WO2011144085A2 - 数据传输方法和基站 - Google Patents

数据传输方法和基站 Download PDF

Info

Publication number
WO2011144085A2
WO2011144085A2 PCT/CN2011/074677 CN2011074677W WO2011144085A2 WO 2011144085 A2 WO2011144085 A2 WO 2011144085A2 CN 2011074677 W CN2011074677 W CN 2011074677W WO 2011144085 A2 WO2011144085 A2 WO 2011144085A2
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
data
period
downlink data
rec
Prior art date
Application number
PCT/CN2011/074677
Other languages
English (en)
French (fr)
Other versions
WO2011144085A3 (zh
Inventor
张锦芳
刘晟
李波杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11783002.6A priority Critical patent/EP2515603B1/en
Priority to CN201180001942.6A priority patent/CN102960049B/zh
Priority to PCT/CN2011/074677 priority patent/WO2011144085A2/zh
Publication of WO2011144085A2 publication Critical patent/WO2011144085A2/zh
Publication of WO2011144085A3 publication Critical patent/WO2011144085A3/zh
Priority to US13/483,980 priority patent/US8270321B1/en
Priority to US13/572,406 priority patent/US8693402B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and a base station.
  • CPRI Common Public Radio Interface
  • REC Radio Equipment Controller
  • RE Radio Equipment
  • CPRI Common Public Radio Interface
  • REC Radio Equipment Controller
  • RE Radio Equipment
  • the functions between REC and RE are clearly divided, among which REC is related to network interface transmission, wireless base station control and management, digital baseband processing, and RE and analog radio frequency functions such as filtering, modulation, and frequency. Conversion is related to power amplification.
  • the CPRI interface devices REC and RE can work in FDD (Frequency Division Duplex) mode or TDD (Time Division Duplex) mode.
  • TDD Time Division Duplex
  • the traditional method is to allocate one for each uplink and downlink transmission.
  • the optical fiber completes the uplink and downlink baseband digital signal transmission between the REC wireless device controller and the RE. Due to the time division duplex transmission mode of TDD, in the downlink transmission direction from REC to RE, padding bits are inserted in the CPRI frame when there is no downlink data transmission; likewise, in the uplink transmission direction from RE to REC, there is no uplink. When the data is transmitted, padding bits are inserted in the CPRI frame, as shown in FIG.
  • the transmission bandwidth utilization of the CPRI interface is only 50%.
  • the transmission bandwidth utilization of the CPRI interface is too low.
  • Embodiments of the present invention provide a data transmission method and a base station, which are applied in a TDD system to improve transmission bandwidth utilization of a CPRI interface in a TDD system.
  • the embodiment of the invention provides a data transmission method, which is applied in a time division duplex TDD system, and includes:
  • the wireless device controller REC sends the first part of the downlink data of the downlink period to the wireless device RE before a downlink period arrives;
  • the RE transmits the first part and the second part as downlink data through the air interface in the downlink period.
  • the embodiment of the present invention provides a base station, which is used in a time division duplex TDD system, where the base station includes a wireless device RE and a wireless device controller REC, and the RE includes a first receiving module, a second receiving module, and a downlink data sending module.
  • the REC includes a first downlink data sending module and a second downlink data sending module, where:
  • the first downlink data sending module is configured to send the first part of the downlink data of the downlink period to the wireless device RE before a downlink period arrives;
  • the second downlink data sending module is configured to send, in the downlink period, a second part of downlink data of the downlink period to the RE, where the second part and the first part form the downlink period All downlink data;
  • the first receiving module is configured to receive a first part of downlink data of the downlink period; the second receiving module is configured to receive a second part of downlink data of the downlink period; the downlink data sending module, And transmitting, by using the air interface, the first part and the second part as downlink data in the downlink period.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • FIG. 1 is a timing diagram of data transmission of a CPRI interface upstream and downward when a device in which a CPRI interface is operated in a TDD mode;
  • FIG. 2 is a timing diagram of simulating a TDD transmission mode on a CPRI interface according to an embodiment of the present invention
  • FIG. 3 is a timing diagram of data transmission between a CPRI interface and an air interface according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 12 is a timing diagram of data transmission between a CPRI interface and an air interface according to an embodiment of the present invention
  • FIG. 13 is a flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 14 is a timing diagram of data transmission between a CPRI interface and an air interface according to an embodiment of the present invention
  • FIG. 15 is a structural diagram of a base station according to an embodiment of the present invention
  • FIG. 16 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 17 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 18 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 19 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 20 is a structural diagram of a base station according to an embodiment of the present invention
  • FIG. 21 is a flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 22 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 23 is a structural diagram of a base station according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a data transmission method, which simulates a time-division duplex transmission mode of an air interface TDD on a CPRI interface, so that one fiber is time-division multiplexed for uplink and downlink transmission to improve the utilization of the transmission bandwidth of the CPRI interface.
  • D represents downlink transmission data in the downlink transmission direction from REC to RE
  • U represents uplink transmission data in the uplink transmission direction from RE to REC.
  • the optical propagation on the optical fiber is delayed, it is necessary to have a data transmission round-trip delay from the completion of the downlink data transmission to the correct reception of the uplink data, that is, there is a data transmission round-trip delay between the uplink and downlink transmission data of the CPRI interface. Due to the round-trip delay of data transmission on the CPRI interface, when the TDD transmission mode is simulated on the CPRI interface, the idle time slot may be idle.
  • FIG. 3 is a timing diagram of data transmission between a CPRI interface and an air interface according to an embodiment of the present invention.
  • the air interface when the air interface is switched from the uplink to the downlink, the downlink data does not arrive in the downlink period of the air interface due to the round-trip delay of the data transmission on the CPRI interface, so that the air interface has no data transmission in a time slot.
  • the time slot of the standard V which results in a decrease in the utilization of the wireless spectrum resources.
  • the embodiment of the present invention provides a data transmission method, and the method may be applied to the TDD system.
  • REC and RE transmit uplink and downlink data simultaneously through a CPRI interface, simulate TDD transmission mode on the CPRI interface, and improve the radio frequency.
  • Spectrum resource utilization As shown in FIG. 4, the method includes:
  • the RE sends the current uplink data to the REC;
  • the REC receives the current uplink data sent by the RE in the current uplink period.
  • the REC sends the remaining part of the downlink data of the current downlink period to the RE in the current downlink period, and sends a part of the downlink data of the next downlink period to the RE before the next downlink period arrives;
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the CPRI interface between the REC and the RE, and is less than or equal to all downlinks of the next downlink period. Air interface transmission time of data.
  • the CPRI interface may be transmitted by using a fiber. In an embodiment, the CPRI interface may also be transmitted by using a cable. In an embodiment, the CPRI interface may also be transmitted by using other high-speed connection lines. Special restrictions.
  • the length of the fiber connecting them (of course, other high-speed connections such as cables) is also fixed, then the transmission delay of the light in this fixed-length fiber (ie, on the CPRI interface) The data transmission round-trip delay is fixed.
  • the RE receives a remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period sent by the REC;
  • a portion of the downlink data for the next downlink period is transmitted by the RE through the air interface in the next downlink period.
  • S104 The RE sends a part of the downlink data of the current downlink period and the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period.
  • a part of the downlink data of the current downlink period is that the REC is sent to the RE before the current downlink period arrives. of.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • an embodiment of the present invention provides a data transmission method, which can be applied to a TDD system.
  • REC and RE transmit uplink and downlink simultaneously through a CPRI interface.
  • Row data the method includes:
  • the RE sends the current uplink data to the REC through the first CPRI interface.
  • data is transmitted between the RE and the REC through a CPRI interface (first CPRI interface).
  • the REC receives the current uplink data sent by the RE through the first CPRI interface in the current uplink period.
  • the RE sends a part of the downlink data of the current downlink period through the air interface in the current downlink period; a part of the downlink data of the current downlink period is that the REC is sent to the RE in advance through the first CPRI interface in the previous downlink period;
  • the REC sends, by using the first CPRI interface, the remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period in the current downlink period.
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the REC since the REC simultaneously transmits two types of downlink data (the remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period) through the first CPRI interface, the REC also transmits two The demarcation point information of the downlink data is such that the RE distinguishes the two downlink data.
  • the length of the data delivered in advance is greater than or equal to the time occupied by V in FIG. 3, that is, the first
  • the data round-trip delay on the CPRI interface is used to allow the downlink data transmitted from the REC and transmitted through the CPRI interface to arrive at the RE in time for air interface transmission.
  • the length of the delivered data satisfies the above requirements, and the downlink data can be transmitted in the V-time in the air interface frame, and the air interface resources can be more effectively utilized.
  • the RE receives, in the current downlink period, the remaining part of the downlink data of the current downlink period and the part of the downlink data of the next downlink period that are sent by the REC through the first CPRI interface;
  • a portion of the downlink data for the next downlink period is transmitted by the RE through the air interface in the next downlink period.
  • S211 The RE sends the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period.
  • serial numbers of the above steps are for the purpose of indicating the serial number of each execution step, and should not be construed as limiting the order of execution.
  • S201 and S203 can be performed simultaneously; in one embodiment, S209 and S211 can also be performed simultaneously.
  • the method further includes:
  • the REC schedules the downlink data of the next downlink period in advance, and the air interface transmission time of the downlink data of the next downlink period scheduled in advance is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the air interface transmission time of all downlink data in the downlink period is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • part of the downlink data of the next downlink period may be scheduled in advance, and then all or part of the data scheduled in advance is used as part of the downlink data of the next downlink period. Delivered in advance.
  • the data of 40 unit lengths is sent by the REC to the RE in the next downlink period as the rest of the next downlink period (that is, the remaining data of the 40 unit lengths in the next downlink period from the perspective of the following downlink period)
  • Step S207 is sent to RE).
  • data is transmitted between the REC and the RE through a CPRI interface.
  • S200 may be performed before S201, and in another embodiment, S200 may also be performed after S201 and before S203; in another embodiment, S200 It may be performed after S203 and before S205, and the embodiment of the present invention is not particularly limited.
  • the REC performs advance scheduling in the current downlink period, or in the previous one or several downlink periods.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a data transmission method, which can be applied to a TDD system.
  • a REC and an RE simultaneously transmit uplink and downlink data of a current downlink period through a CPRI interface, and
  • the corresponding embodiment of Figure 5 is different.
  • the REC sends a part of the downlink data of the next downlink period to the RE in advance through another independent CPRI interface.
  • the method includes:
  • the RE sends the current uplink data to the REC through the first CPRI interface.
  • the REC receives, by using the first CPRI interface, the current uplink data sent by the RE in the uplink period.
  • the RE sends a part of the downlink data of the current downlink period through the air interface; a part of the downlink data of the current downlink period is that the REC is sent to the RE in advance through the second CPRI interface in the previous downlink period;
  • the REC sends the remaining part of the downlink data of the current downlink period through the first CPRI interface in the current downlink period, and sends a part of the downlink data of the next downlink period through the second CPRI interface;
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the REC when the REC sends a part of the downlink data of the next downlink period to the RE in advance through another independent CPRI interface, whether it is the first CPRI interface or the second CPRI. Interface, as long as the REC and RE locations are fixed, then the connection The length of their fibers (of course, other high-speed connections such as cables) is also fixed, so the transmission delay of light in this fixed-length fiber is the same. That is to say, the data transmission round-trip delay on the first CPRI interface is the same as the data transmission round-trip delay on the second CPRI interface.
  • the two CPRI interfaces use different transmission methods, such as one for fiber transmission and one for cable transmission. At this time, there will be some difference in the transmission rate of light and electrons, which will cause the transmission on the two CPRI interfaces.
  • the delays are slightly different, but are generally within the same order of magnitude.
  • the round trip delay of data transmission on the first CPRI interface and the round trip delay of data transmission on the second CPRI interface can be considered the same. Therefore, in an embodiment, the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the second CPRI interface, and is less than or equal to all of the next downlink period. Air interface transmission time of downlink data. In the following embodiments, similar regulations are also possible.
  • the RE receives the remaining part of the downlink data of the current downlink period that is sent by the REC through the first CPRI interface and the next downlink period that is sent by the REC through the second CPRI interface, respectively, by using the first CPRI interface and the second CPRI interface in the current downlink period. Part of the downlink data;
  • a portion of the downlink data for the next downlink period is transmitted by the RE through the air interface in the next downlink period.
  • the REC in S307 may also send the remaining part of the downlink data of the current downlink period through the first CPRI interface in the current downlink period, and send the second CPRI interface in the current downlink period or the uplink period. a part of the downlink data of the next downlink period; in this way, in step S309, when the REC transmits a part of the downlink data of the next downlink period through the second CPRI interface in the current uplink period, the RE passes the second in the current uplink period.
  • the CPRI interface receives a portion of the downlink data of the next downlink period that the REC transmits through the second CPRI interface.
  • S311 The RE sends the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period.
  • the method further includes:
  • the REC schedules the downlink data of the next downlink period in advance, and the air interface transmission time of the downlink data of the next downlink period scheduled in advance is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the air interface transmission time of all downlink data in the downlink period is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • part of the downlink data of the next downlink period may be scheduled in advance, and then all or part of the data scheduled in advance is used as part of the downlink data of the next downlink period. Delivered in advance.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • an embodiment of the present invention provides a data transmission method, which can be applied to
  • the REC and the RE transmit the uplink and downlink data simultaneously through a CPRI interface, and the method includes:
  • the REC receives the current uplink data sent by the RE through the first CPRI interface.
  • the RE in the current downlink period, the RE sends the current uplink data to the REC through the first CPRI interface in the uplink period;
  • the REC sends the remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period to the RE through the first CPRI interface in the downlink period.
  • the RE receives the remaining portion of the downlink data of the current downlink period and the downlink data of the next downlink period that are sent by the REC through the first CPRI interface in the current downlink period, and sends the downlink of the current downlink period through the air interface.
  • the rest of the data, and under the next one The line period transmits a portion of the downlink data of the next downlink period.
  • the RE receives the remaining portion of the downlink data of the current downlink period while transmitting the remaining portion of the downlink data of the received current downlink period at the air interface at the corresponding time point. For example, the remaining data starts from the third subframe, then the RE starts to be sent in the air at the corresponding time point of the third subframe, and the RE may still receive the data of the subsequent subframe.
  • This is a streaming process, which receives the downlink data of the REC and sends it on the air interface.
  • the REC since the REC simultaneously transmits two types of downlink data (the remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period) through the first CPRI interface, the REC also transmits two The demarcation point information of the downlink data is such that the RE distinguishes the two downlink data.
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the method further includes:
  • the REC schedules the downlink data of the next downlink period in advance, and the air interface transmission time of the downlink data of the next downlink period scheduled in advance is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the air interface transmission time of all downlink data in the downlink period is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a data transmission method, which can be applied to a TDD system.
  • the REC and the RE transmit uplink and downlink data simultaneously through a CPRI interface, and the method includes:
  • the RE sends the current uplink data to the REC through the first CPRI interface.
  • the RE sends an uplink data of the current downlink period through the air interface in the current downlink period. a part of the downlink data of the current downlink period, that is, the REC is sent to the RE in advance through the first CPRI interface in the previous downlink period;
  • the RE receives the remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period sent by the REC through the first CPRI interface in the current downlink period;
  • a portion of the downlink data for the next downlink period is transmitted by the RE through the air interface in the next downlink period.
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the RE sends the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a data transmission method, which can be applied to a TDD system.
  • REC and RE transmit data through two CPRI interfaces: REC and RE pass a CPRI interface.
  • the remaining part of the downlink data of the current downlink period and the uplink data of the current uplink period are transmitted, and the REC sends a part of the downlink data of the next downlink period in advance through another independent CPRI interface, and the method includes:
  • the REC receives the current uplink data sent by the RE through the first CPRI interface.
  • the RE in the current downlink period, the RE sends the current uplink data to the REC through the first CPRI interface in the uplink period;
  • the REC in the downlink period, sends the remaining part of the downlink data of the current downlink period through the first CPRI interface, and sends a part of the downlink data of the next downlink period through the second CPRI interface;
  • a portion of the downlink data for the next downlink cycle is followed by the RE in the next The downlink period is sent through the air interface.
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the RE receives the remaining portion of the downlink data of the current downlink period sent by the REC through the first CPRI interface in the current downlink period, and receives a part of the downlink data of the next downlink period through the second CPRI interface, and simultaneously passes The air interface transmits the remaining portion of the downlink data of the current downlink period.
  • the REC in S603 may further send the remaining part of the downlink data of the current downlink period through the first CPRI interface in the current downlink period, and send the second CPRI interface in the current downlink period or the uplink period. Part of the downstream data for the next downstream cycle.
  • the RE receives the REC through the second CPRI interface in the current uplink period, and transmits the next downlink period of the REC through the second CPRI interface. Part of the downstream data.
  • the method further includes:
  • the REC schedules the downlink data of the next downlink period in advance, and the air interface transmission time of the downlink data of the next downlink period scheduled in advance is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the air interface transmission time of all downlink data in the downlink period is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • an embodiment of the present invention provides a data transmission method, which can be applied to a TDD system.
  • a REC and an RE simultaneously transmit the remaining part of downlink data of a current downlink period through a CPRI interface.
  • the REC sends a part of the downlink data of the next downlink period in advance through another independent CPRI interface, and the method includes S701.
  • the RE sends the current uplink data to the REC through the first CPRI interface.
  • the RE sends a part of the downlink data of the current downlink period through the air interface in the current downlink period; a part of the downlink data of the current downlink period is that the REC is sent to the RE in advance through the second CPRI interface in the previous downlink period;
  • the RE receives the remaining portion of the downlink data of the current downlink period that is sent by the REC through the first CPRI interface and the next downlink period that is sent by the REC through the second CPRI interface, respectively, by using the first CPRI interface and the second CPRI interface in the current downlink period. Part of the downlink data;
  • a portion of the downlink data for the next downlink period is transmitted by the RE through the air interface in the next downlink period.
  • the RE receives the REC through the second CPRI interface in the current uplink period through the second. Part of the downlink data of the next downlink cycle sent by the CPRI interface.
  • S707 The RE sends the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a data transmission method, which can be applied to a TDD system.
  • REC and RE transmit uplink and downlink data simultaneously through a CPRI interface, and the method includes:
  • the REC schedules, in advance, the data of the downlink subframe in the next downlink period, p (l ⁇ p ⁇ all downlink subframes);
  • the process of performing the advance scheduling by the REC may be performed in the current downlink period, or in the previous one or a plurality of uplink periods or downlink periods, which is not limited in the embodiment of the present invention.
  • the REC transmits the remaining part of the downlink data of the current downlink period in the current downlink period. All data or partial data in p downlink subframes scheduled in advance;
  • the REC may transmit all data in the p downlink subframes scheduled in advance in the current downlink period;
  • the REC may also transmit part of the data of the pre-scheduled p subframes in the current downlink period; in one embodiment, the part of the data may be data of m (1 ⁇ m ⁇ p) downlink subframes; Or in an embodiment, as in the TD-LTE (Time Division-Long Term Evolution) system, the part of the data may also be k. (It should be noted that the air interface transmission time of one subframe is equal to 14 OFDM symbol time, so k ⁇ 14p) downlink data of OFDM symbols.
  • the downlink data to be scheduled in advance and the downlink data to be delivered in advance may be determined according to the data transmission round-trip delay of the CPRI interface.
  • the downlink data that needs to be scheduled in advance may take the data of an integer number of downlink subframes.
  • the air interface transmission time of the data of the integer number of downlink subframes is greater than or equal to the data transmission round-trip delay on the CPRI interface.
  • the data needs to be advanced.
  • the downlink data that is delivered may be downlink data of an integer number of OFDM symbols, where the air interface transmission time of the integer OFDM symbol is greater than or equal to the data transmission round-trip delay on the CPRI interface. It is well understood that the air interface transmission time of the data delivered in advance is less than or equal to the air interface transmission time of the data scheduled in advance.
  • the RE sends a part of the downlink data of the current downlink period through the air interface in the current downlink period; a part of the downlink data of the current downlink period is that the REC is sent to the RE in advance in the previous downlink period;
  • the RE receives, in the current downlink period, the remaining part of the downlink data of the current downlink period in which the REC is transmitted in the downlink period in S801;
  • S805 The RE sends the remaining portion of the received downlink data of the current downlink period through the air interface in the current downlink period.
  • FIG. 12 is a timing diagram of data transmission between a CPRI interface and an air interface according to an embodiment of the present invention.
  • the current downlink period is set to the nth downlink period.
  • the REC passes the CPRI.
  • the REC After receiving the uplink data U(nl) sent by the RE, the REC sends the downlink data of the remaining downlink data D(n, 2) of the current downlink period and the next downlink period (that is, the n+1th downlink period).
  • the downlink data D(n+1, 1) delivered in advance ie, D(n+1, 1) is a part of the downlink data of the next downlink period mentioned in the previous embodiment).
  • D(n+1, 1) is buffered in the RE to be sent through the air interface at the specified time in the next downlink period; And D(n, 2) is sent through the air interface at the specified time in the current downlink period.
  • the fiber is transmitted. Since the propagation rate of light in the fiber is 2x l8 8 m/s, the switching delay and processing delay of the device are not considered.
  • the waiting time is 100 s (that is, there is a data transmission round-trip delay between the uplink and downlink transmission data of the CPRI interface is 100 us).
  • the downlink data of 2 OFDM symbols needs to be transmitted in advance (the time of 2 OFDM symbols is 142.8us is greater than the data transmission delay of 100us on the CPRI interface).
  • the scheduling period is in units of subframes and the time is lms. Therefore, the downlink data of one subframe needs to be scheduled in advance (the downlink data of one subframe is 1 ms longer than the data transmission round-trip delay of 100 ⁇ s on the CPRI interface).
  • the downlink data of 2 OFDM symbols is delivered in advance.
  • the downlink data of the two subframes may be scheduled in advance, and the downlink data of the three OFDM symbols may be delivered in advance, which is not limited in the embodiment of the present invention.
  • the REC since the REC simultaneously transmits two downlink data through the CPRI interface
  • the REC also transmits the demarcation point information of the two downlink data.
  • the data transmission round-trip delay of the CPRI interface and the data transmission round-trip delay of the air interface usually do not match, and are discussed in two cases:
  • the data transmission round-trip delay of the CPRI interface The air interface data transmission round-trip delay.
  • the protection interval (GP) of the air interface can be used to transmit downlink data that needs to be delivered in advance;
  • the digital baseband signal transmitted on the CPRI interface needs to be compressed.
  • the digital baseband signal compression may be directed to both uplink and downlink data.
  • the digital baseband signal compression may also be for downlink or uplink data.
  • the embodiment of the present invention provides a A data transmission method, in this embodiment, data transmission is performed between a RE and a REC through a CPRI interface (first CPRI interface). As shown in FIG. 21, the method includes:
  • the RE compresses the current uplink data sent by using the first CPRI interface, and obtains compressed uplink data.
  • the RE in the current uplink period, the RE sends compressed uplink data to the REC through the first CPRI interface;
  • the REC decompresses the compressed uplink data sent by the RE through the first CPRI interface, to obtain current uplink data.
  • the REC receives the current uplink data sent by the RE through the first CPRI interface in the current uplink period.
  • the RE sends a part of the downlink data of the current downlink period through the air interface in the current downlink period; a part of the downlink data of the current downlink period is that the REC is sent to the RE in advance through the first CPRI interface in the previous downlink period;
  • the REC compresses a remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period to obtain compressed downlink data.
  • the REC sends downlink compression data to the RE by using a first CPRI interface in a current downlink period.
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the RE receives the downlink compressed data through the first CPRI interface, and decompresses the compressed downlink data to obtain a remaining part of the downlink data of the current downlink period and a part of the downlink data of the next downlink period;
  • a portion of the downlink data for the next downlink period is sent by the RE through the air interface in the next downlink period.
  • S1009 The RE sends the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period.
  • the method further includes:
  • the REC schedules the downlink data of the next downlink period in advance, and the air interface transmission time of the downlink data of the next downlink period scheduled in advance is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the air interface transmission time of all downlink data in the downlink period is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is less than or equal to the next one.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a data transmission method, which can be applied to a TDD system.
  • a REC and an RE simultaneously transmit uplink and downlink data of a current downlink period through a CPRI interface, REC. Passing another part of the downlink data of the next downlink period in advance by another independent CPRI interface, the method includes
  • the REC schedules, in advance, data of the downlink subframes of the next downlink period, p (l ⁇ p ⁇ all downlink subframes);
  • the process of performing the advance scheduling by the REC may be performed in the current downlink period, or in the previous one or a plurality of uplink periods or downlink periods, which is not limited in the embodiment of the present invention.
  • S901 The REC transmits the remaining part of the downlink data of the current downlink period to the RE through the first CPRI interface in the current downlink period, and transmits all data or part of the data in the p downlink subframes scheduled in advance through the second CPRI interface in the current uplink period.
  • RE the remaining part of the downlink data of the current downlink period to the RE through the first CPRI interface in the current downlink period, and transmits all data or part of the data in the p downlink subframes scheduled in advance through the second CPRI interface in the current uplink period.
  • the REC may transmit all data in the p downlink subframes scheduled in advance in the current downlink period;
  • the REC may also transmit partial data in the p subframes scheduled in advance in the current downlink period; the partial data may be data of m (1 ⁇ m ⁇ p) downlink subframes, or may be k (It should be noted that the air interface transmission time of one subframe is equal to 14 OFDM symbol time, so k ⁇ 14p) downlink data of OFDM symbols.
  • the downlink data to be scheduled in advance and the downlink data to be delivered in advance may be determined according to a data transmission round-trip delay of the first CPRI interface.
  • the downlink data that needs to be scheduled in advance may take the data of an integer number of downlink subframes.
  • the air interface transmission time of the data of the integer number of downlink subframes is greater than or equal to the data transmission round-trip delay on the CPRI interface.
  • the data needs to be advanced.
  • the downlink data to be sent may be downlink data of an integer number of OFDM symbols, where the air interface transmission time of the integer OFDM symbol is greater than or equal to the data transmission round-trip delay on the CPRI interface. It is well understood that the air interface transmission time of the data delivered in advance is less than or equal to the air interface transmission time scheduled in advance.
  • the RE receives all data or partial data in the pre-scheduled p downlink subframes sent by the REC in the S901 in the current uplink period, and buffers the pre-scheduled p downlinks that are transmitted by the REC in the current uplink period. All or part of the data of the frame to be transmitted through the air interface in the next downlink period;
  • the RE sends a part of the downlink data of the current downlink period through the air interface in the current downlink period; a part of the downlink data of the current downlink period is that the REC is sent to the RE in advance in the previous uplink period;
  • S904 The RE receives the first CPRI interface in the current downlink period, and the REC transmits the remaining part of the downlink data of the current downlink period in the downlink period.
  • S905 The RE sends the remaining portion of the received downlink data of the current downlink period through the air interface in the current downlink period.
  • FIG. 14 is a timing diagram of data transmission between a CPRI interface and an air interface according to an embodiment of the present invention.
  • the downlink data D(n, 1) that needs to be delivered in advance in the nth downlink period is after D(n-1, 2) is transmitted (it is necessary to explain that, here, D(n-1, 2)
  • the remaining part of the n-1th downlink period is transmitted to the RE through the first CPRI interface, that is, the CPRI1 interface, that is, from the CPRI2 interface of the REC (ie, the second CPRI interface),
  • the nth air interface reaches the RE before the downlink period.
  • the REC can transmit D(n, 1) through the second CPRI interface in the current uplink period (as is the case in Fig. 14), and D(n, 1) can be in the next downlink.
  • the period (the nth downlink period, where H does not have the current downlink period is the n-1th downlink period) arrives before the arrival Send to RE as shown by the arrow in the figure.
  • the downlink data D(n+1, 1) that needs to be delivered in advance in the n+1th downlink period, after the remaining data D(n, 2) in the nth downlink period is sent to the RE through the CPRI1 interface, It is sent to the RE through the CPRI2 interface and reaches the RE before the n + 1th downlink period.
  • the REC can also transmit D(n, 1) through the second CPRI interface in the current downlink period (because in FIG. 14, the n-1th downlink period)
  • the time slot is before the time slot of the n-1th uplink period, so that D(n, 1) can also reach the RE before the n+1th downlink period.
  • the amount of downlink data to be delivered in advance is small.
  • the 10km fiber only needs to deliver downlink data of 2 OFDM symbols in advance; on the other hand, the transmission time can be long, such as uplink and downlink.
  • the uplink period is about 5 ms, so the data of 2 OFDM symbols can be transmitted within 5 ms, and the transmission rate on the second CPRI interface is small, so that the second A CPRI interface can be time division multiplexed by multiple antennas.
  • the second CPRI interface is multi-antenna time division multiplexing is a prior art, and can be implemented by referring to the CPRI specification v4.2, which will not be described here) to effectively reduce the fiber deployment overhead.
  • each antenna has 4 antennas, and one fiber supports the baseband digital transmission of one antenna.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a base station.
  • the RE includes an uplink data sending module 110, a second receiving module 120, a first receiving module 130, and a downlink.
  • the data sending module 140, the REC includes a receiving module 210, a second downlink data sending module 220, and a first downlink data sending module 230;
  • the uplink data sending module 110 is configured to send the current uplink to the REC in the current uplink period.
  • the receiving module 210 is configured to receive the current uplink data in the current uplink period.
  • the second downlink data sending module 220 is configured to send, to the RE, the remaining part of the downlink data of the current downlink period in the current downlink period;
  • the first downlink data sending module 230 is configured to send a part of the downlink data of the next downlink period to the UE before the next downlink period arrives;
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the CPRI interface between the REC and the RE, and is less than or equal to all downlink data of the next downlink period. Air interface transmission time.
  • the second receiving module 120 is configured to receive, in the current downlink period, a remaining portion of the downlink data of the current downlink period;
  • the first receiving module 130 is configured to receive a part of the downlink data of the next downlink period, and the downlink data sending module 140 is configured to send, by using the air interface, a part of the downlink data of the current downlink period and the current downlink period of the current downlink period.
  • the remaining part of the downlink data; the part of the downlink data of the current downlink period is that the first downlink data sending module 230 of the REC sends the RE to the RE before the current downlink period arrives.
  • a portion of the downlink data for the next downlink period is transmitted by the downlink data transmission module 140 of the RE through the air interface in the next downlink period.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a base station.
  • the base station includes: REC and RE; and data transmission between the REC and the RE through a CPRI interface, where:
  • REC includes:
  • the receiving module 210 is configured to receive, by using the first CPRI interface, the current uplink data sent by the RE in the current uplink period;
  • the second downlink data sending module 220 is configured to transmit, in the current downlink period, the remaining part of the downlink data of the current downlink period to the first CPRI interface, and send the remaining part of the downlink data of the current downlink period by using the first CPRI interface;
  • the first downlink data sending module 230 is configured to transmit, in the current downlink period, a part of the downlink data of the next downlink period to the first CPRI interface, and send a part of the downlink data of the next downlink period by using the first CPRI interface;
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the REC further includes:
  • the pre-scheduling module 200 is configured to schedule the downlink data of the next downlink period in advance, and the air interface transmission time of the downlink data of the next downlink period scheduled in advance is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is smaller than Or the air interface transmission time equal to all downlink data of the next downlink period.
  • the advance scheduling module 200 may be integrated with the first downlink data sending module 230.
  • RE includes:
  • the uplink data sending module 110 is configured to send current uplink data to the REC through the first CPRI interface in the current uplink period;
  • the second receiving module 120 is configured to receive, by using the first CPRI interface, the remaining part of the downlink data of the current downlink period sent by the REC in the current downlink period;
  • the first receiving module 130 is configured to receive, by using the first CPRI interface, a part of the downlink data of the next downlink period sent by the REC in the current downlink period;
  • the downlink data sending module 140 is configured to send a part of the downlink data of the current downlink period and the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period; a part of the downlink data of the current downlink period is the first of the REC
  • the line data delivery module 230 sends the RE to the RE in advance in the previous downlink period.
  • a portion of the downlink data of the next downlink period is determined by the number of downlinks of the RE. According to the sending module 140, it is sent through the air interface in the next downlink period.
  • the round-trip delay of the data transmission of the first CPRI interface and the round-trip delay of the data transmission of the air interface usually do not match, and are discussed in two cases:
  • the data transmission round-trip delay of the first CPRI interface, the data transmission round-trip delay of the air interface, and the guard time interval (GP) of the air interface can be used for transmitting downlink data that needs to be delivered in advance;
  • Data transmission round-trip delay of the first CPRI interface Data transmission round-trip delay of the air interface. In order to ensure continuous transmission of the air interface frame, the data transmitted on the first CPRI interface needs to be compressed.
  • the REC may further include:
  • the downlink data compression module 240 is configured to: when the data transmission round-trip delay on the first CPRI interface is greater than the data transmission round-trip delay of the air interface, the remaining part of the downlink data of the current downlink period and the next downlink period Part of the downlink data is compressed to obtain compressed downlink data; the compressed downlink data is sent to the RE through the first CPRI interface;
  • the RE can also include:
  • the downlink data decompression module 100 is configured to decompress the compressed downlink data to obtain a remaining portion of the downlink data of the current downlink period and a portion of the downlink data of the next downlink period.
  • the RE may further include:
  • the uplink data compression module 150 is configured to: when the data transmission round-trip delay of the first CPRI interface is greater than the data transmission round-trip delay of the air interface, compress the uplink data sent by using the first CPRI interface to obtain compressed uplink data; The compressed uplink data is sent to the REC through the first CPRI interface.
  • the REC can also include:
  • the uplink data decompression module 250 is configured to decompress the compressed uplink data sent by the first CPRI interface before the receiving module 210 receives the data.
  • the foregoing base stations all include an uplink data compression module 150, an uplink data decompression module 250, a downlink data compression module 240, and a downlink data decompression module 100.
  • the foregoing base station may only include the number of uplinks.
  • the compression module 150 and the uplink data decompression module 250 in one embodiment, as shown in FIG. 19, the foregoing base station may also include only the downlink data compression module 240 and the downlink data decompression module 100.
  • the embodiment of the invention is not particularly limited.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the embodiment of the present invention provides a base station.
  • the base station includes: REC and RE; data transmission between the REC and the RE through two CPRI interfaces, where:
  • REC includes:
  • the receiving module 210 is configured to receive, by using the first CPRI interface, the current uplink data sent by the RE in the current uplink period;
  • the second downlink data sending module 220 is configured to send, by using the first CPRI interface, the remaining part of the downlink data of the current downlink period in the current downlink period;
  • the first downlink data sending module 230 is configured to send, by using the second CPRI interface, a part of the downlink data of the next downlink period in the current downlink period or the current uplink period;
  • the air interface transmission time of a part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay on the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the next downlink period.
  • the REC further includes:
  • the pre-scheduling module 200 is configured to schedule the downlink data of the next downlink period in advance, and the air interface transmission time of the downlink data of the next downlink period scheduled in advance is greater than or equal to the air interface transmission time of a part of the downlink data of the next downlink period, which is smaller than Or the air interface transmission time equal to all downlink data of the next downlink period.
  • the advance scheduling module 200 may be integrated with the first downlink data sending module 230.
  • the uplink data sending module 110 is configured to send current uplink data to the REC through the first CPRI interface in the current uplink period;
  • the second receiving module 120 is configured to receive, by using the first CPRI interface, the remaining part of the downlink data of the current downlink period sent by the REC in the current downlink period;
  • the first receiving module 420 is configured to use the second in the current downlink period or the current uplink period.
  • the CPRI interface receives a part of the downlink data of the next downlink period sent by the REC;
  • the downlink data sending module 140 is configured to send a part of the downlink data of the current downlink period and the remaining part of the downlink data of the current downlink period through the air interface in the current downlink period; a part of the downlink data of the current downlink period is the first of the REC
  • the line data sending module 230 sends the data to the RE in advance through the second CPRI interface in the previous downlink period or the previous uplink period.
  • a portion of the downlink data for the next downlink period is transmitted by the downlink data transmission module 140 of the RE through the air interface in the next downlink period.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • an embodiment of the present invention provides a data transmission method, including:
  • the REC sends the first part of the downlink data of the downlink period to the RE before a downlink period arrives;
  • the air interface transmission time of the first part of the downlink data of the downlink period is greater than or equal to the data transmission round-trip delay of the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the downlink period.
  • the REC sends the first part of the downlink data of the downlink period to the RE through the first CPRI interface in a previous downlink period.
  • the method may further include:
  • the REC compresses the first part of the downlink data in the downlink period to obtain the first part of the compressed downlink data.
  • the REC sends the first partial compressed downlink data to the RE through the first CPRI interface in the previous downlink period.
  • the RE decompresses the first partial compressed downlink data to obtain a first portion of the downlink data of the downlink period.
  • the REC sends the first part of the downlink data of the downlink period to the RE through the second CPRI interface in a previous downlink period or a previous uplink period.
  • the second part and the first part constitute the entire downlink data of the downlink period;
  • the REC sends the second part of the downlink data of the downlink period to the RE through the first CPRI interface, and the REC further receives the uplink data sent by the RE through the first CPRI interface.
  • the REC when the data transmission round-trip delay on the first CPRI interface is greater than the data transmission round-trip delay of the air interface, the REC sends the second downlink data of the downlink period to the RE in the downlink period.
  • the above methods also include:
  • the REC compresses the second part of the downlink data in the downlink period to obtain the second part of the compressed downlink data.
  • the REC sends the second partial compressed downlink data to the RE through the first CPRI interface in the downlink period.
  • the RE decompresses the second partial compressed downlink data to obtain a second portion of the downlink data of the downlink period.
  • the foregoing RE receives the first part and the second part of the downlink data of the downlink period
  • the RE sends the first part and the second part as downlink data through the air interface in the downlink period.
  • a part of the downlink data of the current downlink period mentioned in the previous embodiment can be understood as the above.
  • the remaining portion of the downlink data of the current downlink period mentioned in the previous embodiment can be understood as the second portion of the downlink data of the downlink period.
  • the method may further include:
  • the REC pre-schedules a part of the downlink data in the downlink period, and the air interface transmission time of a part of the downlink data of the downlink period that is scheduled in advance is greater than or equal to the air interface transmission time of the first part of the downlink data of the downlink period, which is less than or equal to The air interface transmission time of all downlink data in the downlink period.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the base stations provided by the embodiments of the present invention may be summarized as the main structure shown in FIG.
  • an embodiment of the present invention provides a base station, which is used in a time division duplex TDD system, where the base station includes a wireless device RE and a wireless device controller REC, and the RE includes a first receiving module 130 and a second receiving module.
  • the downlink data sending module 140, the foregoing REC includes a first downlink data sending module 230 and a second downlink data sending module 220;
  • the first downlink data sending module 230 is configured to send the first part of the downlink data of the downlink period to the wireless device RE before a downlink period arrives;
  • the air interface transmission time of the first part of the downlink data of the next downlink period is greater than or equal to the data transmission round-trip delay of the first CPRI interface, and is less than or equal to the air interface transmission time of all downlink data of the downlink period.
  • the first downlink data sending module 230 sends the first part of the downlink data of the downlink period to the RE through the first CPRI interface in the previous downlink period;
  • the first downlink data sending module 230 is configured to send, by using the second CPRI interface, the first part of the downlink data of the downlink period to the RE in a previous downlink period or a previous uplink period.
  • the second downlink data sending module 220 is configured to send, in the downlink period, a second part of downlink data of the downlink period to the RE, where the second part and the first part form all downlink data of the downlink period;
  • the second downlink data sending module 220 sends the second part of the downlink data of the downlink period to the RE by using the first CPRI interface.
  • the REC further includes a receiving module, configured to receive by using the foregoing first CPRI interface. The uplink data sent by the RE.
  • the first receiving module 130 is configured to receive the first part of the downlink data of the downlink period
  • the second receiving module 120 is configured to receive the second part of the downlink data of the downlink period
  • the downlink data sending module 140 is configured to be used in the downlink The period transmits the first part and the second part as downlink data through the air interface.
  • a part of the downlink data of the current downlink period mentioned in the foregoing embodiment may be understood as the first part of the downlink data of the downlink period;
  • the remaining portion of the downlink data of the current downlink period mentioned in the previous embodiment can be understood as the second portion of the downlink data of the downlink period.
  • the above base station may also include (not shown in Fig. 23, the tags of the respective modules of the previous embodiment are used to indicate the names of the respective modules):
  • the above REC also includes:
  • the downlink data compression module 240 is configured to: when the data transmission round-trip delay on the first CPRI interface is greater than the data transmission round-trip delay of the air interface, compress the first part of the downlink data in the downlink period to obtain the first partial compression downlink Data
  • the first downlink data sending module 230 is specifically configured to: send the first partial compressed downlink data to the RE by using the first CPRI interface in the previous downlink period;
  • the above RE also includes:
  • the downlink data decompression module 100 is configured to decompress the first part of the compressed downlink data to obtain a first part of the downlink data of the downlink period.
  • the downlink data compression module 240 is further configured to: compress the second part of the downlink data in the downlink period to obtain the second partial compressed downlink data; At this time, the first downlink data sending module 230 is further configured to: pass the first in the downlink period
  • the CPRI interface sends the second partial compressed downlink data to the RE.
  • the downlink data decompression module 100 is further configured to: decompress the second part of the compressed downlink data to obtain a second part of the downlink data of the downlink period.
  • the above REC also includes:
  • the advance scheduling module 200 is configured to schedule a part of the downlink data of the downlink period in advance, and the air interface transmission time of a part of the downlink data of the downlink period scheduled in advance is greater than or equal to the air interface transmission time of the first part of the downlink data of the downlink period, The air interface transmission time of all downlink data that is less than or equal to the downlink period.
  • the embodiment of the present invention uses the foregoing padding scheme to transmit useful information, and supports uplink and downlink data transmission on a CPRI interface, which can effectively improve the transmission bandwidth utilization of the CPRI interface, and saves fiber overhead; and the REC will next Some or all of the downlink data of the downlink period is delivered in advance, and no additional air interface delay is added, which effectively improves the utilization of the air interface spectrum resources.
  • the operations of the early scheduling in the foregoing method embodiments and the pre-scheduling module in each device embodiment are not required.
  • the data may be directly sent in advance without scheduling in advance.
  • the embodiment of the present invention is not particularly limited.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Description

数据传输方法和基站
技术领域
本发明涉及通信领域, 特别涉及一种数据传输方法和基站。
背景技术
CPRI ( Common Public Radio Interface , 通用公共无线接口)是几个通信 设备制造商制定的无线基站设备中 REC ( Radio Equipment Controller, 无线设 备控制器)和 RE ( Radio Equipment, 无线设备)之间的接口标准, 可以有效 的对无线基站进行产品划分, 独立的发展 REC及 RE技术。根据 CPRI标准的 定义, REC和 RE之间的功能有明确的划分, 其中 REC与网络接口传输、 无 线基站控制和管理、数字基带处理有关, 而 RE与模拟无线频率功能,如滤波、 调制、 频率转换和功率放大相关。
CPRI接口设备 REC和 RE可以工作在 FDD ( Frequency Division Duplex, 频分双工 )模式或 TDD ( Time Division Duplex, 时分双工 )模式, 在 TDD系 统中, 传统方式是为上下行传输各分配一根光纤, 完成 REC无线设备控制器 和 RE之间的上下行基带数字信号传输。 由于 TDD的时分双工传输模式, 因 此, 在从 REC到 RE的下行传输方向, 没有下行数据传输的时候在 CPRI帧内 插入填充比特; 同样的, 在从 RE到 REC的上行传输方向, 没有上行数据传 输的时候在 CPRI帧内插入填充比特, 如图 1所示。
传统的这种传输方式由于插入的填充比特不携带基带数字信号, CPRI接 口的传输带宽利用率只有 50%,在对光纤需求日益增长的未来分布式基站架构 中, CPRI接口的传输带宽利用率太低。
发明内容
本发明实施例提供了一种数据传输方法和基站, 应用在 TDD系统中, 以 提高 TDD系统中 CPRI接口的传输带宽利用率。 本发明实施例提供一种数据传输方法, 应用在时分双工 TDD系统中, 包 括:
无线设备控制器 REC在一个下行周期到达前, 将所述下行周期的下行数 据的第一部分发送给无线设备 RE;
所述 REC在所述下行周期向所述 RE发送所述下行周期的下行数据的第 二部分, 所述第二部分与所述第一部分构成所述下行周期的全部下行数据; 所述 RE接收所述下行周期的下行数据的第一部分和第二部分;
所述 RE在所述下行周期将所述第一部分和第二部分作为下行数据通过空 口发送。
本发明实施例提供一种基站, 应用在时分双工 TDD系统中, 所述基站包 括无线设备 RE和无线设备控制器 REC, 所述 RE包括第一接收模块、 第二接 收模块和下行数据发送模块, 所述 REC包括第一下行数据下发模块和第二下 行数据下发模块; 其中:
所述第一下行数据下发模块, 用于在一个下行周期到达前,将所述下行周 期的下行数据的第一部分发送给无线设备 RE;
所述第二下行数据下发模块, 用于在所述下行周期向所述 RE发送所述下 行周期的下行数据的第二部分,所述第二部分与所述第一部分构成所述下行周 期的全部下行数据;
所述第一接收模块, 用于接收所述下行周期的下行数据的第一部分; 所述第二接收模块, 用于接收所述下行周期的下行数据的第二部分; 所述下行数据发送模块,用于在所述下行周期将所述第一部分和第二部分 作为下行数据通过空口发送。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1现有技术中 CPRI接口所处设备工作在 TDD模式时, CPRI接口上下 行的数据传输的时序示意图;
图 2本发明实施例提供一种在 CPRI接口模拟 TDD传输模式的时序示意 图;
图 3 本发明实施例提供一种 CPRI接口和空口之间数据传输的时序示意 图;
图 4本发明实施例提供一种数据传输方法的流程图;
图 5本发明实施例提供一种数据传输方法的流程图;
图 6本发明实施例提供一种数据传输方法的流程图;
图 7本发明实施例提供一种数据传输方法的流程图;
图 8本发明实施例提供一种数据传输方法的流程图;
图 9本发明实施例提供一种数据传输方法的流程图;
图 10本发明实施例提供一种数据传输方法的流程图;
图 11本发明实施例提供一种数据传输方法的流程图;
图 12本发明实施例提供一种 CPRI接口和空口间数据传输的时序示意图; 图 13本发明实施例提供一种数据传输方法的流程图;
图 14本发明实施例提供一种 CPRI接口和空口间数据传输的时序示意图; 图 15本发明实施例提供一种基站的结构图;
图 16本发明实施例提供一种基站的结构图;
图 17本发明实施例提供一种基站的结构图;
图 18本发明实施例提供一种基站的结构图;
图 19本发明实施例提供一种基站的结构图;
图 20本发明实施例提供一种基站的结构图; 图 21本发明实施例提供一种数据传输方法的流程图;
图 22本发明实施例提供一种数据传输方法的流程图;
图 23本发明实施例提供一种基站的结构图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种数据传输方法, 通过在 CPRI接口模拟空口 TDD 的时分双工传输模式, 使上下行传输时分复用一根光纤, 以提高 CPRI接口传 输带宽的利用率。
图 2为本发明实施例提供的一种在 CPRI接口模拟 TDD传输模式的时序 示意图。 如图 2所示, D表示从 REC到 RE的下行传输方向的下行传输数据, U表示 RE到 REC的上行传输方向的上行传输数据。
由于光在光纤上传播有时延,因此从下行数据发送完毕到能正确接收上行 数据需要有一个数据传输往返时延的间隔, 即 CPRI接口的上下行传输数据之 间存在数据传输往返时延。 由于 CPRI接口上存在的数据传输往返时延, 在 CPRI接口上模拟实现 TDD传输模式时, 可能带来空口时隙的空闲问题。
图 3为本发明实施例提供的一种 CPRI接口和空口间数据传输的时序示意 图。 如图 3所示, 当空口从上行切换到下行的时候, 由于 CPRI接口上存在的 数据传输往返时延,使得下行数据在空口的下行周期没有及时到达,这样空口 在一段时隙内没有数据传输, 如图 3 中的标 V的时隙, 这样导致无线频谱资 源利用率降低。
因此, 为了解决在 CPRI接口上模拟实现 TDD传输模式时, 可能导致地 无线频谱资源利用率降低问题, 本发明实施例提供一种数据传输方法, 该方法 可以应用在 TDD系统中, 在本方法中, REC和 RE通过一个 CPRI接口同时 传输上行和下行数据, 在 CPRI接口上模拟实现 TDD传输模式, 提高无线频 谱资源利用率。 如图 4所示, 本方法包括:
S 100, 在当前上行周期, RE向 REC发送当前上行数据;
S101, REC在上述当前上行周期接收 RE发送的当前上行数据;
S102, REC在当前下行周期向 RE发送当前下行周期的下行数据的剩余部 分,并在下一个下行周期到达前将下一个下行周期的下行数据的一部分发送给 RE;
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间, 大于或者等于 REC和 RE之间的 CPRI接口上的数据传输往返时延, 小于 或者等于下一个下行周期的全部下行数据的空口传输时间。
在一个实施例中, CPRI接口可以采用光纤传输; 在一个实施例中, CPRI 接口也可以采用电缆传输; 在一个实施例中, CPRI接口也可以采用其它高速 连接线路传输, 本发明实施例不做特别的限定。
只要 REC和 RE位置固定了, 那么连接它们的光纤 (当然也可以为电缆 等其他高速连接线路)长度也固定了, 那么光在这个固定长度的光纤中的传输 时延(即, CPRI接口上的数据传输往返时延)也就固定了。
S 103, RE接收 REC发送的当前下行周期的下行数据的剩余部分和下一个 下行周期的下行数据的一部分;
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE在下一个 下行周期通过空口发送。
S104, RE在当前下行周期通过空口发送当前下行周期的下行数据的一部 分和当前下行周期的下行数据的剩余部分;上述当前下行周期的下行数据的一 部分, 是 REC在当前下行周期到达前发送给 RE的。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 5 所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在 TDD系统中,在本方法中, REC和 RE通过一个 CPRI接口同时传输上行和下 行数据, 该方法包括:
S201 , 在当前上行周期, RE通过第一 CPRI接口向 REC发送当前上行数 据;
在本实施例中, RE和 REC之间通过一个 CPRI接口 (第一 CPRI接口) 进行数据传输。
S203, REC在该当前上行周期通过第一 CPRI接口接收 RE发送的当前上 行数据;
S205, RE在当前下行周期通过空口发送当前下行周期的下行数据的一部 分; 该当前下行周期的下行数据的一部分, 是 REC在前一个下行周期中通过 第一 CPRI接口提前发送至 RE的;
S207, REC在当前下行周期, 通过第一 CPRI接口发送当前下行周期的下 行数据的剩余部分和下一个下行周期的下行数据的一部分;
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
在一个实施例中, 由于 REC通过第一 CPRI接口同时传输了两种下行的 数据(当前下行周期的下行数据的剩余部分和下一个下行周期的下行数据的一 部分), 因此, REC还会传输两种下行数据的分界点信息, 以使 RE对两种下 行数据进行区分。
参考图 3,提前下发的数据长度大于等于图 3中 V所占的时间, 也即第一
CPRI接口上的数据往返时延, 是为了让从 REC发送的经过 CPRI接口传输的 下行数据及时到达 RE进行空口发送。
如果下发数据长度没有满足上面所描述的长度, 那么,提前下发的一部分 下行数据在空口的发送时间只占用了 V这段时间的一部分, 而此时由于剩余 部分下行数据还没有到达 RE端, 所以相当于下图中的 V还是存在的, 也就是 在空口有一部分时间空闲着, 没有数据发送, 引起空口资源浪费。
所以下发数据长度满足上面的要求, 就能满足空口帧中的 V时间内有下 行数据发送, 而不会空在那里, 空口的资源就能得到更为有效的利用。 S209, RE在当前下行周期, 通过第一 CPRI接口接收 REC发送的当前下 行周期的下行数据的剩余部分和下一个下行周期的下行数据的一部分;
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE在下一个 下行周期通过空口发送。
S211 , RE在当前下行周期通过空口发送当前下行周期的下行数据的剩余 部分。
需要说明的是, 以上步骤的序号是为了形象的标明每个执行步骤的序号, 不应理解成是执行的顺序的限制。 例如在一个实施例中, S201和 S203可以同 时进行; 在一个实施例中, S209和 S211也可以同时进行。
如图 5中的虚线框所示, 在一个实施例中, 该方法还包括:
S200, REC提前调度下一个下行周期的下行数据, 提前调度的下一个下 行周期的下行数据的空口传输时间大于或者等于上述下一个下行周期的下行 数据的一部分的空口传输时间,小于或者等于下一个下行周期的全部下行数据 的空口传输时间。
也就是说, 可选地, 在一个实施例中, 可以提前调度下一个下行周期的一 部分下行数据,然后将这一部分提前调度的数据的全部或者部分作为下一个下 行周期的下行数据的一部分, 进行提前下发。
在有提前调度操作的情况下, 来做一个形象的举例, 如果在步骤 S201中 调度了下一个下行周期的 80单位长度的下行数据 艮设下一个下行周期的全 部下行数据有 100个单位长度),此时在步骤 S207中体前下发了这个 100单位 长度的下行数据的 60个单位长度; 那么这时还剩( 100 - 80 ) + ( 80 - 60 ) = 40个单位长度的数据, 这 40个单位长度的数据在下一个下行周期作为下一个 下行周期的剩余部分由 REC发送到 RE, (也就是说, 以下一个下行周期的角 度来看,该 40个单位长度的剩余数据在下一个下行周期的步骤 S207被发送到 RE )。
在本实施例中, REC和 RE之间通过一个 CPRI接口传输数据。
需要说明的是, 在本实施例中, S200可以在 S201之前进行, 在另一个实 施例中, S200还可以在 S201之后, S203之前执行; 在另一个实施例中, S200 还可以在 S203之后, S205之前执行, 本发明实施例不做特别的限定。
也就是说, REC 进行提前调度可以在当前下行周期进行, 也可以在前一 个或者几个下行周期进行。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 6 所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在 TDD系统中,在本方法中, REC和 RE通过一个 CPRI接口同时传输当前下行 周期的上行和下行数据, 与图 5 对应的实施例不同的是, 本实施例中, REC 通过另外一个独立的 CPRI接口来提前下发下一个下行周期的下行数据的一部 分至 RE, 该方法, 包括:
S301 , 在当前上行周期, RE通过第一 CPRI接口向 REC发送当前上行数 据;
S303, REC在该上行周期通过第一 CPRI接口接收 RE发送的当前上行数 据;
S305, RE通过空口发送当前下行周期的下行数据的一部分;该当前下行周 期的下行数据的一部分, 是 REC在前一个下行周期中通过第二 CPRI接口提 前发送至 RE的;
S307, REC在当前下行周期通过第一 CPRI接口发送当前下行周期的下行 数据的剩余部分, 并通过第二 CPRI接口发送下一个下行周期的下行数据的一 部分;
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
需要说明的是, 在本发明实施例中, 当 REC通过另外一个独立的 CPRI 接口来提前下发下一个下行周期的下行数据的一部分至 RE的情况下, 不管是 第一 CPRI接口还是第二 CPRI接口, 只要 REC和 RE位置固定了, 那么连接 它们的光纤(当然也可以为电缆等其他高速连接线路)长度也固定了, 那么光 在这个固定长度的光纤中的传输时延也是相同的。 也就是说第一 CPRI接口上 的数据传输往返时延和第二 CPRI接口上的数据传输往返时延是相同的。
除非有特殊部署, 两个 CPRI接口采用不同的传输方式, 比如一个采用光 纤传输, 一个采用电缆传输, 此时由于光和电子的传输速率会有一些差异, 会 引起两个 CPRI接口上的传输往返时延稍有不同,但一般在同一个数量级之内。
REC和 RE之间采用不同的传输方式在实际部署中不会出现, 尤其是在 CPRI接口上。 因为 CPRI接口上的传输带宽都在几个 G的数量级, 而如果电 缆要传输几个 G的传输带宽, 其传输距离不会超过 100米。 也可以认为超过 100米的传输距离都会部署光纤; 万一在 100米的范围内采用了两种不同的传 输方式, 此时由于传输距离很短, 传输往返时延也基本相同, 在传输几个 G 的数量级的情况下, 在本领域内一般认为这种情况下两个 CPRI接口上的数据 传输往返时延是相同的。
因此, 由于第一 CPRI接口上的数据传输往返时延和第二 CPRI接口上的 数据传输往返时延可以认为是相同的。 因此, 在一个实施例中, 也可以是, 上 述下一个下行周期的下行数据的一部分的空口传输时间大于或者等于第二 CPRI接口上的数据传输往返时延, 小于或者等于下一个下行周期的全部下行 数据的空口传输时间。 下面实施例中, 也可以有类似的规定。
S309, RE在当前下行周期通过第一 CPRI接口和第二 CPRI接口分别接收 REC通过第一 CPRI接口发送的当前下行周期的下行数据的剩余部分和 REC 通过第二 CPRI接口发送的下一个下行周期的下行数据的一部分;
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE在下一个 下行周期通过空口发送。
可替代的, 在另一个实施例中, S307中 REC还可以在当前下行周期通过 第一 CPRI接口发送当前下行周期的下行数据的剩余部分, 并在当前下行周期 或者上行周期通过第二 CPRI接口发送下一个下行周期的下行数据的一部分; 这样, 步骤 S309中, 当 S307中 REC在当前上行周期通过第二 CPRI接 口发送下一个下行周期的下行数据的一部分时, RE在当前上行周期通过第二 CPRI接口接收 REC通过第二 CPRI接口发送的下一个下行周期的下行数据的 一部分。
S311, RE在当前下行周期通过空口发送当前下行周期的下行数据的剩余 部分。
如图 6中的虚线框所示, 在一个实施例中, 该方法还包括:
S300, REC提前调度下一个下行周期的下行数据, 提前调度的下一个下 行周期的下行数据的空口传输时间大于或者等于上述下一个下行周期的下行 数据的一部分的空口传输时间,小于或者等于下一个下行周期的全部下行数据 的空口传输时间。
也就是说, 可选地, 在一个实施例中, 可以提前调度下一个下行周期的一 部分下行数据,然后将这一部分提前调度的数据的全部或者部分作为下一个下 行周期的下行数据的一部分, 进行提前下发。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 7 所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在
TDD系统中,在本方法中, REC和 RE通过一个 CPRI接口同时传输上行和下 行数据, 该方法包括:
S401 , 在当前上行周期, REC通过第一 CPRI接口接收 RE发送的当前上 行数据;
在一个实施例中, 在当前下行周期中, RE会在上行周期通过第一 CPRI 接口向 REC发送当前上行数据;
S403, REC在下行周期通过第一 CPRI接口发送当前下行周期的下行数据 的剩余部分和下一个下行周期的下行数据的一部分至 RE。
在一个实施例中, RE在当前下行周期通过第一 CPRI接口接收到 REC发 送的当前下行周期的下行数据的剩余部分和下一个下行周期的下行数据的一 部分, 同时通过空口发送当前下行周期的下行数据的剩余部分, 并在下一个下 行周期发送下一个下行周期的下行数据的一部分。
在一个实施例中, RE接收当前下行周期的下行数据的剩余部分, 同时在 相应的时间点在空口发送接收到的当前下行周期的下行数据的剩余部分。比如 剩余数据从第 3个子帧开始, 那么 RE在第 3个子帧相对应的时间点开始在空 口发送, 同时 RE可能还在接收后面子帧的数据。 这是个串流的过程, 一边接 收 REC的下行数据, 一边在空口发送。
在一个实施例中, 由于 REC通过第一 CPRI接口同时传输了两种下行的 数据(当前下行周期的下行数据的剩余部分和下一个下行周期的下行数据的一 部分), 因此, REC还会传输两种下行数据的分界点信息, 以使 RE对两种下 行数据进行区分。
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
如图 7中的虚线框所示, 在一个实施例中, 该方法还包括:
S400, REC提前调度下一个下行周期的下行数据, 提前调度的下一个下 行周期的下行数据的空口传输时间大于或者等于上述下一个下行周期的下行 数据的一部分的空口传输时间,小于或者等于下一个下行周期的全部下行数据 的空口传输时间。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 8 所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在 TDD系统中,在本方法中, REC和 RE通过一个 CPRI接口同时传输上行和下 行数据, 该方法包括:
S501 , 在当前上行周期, RE通过第一 CPRI接口向 REC发送当前上行数 据;
S503 , RE在当前下行周期通过空口发送当前下行周期的下行数据的一部 分; 该当前下行周期的下行数据的一部分, 是 REC在前一个下行周期中通过 第一 CPRI接口提前发送至 RE的;
S505 , RE在当前下行周期, 通过第一 CPRI接口接收 REC发送的当前下 行周期的下行数据的剩余部分和下一个下行周期的下行数据的一部分;
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE在下一个 下行周期通过空口发送。
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
S507, RE在当前下行周期通过空口发送当前下行周期的下行数据的剩余 部分。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 9 所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在 TDD系统中, 在本方法中, REC和 RE通过两个 CPRI接口进行数据传输: REC和 RE通过一个 CPRI接口同时传输当前下行周期的下行数据的剩余部分 和当前上行周期的上行数据, REC通过另外一个独立的 CPRI接口来提前下发 下一个下行周期的下行数据的一部分, 该方法, 包括:
S601 , 在当前上行周期, REC通过第一 CPRI接口接收 RE发送的当前上 行数据;
在一个实施例中, 在当前下行周期中, RE会在上行周期通过第一 CPRI 接口向 REC发送当前上行数据;
S603, 在下行周期, REC通过第一 CPRI接口发送当前下行周期的下行数 据的剩余部分, 并通过第二 CPRI接口发送下一个下行周期的下行数据的一部 分;
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE在下一个 下行周期通过空口发送。
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
在一个实施例中, RE在当前下行周期通过第一 CPRI接口接收到 REC发 送的当前下行周期的下行数据的剩余部分和通过第二 CPRI接口接收到下一个 下行周期的下行数据的一部分,同时通过空口发送当前下行周期的下行数据的 剩余部分。
在另一个实施例中, 可替代的, S603中 REC还可以在当前下行周期通过 第一 CPRI接口发送当前下行周期的下行数据的剩余部分, 并在当前下行周期 或者上行周期通过第二 CPRI接口发送下一个下行周期的下行数据的一部分。
这样, 当 REC在当前上行周期通过第二 CPRI接口发送下一个下行周期 的下行数据的一部分时, RE就在当前上行周期通过第二 CPRI接口接收 REC 通过第二 CPRI接口发送的下一个下行周期的下行数据的一部分。
如图 9中的虚线框所示, 在一个实施例中, 该方法还包括:
S600, REC提前调度下一个下行周期的下行数据, 提前调度的下一个下 行周期的下行数据的空口传输时间大于或者等于上述下一个下行周期的下行 数据的一部分的空口传输时间,小于或者等于下一个下行周期的全部下行数据 的空口传输时间。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 10所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在 TDD系统中,在本方法中, REC和 RE通过一个 CPRI接口同时传输当前下行 周期的下行数据的剩余部分和当前上行周期的上行数据, REC 通过另外一个 独立的 CPRI接口来提前下发下一个下行周期的下行数据的一部分, 该方法, 包括 S701 , 在当前上行周期, RE通过第一 CPRI接口向 REC发送当前上行数 据;
S703, RE在当前下行周期通过空口发送当前下行周期的下行数据的一部 分; 该当前下行周期的下行数据的一部分, 是 REC在前一个下行周期中通过 第二 CPRI接口提前发送至 RE的;
S705, RE在当前下行周期通过第一 CPRI接口和第二 CPRI接口分别接收 REC通过第一 CPRI接口发送的当前下行周期的下行数据的剩余部分和 REC 通过第二 CPRI接口发送的下一个下行周期的下行数据的一部分;
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE在下一个 下行周期通过空口发送。
当然, 很好理解的是, 如果 REC在当前上行周期通过第二 CPRI接口发 送下一个下行周期的下行数据的一部分,那么 S705中, RE就在当前上行周期 通过第二 CPRI接口接收 REC通过第二 CPRI接口发送的下一个下行周期的下 行数据的一部分。
S707, RE在当前下行周期通过空口发送当前下行周期的下行数据的剩余 部分。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 11所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在 TDD系统中,在本方法中, REC和 RE通过一个 CPRI接口同时传输上行和下 行数据, 该方法包括:
5800, REC提前调度下一个下行周期的 p ( l≤p≤全部下行子帧数目)个 下行子帧的数据;
需要说明的是, REC 进行提前调度的过程可以在当前下行周期, 也可以 在前一个或几个上行周期或下行周期进行, 本发明实施例不做特别的限定。
5801 , REC 在当前下行周期传输当前下行周期的下行数据的剩余部分和 提前调度的 p个下行子帧中的全部数据或部分数据;
在一个实施例中, REC可以在当前下行周期传输提前调度的 p个下行子 帧中的全部数据;
在一个实施例中, REC也可以在当前下行周期传输提前调度的 p个子帧 中的部分数据; 在一个实施例中该部分数据可以是 m ( l≤m≤p )个下行子帧 的数据; 或者在一个实施例中, 如在 TD - LTE ( Time Division-Long Term Evolution, 时分长期演进) 系统中, 该部分数据也可以是 k (需要说明的是, 一个子帧的空口传输时间等于 14个 OFDM符号时间, 所以 k≤ 14p )个 OFDM 符号的下行数据。
具体地,在一个实施例中, 需提前调度的下行数据和需提前下发的下行数 据可以根据 CPRI接口的数据传输往返时延确定。 其中需提前调度的下行数据 可以取整数个下行子帧的数据,这整数个下行子帧的数据的空口传输时间大于 或者等于 CPRI接口上的数据传输往返时延; 在一个实施例中, 需提前下发的 下行数据可以为整数个 OFDM符号的下行数据, 其中, 这整数个 OFDM符号 的空口传输时间大于或者等于 CPRI接口上的数据传输往返时延。 很好理解的 是,提前下发的数据的空口传输时间小于或者等于提前调度的数据的空口传输 时间。
S802, RE緩存 REC在当前下行周期传输的提前调度的 p个下行子帧的全 部数据或部分数据, 在下一个下行周期通过空口进行发送;
S803 , RE在当前下行周期通过空口发送当前下行周期的下行数据的一部 分; 该当前下行周期的下行数据的一部分, 是 REC在前一个下行周期中提前 发送至 RE的;
S804, RE在当前下行周期接收 S801中 REC在下行周期传输的当前下行 周期的下行数据的剩余部分;
S805 , RE在当前下行周期通过空口发送接收到的当前下行周期的下行数 据的剩余部分。
图 12为本发明实施例提供的一种 CPRI接口和空口间数据传输的时序示 意图。 支设当前下行周期为第 n个下行周期, 如图 12所示, REC通过 CPRI 接口接收到 RE发送的上行数据 U(n-l)后, REC下发当前下行周期的剩余部分 数据 D(n, 2)和下一个下行周期 (即, 第 n + 1个下行周期 ) 的下行周期需提前 下发的下行数据 D(n+1, 1) (即, D(n+1, 1)为前面实施例提到的下一个下行周 期的下行数据的一部分)。
RE收到 REC下发的数据 D(n, 2)和 D(n+1, 1)后, D(n+1, 1)在 RE进行緩存, 以在下一个下行周期在指定时间通过空口发送; 而 D(n, 2)在当前下行周期在 指定的时间通过空口发送。
例如, 如果 REC和 RE之间距离 10km, 用光纤进行传输, 由于光在光纤 中的传播速率为 2x l08m/s,不考虑器件收发切换时延和处理时延,此时空口在 从上行转换到下行后等待发送时间为 lOOus (即, CPRI接口的上下行传输数据 之间存在数据传输往返时延为 100us )。
考虑一个 OFDM符号为 71.4us, 因此下行需提前发送 2个 OFDM符号的 下行数据 ( 2个 OFDM符号的时间为 142.8us大于 CPRI接口上的数据传输往 返时延 100us )。 考虑调度周期以子帧为单位, 且时间为 lms, 因此需提前调度 一个子帧的下行数据(一个子帧的下行数据的时间为 1ms大于 CPRI接口上的 数据传输往返时延 lOOus ), 而在 CPRI接口上只需提前下发 2个 OFDM符号 的下行数据。 当然根据实际需要, 在另一个实施例中, 也可以提前调度 2个子 帧的下行数据, 而提前下发 3个 OFDM符号的下行数据, 本发明实施例不做 特别的限定。
在一个实施例中, 由于 REC通过 CPRI接口同时传输了两种下行的数据
(当前下行周期的下行数据的剩余部分和下一个下行周期的下行数据的一部 分), 因此, REC还会传输两种下行数据的分界点信息。
进一步, 在一个实施例中, CPRI接口数据传输往返时延和空口的数据传 输往返时延通常不匹配, 分两种情况讨论:
1、 CPRI接口的数据传输往返时延 空口数据传输往返时延, 此时空口的 保护时间间隔 (GP)可以用于传输需提前下发的下行数据;
2、 CPRI接口的数据传输往返时延 >空口数据传输往返时延, 此时为保证 空口帧连续传输, 需要将 CPRI接口上传输的数字基带信号进行压缩。 在一个实施例中,数字基带信号压缩可以同时针对上下行数据, 当然在一 个实施例中, 数字基带信号压缩也可以只针对下行或上行数据, 针对上面第 2 种情况, 本发明实施例提供一种数据传输方法, 在本实施例中, RE和 REC之 间通过一个 CPRI接口 (第一 CPRI接口)进行数据传输。 如图 21所示, 所述 方法包括:
51001 , RE对通过第一 CPRI接口发送的当前上行数据进行压缩, 得到 压缩上行数据;
51002, 在当前上行周期, RE通过第一 CPRI接口向 REC发送压缩上行 数据;
S 1003, REC对 RE通过第一 CPRI接口发送的压缩上行数据进行解压缩, 得到当前上行数据;
S1004, REC在该当前上行周期通过第一 CPRI接口接收 RE发送的当前 上行数据;
S1005,RE在当前下行周期通过空口发送当前下行周期的下行数据的一部 分; 该当前下行周期的下行数据的一部分, 是 REC在前一个下行周期中通过 第一 CPRI接口提前发送至 RE的;
51006, REC对当前下行周期的下行数据的剩余部分和下一个下行周期的 下行数据的一部分进行压缩, 得到压缩下行数据;
51007, REC在当前下行周期通过第一 CPRI接口向所述 RE发送下行压 缩数据;
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
51008, RE在当前下行周期, 通过第一 CPRI接口接收下行压缩数据, 对 压缩下行数据进行解压缩,得到当前下行周期的下行数据的剩余部分和下一个 下行周期的下行数据的一部分;
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE在下一个 下行周期通过空口发送。 S1009, RE在当前下行周期通过空口发送当前下行周期的下行数据的剩余 部分。
如图 21中的虚线框所示, 在一个实施例中, 该方法还包括:
S1000, REC提前调度下一个下行周期的下行数据, 提前调度的下一个下 行周期的下行数据的空口传输时间大于或者等于上述下一个下行周期的下行 数据的一部分的空口传输时间,小于或者等于下一个下行周期的全部下行数据 的空口传输时间。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
如图 13所示, 本发明实施例提供一种数据传输方法, 该方法可以应用在 TDD系统中,在本方法中, REC和 RE通过一个 CPRI接口同时传输当前下行 周期的上行和下行数据, REC通过另外一个独立的 CPRI接口来提前下发下一 个下行周期的下行数据的一部分, 该方法, 包括
S900, REC提前调度下一个下行周期的 p ( l≤p≤全部下行子帧数目)个 下行子帧的数据;
需要说明的是, REC 进行提前调度的过程可以在当前下行周期, 也可以 在前一个或几个上行周期或下行周期进行, 本发明实施例不做特别的限定。
S901, REC在当前下行周期通过第一 CPRI接口传输当前下行周期的下行 数据的剩余部分至 RE,在当前上行周期通过第二 CPRI接口传输提前调度的 p 个下行子帧中的全部数据或部分数据给 RE;
在一个实施例中, REC可以在当前下行周期传输提前调度的 p个下行子 帧中的全部数据;
在一个实施例中, REC也可以在当前下行周期传输提前调度的 p个子帧 中的部分数据; 该部分数据可以是 m ( l≤m≤p )个下行子帧的数据, 或者也 可以是 k (需要说明的是, 一个子帧的空口传输时间等于 14个 OFDM符号时 间, 所以 k≤ 14p )个 OFDM符号的下行数据。 具体地,在一个实施例中, 需提前调度的下行数据和需提前下发的下行数 据可以根据第一 CPRI接口的数据传输往返时延确定。 其中需提前调度的下行 数据可以取整数个下行子帧的数据,这整数个下行子帧的数据的空口传输时间 大于或者等于 CPRI接口上的数据传输往返时延; 在一个实施例中, 需提前下 发的下行数据可以为整数个 OFDM符号的下行数据, 其中, 这整数个 OFDM 符号的空口传输时间大于或者等于 CPRI接口上的数据传输往返时延。 很好理 解的是,提前下发的数据的空口传输时间小于或者等于提前调度的空口传输时 间。
S902, RE在当前上行周期通过第二 CPRI接口接收 S901中 REC发送的 提前调度的 p个下行子帧中的全部数据或部分数据, 并緩存 REC在当前上行 周期传输的提前调度的 p个下行子帧的全部数据或部分数据,以在下一个下行 周期通过空口进行发送;
S903, RE在当前下行周期通过空口发送当前下行周期的下行数据的一部 分; 该当前下行周期的下行数据的一部分, 是 REC在前一个上行周期中提前 发送至 RE的;
S904, RE在当前下行周期通过第一 CPRI接口接收 S901中 REC在下行 周期传输当前下行周期的下行数据的剩余部分;
S905, RE在当前下行周期通过空口发送接收到的当前下行周期的下行数 据的剩余部分。
图 14为本发明实施例提供的一种 CPRI接口和空口间数据传输的时序示 意图。如图 14所示,第 n个下行周期需要提前下发的下行数据 D(n, 1)在 D(n-1, 2)发送完毕后 (需要说明的是, 这里, D(n-1, 2)为第 n-1个下行周期的剩余部 分数据, 通过第一 CPRI接口, 即, CPRI1接口, 发送给 RE ), 即从 REC的 CPRI2接口 (即, 第二 CPRI接口)上进行传输, 在第 n个空口下行周期前到 达 RE。
从图 14中很容易理解的是, REC可以在当前上行周期 (如图 14就是这 种情况)通过第二 CPRI接口发送 D(n, 1), 这时 D(n, 1)可以在下一个下行周期 (第 n个下行周期, 这里 H没当前下行周期为第 n - 1个下行周期)到达前发 送给 RE, 如图中箭头所示。
同理, 第 n + 1个下行周期需要提前下发的下行数据 D(n + 1, 1), 在第 n 个下行周期的剩余部分数据 D(n, 2)通过 CPRI1接口发送给 RE后,通过 CPRI2 接口发送给 RE, 在第 n + 1个下行周期前到达 RE。
由图 14可以 4艮好的理解, 在另一个实施例中, REC也可以在当前下行周 期通过第二 CPRI接口发送 D(n, 1) (因为在图 14中, 第 n - 1个下行周期的时 隙在第 n - 1个上行周期的时隙之前), 这样 D(n, 1)也可以在第 n + 1个下行周 期前到达 RE。
由于一方面需提前下发的下行数据量很少,如根据前面实施例所述, 10km 光纤只需提前下发 2个 OFDM符号的下行数据; 另一方面传输时间可以很长, 如在上下行子帧配比相同且只有一个上下行切换点的情况下, 上行周期约为 5ms , 因此 2个 OFDM符号的数据可以在 5ms内传输, 第二个 CPRI接口上的 传输速率很小, 这样第二个 CPRI接口可以被多根天线时分复用。 (关于第二 个 CPRI接口被多根天线时分复用是现有技术, 可以参考 CPRI specification v4.2实现, 在此不再赘述)有效降低光纤部署开销。
以一个 REC支持 3个 RE, 每个 RE有 4根天线, 一根光纤支持一根天线 的基带数字传输为例, 采用传统的一根天线使用两根光纤传输上下行数据, 一 个 REC需要部署 24根光纤,但采用实施例二的方案,此时只需要部署 12+1=13 根光纤, CPRI接口传输带宽的利用率提高了 46%。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
相应于前面提到的方法实施例, 本发明实施例提供一种基站, 如图 15所 示其特征在于, 该 RE包括上行数据发送模块 110、 第二接收模块 120、 第一 接收模块 130和下行数据发送模块 140, 该 REC包括接收模块 210、 第二下行 数据下发模块 220和第一下行数据下发模块 230; 其中:
上行数据发送模块 110, 用于在当前上行周期, 向该 REC发送当前上行 数据;
接收模块 210, 用于在该当前上行周期接收该当前上行数据;
第二下行数据下发模块 220, 用于在该当前下行周期, 向该 RE发送当前 下行周期的下行数据的剩余部分;
第一下行数据下发模块 230, 用于在下一个下行周期到达前将下一个下行 周期的下行数据的一部分发送给 UE;
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间, 大于或者等于 REC和 RE之间 CPRI接口上的数据传输往返时延, 小于或 者等于下一个下行周期的全部下行数据的空口传输时间。
第二接收模块 120, 用于在该当前下行周期接收该当前下行周期的下行数 据的剩余部分;
第一接收模块 130, 用于接收该下一个下行周期的下行数据的一部分; 下行数据发送模块 140, 用于该当前下行周期通过空口发送该当前下行周 期的下行数据的一部分和该当前下行周期的下行数据的剩余部分;该当前下行 周期的下行数据的一部分, 是该 REC的第一下行数据下发模块 230在当前下 行周期到达前发送给所述 RE的。
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE的下行数 据发送模块 140在下一个下行周期通过空口发送。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
相应于前面提到的方法实施例, 本发明实施例提供一种基站, 如图 16所 示, 该基站包括: REC和 RE; REC和 RE之间通过一个 CPRI接口进行数据 传输, 其中:
REC包括:
接收模块 210, 用于在当前上行周期, 通过第一 CPRI接口接收 RE发送 的当前上行数据; 第二下行数据下发模块 220, 用于在当前下行周期, 将当前下行周期的下 行数据的剩余部分传输至第一 CPRI接口, 通过第一 CPRI接口发送当前下行 周期的下行数据的剩余部分;
第一下行数据下发模块 230, 用于在当前下行周期, 将下一个下行周期的 下行数据的一部分传输至第一 CPRI接口, 通过第一 CPRI接口发送下一个下 行周期的下行数据的一部分;
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
在一个实施例中, 如图 16中的虚线框所示, 该 REC还包括:
提前调度模块 200, 用于提前调度下一个下行周期的下行数据, 提前调度 的下一个下行周期的下行数据的空口传输时间大于或者等于上述下一个下行 周期的下行数据的一部分的空口传输时间,小于或者等于下一个下行周期的全 部下行数据的空口传输时间。
可选地,在一个实施例中,提前调度模块 200可以和第一下行数据下发模 块 230集成在一起。
RE包括:
上行数据发送模块 110,用于在当前上行周期,通过第一 CPRI接口向 REC 发送当前上行数据;
第二接收模块 120, 用于在当前下行周期, 通过第一 CPRI接口接收 REC 发送的当前下行周期的下行数据的剩余部分;
第一接收模块 130, 用于在当前下行周期, 通过第一 CPRI接口接收 REC 发送的下一个下行周期的下行数据的一部分;
下行数据发送模块 140, 用于在当前下行周期通过空口发送当前下行周期 的下行数据的一部分和当前下行周期的下行数据的剩余部分;该当前下行周期 的下行数据的一部分, 是 REC的第一下行数据下发模块 230在前一个下行周 期中提前发送至 RE的。
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE的下行数 据发送模块 140在下一个下行周期通过空口发送。
进一步, 在一个实施例中, 第一 CPRI接口数据传输往返时延和空口的数 据传输往返时延通常不匹配, 分两种情况讨论:
1、 第一 CPRI接口的数据传输往返时延 空口的数据传输往返时延, 此 时空口的保护时间间隔 (GP)可以用于传输需提前下发的下行数据;
2、 第一 CPRI接口的数据传输往返时延〉空口的数据传输往返时延, 此 时为保证空口帧连续传输, 需要将第一 CPRI接口上传输的数据进行压缩。
所以, 如图 17所示, 针对第 2种情况, 在一个实施例中, REC还可以包 括:
下行数据压缩模块 240, 用于当上述第一 CPRI接口上的数据传输往返时 延大于上述空口的数据传输往返时延时,对上述当前下行周期的下行数据的剩 余部分和上述下一个下行周期的下行数据的一部分进行压缩,得到压缩下行数 据; 上述压缩下行数据通过上述第一 CPRI接口向 RE发送;
相应的, RE还可以包括:
下行数据解压缩模块 100, 用于对上述压缩下行数据进行解压缩, 得到当 前下行周期的下行数据的剩余部分和上述下一个下行周期的下行数据的一部 分。
同理, 在一个实施例中, RE还可以包括:
上行数据压缩模块 150, 用于当上述第一 CPRI接口上的数据传输往返时 延大于上述空口的数据传输往返时延时对通过第一 CPRI接口发送的上行数据 进行压缩, 得到压缩上行数据; 该压缩上行数据通过第一 CPRI接口发送给 REC。
相应的, REC还可以包括:
上行数据解压缩模块 250, 用于在接收模块 210接收数据之前, 对通过第 一 CPRI接口发送的压缩上行数据进行解压缩。
需要说明的是, 在图 17所示的实施例中, 上述基站全部包括上行数据压 缩模块 150、 上行数据解压缩模块 250, 下行数据压缩模块 240和下行数据解 压缩模块 100。 在一个实施例中, 如图 18所示, 上述基站可以只包括上行数 据压缩模块 150和上行数据解压缩模块 250; 在一个实施例中, 如图 19所示, 上述基站也可以只包括下行数据压缩模块 240和下行数据解压缩模块 100。 本 发明实施例不做特别的限定。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
相应于前面提到的方法实施例, 本发明实施例提供一种基站, 如图 17所 示, 该基站包括: REC和 RE; REC和 RE之间通过两个 CPRI接口进行数据 传输, 其中:
REC包括:
接收模块 210, 用于在当前上行周期, 通过第一 CPRI接口接收 RE发送 的当前上行数据;
第二下行数据下发模块 220, 用于在当前下行周期, 通过第一 CPRI接口 发送当前下行周期的下行数据的剩余部分;
第一下行数据下发模块 230, 用于在当前下行周期或者当前上行周期, 通 过第二 CPRI接口发送下一个下行周期的下行数据的一部分;
在一个实施例中,上述下一个下行周期的下行数据的一部分的空口传输时 间大于或者等于第一 CPRI接口上的数据传输往返时延, 小于或者等于下一个 下行周期的全部下行数据的空口传输时间。
在一个实施例中, 如图 17中的虚线框所示, 该 REC还包括:
提前调度模块 200, 用于提前调度下一个下行周期的下行数据, 提前调度 的下一个下行周期的下行数据的空口传输时间大于或者等于上述下一个下行 周期的下行数据的一部分的空口传输时间,小于或者等于下一个下行周期的全 部下行数据的空口传输时间。
可选地,在一个实施例中,提前调度模块 200可以和第一下行数据下发模 块 230集成在一起。
RE包括: 上行数据发送模块 110,用于在当前上行周期,通过第一 CPRI接口向 REC 发送当前上行数据;
第二接收模块 120, 用于在当前下行周期, 通过第一 CPRI接口接收 REC 发送的当前下行周期的下行数据的剩余部分;
第一接收模块 420, 用于在当前下行周期或者当前上行周期, 通过第二
CPRI接口接收 REC发送的下一个下行周期的下行数据的一部分;
下行数据发送模块 140, 用于在当前下行周期通过空口发送当前下行周期 的下行数据的一部分和当前下行周期的下行数据的剩余部分;该当前下行周期 的下行数据的一部分, 是 REC的第一下行数据下发模块 230在前一个下行周 期或前一个上行周期中通过第二 CPRI接口提前发送至 RE的。
在一个实施例中, 这下一个下行周期的下行数据的一部分由 RE的下行数 据发送模块 140在下一个下行周期通过空口发送。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
根据上面各个方法实施例的描述,在一个实施例中, 可以将本发明实施例 所提供的方法总结为如图 22所示的实施例中的主要步骤。如图 22所示, 本发 明实施例提供一种数据传输方法, 包括:
S2001 , REC在一个下行周期到达前, 将上述下行周期的下行数据的第一 部分发送给 RE;
可选地,上述下行周期的下行数据的第一部分的空口传输时间大于或者等 于上述第一 CPRI接口上的数据传输往返时延, 小于或者等于上述下行周期的 全部下行数据的空口传输时间。
在一个实施例中, 上述 REC在前一个下行周期通过上述第一 CPRI接口 将上述下行周期的下行数据的第一部分发送给上述 RE。
在这种情况下, 当上述第一 CPRI接口上的数据传输往返时延大于上述空 口的数据传输往返时延时, 在上述 REC在前一个下行周期通过第一 CPRI接 口向上述 RE发送上述下行周期的下行数据的第一部分之前, 该方法还可以包 括:
上述 REC对上述下行周期的下行数据的第一部分进行压缩, 得到第一部 分压缩下行数据; 这时, 上述 REC在上述前一个下行周期通过第一 CPRI接 口向上述 RE发送上述第一部分压缩下行数据;
对应地, RE对上述第一部分压缩下行数据进行解压缩, 得到上述下行周 期的下行数据的第一部分。
在一个实施例中, 上述 REC在前一个下行周期或者前一个上行周期通过 上述第二 CPRI接口将上述下行周期的下行数据的第一部分发送给上述 RE。 据的第二部分,上述第二部分与上述第一部分构成上述下行周期的全部下行数 据;
具体地, 在一个实施例中, 上述 REC通过第一 CPRI接口向上述 RE发送 上述下行周期的下行数据的第二部分, 上述 REC还通过上述第一 CPRI接口 接收 RE发送的上行数据。
在一个实施例中, 当上述第一 CPRI接口上的数据传输往返时延大于上述 空口的数据传输往返时延时, 在上述 REC在上述下行周期向上述 RE发送上 述下行周期的下行数据的第二部分之前, 上述方法还包括:
上述 REC对上述下行周期的下行数据的第二部分进行压缩, 得到第二部 分压缩下行数据; 此时, 上述 REC在上述下行周期通过第一 CPRI接口向上 述 RE发送上述第二部分压缩下行数据;
对应地, 上述 RE对上述第二部分压缩下行数据进行解压缩, 得到上述下 行周期的下行数据的第二部分。
S2003, 上述 RE接收上述下行周期的下行数据的第一部分和第二部分;
S2004, 上述 RE在上述下行周期将上述第一部分和第二部分作为下行数 据通过空口发送。
前面实施例中提到的当前下行周期的下行数据的一部分,可以理解为上述 下行周期的下行数据的第一部分;
前面实施例中提到的当前下行周期的下行数据的剩余部分,可以理解为上 述下行周期的下行数据的第二部分。
当然, 如前面实施例上述, 该方法还可以包括:
S2000, 上述 REC提前调度上述下行周期的下行数据的一部分,提前调度 的上述下行周期的下行数据的一部分的空口传输时间大于或者等于上述下行 周期的下行数据的第一部分的空口传输时间,小于或者等于上述下行周期的全 部下行数据的空口传输时间。
本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
相应地, 根据上面各个装置实施例的描述, 在一个实施例中, 可以将本发 明实施例所提供的基站总结为如图 23所示的主要结构。如图 23所示, 本发明 实施例提供一种基站, 应用在时分双工 TDD系统中, 上述基站包括无线设备 RE和无线设备控制器 REC, 上述 RE包括第一接收模块 130、 第二接收模块 120和下行数据发送模块 140,上述 REC包括第一下行数据下发模块 230和第 二下行数据下发模块 220; 其中:
第一下行数据下发模块 230, 用于在一个下行周期到达前, 将上述下行周 期的下行数据的第一部分发送给无线设备 RE;
可选地,上述下一个下行周期的下行数据的第一部分的空口传输时间大于 或者等于上述第一 CPRI接口上的数据传输往返时延, 小于或者等于上述下行 周期的全部下行数据的空口传输时间。
在一个实施例中,第一下行数据下发模块 230在前一个下行周期通过第一 CPRI接口将上述下行周期的下行数据的第一部分发送给上述 RE;
在一个实施例中, 第一下行数据下发模块 230具体用于,在前一个下行周 期或者前一个上行周期通过上述第二 CPRI接口将上述下行周期的下行数据的 第一部分发送给上述 RE。 第二下行数据下发模块 220, 用于在上述下行周期向上述 RE发送上述下 行周期的下行数据的第二部分,上述第二部分与上述第一部分构成上述下行周 期的全部下行数据;
在一个实施例中, 第二下行数据下发模块 220通过第一 CPRI接口向上述 RE发送上述下行周期的下行数据的第二部分; 上述 REC还包括接收模块, 用 于通过上述第一 CPRI接口接收 RE发送的上行数据。
第一接收模块 130, 用于接收上述下行周期的下行数据的第一部分; 第二接收模块 120, 用于接收上述下行周期的下行数据的第二部分; 下行数据发送模块 140, 用于在上述下行周期将上述第一部分和第二部分 作为下行数据通过空口发送。
前面实施例中提到的当前下行周期的下行数据的一部分,可以理解为上述 下行周期的下行数据的第一部分;
前面实施例中提到的当前下行周期的下行数据的剩余部分,可以理解为上 述下行周期的下行数据的第二部分。
当然, 就像前面实施例中提到的, 上述基站还可以包括(图 23中未示出, 沿用前面实施例的各个模块的标记来标明各个模块的名称):
上述 REC还包括:
下行数据压缩模块 240, 用于当上述第一 CPRI接口上的数据传输往返时 延大于上述空口的数据传输往返时延时,对上述下行周期的下行数据的第一部 分进行压缩, 得到第一部分压缩下行数据;
此时, 第一下行数据下发模块 230具体用于: 在上述前一个下行周期通过 第一 CPRI接口向上述 RE发送上述第一部分压缩下行数据;
此时, 上述 RE还包括:
下行数据解压缩模块 100, 用于对上述第一部分压缩下行数据进行解压 缩, 得到上述下行周期的下行数据的第一部分。
下行数据压缩模块 240还用于:对上述下行周期的下行数据的第二部分进 行压缩, 得到第二部分压缩下行数据; 此时, 第一下行数据下发模块 230还具体用于: 在上述下行周期通过第一
CPRI接口向上述 RE发送上述第二部分压缩下行数据;
此时, 下行数据解压缩模块 100还用于: 对上述第二部分压缩下行数据进 行解压缩, 得到上述下行周期的下行数据的第二部分。
上述 REC还包括:
提前调度模块 200, 用于提前调度上述下行周期的下行数据的一部分, 提 前调度的上述下行周期的下行数据的一部分的空口传输时间大于或者等于上 述下行周期的下行数据的第一部分的空口传输时间,小于或者等于上述下行周 期的全部下行数据的空口传输时间。
各个模块的具体功能在前面装置实施例中,已经详细描述,在此不再赘述。 本发明实施例通过以上技术方案, 将原来的填充比特用于传输有用信息, 在一个 CPRI接口支持上下行数据传输, 可以有效提高 CPRI接口传输带宽利 用, 较大节省光纤开销; 并且 REC将下一个下行周期的部分或全部下行数据 提前下发, 不会额外增加空口延时, 有效提高空口频谱资源利用率。
需要说明的是,上述各个方法实施例中的提前调度的操作以及各个装置实 施例中的提前调度模块并不是必须的, 在需要提前下发的时候, 可以直接提前 下发数据而不预先提前调度, 本发明实施例不做特别的限定。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体 ( Random Access Memory, RAM )等。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开 的可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。

Claims

权 利 要 求
1、一种数据传输方法,应用在时分双工 TDD系统中,其特征在于, 包括: 无线设备控制器 REC在一个下行周期到达前, 将所述下行周期的下行数 据的第一部分发送给无线设备 RE;
所述 REC在所述下行周期向所述 RE发送所述下行周期的下行数据的第 二部分, 所述第二部分与所述第一部分构成所述下行周期的全部下行数据; 所述 RE接收所述下行周期的下行数据的第一部分和第二部分;
所述 RE在所述下行周期将所述第一部分和第二部分作为下行数据通过空 口发送。
2、 如权利要求 1所述的数据传输方法, 其特征在于, 所述 REC通过第一 CPRI接口向所述 RE发送所述下行周期的下行数据的第二部分, 所述 REC还 通过所述第一 CPRI接口接收 RE发送的上行数据。
3、 如权利要求 2所述的数据传输方法, 其特征在于, 所述 REC在一个下 行周期到达前, 将所述下行周期的下行数据的第一部分发送给所述 RE, 具体 为: 所述 REC在前一个下行周期通过所述第一 CPRI接口将所述下行周期的 下行数据的第一部分发送给所述 RE。
4、 如权利要求 2所述的数据传输方法, 其特征在于, 所述 REC在所述下 行周期到达前将所述下行周期的下行数据的第一部分发送给所述 RE,具体为: 所述 REC在前一个下行周期或者前一个上行周期通过所述第二 CPRI接口将 所述下行周期的下行数据的第一部分发送给所述 RE。
5、 如权利要求 2 - 4任一项所述的数据传输方法, 其特征在于, 所述下行 周期的下行数据的第一部分的空口传输时间大于或者等于所述第一 CPRI接口 上的数据传输往返时延,小于或者等于所述下行周期的全部下行数据的空口传 输时间。 (权 4中是两个光纤接口也是满足同样的要求吗? )
6、 如权利要求 3 所述的数据传输方法, 其特征在于, 当所述第一 CPRI 接口上的数据传输往返时延大于所述空口的数据传输往返时延时,在所述 REC 在前一个下行周期通过第一 CPRI接口向所述 RE发送所述下行周期的下行数 据的第一部分之前, 所述方法还包括:
所述 REC对所述下行周期的下行数据的第一部分进行压缩, 得到第一部 分压缩下行数据;
此时, 所述 REC在前一个下行周期通过所述第一 CPRI接口将所述下行 周期的下行数据的第一部分发送给所述 RE, 具体为: 所述 REC在所述前一个 下行周期通过第一 CPRI接口向所述 RE发送所述第一部分压缩下行数据; 此时, 所述方法还包括: 所述 RE对所述第一部分压缩下行数据进行解压 缩, 得到所述下行周期的下行数据的第一部分。
7、 如权利要求 6所述的数据传输方法, 其特征在于, 当所述第一 CPRI 接口上的数据传输往返时延大于所述空口的数据传输往返时延时,在所述 REC 在所述下行周期向所述 RE发送所述下行周期的下行数据的第二部分之前, 所 述方法还包括:
所述 REC对所述下行周期的下行数据的第二部分进行压缩, 得到第二部 分压缩下行数据;
此时,所述 REC在所述下行周期通过第一 CPRI接口向所述 RE发送所述 下行周期的下行数据的第二部分, 具体为: 所述 REC在所述下行周期通过第 一 CPRI接口向所述 RE发送所述第二部分压缩下行数据;
此时, 所述方法还包括: 所述 RE对所述第二部分压缩下行数据进行解压 缩, 得到所述下行周期的下行数据的第二部分。
8、 如权利要求 4所述的数据传输方法, 其特征在于, 所述 RE的多个天 线时分复用所述第二 CPRI接口。
9、 一种基站, 应用在时分双工 TDD系统中, 所述基站包括无线设备 RE 和无线设备控制器 REC, 其特征在于, 所述 RE包括第一接收模块、 第二接收 模块和下行数据发送模块, 所述 REC包括第一下行数据下发模块和第二下行 数据下发模块; 其中:
所述第一下行数据下发模块, 用于在一个下行周期到达前,将所述下行周 期的下行数据的第一部分发送给无线设备 RE;
所述第二下行数据下发模块, 用于在所述下行周期向所述 RE发送所述下 行周期的下行数据的第二部分,所述第二部分与所述第一部分构成所述下行周 期的全部下行数据;
所述第一接收模块, 用于接收所述下行周期的下行数据的第一部分; 所述第二接收模块, 用于接收所述下行周期的下行数据的第二部分; 所述下行数据发送模块,用于在所述下行周期将所述第一部分和第二部分 作为下行数据通过空口发送。
10、 如权利要求 9所述的基站, 其特征在于, 所述基站还包括第一 CPRI 接口, 所述第二下行数据下发模块通过所述第一 CPRI接口向所述 RE发送所 述下行周期的下行数据的第二部分; 所述 REC还包括接收模块, 用于通过所 述第一 CPRI接口接收 RE发送的上行数据。
11、 如权利要求 10所述的基站, 其特征在于, 所述第一下行数据下发模 块具体用于, 在前一个下行周期通过所述第一 CPRI接口将所述下行周期的下 行数据的第一部分发送给所述 RE。
12、 如权利要求 10所述的基站, 其特征在于, 所述基站还包括第二 CPRI 接口, 所述第一下行数据下发模块具体用于,在前一个下行周期或者前一个上 行周期通过所述第二 CPRI接口将所述下行周期的下行数据的第一部分发送给 所述 RE。
13、 如权利要求 10 - 12任一项所述的基站, 其特征在于, 所述下一个下 行周期的下行数据的第一部分的空口传输时间大于或者等于所述第一 CPRI接 口上的数据传输往返时延,小于或者等于所述下行周期的全部下行数据的空口 传输时间。
14、 如权利要求 11所述的基站, 其特征在于, 所述 REC还包括: 下行数据压缩模块, 用于当所述第一 CPRI接口上的数据传输往返时延大 于所述空口的数据传输往返时延时,对所述下行周期的下行数据的第一部分进 行压缩, 得到第一部分压缩下行数据; 此时, 所述第一下行数据下发模块具体用于: 在所述前一个下行周期通过 第一 CPRI接口向所述 RE发送所述第一部分压缩下行数据;
此时, 所述 RE还包括:
下行数据解压缩模块, 用于对所述第一部分压缩下行数据进行解压缩,得 到所述下行周期的下行数据的第一部分。
15、 如权利要求 14所述的基站, 其特征在于, 所述下行压缩模块还用于: 对所述下行周期的下行数据的第二部分进行压缩, 得到第二部分压缩下行数 据;
此时, 所述第一下行数据下发模块还具体用于: 在所述下行周期通过第一 CPRI接口向所述 RE发送所述第二部分压缩下行数据;
此时, 所述下行数据解压缩模块还用于: 对所述第二部分压缩下行数据进 行解压缩, 得到所述下行周期的下行数据的第二部分。
16、 如权利要求 12所述的基站, 其特征在于, 所述 RE的多个天线时分复 用所述第二 CPRI接口。
PCT/CN2011/074677 2011-05-25 2011-05-25 数据传输方法和基站 WO2011144085A2 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11783002.6A EP2515603B1 (en) 2011-05-25 2011-05-25 Improved scheduling on CPRI interface of remote Node B
CN201180001942.6A CN102960049B (zh) 2011-05-25 2011-05-25 数据传输方法和基站
PCT/CN2011/074677 WO2011144085A2 (zh) 2011-05-25 2011-05-25 数据传输方法和基站
US13/483,980 US8270321B1 (en) 2011-05-25 2012-05-30 Data transmission method and base station
US13/572,406 US8693402B2 (en) 2011-05-25 2012-08-10 Data transmission method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074677 WO2011144085A2 (zh) 2011-05-25 2011-05-25 数据传输方法和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/483,980 Continuation US8270321B1 (en) 2011-05-25 2012-05-30 Data transmission method and base station

Publications (2)

Publication Number Publication Date
WO2011144085A2 true WO2011144085A2 (zh) 2011-11-24
WO2011144085A3 WO2011144085A3 (zh) 2012-04-26

Family

ID=44992111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074677 WO2011144085A2 (zh) 2011-05-25 2011-05-25 数据传输方法和基站

Country Status (4)

Country Link
US (2) US8270321B1 (zh)
EP (1) EP2515603B1 (zh)
CN (1) CN102960049B (zh)
WO (1) WO2011144085A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171133A1 (en) * 2011-06-13 2012-12-20 Telefonaktiebolaget L M Ericsson (Publ) Method and device for rate matching
US9824044B2 (en) * 2013-01-10 2017-11-21 Nxp Usa, Inc. Common public radio interface (CPRI) lane controller coupled to direct memory access (DMA) wherein a time division duplex (TDD) steers control of CPRI
KR101736167B1 (ko) * 2014-02-12 2017-05-17 한국전자통신연구원 기지국 장치 및 그의 신호 송신 방법
CN104125104B (zh) * 2014-08-13 2017-05-17 烽火通信科技股份有限公司 一种光网络单元中业务数据的配置方法
WO2016095111A1 (zh) * 2014-12-16 2016-06-23 华为技术有限公司 一种光交换信号处理方法和装置
US11071131B2 (en) 2016-01-26 2021-07-20 Ntt Docomo, Inc. Base station and transmission method
US20190199379A1 (en) 2016-09-06 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods and Devices for Determination of Beamforming Information
US10524273B2 (en) 2016-09-06 2019-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Resource configuration of wireless devices
WO2018048331A1 (en) 2016-09-06 2018-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Resource configuration of wireless devices
CN110121854B (zh) 2016-11-16 2022-03-04 瑞典爱立信有限公司 用于适配前传网络上的负载的方法和设备
JP6827339B2 (ja) * 2017-02-16 2021-02-10 株式会社日立国際電気 無線通信装置
CN110832079A (zh) * 2017-05-23 2020-02-21 新加坡国立大学 苯乙醇、醛、酸、胺及相关化合物的生物生产

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460513B2 (en) * 2003-11-17 2008-12-02 Telefonaktiebolaget Lm Ericsson (Publ) Encapsulation of diverse protocols over internal interface of distributed radio base station
EP1566980A1 (de) * 2004-02-23 2005-08-24 Siemens Aktiengesellschaft Verfahren zum Übertragen von Daten innerhalb einer Basisstation eines Mobilfunksystems sowie entsprechende Basisstation
CA2582065C (en) * 2004-10-12 2014-11-25 Telefonaktiebolaget Lm Ericsson (Publ) Interface, apparatus, and method for communication between a radio equipment control node and one or more remote radio equipment nodes
JP4791320B2 (ja) * 2006-10-13 2011-10-12 富士通株式会社 コモン・パブリック・ラジオ・インタフェース(cpri)のベンダー特有領域を使った回線迂回方式
KR101036100B1 (ko) * 2006-11-08 2011-05-19 후지쯔 가부시끼가이샤 대역간 핸드오버를 행하는 이동 통신 시스템에서 사용되는 기지국 장치, 유저 장치 및 방법
EP2139243B1 (en) * 2007-03-16 2014-07-30 Fujitsu Limited Base station, wireless control device, and wireless device
KR101050944B1 (ko) * 2007-05-25 2011-07-20 후지쯔 가부시끼가이샤 무선 통신 장치, 무선 통신 시스템 및 무선 통신 방법
CN101409667B (zh) * 2007-10-12 2011-08-24 中国移动通信集团公司 无线电基站中的数据交互方法、设备及系统
GB2455702B (en) * 2007-11-29 2012-05-09 Ubidyne Inc A method and apparatus for autonomous port role assignments in master-slave networks
US8165100B2 (en) * 2007-12-21 2012-04-24 Powerwave Technologies, Inc. Time division duplexed digital distributed antenna system
US8606255B2 (en) * 2008-01-17 2013-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Asynchronous communication over common public radio interface (CPRI)
CN101499964B (zh) * 2008-01-28 2011-06-15 华为技术有限公司 提高cpri接口传输带宽利用率的方法、cpri接口处理模块和设备
US8654796B2 (en) * 2008-03-03 2014-02-18 Zte Corporation System for synchronizing clock
JP5521362B2 (ja) * 2008-03-17 2014-06-11 日本電気株式会社 張り出し無線装置、信号伝送速度の判別方法及び判別プログラム
US8050296B2 (en) * 2008-03-31 2011-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Radio equipment (RE)-based synchronization
US8005152B2 (en) * 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems
US8174428B2 (en) * 2008-05-21 2012-05-08 Integrated Device Technology, Inc. Compression of signals in base transceiver systems
US8229416B2 (en) * 2008-09-23 2012-07-24 Ixia Methods, systems, and computer readable media for stress testing mobile network equipment using a common public radio interface (CPRI)
EP2391158A4 (en) * 2009-01-20 2014-12-10 Ntt Docomo Inc WIRELESS BASE STATION, CONTROL DEVICE FOR WIRELESS DEVICES AND WIRELESS DEVICE
CN101841364A (zh) * 2009-03-20 2010-09-22 华为技术有限公司 数据的传送方法及相关设备
JP5282618B2 (ja) * 2009-03-24 2013-09-04 富士通株式会社 無線基地局装置及びその同期方法
WO2010145187A1 (en) * 2009-06-19 2010-12-23 Datang Mobile Communications Equipment Co., Ltd Remote radio data transmission over ethernet
JP2011024099A (ja) * 2009-07-17 2011-02-03 Fujitsu Ltd 無線装置制御装置、基地局、およびデータ中継方法
CN102511187B (zh) * 2009-09-14 2015-11-25 瑞典爱立信有限公司 在调度下行链路数据传送时使用子帧时间偏移
CN201523454U (zh) * 2009-09-24 2010-07-07 信飞系统公司 基站收发机系统中的信号压缩装置
JP5338648B2 (ja) * 2009-12-16 2013-11-13 富士通株式会社 無線基地局、無線制御装置及び無線装置、並びに通信方法
CN102238628B (zh) 2010-05-06 2013-12-18 华为技术有限公司 Iq数据传输方法和装置
US9125068B2 (en) * 2010-06-04 2015-09-01 Ixia Methods, systems, and computer readable media for simulating realistic movement of user equipment in a long term evolution (LTE) network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2515603A4 *

Also Published As

Publication number Publication date
CN102960049A (zh) 2013-03-06
EP2515603A2 (en) 2012-10-24
CN102960049B (zh) 2016-06-29
US8270321B1 (en) 2012-09-18
EP2515603A4 (en) 2013-09-04
US20120307690A1 (en) 2012-12-06
EP2515603B1 (en) 2015-09-09
WO2011144085A3 (zh) 2012-04-26
US8693402B2 (en) 2014-04-08

Similar Documents

Publication Publication Date Title
WO2011144085A2 (zh) 数据传输方法和基站
JP5397899B2 (ja) アクセス制御システム、アクセス制御方法、中継局装置、送信側処理方法、受信側処理システム及び受信側処理方法
KR101527737B1 (ko) 멀티미디어 동작 데이터를 전송 및 수신하기 위한 방법, 기지국 디바이스 및 이용자 디바이스
EP2262182B1 (en) Method for synchronizing a gateway and base stations and the corresponding gateway and base station
US7103012B2 (en) Multiple access communication system and data transceiver
CN101395824A (zh) 蜂窝网络中的准同步传输
CN105917717B (zh) 用于上行链路ofdma传输的系统和方法
JP2016535488A (ja) サイクリックプレフィックス長を設定するシステムおよび方法
KR101178440B1 (ko) 백홀 링크들을 통한 순방향에서의 호 트래픽의 동기화
CN106686763B (zh) Lte基站系统和小区合并、分裂的方法
WO2010133106A1 (zh) 回程链路上行资源配置指示及数据传输的方法及系统
JP2007524329A (ja) 音声/データ遅延を最小として逆方向チャネル情報をシグナリングする方法
CN1245819C (zh) 分组传输方法和装置、无线电帧传输方法、移动通信方法和系统以及交换中心
EP3143718A1 (en) Wireless backhaul configuration
CN112994759B (zh) 一种基于ofdm的协作中继d2d通信方法
CN102291815B (zh) 一种中继网络的定时配置方法及系统
EP2779783A1 (en) Method, device and system for acquiring feedback delay
CN109673021A (zh) 业务时延确定方法
US8036251B2 (en) Packet transmission device and control method thereof
KR20190112539A (ko) 무선통신장치 및 데이터 스트림 전달 방법, 데이터스트림 변환장치
WO2023000155A1 (en) Semi-persistent scheduling enhancement
KR101759669B1 (ko) 동기 방식의 무선 백홀 장치에서 동기 신호 수신 시스템 및 방법
KR101759668B1 (ko) 동기 방식의 무선 백홀 장치에서 동기 신호 송신 시스템 및 방법
JP2020010361A (ja) ネットワークシステム、ノード、フレーム通信方法及びプログラム
WO2005091530A1 (ja) 受信信号をバッファに一時保持する無線基地局装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001942.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011783002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE