lamp and has a long focal length, and diffuses again after the focal length. In other words, since the solar light is concentrated at the focal point, by placing the solar cell modules at this focal point, it is possible to secure electrical energy with a small amount of solar cell modules.
  • the focal position and width can be easily determined because the condensers' physical properties such as shape, geometric diameter, and refraction depend on the longitude, latitude, and latitude of the solar collector.
  • the solar cell is slightly larger than the focal width to absorb the concentrated sunlight. Place them in focus.
  • the light collecting device is composed of a plurality of lamps, the plurality of lamps are focused on each other, and each solar cell has one solar cell set parallel to the length of the pillar.
  • the sunlight passing through one pillar has a structure in which sunlight is concentrated on one solar cell module located at the focal point of the rear portion of the pillar.
  • each solar cell module is also arranged in parallel at regular intervals on one plane.
  • the width of the module can be freely determined depending on the degree of condensing and the operating conditions, which is significantly smaller than the diameter of the condenser. As shown in FIG. 7, the reflection of the solar cell lost by the reflector installed around the solar cell module is reflected on the solar cell module to minimize solar loss and further reduce solar cell usage. Can be.
  • a rod-shaped lamp made of a material having a different refractive index from the surface of the lamp may be used.
  • a heat-heating heating medium may flow inside.
  • the rods are fixed to the poles that hold the tops and bottoms of the lamps, and the pipes connect the tops and bottoms of the lamps to the wires designed to allow the heat medium to flow.
  • the light concentrating device and the solar cell modules configured as described above are only solar cell modules that can be fixed relatively easily to minimize the influence of wind or rain.
  • the mechanical device for moving the solar cell module is installed as an accessory to the light collecting device or independently of the light collecting device to move the solar cell modules onto a focal orbit created by the movement of the sun repeatedly every day.
  • a portion consisting of a columnar concentrator and solar cell modules is rotated and fixed 30 degrees toward the sun in the early morning and then rotated 30 degrees toward the sun in the late afternoon, the conventional condenser In photovoltaic power generation, the entire system rotates up to 180 degrees, but despite the narrow angle of rotation, an additional four hours of sunshine can be obtained for two hours each in the morning and afternoon.
  • the power generated by the device (device C) with a 30 mm diameter condenser and a 2 mm wide solar cell module placed in the solar focal position Measured.
  • the cylindrical light concentrator is rotated or not moving at all, and only 2mm wide solar cell modules move along the sun's trajectory, and solar cell modules absorb solar energy vertically.
  • the only moving parts are the solar cell modules moved in the solar focal orbit and the moving distance of the solar cell modules is about 45 mm.
  • the sunshine time that can be collected without any influence of adjacent lamps according to the interval was investigated.
  • the interval between lamps was 0.5, 1, and 2 times the diameter of the lamp
  • the sunshine time was about 6 hours, 8 hours, and 10 hours, respectively.
  • the maximum sunshine time is 9 hours in winter and 12 hours in summer.
  • the entire system must be rotated 180 degrees to obtain 12 hours of sunshine time, while the lamp-type light collecting device is rotated 30 degrees to the left and right to obtain 12 hours of sunshine time.
  • the effect obtained by the photovoltaic device having a light collecting device irrespective of the incident angle of sunlight is very large.
  • the photovoltaic device equipped with a light collecting device can increase energy density by condensing, thereby reducing the use of expensive solar cell modules.
  • the light collecting device has a spherical, elliptical, or partial circular shape, the light collecting device can collect light even if the light collecting device does not move or rotate along the sun, thus eliminating the need for a mechanical device for moving the light collecting device. Durability is significantly increased, and there is an advantage of easy fixing of the equipment.
  • the only parts that need to move are the small solar cell modules located on the solar focal orbit and the devices that move them. Since only needs to move in the range, the movement range is very small and can be easily achieved with a simple device. If the useful sunshine time of the day is eight hours, the solar cells only need to rotate an angle of 120 degrees of the solar focal orbit. Not only does the concentrator not rotate, it is always perpendicular to the sun, so there is no need to precisely adjust the concentrator to the sun, so the tracking device is very simple and only small solar cells stay perpendicular to the sun. It is technically very easy to do.
  • the light collecting device of the present invention has a structure in which a plurality of lamps are arranged at regular intervals, solar light passes through the empty space between the pillars and the pillars, so that sunlight can shine on the lower part of the power generating device, so that the building can be used for mining, shading, and agriculture. Can be installed on site, etc.
  • the light concentrating device of the present invention has an empty space between the lamp and the lamp, snow, rain, wind easily pass through it is small and can be installed relatively easily even in large-scale facilities due to the small fall or shake.
  • a liquid such as water
  • a portion of the solar energy that raises the temperature of the solar cell modules is first absorbed as thermal energy, and the remaining light beams passing through the light collecting device are absorbed. Since they are recovered as electrical energy, the light can be collected and collected at the same time.
  • the difference in energy generation due to the change in the altitude of the sun can be relatively simple.
  • the focal length of the condenser changes, so moving the solar cell modules on the focal orbit reflecting the changing focal length or deciding the width of the solar cell modules does not require solar power generation without rotation or vertical movement of the condenser. This is possible.
  • the focal length and the focal orbit can be adjusted.
  • the entire system rotates up to 180 degrees, but in the present invention, the light condenser and the solar cell modules are rotated toward the sun in the early morning and then It can be fixed and rotated back to the sun in the late afternoon, allowing for more early morning and late afternoon sunshine times despite the narrow angle of rotation.
  • the present invention provides a photovoltaic power generation technology having the above effect, it is possible to generate electricity with a light collecting device and a small amount of solar cell modules and the minimum device and energy that can move them, as described above To solve problems such as space, moving distance, weight of equipment, influence of climate, mechanical robustness, durability, etc., and greatly reduce the investment cost and operation cost of solar power plant to expand the application of solar power, solar buildings, etc. It can contribute greatly.

Abstract

본 발명은 태양의 이동경로와 관계없이 태양광을 태양전지 모듈에 집광시키는 집광장치를 구비한 태양광 발전 장치에 관한 것이다. 태양광 발전은 태양에너지를 태양전지 모듈에 흡수하여 전기를 생성하는 것으로, 본 발명에 의하면, 태양을 추적하여 움직일 필요가 없는 집광장치와 태양을 추적하여 움직이는 소량의 태양전지 모듈과 이 모듈을 움직여주는 장치로 전기를 생성할 수 있기 때문에 태양광 발전 시설비와 운영비를 크게 낮출 수 있다.

Description

기등형 집광장치를 구비한 태양광 발전 장치 발명이 속하는 기술분야
태양광 발전 기술은 무한한 태양에너지를 전기에너지로 직접 변환하는 기술로 온실가스 저감, 환경 보호 및 대체 에너지의 적용 확대 등의 이유로 현실 적용 요구가 증가하고 있음에도 불구하고, 비싼 가격의 태양전지 모들을 다량으로 사용하고 태양을 정확하게 추적해야 하여 회전시키는 등 고비용 기술이어서 국가 정책, 환경규제,보조금지원 등이 필요하다.
본 발명은 태양광 발전의 투자비 및 운영비의 절감, 구조의 단순화를 위한 것으 로 태양의 이동 경로에 따라 태양광이 태양전지 모들로 입사각도는 변함에도 불구하고 입사각과 상관없도록 고안된 기등형 집광장치를 구비하고 태양의 이동 경로를 따라 집광장치의 반대편에 생기는 초점 궤도상을 움직이는 태양전지 모들 과 이의 이동을 조정하는 장치를 구비한 태양광 발전 장치에 관한 것이다. 위 분야의 종래기술
지구에 도달하는 태양에너지 밀도는 거의 일정하지만 지표면에서 흡수하는 태양 에너지는 태양광의 입사각이나 태양의 고도에 따라 크게 차이가 나며 태양광 발전 효율도 심하게 변한다. 이러한 조건을 반영하여 일반적으로 태양광 발전은 넓은 면적의 평판형 태양전지 모들을 직접 사용하는 방법과 집광장치를 구비한 태양전지 모들을 사용하는 방법이 있다.
평판형 태양전지 모들은 구조가 단순하고 설치 및 유지 관리가 용이하여 많이 사용되고 있으나 고가의 모들을 다량으로 사용하므로 투자비가 큰 단점이 있다. 한편 태양전지 모들의 사용량을 최소화하는 방안으로 볼록렌즈,오목거울, 반사판, 프레넬 렌즈 (대한민국특헤 0-0420868, 10-0466257) 등 다양한 집광 기술을 적용하 게 되면 태양에너지의 밀도를 집적할 수 있기 때문에 상대적으로 작은 양의 태양 전지 모들로 전기에너지를 생성하는 것이 가능하다. 그러나 집광장치가 구비된 태양광 발전 장치는 항상 태양과 수직이 되도록 정확하게 태양을 추적하여 회전 하여야 하며 이에 따라 구동장치가 필요하며 구조가 복잡해지는 단점이 있다. 태양전지 모들이 태양올 추적하는 여부에 따라서 고정형 방식과 1축 추적형 방식 과 2축 추적형 방식이 있다. 고정형은 태양의 이동과 상관없이 모들을 한 방향 으로 향하게 고정한 방식이며, 평판형에만 적용이 가능하다. 1축 추적형 중 태양 입사각 추적형은 아침부터 저녁까지 동서방향으로 태양을 추적하여 집광장치와 태양전지 모듈이 최대 180도 회전하는 방식이며, 유효한 태양광이 있는 8시부터 16시까지 우리나라에서의 회전 각도는 120도이다. 1축 추적형 증 태양 고도 추적 형은 태양의 고도에 따라 남북방향으로 회전각도는 약 40도이다. 2축 추적형 방식은 고도 추적과 입사각 추적을 동시에 시행하는 것이다.
앞에서 언급한 집광장치가 구비된 종래의 추적형 태양광 발전 장치의 경우, 태양 전지 모듈의 사용량을 줄일 수는 있으나 태양의 움직임에 따라 태양광 발전장치 를 회전시켜야 하며, 태양광과 집광장치가 조금이라도 수직에서 벗어나면 태양광 흡수 효율이 급격히 감소하므로 항상 수직을 유지하기 위하여 정밀한 태양광 추 적장치가 필요하며 , 태양의 움직임에 따라 집광장치와 태양전지 모들과 태양광 추적장치를 포함하여 더 무거워진 전체 태양광 발전장치가 회전하여야 하므로 넓은 회전 공간이 소요되고 복잡한 구동장치가 필요하며 또한 무게, 바람, 비나 눈에 의해 태양광 발전장치가 뒤를리지 않도록 이를 붙잡아 줄 수 있는 견고하고 복잡하고 강한 구조물로 지지하여야 하는 단점이 있다 .
발명이 이루고자 하는 기술적 과제
본 발명은 종래의 집광장치가 구비된 태양광 발전 장치가 가지고 있는 경제적, 기계적 문제점을 해결하기 위하여 태양의 이동에 따른 태양광의 입사각도와 상관 이 없도록 고안된 기등형 집광장치를 구비하고 태양의 이동 경로를 따라 집광장 치의 반대편에 생기는 초점 궤도상에서 태양과 반대 방향으로 이동하는 태양전지 모들과 이의 이동을 조정하는 장치를 구비한 태양광 발전 장치를 제공한다.
본 발명에 따르면 집광장치를 구비하고 있기 때문에 태양전지 모들의 사용량을 현격히 줄일 수 있고, 전체 장치중 기계적으로 움직이는 부분은 태양전지 모들과 이를 움직이게 하는 기계밖에 없어서 움직이는 부분이 최소화되며 초점 궤적에 태양전지 모들을 제어함으로써 최대의 태양광을 흡수할 수 있게 하여 태양광 발전 장치의 구조를 현저히 단순화시킬 수 있고 또한 견고하게 설치할 수 있어서 태양광 발전 설비 투자비 및 운영비가 현격히 감소될 수 있다. 도면의 간단한 설명
도 1은 본 발명에 따른 1개의 집광장치와 1개의 모들로 구성된 1조의 태양광 발전 장치의 사시도로써 각각의 단위조는 한 평면상에 병렬로 배치된다
도 2는 본 발명에 따른 태양 위치에 따른 집광장치의 초점 궤도 변화 그림 도 3은 태양광의 모들 입사 모식도로 장치 A는 다량의 모들에 입사하는 태양광,장치 B는 소량 모들에 입사하는 태양광, 장치 C는 본 발명에 따른 집광장치 가 설치된 소량 모들에 입사하는 태양광으로 장치 A와 장치 B는 태양광이 직접 모들에 입사하지만 장치 C는 태양광이 집광장치를 투과하면서 굴절 현상을 일으켜 소형의 모들위로 집광된다.
도 4는 본 발명에 따른 태양광 발전 장치의 오전의 태양 위치에 따른 실시 개략도 도 5는 본 발명에 따른 태양광 발전 장치의 정오의 태양 위치에 따른 실시 개략도 도 6은 본 발명에 따른 태양광 발전 장치의 오후의 태양 위치에 따른 실시 개략도 도 7은 본 발명에 따른 소형 반사판을 구비한 태양전지 모들 개략도
도 8은 종래의 볼록렌즈형 집광장치를 구비한 태양광 발전장치의 태양광 추적 모식도로 태양광을 따라서 집광장치와 모듈이 움직여야 하며 볼록렌즈는 태양광 을 정확하게 추적하여야 하며 태양광과 수직이 되지 않으면 발전 효율이 상당히 저하됨
도 9는 본 발명에 따른 기등형 집광장치를 구비한 태양광 발전장치의 태양광 추적 모식도로 태양의 위치와 상관없이 모들만 태양광과 수직이면 최대의 발전효율을 확보할 수 있으며 모들을 태양과 쉽게 수직으로 할 수 있음 발명의 바람직한 실시예
태양의 위치는 동에서 서로, 지상에서 공중으로 매일 반복적으로 이동하지만, 본 발명의 기등형 집광장치 (10)를 구비한 태양광 발전 장치에 의하면, 태양이 하루중 어느 위치에 있더라도 기둥형 집광장치는 태양을 추적하여 움직일 필요 가 없는 구조이어서 기등형 집광장치를 투과한 태양광은 집광장치의 반대편에 위치하게 되는 초점에 집증되고 이 초점은 태양과는 반대 방향으로 이동하게 되며 이 초점 궤도상으로 소형의 태양전지 모들 (11)을 위치시키고 이 모들을 이동시키는 설비를 통하여 효과적인 태양광 발전이 가능하다. 기등형 집광장치는 본 발명에서 매우 중요한 역할을 하는데, 집광장치 전면부로 입사된 태양광이 집광장치를 통과할 때 굴절율의 차이에 의해 집광장치 후면부 로부터 집광장치의 초점거리만큼 떨어진 위치에 초점을 맺게 하는 것이다. 기등형 집광장치는 다수의 기등을 한 평면상에 일정한 간격으로 평행하게 배치한 구조를 가지며, 기등 사이의 간격이 너무 좁으면 태양광의 입사가 인접한 기둥에 의해서 방해를 받으며, 간격이 너무 넓으면 태양광의 손실이 많게 되므로 기둥 지름의 0.5배 내지 2배가 바람직하다. 기등의 단면은 원형, 타원형, 부분원형 등 초점을 맺으며 태양을 추적하여 움직일 필요가 없는 모든 형태가 가능하며 기등 의 기하학적 지름은 장치의 복잡성 등에 따라 결정되지만 지름이 너무 작으면 태양전지 모들의 크기를 크게 줄이지 못하거나 태양광의 산란량이 커지고, 지름 이 너무 크면 설비의 하중이 많이 나가기 때문에 2 〜 20 cm 가 바람직하다. 기등의 길이는 구조가 허용되는 한에서 임의로 결정할 수 있다. 기등형 집광장치 를 통과한 태양광은 폭이 기등의 지름보다 작고 길이방향으로 긴 초점을 맺게 되며 초점거리를 지나면 다시 확산된다. 즉 초점에 태양광이 집중되게 되므로 이 초점 위치에 태양전지 모들을 배치하면 적은 양의 태양전지 모들로 전기 에너지 를 확보할 수 있다. 초점 위치와 폭은 집광장치의 물리적 성질인 형상, 기하학적 지름, 굴절를 둥과 태양의 경도, 위도 등에 따른 변수이기 때문에 쉽게 결정될수 있으며, 집중된 태양광을 최대한 흡수하도록 초점의 폭보다 조금 큰 태양전지 모들을 초점에 위치 시킨다.
집광장치가 다수의 기등으로 되어 있기 때문에 다수의 기등은 각각 초점을 맺으 며, 각각의 초점에 기둥의 길이방향과 평행한 태양전지 모들이 한 개씩 설치된다. 즉 한 개의 기둥을 통과한 태양광은 기둥 후면부의 초점에 위치한 한 개의 태양 전지 모들에 태양광을 집중시키는 구조를 갖는다.
다수의 기등이 한 평면상에 일정한 간격으로 평행하게 배치되는 것과 동일하게 각각의 초점 위치에 각각의 태양전지 모들도 한 평면상에서 일정한 간격으로 평 행하게 배치된다. 모들의 폭은 집광 정도나 운영조건에 따라서 집광장치의 지름 보다 현격히 작게 자유로이 결정할 수 있다. 도 7과 같이 태양전지 모들 주위에 설치된 반사판에 의해 태양전지 모들 밖으로 손실되는 태양광을 태양전지 모들위 로 반사시켜 줌으로써 태양광 손실을 최소화하고 태양전지 사용량을 더 감소시킬 수 있다.
초점거리를 다르게 하려면 기등의 표면과 내부가 다른 굴절율을 가지는 재질로 된 막대형 기등을 사용하며, 내부가 비어있는 파이프형 기등의 경우 내부에 열희수용 열매체를 흐르게 할 수 있다. 막대형은 기등들의 상부와 하부를 고정 시키는 를에 고정되며 파이프형은 기등의 상부와 하부를 열매체가 흐를 수 있도 록 설계된 를에 연결한다. 이렇게 구성된 집광장치와 태양전지 모들은 움직이는 부분이 태양전지 모듈 뿐이기 때문에 비교적 쉽게 견고히 고정시켜 바람이나 비 등에 의한 영향올 최소화할 수 있다.
태양전지 모듈을 이동시키는 기계적 장치는 집광장치에 부속물로 설치하거나 집광장치와는 독립적으로 설치하여 태양전지 모들을 매일 반복적으로 태양의 이동에 따라 생성되는 초점 궤도상으로 이동시킨다.
종래의 태양광 발전은 태양의 고도를 따라서 집광장치와 태양전지 모들 전체를 움직여야 하지만 태양의 고도에 따라서 초점거리가 변하는 원리를 이용하여 이 초점궤도상으로 태양전지 모듈을 이동시켜 태양의 고도나 위도에 상관없는 태양 광 발전 장치를 구현하게 하였다. 한편, 기둥형 집광장치와 태양전지 모들로 구 성된 부분이 태양의 고도에 따라 회전하는 구조를 가지면 항상 일정한 초점거리 와 초점 폭을 확보함으로써 최적량의 태양전지 모들로 태양광 발전이 가능하다 . 본 발명에서는 기둥형 집광장치와 태양전지 모들로 구성된 부분을 이른 아침에는 태양을 향하여 30도를 회전시키고 고정시켰다가 늦은 오후에는 다시 태양을 향하 여 30도를 회전시키는 구조를 통하여, 종래의 집광장치를 구비한 태양광 발전에 서는 전체 시스템이 최대 180도까지 회전하지만, 좁은 회전 각도에도 불구하고 아침과 오후 각 2시간씩 4시간의 일조시간을 추가로 확보할 수 있다.
즉 본 발명에서는 다른 종류의 집광장치인 볼록렌즈나 프레넬 렌즈와는 달리 태양의 이동 경로와는 상관없이 대부분의 장치가 견고히 고정된 상태에서 태양광 초점의 이동 경로 (21)를 따라 상대적으로 적은 양의 태양전지 모들이 움직이는 구조를 가진 태양광 발전장치를 제공한다. 실 시 예 1
본 발명의 기등형 집광장치의 효과를 확인하기 위하여 도 3과 같이 세 개의 장치 에서 생성되는 전력을 측정하였다. 집광장치가 없고 태양전지 모들 폭이 30mm 인 장치 (장치 A), 집광장치가 없고 태양전지 모들 폭이 2mm 인 장치 (장치 B), 지름이 30mm 인 원기등형 집광장치를 구비하고 폭이 2mm 인 태양전지 모들을 태양광 초점 위치에 배치한 장치 (장치 C)에서 생성된 전력은 아래 표와 같다. 집광장치가 없을 경우, 모들의 크기와 전력은 비례하므로 많은 전력을 생산하려면 많은 양의 태양전지 모들을 사용해야 한다. 원기둥형 집광장치를 구비한 장치 C 의 경우, 집광에 의해 같은 크기의 모들에서 약 4.7배의 전력이 더 생성되었다.
(장치 B와 장치 C 비교). 표 1
Figure imgf000007_0001
실 시 예 2
지름이 30mm 인 원기등형 집광장치를 구비하고 폭이 2mm 인 태양전지 모들을 태양광 초점 위치에 배치한 장치 (장치 C)에서 발생하는 전력을 시간의 경과에 따라 오전 9시부터 오후 3시까지 측정하였다. 원기둥형 집광장치는 전혀 회전시 키거나 움직이지 않은 상태에서, 폭 2mm 의 태양전지 모들만 태양의 궤적을 따라 이동했으며 태양전지 모들은 태양에너지를 항상 수직으로 흡수하기 때문에 최대 의 흡수 효율로 전력을 생산할 수 있었다. 이때 움직인 부분은 단지 태양광 초점 궤도상으로 이동한 태양전지 모들 뿐이며 태양전지 모들의 이동 거리는 약 45mm 이다ᅳ 표 2
Figure imgf000008_0001
실 시 예 3
다수의 기등을 일정한 간격으로 배치한 기등형 집광장치에서, 간격에 따른 인접 한 기등의 영향을 전혀 받지 않고 집광할 수 있는 일조시간을 조사하였다. 기등 간 간격이 기등지름의 0.5배, 1배, 2배로 하였을 때 일조시간은 각각 약 6시간, 8시간, 10시간이었다. 우리나라에서 최대 일조시간은 겨울철 9시간, 여름철 12 시간을 감안하여 일조시간을 추가하는 방안을 강구하였다. 기둥 간 간격을 기등 지름의 1배로 만든 장치를 오전 6시에 태양을 향하여 30도의 회전시키고 오전 8 시에 원위치시키고 오후 4시에 태양을 향하여 30도 회전시켜서 오후 6시까지 총 12시간의 일조시간을 확보하였다. 종래의 기술로는 전체 시스템이 180도 회전 하여야 12시간의 일조시간이 확보되는 것에 비교하여 기등형 집광장치를 좌우로 30도 회전시키서 12시간의 일조시간이 확보하였다.
발명의 효과
본 발명에서 태양광의 입사각도에 상관없는 집광장치를 구비한 태양광 발전 장치로 인하여 얻어지는 효과는 매우 크다.
첫째, 집광장치가 구비된 태양광 발전 장치는 집광에 의해 에너지 밀도가 높아 져서 고가의 태양전지 모듈 사용량을 줄일 수 있다.
둘째, 집광장치의 단면이 구형 또는 타원형 또는 부분원형 등이므로 집광장치가 태양을 따라서 움직이거나 회전하지 않아도 집광이 가능하므로, 집광장치를 움직 이는 기계적 장치가 필요 없게 되어 설비의 구성이 매우 단순해지며, 내구성이 현저히 증가하고, 설비의 견고한 고정이 용이한 장점이 있다.
세째, 움직임이 필요한 부분은 단지 태양광 초점 궤도상에 위치한 작은 태양전지 모들과 이 모들을 이동시키는 장치뿐이며, 이 모들마저도 태양광 초점이 이동하 는 범위에서만 움직이면 되므로 이동 범위가 매우 작고 간단한 장치만으로도 쉽 게 달성할 수 있다. 하루 중 유용한 일조시간이 8시간일 경우, 태양전지 모들이 태양광 초점 궤도의 120도의 각만 회전하면 된다. 집광장치는 회전하지 않을 뿐 만 아니라 항상 태양광과 수직을 이루고 있기 때문에 집광장치를 태양광에 맞추 어 정밀하게 조정할 필요가 없으므로 추적장치도 매우 단순하게 되며 소형의 태양전지 모들만 태양과 수직을 유지하는 것은 기술적으로 매우 용이하다.
네째, 본 발명의 집광장치는 다수의 기등이 일정한 간격으로 배치된 구조이므로 기둥과 기둥 사이의 빈 공간으로 태양광이 통과되어 발전 장치 하부에 태양광이 비출 수 있어서 건물 채광용, 그늘 형성용, 농업용 부지 등에서도 설치가 가능 하다.
다섯째, 본 발명의 집광장치는 기등과 기등 사이에 빈 공간이 있어 눈, 비, 바람 이 쉽게 통과되며 이들에 의한 뒤를림이나 흔들림이 작아서 대규모 설비에서도 비교적 쉽게 견고하게 설치가 가능하다. ' 여섯째, 본 발명에 의하면 파이프형 집광장치 내부로 물과 같은 액체를 주입하게 되면 태양전지 모들의 온도를 높이는 태양에너지의 일부를 열에너지로 먼저 흡수 하고, 집광장치를 투과한 나머지 광선을 태양전지 모들이 전기에너지로 회수하게 되므로 집광과 집열을 동시에 이롤 수 있다.
일곱째, 종래의 태양광 발전장치에 있어서, 집광에 의해 태양전지 모들의 온도가 많이 올라가게 되면, 전기 변환 효율이 감소하므로 태양전지 모들을 적절한 온도 로 넁각시키는 복잡한 장치가 필요하나, 태양에너지의 일부를 미리 태양열로 회수함으로써 비교적 간단한 장치로 태양전지 모들의 온도를 제어할 수 있다. 여덟째, 본 발명에 의하면 태양의 고도 변화에 따른 에너지 생성 차이도 비교적 간단히 대웅할 수 있다. 태양의 고도가 변하게 되면 집광장치의 초점 길이가 변하게 되므로 초점 길이가 변하는 것을 반영한 초점 궤도상으로 태양전지 모들 을 이동시키거나 태양전지 모들의 폭을 정하면 집광장치의 회전이나 상하 움직임 이 없이도 태양광 발전이 가능하다.
아흡째, 기등형 집광장치의 내부와 외부가 굴절을이 다른 재질로 만들면 초점 길이 및 초점 궤도의 조절이 가능하다.
열째, 태양전지 모들 주위에 반사판을 설치할 경우 모들 주위로 손실되는 태양광 을 모들 위로 반사시켜 태양전지 모들의 사용량을 더욱 즐이거나 집광효율을 증가시킬 수 있다.
다음으로, 종래의 집광장치를 구비한 태양광 발전에서는 전체 시스템이 최대 180도까지 회전하지만, 본 발명에서는 기등형 집광장치와 태양전지 모들로 구성 된 부분을 이른 아침에는 태양을 향하여 회전시키고 이후에는 고정시켰다가 늦은 오후에는 다시 태양을 향하여 회전시키는 구조로 하여 좁은 회전 각도에도 불구 하고 이른 아침과 늦은 오후의 일조 시간을 더 확보할수 있다.
다음으로, 기둥형 집광장치와 태양전지 모들로 구성된 부분이 태양의 고도에 따라 회전하는 구조를 가지면 항상 일정한 초점거리와 초점 폭을 확보함으로써 최적량의 태양전지 모들로 태양광 발전이 가능하다.
본 발명은 상기의 효과를 가지는 태양광 발전 기술을 제공함으로써, 집광장치와 소량의 태양전지 모들과 이를 움직일 수 있는 최소한의 장치와 에너지만으로 전기를 생성할 수 있고, 앞서 언급한 바와 같이 종래의 설비가 움직이기 위한 공간, 이동거리, 설비의 무게, 기후의 영향, 기계적 견고성, 내구성 등의 문제 들을 해결하게 하고 태양광 발전 시설 투자비와 운영비를 크게 낮추어 태양광 발전, 태양광 건물 등의 적용 확대에 크게 기여할 수 있다.

Claims

청구의 범위
청구항 1
길이 (축) 방향으로 긴 속이 채워진 봉 (기등) 형태이며, 전면부로 입사하는 태양광을 투과, 굴절 및 집중시켜 봉의 후면부에서 초점거리만큼 떨어진 위치에 초점을 맺게 하며, 축을 중심으로 회전하지 않는 다수의 봉이 봉의 지름의 0.5배 내지 2배의 일정한 간격으로 한 평면상에 평행하게 배치된 기등형 집광장치와; 기등형 집광장치의 봉의 지름보다 좁은 폭을 가지며 길이 방향으로 긴 형태이며 각각의 봉과 일대일로 대웅하며 기등형 집광장치의 후면부의 초점 위치에 배치 되며 태양광과 수직올 유지하는 다수의 태양전지 모들이 평행하게 배치된 태양 전지 모들과;
태양광의 입사각도에 따라 이동하는 태양광 초점 궤도상으로 태양전지 모들이 태양광과 수직을 유지하도록 태양전지 모듈을 이동시켜 주는 장치를 포함한 태양 광 발전 장치
청구항 2
제 1항에 있어서,
기둥형 집광장치는 태양광이 입사되는 방향의 반대편에 태양광의 초점을 '맺게 하는 것으로 원형 또는 타원형 또는 부분원형의 단면을 가진 집광 장치를 포함한 태양광 발전 장치
청구항 3
제 1항에 있어서,
기둥형 집광장치는 내부로 물과 같은 액체 물질올 흐르게 하여 태양열 회수와 태양광 발전을 동시에 구현할 수 있도록 파이프 형태인 집광장치를 포함한 태양광 발전 장치
청구항 4
제 1항에 있어서,
기등형 집광장치는 초점 길이를 조정할 수 있도록 집광장치의 내부와 외부가 다른 굴절률을 가지는 재질로 구성한 집광장치를 포함한 태양광 발전 장치 청구항 5
저 U항에 있어서, 태양전지 모들은 모듈 주위로 손실되는 태양광을 모들 위로 반사에 의해 집광시 키도록 모들 주위에 설치된 반사판을 구비한 태양전지 모들을 포함한 태양광 발전 장치
청구항 6
길이 (축) 방향으로 긴 속이 채워진 봉 (기등) 형태이며, 전면부로 입사하는 태양광을 투과, 굴절 및 집중시켜 봉의 후면부에서 초점거리만큼 떨어진 위치에 초점을 맺게 하며, 축을 중심으로 회전하지 않는 다수의 봉이 봉의지름의 0.5배 내지 2배의 일정한 간격으로 한 평면상에 평행하게 배치된 기둥형 집광장치와; 기등형 집광장치의 봉의 지름보다 좁은 폭을 가지며 길이 방향으로 긴 형태이며 각각의 봉과 일대일로 대응하며 기둥형 집광장치의 후면부의 초점 위치에 배치 되며 태양광과 수직을 유지하는 다수의 태양전지 모들이 평행하게 배치된 태양전지 모들과;
태양광의 입사각도에 따라 이동하는 태양광 초점 궤도상으로 태양전지 모들이 태양광과 수직을 유지하도록 태양전지 모들을 이동시켜 주는 장치와;
기등형 집광장치와 태양전지 모듈로 구성된 부분을 축을 중심으로 회전시켜 주는 장치를 포함한 태양광 발전 장치
청구항 7
길이 (축) 방향으로 긴 속이 채워진 봉 (기등) 형태이며, 전면부로 입사하는 태양 광을 투과, 굴절 및 집중시켜 봉의 후면부에서 초점거리만큼 떨어진 위치에 초점 을 맺게하며, 축을 중심으로 회전하지 않는 다수의 봉이 봉의 지름의 0.5배 내지 2배의 일정한 간격으로 한 평면상에 평행하게 배치된 기등형 집광장치와;
기둥형 집광장치의 봉의 지름보다 좁은 폭을 가지며 길이 방향으로 긴 형태이며 각각의 봉과 일대일로 대웅하며 기등형 집광장치의 후면부의 초점 위치에 배치 되며 태양광과 수직을 유지하는 다수의 태양전지 모들이 평행하게 배치된 태양 전지 모들과;
태양광의 입사각도에 따라 이동하는 태양광 초점 궤도상으로 태양전지 모들이 태양광과 수직을 유지하도록 태양전지 모들을 이동시켜 주는 장치와;
기등형 집광장치와 태양전지 모들로 구성된 부분올 태양의 고도를 따라 회전시켜 주는 장치를 포함한 태양광 발전 장치
PCT/KR2011/003682 2010-05-20 2011-05-18 기둥형 집광장치를 구비한 태양광 발전 장치 WO2011145883A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013511116A JP5876873B2 (ja) 2010-05-20 2011-05-18 柱状集光装置が具備された太陽光発電装置
DE112011101719T DE112011101719T5 (de) 2010-05-20 2011-05-18 Fotovoltaisches Stromerzeugungsgerät mit einer zylinderförmigen Lichtauffangvorrichtung
US13/699,295 US9316414B2 (en) 2010-05-20 2011-05-18 Photovoltaic power generation apparatus comprising a cylindrical light-collecting device
CN201180025004.XA CN102959343B (zh) 2010-05-20 2011-05-18 具备圆柱形集光装置的太阳光发电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100047179A KR101046230B1 (ko) 2010-05-20 2010-05-20 기둥형 집광장치를 구비한 태양광 발전 장치
KR10-2010-0047179 2010-05-20

Publications (2)

Publication Number Publication Date
WO2011145883A2 true WO2011145883A2 (ko) 2011-11-24
WO2011145883A3 WO2011145883A3 (ko) 2012-04-26

Family

ID=42362228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003682 WO2011145883A2 (ko) 2010-05-20 2011-05-18 기둥형 집광장치를 구비한 태양광 발전 장치

Country Status (6)

Country Link
US (1) US9316414B2 (ko)
JP (1) JP5876873B2 (ko)
KR (1) KR101046230B1 (ko)
CN (1) CN102959343B (ko)
DE (1) DE112011101719T5 (ko)
WO (1) WO2011145883A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738273A (zh) * 2012-07-11 2012-10-17 李富民 一种圆柱体太阳能光伏组件及其制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167510A1 (ko) * 2015-04-11 2016-10-20 김홍래 무전원 태양광 추적 장치
KR101776086B1 (ko) * 2015-07-20 2017-09-19 오 리처드 태양광 증폭 발전 장치
WO2018191757A1 (en) * 2017-04-14 2018-10-18 The Regents Of The University Of California Combined heat and electricity solar collector with wide angle concentrator
KR101954245B1 (ko) * 2017-06-14 2019-03-05 명지대학교 산학협력단 일별 태양추적이 필요없는 집광형 태양전지모듈
WO2019098942A1 (en) * 2017-11-15 2019-05-23 Nanyang Technological University Lighting apparatus, method for forming the same and method for controlling the same
CN108923743A (zh) * 2018-07-26 2018-11-30 深圳市昂特尔太阳能投资有限公司 微型高效率太阳能模组
KR102260654B1 (ko) 2019-03-04 2021-06-07 전남대학교산학협력단 집광형 태양전지 발전용 고정식 태양광 집광장치
TWI704764B (zh) * 2019-05-10 2020-09-11 黃培勛 集光鏡片、集光模組、太陽能電池裝置以及太陽能電池系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980024504A (ko) * 1996-09-04 1998-07-06 와다 아키히로 집광 솔라 모듈
JP2001217450A (ja) * 2000-02-04 2001-08-10 Shinko Sangyo Kk 太陽光発電装置
JP2006310452A (ja) * 2005-04-27 2006-11-09 Shimizu Corp 太陽電池及び太陽光発電装置
JP2009117446A (ja) * 2007-11-02 2009-05-28 Seiko Epson Corp 集光シート太陽光発電装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766023B2 (ja) * 1990-01-26 1998-06-18 三洋電機株式会社 太陽電池装置
JP2803597B2 (ja) * 1995-05-26 1998-09-24 トヨタ自動車株式会社 集光型太陽電池装置
JP3275684B2 (ja) * 1996-01-19 2002-04-15 トヨタ自動車株式会社 集光型太陽電池装置
JP3163969B2 (ja) * 1995-11-22 2001-05-08 トヨタ自動車株式会社 集光型太陽電池装置
KR100420868B1 (ko) 2001-09-29 2004-03-09 모인에너지(주) 태양광 집광 모듈
JP2004172256A (ja) * 2002-11-19 2004-06-17 Daido Steel Co Ltd 線集光型太陽光発電装置
KR100466257B1 (ko) 2004-09-09 2005-01-13 (주)에이시스 태양광 발전용 집광렌즈 및 집광장치
US20100326429A1 (en) * 2006-05-19 2010-12-30 Cumpston Brian H Hermetically sealed cylindrical solar cells
US10020413B2 (en) * 2007-07-06 2018-07-10 Rensselaer Polytechnic Institute Fabrication of a local concentrator system
US8053662B2 (en) * 2008-05-09 2011-11-08 Kasra Khazeni Solar energy collection devices
CN201259330Y (zh) * 2008-08-18 2009-06-17 段春玉 太阳能收集转换利用装置
CN101625160A (zh) * 2009-04-11 2010-01-13 林于紘 太阳能强效聚光热电装置
US9423533B2 (en) * 2010-04-26 2016-08-23 Guardian Industries Corp. Patterned glass cylindrical lens arrays for concentrated photovoltaic systems, and/or methods of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980024504A (ko) * 1996-09-04 1998-07-06 와다 아키히로 집광 솔라 모듈
JP2001217450A (ja) * 2000-02-04 2001-08-10 Shinko Sangyo Kk 太陽光発電装置
JP2006310452A (ja) * 2005-04-27 2006-11-09 Shimizu Corp 太陽電池及び太陽光発電装置
JP2009117446A (ja) * 2007-11-02 2009-05-28 Seiko Epson Corp 集光シート太陽光発電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738273A (zh) * 2012-07-11 2012-10-17 李富民 一种圆柱体太阳能光伏组件及其制造方法

Also Published As

Publication number Publication date
KR101046230B1 (ko) 2011-07-07
CN102959343B (zh) 2015-02-18
CN102959343A (zh) 2013-03-06
DE112011101719T5 (de) 2013-04-25
KR20100061787A (ko) 2010-06-09
JP5876873B2 (ja) 2016-03-02
JP2013526782A (ja) 2013-06-24
US20130061911A1 (en) 2013-03-14
WO2011145883A3 (ko) 2012-04-26
US9316414B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
WO2011145883A2 (ko) 기둥형 집광장치를 구비한 태양광 발전 장치
US7923624B2 (en) Solar concentrator system
US8378621B2 (en) Integrated systems for harnessing solar and wind energy
EP2561287B1 (en) A solar energy collector system
US20100282315A1 (en) Low concentrating photovoltaic thermal solar collector
US20100218807A1 (en) 1-dimensional concentrated photovoltaic systems
US20070186921A1 (en) Cylindrical solar energy collector
US20100206302A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
US7878190B2 (en) Solar collection apparatus, solar collection arrays, and related methods
KR20170054229A (ko) 견고하게 장착된 추적 솔라 패널 및 방법
US20130055999A1 (en) Concentrating solar energy device
JP2004271063A (ja) 太陽光発電装置
Anyaka et al. Improvement of PV systems power output using sun-tracking techniques
RU2338129C1 (ru) Солнечный дом (варианты)
US11049984B2 (en) Optimized static radiation collector
Wenger et al. Design of a concentrated photovoltaic system for application in high tunnels
KR101310560B1 (ko) 저집광 태양광 발전장치
CN202111134U (zh) 格栅形聚光镜
US20140202448A1 (en) Production of Electricity and Heat Storage Using Solar Mirrors
Samkari Evaluation and Simulation of Reif’s Concentrated Solar Collector
CN102208474B (zh) 太阳能高效收集利用格栅形聚光镜
Nahar POTENTIAL AND PROSPECTS OF SOLAR THERMAL POWER PLANTS IN INDIA.
Sadineni et al. Concentrator Solar Cell Installations at the University of Nevada, Las Vegas
KR20150020779A (ko) 집광형 태양광 발전시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025004.X

Country of ref document: CN

ENP Entry into the national phase in:

Ref document number: 2013511116

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13699295

Country of ref document: US

Ref document number: 1120111017197

Country of ref document: DE

Ref document number: 112011101719

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783765

Country of ref document: EP

Kind code of ref document: A2