WO2011144014A1 - 一种电子加热器及其控制方法 - Google Patents

一种电子加热器及其控制方法 Download PDF

Info

Publication number
WO2011144014A1
WO2011144014A1 PCT/CN2011/074166 CN2011074166W WO2011144014A1 WO 2011144014 A1 WO2011144014 A1 WO 2011144014A1 CN 2011074166 W CN2011074166 W CN 2011074166W WO 2011144014 A1 WO2011144014 A1 WO 2011144014A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
power
power supply
heating source
Prior art date
Application number
PCT/CN2011/074166
Other languages
English (en)
French (fr)
Inventor
唐战利
方雅珂
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN2011800005391A priority Critical patent/CN102204403A/zh
Priority to PCT/CN2011/074166 priority patent/WO2011144014A1/zh
Publication of WO2011144014A1 publication Critical patent/WO2011144014A1/zh
Priority to US14/081,211 priority patent/US20140069909A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/128Preventing overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • F24H15/35Control of the speed of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/002Air heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0411Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2064Arrangement or mounting of control or safety devices for air heaters
    • F24H9/2071Arrangement or mounting of control or safety devices for air heaters using electrical energy supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications

Definitions

  • the present invention relates to the field of power electronics, and more particularly to an electronic heater and a control method thereof.
  • the staff needs to set up the electronic heater in the power supply rejection, battery rejection, etc. that are compatible with the outdoor communication base station.
  • the power supply system supplies power to the heating source to generate heat;
  • the auxiliary power source converts the high voltage provided by the power system into a low voltage, and supplies the low voltage to the fan;
  • the fan blows the heat generated by the heat source to the inside of the machine, so that the machine is internally maintained at the normal operating temperature.
  • the heat source is an improved resistive conductor such as a heating rod, a heating film, a heating block, or the like.
  • the existing electronic heater is insufficient in flexibility, that is, its heating power is uncontrollable, and cannot be flexibly adjusted according to changes in the actual use environment. Its output power allows the staff to replace different electronic heaters to keep the internals at the same operating temperature or to reject different power electronic heaters for different capacities, which will increase the maintenance cost of spare parts.
  • Embodiments of the present invention provide an electronic heater and a control method thereof, which reduce the maintenance cost of the electronic heater spare parts.
  • An electronic heater comprising: the electronic heater includes: an auxiliary power supply unit, a control unit, a power adjustment unit, and a heating source; the auxiliary power supply unit is configured to supply power to the control unit; The input voltage of the heating source outputs a detection voltage signal, and outputs a power control signal according to a preset reference power value, and transmits the detection voltage signal and the power control signal to the power adjustment unit; the power adjustment unit Used in accordance with The detection voltage signal and the power control signal obtain an output power adjustment signal, and adjust an input current of the heating source according to the power adjustment signal.
  • a method for controlling an electronic heater, when the electronic heater includes an auxiliary power supply unit, a control unit, a power adjustment unit, and a heating source includes:
  • the auxiliary power supply unit converts the voltage of the external power supply and sends the voltage to the control unit to supply power to the control unit;
  • the control unit outputs a detection voltage signal according to the voltage signal obtained by the heating source, and outputs a power control signal according to the preset reference power value, and transmits the detection voltage signal and the power control signal to the power adjustment unit;
  • the power adjustment unit obtains an output power adjustment signal according to the detection voltage signal and the power control signal, and adjusts a current of the heating source by using the output power adjustment signal, thereby adjusting an output power of the heating source;
  • the heating source is supplied with voltage by the external power supply.
  • the electronic heater provided by the embodiment of the invention and the control method thereof when the power supply voltage of the power supply system changes, the electronic heater provided by the invention can intelligently adjust the current of the heating source to keep the output power unchanged, so the worker does not need to replace Different electronic heaters can keep the machine at the same working temperature; in addition, when the power supply voltage of the power supply system is constant, but the capacity of the machine is changed, the electronic heater provided by the present invention can adjust the current of the heating source to make it The output power becomes larger or smaller to maintain the normal operating temperature rejected by different capacity machines, so the worker does not need to match different power electronic heaters for machines of different capacities. Therefore, with the technical solution of the embodiment of the invention, the maintenance cost of the electronic heater spare parts is reduced.
  • FIG. 1 is a schematic view of an electric heater according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an electric heater according to a second embodiment of the present invention
  • 3 is a schematic view of a three-electrode heater according to an embodiment of the present invention
  • FIG. 4 is a schematic view of a fourth electronic heater according to an embodiment of the present invention.
  • Figure 5 is a schematic view of an electronic heater according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic view of an electric heater according to a sixth embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for controlling an electronic heater according to Embodiment 7 of the present invention.
  • 12-control unit 120-control unit output/input port, 121-control unit first output, 122-control unit second output, 123-control unit third output, 124-control unit a first input, 125 - a second input of the control unit, 126 - a third input of the control unit, 127 - a fourth input of the control unit;
  • 25-second MOSFET 251 - the drain of the second MOSFET, the source of the 252-second MOSFET,
  • a 42-rectifying unit a first input end of the 421-rectifying unit, a second input end of the 422-rectifying unit, a first output end of the 423-rectifying unit, and a second output end of the 424-rectifying unit;
  • a 52-rectifier unit a first input end of the 521-rectifier unit, a second input end of the 522-rectifier unit, a first output end of the 523-rectifier unit, and a second output end of the 524-rectifier unit;
  • an embodiment of the present invention provides an electronic heater 1 including: an auxiliary power supply unit 11, a control unit 12, a power adjustment unit 13, and a heating source 14; the auxiliary power supply unit 11 is used for
  • the control unit 12 is configured to output a detection voltage signal according to an input voltage of the heating source 14, and output a power according to a preset reference power value. Rate control signal, and transmit the detection voltage signal and the power control signal to the power adjustment unit 13; the power adjustment unit 13 is configured to obtain an output power adjustment according to the detection voltage signal and the power control signal And adjusting an input current of the heating source 14 according to the power adjustment signal; the heating source 14 is configured to convert output electrical power into thermal energy.
  • an input end of the auxiliary power supply unit 11 is connected to an external power supply for receiving power supply of the external power supply; an output end of the auxiliary power supply unit 11 and a first input end of the control unit 12 Connected to provide power to the control unit; the first output end and the second output end of the control unit 12 are respectively connected to the first input end and the second input end of the power adjustment unit 13 Transmitting the detection voltage signal and the power control signal to the power adjustment unit for implementing the foregoing; an output end of the power adjustment unit 13 is connected to a control end of the heating source 14 for implementing The adjusting the input current of the heating source according to the power adjustment signal; the first input end and the second input end of the heating source 14 are respectively connected to the first pole and the second pole of the external power supply, a power supply for receiving the external power supply; a first input of the heating source 14 is further coupled to a second input of the control unit 12 for System unit 12 according to the input voltage.
  • control unit 12 and the power adjustment unit 14 are separately provided, but in practical applications, the power adjustment unit 14 may be integrated in the control unit 12.
  • an output terminal can be additionally provided in the control unit 12, the action of which acts the same as the output 133 of the power adjustment unit 13.
  • the electronic heater provided by the invention can intelligently adjust the current of the heating source to keep the output power constant, so that the worker can keep the machine in the same work without replacing the different electronic heaters.
  • the electronic heater provided by the present invention can adjust the current of the heating source to make the output power become larger or smaller to maintain the rejection of different capacity. The normal working temperature, so the staff does not need to match different power electronic heaters for different capacity machines. Therefore, with the electronic heater of the embodiment of the present invention, the inventory cost and maintenance cost of the electronic heater spare parts are reduced. As shown in FIG.
  • the second embodiment of the present invention provides an electronic heater 1, which is shown by a broken line in the figure, and includes: an auxiliary power supply unit 11, a control unit 12, a power adjustment unit 13, and a heating source.
  • the electronic heater further includes: a fan 20, a temperature collecting unit 21, a heat dissipating unit 22, and a sample resistor 23; the heating source specifically includes: a first power device 24 and a second power device 25.
  • the auxiliary power supply unit 11, the control unit 12, the power adjustment unit 13, the first power device 24 and the second power device 25, the heat dissipation unit 11, and the sample resistor 23 may be integrated in the manufacturing process of the electronic heater.
  • the fan 20 and the temperature collecting unit 21 are not integrated on the control board due to the height limitation of the electronic heater. However, if the height of the electronic heater is not limited, the fan 20 and the temperature collecting unit 21 may be mounted on the control board.
  • the power adjustment unit 13 may be an operational amplifier, or a triode, or a combination of an operational amplifier and a triode;
  • the temperature collection unit 21 may be a temperature sensor;
  • the heat dissipation unit 22 may be a heat sink;
  • the first power device 24 and the second power device 25 may be a MOSFET (Met a l-0xi de-Semi conduct or Field-Effect Transistor), a triode or an IGBT (Insulated Gate Bipolar Transistor)
  • An active power device such as a transistor, is used to convert electrical energy into thermal energy.
  • the source 241 of the first MOSFET 24 is connected to the first pole 01 of the external power supply, and the drain 242 of the first MOSFET 24 is connected to the drain 251 of the second MOSFET 25, the second The source 252 of the MOSFET 25 is connected to the second pole 02 of the external power supply, and the output 133 of the power adjustment unit 13 is simultaneously connected to the gate 243 of the first MOSFET 24 and the gate 253 of the second MOSFET 25.
  • the first input end 111 and the second input end 112 of the auxiliary power supply unit 11 are respectively connected to the first pole 01 and the second pole 02 of the external power supply, and the output 113 of the auxiliary power supply unit 11 is respectively connected to The fan 20, the first input end 124 of the control unit 12; the first output end 121 and the second output end 122 of the control unit 12 are respectively connected to the a first input terminal 131 and a second input terminal 132 of the power adjustment unit 13; and a source 241 of the first MOSFET 24 is connected to the second input terminal 125 of the control unit 12; the temperature collection unit 21 is connected to the a third input end 126 of the control unit 12, the third output end 123 of the control unit is connected to the fan 20; the first end 231 of the sample resistor 23 is connected to the source of the second MOSFET 25 The second end 232 of the sample resistor 23 is connected to the second pole 02 of the external power supply; the source 252 of the second MOSFET 25 is connected to the fourth input 127 of the control
  • the auxiliary power supply unit 11 converts the voltage of the external power supply to the fan 20 and the control unit 12 to supply power to the fan 20 and the control unit 12.
  • the control unit 12 outputs a detection voltage signal according to a voltage signal obtained by the source 241 of the first MOSFET 24, and outputs a power control signal according to a reference power value acquired by the upper computer, and the detection voltage signal and The power control signal is sent to the power adjustment unit 13.
  • the power adjustment unit 13 obtains an output power adjustment signal according to the detection voltage signal and the power control signal, and adjusts currents of the first MOSFET 24 and the second MOSFET 25 by using the output power adjustment signal, thereby adjusting the first MOSFET 24 And the output power of the second MOSFET25.
  • the first MOSFET 24 and the second MOSFET 25 are powered by the external power supply.
  • the auxiliary power supply unit 11 converts the DC voltage into a voltage system suitable for the fan 20 and the control unit 12; when the external power supply When the voltage is an alternating voltage, the auxiliary power supply unit 11 first rectifies the alternating current voltage into a direct current voltage, and converts the direct current voltage into a voltage system suitable for the fan 20 and the control unit 12.
  • the first MOSFET 24 and the second MOSFET 25 are connected in reverse series to prevent the electronic heater from including only the first When a MOSFET 24 or a second MOSFET 25, when the parasitic diode in the first MOSFET 24 or the second MOSFET 25 is turned on during the reverse voltage phase, the first MOSFET 24 or the second MOSFET 25 is uncontrollable.
  • the heating source may also include a plurality of parallel first power devices 24 and a plurality of parallel second power devices 25, and a plurality of parallel first power devices 24 and more A plurality of parallel second power devices 25 are connected in series.
  • the output/input port 120 of the control unit 12 has a 485 communication function and can communicate with the host computer. Specifically, the control unit 12 may report a fault alarm to the upper computer, and acquire, by the upper computer, a reference power value required by the user.
  • the temperature collecting unit 21 inputs a temperature signal to the third input end 126 of the control unit 12, so that the control unit 12 controls the rotation speed of the fan 20 by using the temperature signal to ensure the electronic heater.
  • the temperature is within safe limits and will not burn the staff. Specifically, when the rotation speed of the fan is lowered, the noise of the fan is also reduced, and the heat dissipation capability thereof is correspondingly reduced; when the rotation speed of the fan is increased, the noise of the fan is also improved. At the same time, its heat dissipation capacity is correspondingly improved.
  • the heat dissipation unit 22 is connected to the first MOSFET 24 and the second MOSFET 25, but in practical applications, if there is a rectification unit in the electronic heater (as described in the following embodiments),
  • the heat sink 22 can also be connected to a rectifying unit for dissipating heat to the rectifying unit to improve heat utilization.
  • the heater is used to expand a point heat source into a surface heat source, that is, uniformly expand the heat dissipation area to facilitate the blowing of the fan; at the same time, the heat sink can reduce the thermal resistance and ensure the internality of the power device connected thereto.
  • the junction temperature is in a safe operating temperature range.
  • the material of the heat sink is metal, preferably a metal with good thermal conductivity, and the column 3 ⁇ 4 port 4 Lu or 4 is the same.
  • the control unit 12 detects whether or not an overcurrent occurs in the heating source by using a current signal obtained by the source 252 of the second MOSFET 25 to protect the electronic heater. . Specifically, when the control unit 12 detects an overcurrent of the first MOSFET 24 and the second MOSFET 25 according to the current signal, the control Unit 12 immediately cuts off the circuit to protect the electronic heater.
  • control unit 12 and the power adjustment unit 13 are separately provided, but in practical applications, the power adjustment unit 13 may be integrated in the control unit 12.
  • an output terminal can be additionally provided in the control unit 12, the action of which acts the same as the output 133 of the power adjustment unit 13.
  • the electronic heater provided by the invention can intelligently adjust the current of the first MOSFET and the second MOSFET to keep the output power constant, so the worker can reject the machine without replacing the different electronic heaters.
  • the electronic heater provided by the present invention can adjust the current of the first MOSFET and the second MOSFET to increase or decrease the output power when the power supply voltage of the power supply system is constant but the capacity of the power supply is changed. Small to maintain the normal operating temperature rejected by different capacity machines, so the staff does not need to match different power electronic heaters for different capacity machines. Therefore, with the electronic heater of the embodiment of the present invention, the inventory cost and maintenance cost of the electronic heater spare parts are reduced.
  • Embodiment 3 of the present invention provides an electronic heater, which differs from FIG. 2 in that the heating source specifically includes: a diode 31 and a power device 32.
  • the power device 32 can be an active power device such as a MOSFET, a triode, or an IGBT.
  • a MOSFET as the power device 32.
  • the anode of the diode 31 is connected to the first pole 01 of the external power supply
  • the cathode of the diode 31 is connected to the drain 321 of the MOSFET 32
  • the source 322 of the MOSFET 32 is connected to the outside.
  • the second pole 02 of the power supply; the gate 323 of the MOSFET 32 is connected to the output 133 of the power adjustment unit 13.
  • the electronic heater when the external power supply is an AC power source, and the AC power source outputs negative power, the electronic heater cannot operate due to the single-pass principle of the diode, that is, the electronic heating The device cannot provide power to the machine it is in.
  • the working principle of the auxiliary power supply unit 11, the fan 20, the control unit 12, the power adjusting unit 13, the temperature collecting unit 21, the heat radiating unit 22, and the sample resistor 23 shown in FIG. 3 can be referred to the second embodiment of the present invention.
  • the electronic heater provided by the invention can be intelligently adjusted when the power supply voltage of the power supply system changes
  • the current of the M0SFET keeps its output power constant, so the worker can keep the machine at the same working temperature without changing the different electronic heaters.
  • the electronic heater provided by the invention can adjust the current of the MOSFET to make the output power become larger or smaller to maintain the normal working temperature rejected by different capacity machines, so the worker does not need to match the electric heaters of different powers for different capacity machines. Therefore, with the electronic heater of the embodiment of the present invention, the inventory cost and maintenance cost of the electronic heater spare parts are reduced.
  • the fourth embodiment of the present invention provides an electronic heater, which is different from that of FIG. 2, wherein the heating source specifically includes: a power device 41; the electronic heater further includes: a rectifying unit 42.
  • the power device 41 can be an active power device such as a MOSFET, a triode, or an IGBT.
  • a MOSFET as the power device 41.
  • the first input end 421 and the second input end 422 of the rectifying unit are respectively connected to the first pole 01 and the second pole 02 of the external power supply, for receiving the power supply of the external power supply;
  • the first output end 423 and the second output end 424 of the rectifying unit are respectively connected to the drain 411 and the source 412 of the MOSFET 41 for implementing power supply to the power device; the gate 413 of the power device 41
  • An output terminal 133 is connected to the power adjustment unit 13 for adjusting its current output according to the power control signal output by the power adjustment unit.
  • the auxiliary power supply unit 11 converts the voltage of the external power supply and sends the voltage to the fan 20 and the control unit 12 to supply power to the fan 20 and the control unit 12, respectively.
  • the rectifying unit 42 rectifies the voltage of the external power supply and sends it to the MOSFET 41 to supply power to the MOSFET 41.
  • the control unit 12 outputs a detection voltage signal according to a voltage signal obtained by the drain 411 of the MOSFET 41, and outputs a power control signal according to a reference power value acquired by the upper computer, and the detection voltage signal and the A power control signal is sent to the power adjustment unit 13.
  • the power adjustment unit 13 obtains an output power adjustment signal according to the detection voltage signal and the power control signal And adjusting the current of the MOSFET 41 by using the output power adjustment signal to adjust the output power of the MOSFET 4 1 .
  • the rectifying unit 42 may be an uncontrolled rectifying silicon stack.
  • the rectifier stack can include four separate power devices, such as power diodes.
  • the specific function of the rectifying unit 42 is:
  • the rectifying unit 42 can rectify the alternating current voltage into a direct current voltage and supply it to the power device 41.
  • the electronic heater utilizes the rectifying unit to not only fully utilize the alternating current electric energy, but also provide a stable direct current voltage for the heating source;
  • the parasitic diode in the power device 4 1 is prevented from being turned on when the voltage is reversed, so that the power device 4 1 is uncontrollable.
  • the electronic heater provided by the invention can intelligently adjust the current of the MOSFET to keep the output power constant, so that the worker can keep the machine at the same working temperature without replacing the different electronic heaters;
  • the electronic heater provided by the present invention can adjust the current of the MOSFET to make the output power become larger or smaller to maintain the normal operating temperature rejected by different capacity machines. Therefore, the staff does not need to match different power electronic heaters for machines of different capacities. Therefore, with the electronic heater of the embodiment of the present invention, the inventory cost and maintenance cost of the electronic heater spare parts are reduced.
  • the fifth embodiment of the present invention provides an electronic heater, which differs from FIG. 2 in that the heating source specifically includes: a power device 5 1 ; the electronic heater further includes: a rectifying unit 52 And the first voltage adjustment unit 53, and the auxiliary unit 1 1 is not directly connected to the external power supply, but is connected to the first voltage adjustment unit 53.
  • the power device 51 can be an active power device such as a MOSFET, a triode, or an I GBT, and the first voltage adjusting unit 53 can be a large-capacity capacitor.
  • a MOSFET as the power device 51.
  • the first input terminal 52 1 and the second input terminal 522 of the rectifying unit 52 are respectively connected to the first pole 01 and the second pole of the external power supply.
  • the first output end 523 and the second output end 524 of the rectifying unit 52 are respectively connected to the first input end 531 and the first of the first voltage adjusting unit 53 a second input end 532, configured to provide rectified electric energy for the first voltage adjusting unit; a first output end 533 and a second output end 534 of the first voltage adjusting unit 53 are respectively connected to the auxiliary power supply unit 11 a first input terminal 111 and a second input terminal 112, a drain 511 and a source 512 of the MOSFET 51 for respectively providing adjusted power for the auxiliary power supply unit and the power device; a gate of the MOSFET 51
  • the pole 513 is connected to the output end 133 of the power adjustment unit 13 for adjusting its current output according to the power control signal output by the power adjustment unit.
  • the rectifying unit 52 rectifies the voltage of the external power supply to the first voltage adjusting unit 53, and the first voltage adjusting unit 53 will be from the rectifying unit 52.
  • the voltage is adjusted and sent to the auxiliary power supply unit 11 and the MOSFET 51 to supply power to the auxiliary power supply unit 11 and the MOSFET 51.
  • the auxiliary power supply unit 11 converts the voltage from the first voltage adjustment unit 53 and sends it to the fan 20 and the control unit 12, respectively, to supply power to the fan 20 and the control unit 12.
  • the control unit 12 outputs a detection voltage signal according to a voltage signal obtained by the drain 511 of the MOSFET 51, and outputs a power control signal according to a reference power value acquired by the upper computer, and the detection voltage signal and the A power control signal is sent to the power adjustment unit 13.
  • the power adjustment unit 13 obtains an output power adjustment signal according to the detection voltage signal and the power control signal, and adjusts the current of the MOSFET 51 by using the output power adjustment signal, thereby adjusting the output power of the MOSFET 51.
  • the electronic heater can rectify the AC power into DC power by using the rectifying unit 52, and can also use the first voltage adjusting unit 53 to rectify the power.
  • the voltage is filtered, stabilized, etc. to provide a more stable voltage for the power device and the auxiliary power supply unit.
  • the working principle of the rectifying unit 52 can be referred to the description in the fourth embodiment of the present invention.
  • the input end of the auxiliary power supply unit 11 is connected to the The output end of the first voltage adjusting unit 53 is described, and in the fourth embodiment, the input end of the auxiliary power supply unit 11 is directly connected to an external power supply. Since the electric energy outputted by the first voltage adjusting unit 53 in the present embodiment is more stable than the electric energy outputted by the external power supply, the electric energy supplied to the auxiliary power supply unit 11 in the present embodiment is also more stable.
  • the electronic heater provided by the invention can intelligently adjust the current of the MOSFET to keep the output power constant, so that the worker can keep the machine at the same working temperature without replacing the different electronic heaters;
  • the electronic heater provided by the present invention can adjust the current of the MOSFET to make the output power become larger or smaller to maintain the normal operating temperature rejected by different capacity machines. Therefore, the staff does not need to match different power electronic heaters for machines of different capacities. Therefore, with the electronic heater of the embodiment of the present invention, the inventory cost and maintenance cost of the electronic heater spare parts are reduced.
  • the sixth embodiment of the present invention provides an electronic heater. Based on FIG. 5, the method further includes: a second voltage adjusting unit 61.
  • the first input end 611 and the second input end 612 of the second voltage adjusting unit 61 are respectively connected to the first output end 523 and the second output end 524 of the rectifying unit 52 for receiving the rectifying unit.
  • Providing a power supply; a first output end 613 and a second output end 614 of the second voltage adjustment unit are connected to the first input end 531 and the second input end 532 of the first voltage adjustment unit, for The first voltage adjustment unit provides the adjusted electrical energy. That is, the second voltage adjusting unit is located between the rectifying unit and the first voltage adjusting unit, and the three are in a parallel relationship.
  • the rectifying unit 52 rectifies the voltage of the external power supply to the second voltage adjusting unit 61, and the second voltage adjusting unit 61 will be from the rectifying unit 52.
  • the voltage is adjusted and sent to the first voltage adjustment unit 53 to cause the first voltage adjustment unit to adjust the voltage, and send the adjusted voltage to the auxiliary power supply unit 11 and the MOSFET 51,
  • the auxiliary power supply unit 11 and the MOSFET 51 are powered.
  • the auxiliary power supply unit 11 will be from the first voltage adjustment sheet
  • the voltage of the element is converted and sent to the fan 20 and the control unit 12, respectively, to supply power to the fan 20 and the control unit 12.
  • the control unit 12 outputs a detection voltage signal according to a voltage signal obtained by the drain 511 of the MOSFET 51, and outputs a power control signal according to a reference power value acquired by the upper computer, and the detection voltage signal and the A power control signal is sent to the power adjustment unit 13.
  • the power adjustment unit 13 obtains an output power adjustment signal according to the detection voltage signal and the power control signal, and adjusts a current of the MOSFET 51 by using the output power adjustment signal, thereby adjusting an output power of the MOSFET 51.
  • the second voltage adjustment unit may be a PFC (Power Factor Correction) circuit or a booster circuit.
  • the PFC circuit is specifically configured to eliminate harmonics of the high power rectifier circuit and improve power quality; or when the input current is DC, the boost circuit can increase the voltage to make the current more stable.
  • the electronic heater provided by the invention can intelligently adjust the current of the MOSFET to keep the output power constant, so that the worker can keep the machine at the same working temperature without replacing the different electronic heaters;
  • the electronic heater provided by the present invention can adjust the current of the MOSFET to make the output power become larger or smaller to maintain the normal operating temperature rejected by different capacity machines. Therefore, the staff does not need to match different power electronic heaters for machines of different capacities. Therefore, with the electronic heater of the embodiment of the present invention, the inventory cost and maintenance cost of the electronic heater spare parts are reduced.
  • a seventh embodiment of the present invention provides a method of controlling an electronic heater including an auxiliary power supply unit, a control unit, a power adjustment unit, and a heating source.
  • the method includes:
  • Step 71 When the external power supply is powered, the auxiliary power supply unit converts the voltage of the external power supply and sends the voltage to the control unit to supply power to the control unit.
  • Step 72 The control unit outputs a detection voltage signal according to the voltage signal obtained by the heating source, and outputs a power control signal according to the reference power value acquired by the upper computer, and sends the detection voltage signal and the power control signal to The power adjustment unit;
  • Step 73 The power adjustment unit obtains an output power adjustment signal according to the detection voltage signal and the power control signal, and adjusts an output power of the heating source by using the output power adjustment signal.
  • the structure of the electronic heater is different, and the working principle thereof is also changed correspondingly, specifically:
  • the heating source includes a power device
  • the electronic heater further includes a rectifying unit
  • the rectifying unit rectifies and rectifies the voltage of the external power supply to be transmitted to the power device to supply power to the power device;
  • the electronic heater further includes a rectifying unit and a first voltage adjusting unit, the rectifying unit rectifies a voltage of the external power supply and sends the voltage to the first voltage adjusting unit, The first voltage adjustment unit adjusts a voltage from the rectification unit and sends the voltage to the auxiliary power supply unit and the power device to supply power to the auxiliary power supply unit and the power device;
  • the electronic heater further includes a rectifying unit, a first voltage adjusting unit, and a second voltage adjusting unit
  • the rectifying unit rectifies a voltage of the external power supply and sends the a second voltage adjustment unit that adjusts a voltage from the rectification unit to the first voltage adjustment unit to cause the first voltage adjustment unit to adjust the voltage
  • An adjusted voltage is sent to the auxiliary power supply unit and the power device to power the auxiliary power supply unit and the power device.
  • the temperature collecting unit inputs a temperature signal to the control unit, so that the control unit controls the rotating speed of the fan by using the temperature signal.
  • the heat dissipation unit dissipates heat to the heating source or the rectifying unit when the electronic heater further includes a heat dissipating unit.
  • the control unit uses the current signal obtained from the heat source by the sample resistor, and according to the current signal It is detected whether an overcurrent has occurred in the heating source.
  • the control method of the electronic heater reference may be made to the descriptions of the first embodiment to the sixth embodiment.
  • control unit and the power adjustment unit are separately provided, but in practical applications, the power adjustment unit may be integrated in the control unit.
  • the electronic heater provided by the invention can intelligently adjust the current of the heating source to keep the output power constant, so that the worker can keep the machine in the same work without replacing the different electronic heaters.
  • the electronic heater provided by the present invention can adjust the current of the heating source to make the output power become larger or smaller to maintain the rejection of different capacity. The normal working temperature, so the staff does not need to match different power electronic heaters for different capacity machines. Therefore, with the technical solution of the embodiment of the present invention, the inventory cost and maintenance cost of the electronic heater spare parts are reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Resistance Heating (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Description

一种电子加热器及其控制方法 技术领域
本发明涉及电力电子技术领域,尤其涉及一种电子加热器及其控制方 法。
背景技术
随着通讯技术的发展, 室外通讯基站越来越多。 由于室外环境恶劣, 为保证该基站正常工作, 工作人员需要在与室外通讯基站相配套的电源 拒、 电池拒等机拒内部设置电子加热器。 一般地, 上述机拒内部的电子加 热器工作时, 电源系统给加热源供电, 使加热源产生热量; 辅助电源将由 电源系统提供的高电压转换成低电压, 并将该低电压提供给风扇; 风扇将 加热源产生的热量吹到机拒内部,使机拒内部维持在正常工作温度。其中, 上述加热源为改良的电阻性导体, 例如加热棒、 加热膜、 加热块等。
在实现上述电子加热器的工作过程中,发明人发现现有技术中至少存在如 下问题: 现有的电子加热器的柔性不足, 即其加热功率不可控, 无法根据 实际使用化境的变化灵活地调整其输出功率,使得工作人员需要更换不同 的电子加热器以使机拒内部保持在同一工作温度或为不同容量的机拒匹 配不同功率的电子加热器, 这将增加备件的维护成本。
发明内容
本发明实施例提供一种电子加热器及其控制方法,降低了电子加热器 备件的维护成本。
本发明实施例釆用如下技术方案:
一种电子加热器, 包括: 所述电子加热器包括: 辅助电源单元、 控制 单元、 功率调整单元以及加热源; 所述辅助电源单元用于为所述控制单元 供电; 所述控制单元用于根据所述加热源的输入电压输出检测电压信号, 以及根据预设参考功率值输出功率控制信号,并将所述检测电压信号和所 述功率控制信号传输至所述功率调整单元;所述功率调整单元用于根据所 述检测电压信号和所述功率控制信号获得输出功率调整信号,并根据所述 功率调整信号调整所述加热源的输入电流。
一种电子加热器的控制方法, 当所述电子加热器包括辅助电源单元、 控制单元、 功率调整单元以及加热源时, 包括:
当外部供电电源供电时,所述辅助电源单元将所述外部供电电源的电 压进行转换后发送给所述控制单元, 为所述控制单元供电;
所述控制单元根据由加热源获得的电压信号输出检测电压信号,并根 据预设参考功率值输出功率控制信号,并将所述检测电压信号和功率控制 信号发送给所述功率调整单元;
所述功率调整单元根据所述检测电压信号和功率控制信号获得输出 功率调整信号, 并利用所述输出功率调整信号调整所述加热源的电流, 从 而调整所述加热源的输出功率;
其中, 所述加热源由所述外部供电电源提供电压。
本发明实施例提供的电子加热器及其控制方法,当电源系统供电电压 变化时,本发明提供的电子加热器能够智能调整其加热源的电流使其输出 功率保持不变,故工作人员无需更换不同的电子加热器就可以使机拒保持 在同一工作温度; 另外, 当电源系统供电电压不变, 但是机拒的容量变化 时,本发明提供的电子加热器能够调整其加热源的电流使其输出功率变大 或变小以维持不同容量机拒的正常工作温度,故工作人员无需为不同容量 的机拒匹配不同功率的电子加热器。因此,利用本发明实施例的技术方案, 降低了电子加热器备件的维护成本。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一电子加热器的示意图;
图 2为本发明实施例二电子加热器的示意图; 图 3为本发明实施例三电子加热器的示意图
图 4为本发明实施例四电子加热器的示意图
图 5为本发明实施例五电子加热器的示意图
图 6为本发明实施例六电子加热器的示意图
图 7为本发明实施例七电子加热器的控制方法的流程图;
附图标记
01-外部供电电源的第一极,
02 -外部供电电源的第二极;
I-电子加热器;
II-辅助电源单元, 111-辅助电源单元的第一输入端, 112-辅助电源 单元的第二输入端, 113-辅助电源单元的输出端;
12-控制单元, 120-控制单元的输出 /输入端口, 121-控制单元的第一 输出端, 122-控制单元的第二输出端, 123-控制单元的第三输出端, 124- 控制单元的第一输入端, 125-控制单元的第二输入端, 126-控制单元的第 三输入端, 127-控制单元的第四输入端;
13-功率调整单元, 131-功率调整单元的第一输入端, 132-功率调整 单元的第二输入端, 133-功率调整单元的输出端;
14-加热源, 141-加热源的第一输入端, 142-加热源的第二输入端, 143-加热源的控制端;
20-风扇;
21-温度釆集单元;
22-散热单元;
23-釆样电阻;
24-第一 MOSFET, 241-第一 MOSFET的源极, 242-第一 MOSFET的漏极,
243-第一 MOSFET的栅极;
25-第二 MOSFET, 251 -第二 MOSFET的漏极, 252-第二 MOSFET的源极,
253-第二 MOSFET的栅极; 31-二极管;
32- MOSFET, 321- M0SFET的漏极, 322- M0SFET的源极, 323- MOSFET 的栅极;
41- M0SFET, 41 M0SFET的漏极, 412 - M0SFET的源极, 413- M0SFET 的栅极;
42-整流单元, 421-整流单元的第一输入端, 422-整流单元的第二输 入端, 423-整流单元的第一输出端, 424-整流单元的第二输出端;
51- M0SFET, 51 M0SFET的漏极, 512 - M0SFET的源极, 513- M0SFET 的栅极;
52-整流单元, 521-整流单元的第一输入端, 522-整流单元的第二输 入端, 523-整流单元的第一输出端, 524-整流单元的第二输出端;
53-第一电压调整单元, 531-第一电压调整单元的第一输入端, 532- 第一电压调整单元的第二输入端, 533-第一电压调整单元的第一输出端,
534-第一电压调整单元的第二输出端;
63-第二电压调整单元, 631-第二电压调整单元的第一输入端, 632- 第二电压调整单元的第二输入端, 633-第二电压调整单元的第一输出端,
634-第二电压调整单元的第二输出端。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
如图 1所示, 本发明实施例一提供了一种电子加热器 1, 包括: 辅助 电源单元 11、 控制单元 12、 功率调整单元 13 以及加热源 14; 所述辅助 电源单元 11用于为所述控制单元供电;所述控制单元 12用于根据所述加 热源 14的输入电压输出检测电压信号, 以及根据预设参考功率值输出功 率控制信号,并将所述检测电压信号和所述功率控制信号传输至所述功率 调整单元 13; 所述功率调整单元 13用于根据所述检测电压信号和所述功 率控制信号获得输出功率调整信号,并根据所述功率调整信号调整所述加 热源 14的输入电流; 所述加热源 14用于将输出电功率转换成热能。
具体的, 所述辅助电源单元 11 的输入端连接到外部供电电源, 用于 接收所述外部供电电源的电能供给; 所述辅助电源单元 11 的输出端与所 述控制单元 12的第一输入端相连接, 用于实现所述的为所述控制单元供 电; 所述控制单元 12的第一输出端和第二输出端分别连接到所述功率调 整单元 13的第一输入端和第二输入端, 用于实现所述的将所述检测电压 信号和所述功率控制信号传输至所述功率调整单元; 所述功率调整单元 13的输出端连接到所述加热源 14的控制端, 用于实现所述的根据所述功 率调整信号调整所述加热源的输入电流; 所述加热源 14的第一输入端和 第二输入端分别连接到所述外部供电电源的第一极和第二极,用于接收所 述外部供电电源的电能供给; 所述加热源 14的第一输入端还连接到所述 控制单元 12的第二输入端,用于为所述控制单元 12提供所述的输入电压。
另外, 在本实施例中, 所述控制单元 12和所述功率调整单元 14是分 开设置的, 但在实际应用中, 所述功率调整单元 14可以集成在所述控制 单元 12中。 此时, 可在所述控制单元 12中另外设置一个输出端, 该输出 端的作用与所述功率调整单元 13的输出端 133的作用相同。
当电源系统供电电压变化时,本发明提供的电子加热器能够智能调整 其加热源的电流使其输出功率保持不变,故工作人员无需更换不同的电子 加热器就可以使机拒保持在同一工作温度; 另外, 当电源系统供电电压不 变, 但是机拒的容量变化时, 本发明提供的电子加热器能够调整其加热源 的电流使其输出功率变大或变小以维持不同容量机拒的正常工作温度,故 工作人员无需为不同容量的机拒匹配不同功率的电子加热器。 因此, 利用 本发明实施例的电子加热器,降低了电子加热器备件的库存成本以及维护 成本。 如图 2所示, 本发明实施例二提供了一种电子加热器 1, 如图中虚线 框所示, 包括: 辅助电源单元 11、 控制单元 12、 功率调整单元 13以及加 热源, 此外, 所述电子加热器还包括: 风扇 20、 温度釆集单元 21、 散热 单元 22和釆样电阻 23; 所述加热源具体包括: 第一功率器件 24和第二 功率器件 25。 其中, 在该电子加热器的制作过程中, 所述辅助电源单元 11、 控制单元 12、 功率调整单元 13、 第一功率器件 24 和第二功率器件 25、散热单元 11和釆样电阻 23可以集成于该电子加热器的控制板上, 而 由于所述电子加热器的高度限制, 所述风扇 20、 温度釆集单元 21不集成 在所述控制板上。 但是, 如果所述电子加热器的高度没有限制, 所述风扇 20、 温度釆集单元 21也可以安装在所述控制板上。
其中, 所述功率调整单元 13可以为运算放大器, 或者三极管, 或运 算放大器和三极管的组合; 所述温度釆集单元 21可以为温度传感器; 散 热单元 22可以为散热器; 所述第一功率器件 24和第二功率器件 25可以 为 MOSFET (Met a l-0xi de-Semi conduct or Field-Effect Transistor, 金 属 -氧化层-半导体场效晶体管)、 三极管或 IGBT (Insulated Gate Bipolar Transistor, 绝缘栅双极型晶体管)等有源功率器件, 用于把电能转换为 热能。 在本实施例中, 我们利用第一 MOSFET作为所述第一功率器件 24, 利用第二 MOSFET作为第二功率器件 25。
此时, 所述第一 M0SFET24的源极 241连接到所述外部供电电源的第 一极 01, 所述第一 M0SFET24的漏极 242连接到所述第二 M0SFET25的漏 极 251, 所述第二 M0SFET25 的源极 252连接到所述外部供电电源的第二 极 02,所述功率调整单元 13的输出端 133同时连接到所述第一 M0SFET24 的栅极 243和第二 M0SFET25的栅极 253。
另外, 所述辅助电源单元 11的第一输入端 111和第二输入端 112分 别连接到外部供电电源的第一极 01 和第二极 02, 所述辅助电源单元 11 的输出端 113 分别连接到所述风扇 20、 所述控制单元 12 的第一输入端 124;所述控制单元 12的第一输出端 121和第二输出端 122分别连接到所 述功率调整单元 13 的第一输入端 131 和第二输入端 132; 以及第一 M0SFET24的源极 241连接到所述控制单元 12的第二输入端 125; 所述温 度釆集单元 21连接到所述控制单元 12的第三输入端 126, 所述控制单元 的第三输出端 123连接到所述风扇 20; 所述釆样电阻 23的第一端 231连 接到所述第二 M0SFET25源极,所述釆样电阻 23的第二端 232连接到所述 外部供电电源的第二极 02; 所述第二 M0SFET25的源极 252连接到所述控 制单元 12的第四输入端 127;所述散热单元 22连接到所述第一 M0SFET24 和第二 M0SFET25, 用于对所述第一 M0SFET24和第二 M0SFET25散热。 另 外,所述控制单元 12的输出 /输入端口 120连接到所述电子加热器外部的 上位机。
当外部供电电源供电时, 所述辅助电源单元 11将所述外部供电电源 的电压转换后分别发送给所述风扇 20和所述控制单元 12,为所述风扇 20 和所述控制单元 12供电。 所述控制单元 12根据由所述第一 M0SFET24的 源极 241获得的电压信号输出检测电压信号,以及根据由所述上位机获取 的参考功率值输出功率控制信号,并将所述检测电压信号和所述功率控制 信号发送至所述功率调整单元 13。 所述功率调整单元 13根据所述检测电 压信号和功率控制信号获得输出功率调整信号,并利用所述输出功率调整 信号调整所述第一 M0SFET24和第二 M0SFET25的电流,从而调整所述第一 M0SFET24和第二 M0SFET25 的输出功率。 其中, 所述第一 M0SFET24和第 二 M0SFET25由所述外部供电电源供电。
具体的, 当所述外部供电电源的电压为直流电压时, 所述辅助电源单 元 11将所述直流电压转换为适合所述风扇 20和所述控制单元 12的电压 制式; 当所述外部供电电源的电压为交流电压时, 所述辅助电源单元 11 首先将所述交流电压整流为直流电压,再将所述直流电压转换为适合所述 风扇 20和所述控制单元 12的电压制式。
在该电子加热器工作过程中, 当外部供电电源是交流电源时, 所述第 一 M0SFET24和第二 M0SFET25反向串联可以防止所述电子加热器只包括第 一 M0SFET24 或第二 M0SFET25 时, 所述第一 M0SFET24 或第二 M0SFET25 体内的寄生二极管在反向电压阶段导通时, 所述第一 M0SFET24 或第二 M0SFET25 不可控。 另外, 为了提高电子加热器的输出功率, 所述加热源 也可以包括多个并联的第一功率器件 24和多个并联的第二功率器件 25, 并且多个并联的第一功率器件 24 和多个并联的第二功率器件 25 串联连 接。
所述控制单元 12的输出 /输入端口 120有 485通讯功能,可以与所述 上位机进行通讯。 具体的, 所述控制单元 12可以向所述上位机上报故障 告警, 并由所述上位机获取用户需要的参考功率值。
另外, 所述温度釆集单元 21 向所述控制单元 12 的第三输入端 126 输入温度信号, 以使所述控制单元 12利用所述温度信号控制所述风扇 20 的转速, 确保电子加热器的温度在安全范围内, 不会烫伤工作人员。 具体 的, 当所述风扇的转速降低时, 所述风扇的噪音也随之降低, 同时其散热 能力也相应地降低; 当所述风扇的转速提高时, 所述风扇的噪音也随之提 高, 同时其散热能力也相应地提高。
在本实施例中, 所述散热单元 22 连接到所述第一 M0SFET24 和第二 M0SFET25, 但是在实际应用时, 如果电子加热器中还存在有整流单元(如 以下实施例中所描述的), 所述散热器 22还可以连接到整流单元, 用于为 所述整流单元散热以提高热利用率。 一般地, 所述加热器用于把一个点热 源扩展为一个面热源, 即均匀扩大散热面积, 方便所述风扇吹出; 同时, 所述散热器还能减少热阻,保证与其连接的功率器件的内部结温在安全的 工作温度范围。 其中, 所述散热器的材质为金属, 优选为导热性能好的金 属, 列 ¾口4吕或 4同。
在加入所述釆样电阻 23的电路中,所述控制单元 12利用由所述第二 M0SFET25 的源极 252 获得的电流信号检测所述加热源是否出现过电流, 对所述电子加热器进行保护。 具体的, 当所述控制单元 12根据所述电流 信号检测所述第一 M0SFET24和第二 M0SFET25 出现过电流,那么所述控制 单元 12立即切断电路, 以对所述电子加热器进行保护。
另外, 在本实施例中, 所述控制单元 12和所述功率调整单元 13是分 开设置的, 但在实际应用中, 所述功率调整单元 13可以集成在所述控制 单元 12中。 此时, 可在所述控制单元 12中另外设置一个输出端, 该输出 端的作用与所述功率调整单元 13的输出端 133的作用相同。
当电源系统供电电压变化时,本发明提供的电子加热器能够智能调整 第一 M0SFET和第二 M0SFET的电流使其输出功率保持不变,故工作人员无 需更换不同的电子加热器就可以使机拒保持在同一工作温度; 另外, 当电 源系统供电电压不变, 但是机拒的容量变化时, 本发明提供的电子加热器 能够调整第一 M0SFET和第二 M0SFET的电流使其输出功率变大或变小以维 持不同容量机拒的正常工作温度,故工作人员无需为不同容量的机拒匹配 不同功率的电子加热器。 因此, 利用本发明实施例的电子加热器, 降低了 电子加热器备件的库存成本以及维护成本。
如图 3所示, 本发明实施例三提供了一种电子加热器, 与图 2不同之 处在于, 所述加热源具体包括: 二极管 31和功率器件 32。
其中, 所述功率器件 32可以为 M0SFET、 三极管、 IGBT等有源功率器 件, 在本实施例中我们利用 M0SFET作为功率器件 32 。 此时, 所述二极 管 31 的阳极连接到所述外部供电电源的第一极 01, 所述二极管 31 的阴 极连接到所述 M0SFET32的漏极 321, 所述 M0SFET32的源极 322连接到所 述外部供电电源的第二极 02; 所述 M0SFET32的栅极 323连接到所述功率 调整单元 13的输出端 133。
在该电子加热器工作过程中, 当外部供电电源是交流电源, 并且该交 流电源输出负向电能时, 由于二级管的单向导通原理, 所述电子加热器不 能工作, 即所述电子加热器不能为其所处的机拒提供电能。
另外, 图 3中所示的辅助电源单元 11、 风扇 20、 控制单元 12、 功率 调整单元 13、 温度釆集单元 21、 散热单元 22和釆样电阻 23的工作原理 可以参照本发明的实施例二。 当电源系统供电电压变化时,本发明提供的电子加热器能够智能调整
M0SFET 的电流使其输出功率保持不变, 故工作人员无需更换不同的电子 加热器就可以使机拒保持在同一工作温度; 另外, 当电源系统供电电压不 变, 但是机拒的容量变化时, 本发明提供的电子加热器能够调整 M0SFET 的电流使其输出功率变大或变小以维持不同容量机拒的正常工作温度,故 工作人员无需为不同容量的机拒匹配不同功率的电子加热器。 因此, 利用 本发明实施例的电子加热器,降低了电子加热器备件的库存成本以及维护 成本。
如图 4所示, 本发明实施例四提供了一种电子加热器, 与图 2不同之 处在于, 所述加热源具体包括: 功率器件 41; 所述电子加热器还包括: 整流单元 42。
其中, 所述功率器件 41可以为 M0SFET、 三极管、 IGBT等有源功率器 件, 在本实施例中我们利用 M0SFET作为功率器件 41。 此时, 所述整流单 元的第一输入端 421和第二输入端 422分别连接到所述外部供电电源的第 一极 01和第二极 02, 用于接收所述外部供电电源的电能供给; 所述整流 单元的第一输出端 423和第二输出端 424分别连接到所述 M0SFET41的漏 极 411和源极 412, 用于实现为所述功率器件供电; 所述功率器件 41 的 栅极 413连接到所述功率调整单元 13的输出端 133, 用于根据所述功率 调整单元输出的功率控制信号调整自身的电流输出。
当外部供电电源供电时, 所述辅助电源单元 11将所述外部供电电源 的电压进行转换后分别发送给所述风扇 20和所述控制单元 12, 为所述风 扇 20和所述控制单元 12供电。 所述整流单元 42将所述外部供电电源的 电压整流后发送给所述 M0SFET41, 为所述 M0SFET41供电。 所述控制单元 12根据由所述 M0SFET41的漏极 411获得的电压信号输出检测电压信号, 以及根据由所述上位机获取的参考功率值输出功率控制信号,并将所述检 测电压信号和所述功率控制信号发送至所述功率调整单元 13。 所述功率 调整单元 13根据所述检测电压信号和功率控制信号获得输出功率调整信 号, 并利用所述输出功率调整信号调整所述 M0SFET41 的电流, 从而调整 所述 M0SFET4 1的输出功率。
在本实施例中, 所述整流单元 42可以为不可控整流硅堆。 该整流堆 可以包括 4个分离的功率器件, 例如功率二极管。 在所述电子加热器工作 过程中, 所述整流单元 42的具体作用为:
第一、 当外部供电电源的电压是交流电压时, 所述整流单元 42可以 将所述交流电压整流为直流电压并提供给所述功率器件 4 1。 此时, 该电 子加热器利用所述整流单元不仅能够充分利用交流电能,并且能为加热源 提供稳定的直流电压;
第二、 当外部供电电源的电压是直流电压时, 避免了所述功率器件 4 1体内的寄生二极管在电压反向时导通使该功率器件 4 1不可控。
当电源系统供电电压变化时,本发明提供的电子加热器能够智能调整 M0SFET 的电流使其输出功率保持不变, 故工作人员无需更换不同的电子 加热器就可以使机拒保持在同一工作温度; 另外, 当电源系统供电电压不 变, 但是机拒的容量变化时, 本发明提供的电子加热器能够调整 M0SFET 的电流使其输出功率变大或变小以维持不同容量机拒的正常工作温度,故 工作人员无需为不同容量的机拒匹配不同功率的电子加热器。 因此, 利用 本发明实施例的电子加热器,降低了电子加热器备件的库存成本以及维护 成本。
如图 5所示, 本发明实施例五提供了一种电子加热器, 与图 2不同之 处在于, 所述加热源具体包括: 功率器件 5 1 ; 所述电子加热器还包括: 整流单元 52和第一电压调整单元 5 3 , 并且所述辅助单元 1 1 不直接连接 到外部供电电源, 而是连接到所述第一电压调整单元 5 3。
其中, 所述功率器件 5 1可以为 M0SFET、 三极管、 I GBT等有源功率器 件, 第一电压调整单元 5 3可以为大容量的电容。 在本实施例中我们利用 M0SFET作为所述功率器件 51。 此时, 所述整流单元 52的第一输入端 52 1 和第二输入端 522 分别连接到所述外部供电电源的第一极 01 和第二极 02, 用于接收所述外部供电电源的电能供给; 所述整流单元 52的第一输 出端 523和第二输出端 524分别连接到所述第一电压调整单元 53的第一 输入端 531和第二输入端 532, 用于为所述第一电压调整单元提供整流后 的电能; 所述第一电压调整单元 53的第一输出端 533和第二输出端 534 分别连接到所述辅助电源单元 11 的第一输入端 111和第二输入端 112、 所述 M0SFET51 的漏极 511和源极 512, 分别用于为所述辅助电源单元和 所述功率器件提供调整后的电能; 所述 M0SFET51的栅极 513连接到所述 功率调整单元 13 的输出端 133, 用于根据所述功率调整单元输出的功率 控制信号调整自身的电流输出。
当外部供电电源供电时, 所述整流单元 52将所述外部供电电源的电 压经整流后发送给所述第一电压调整单元 53, 所述第一电压调整单元 53 将来自所述整流单元 52的电压调整后发送给所述辅助电源单元 11和所述 M0SFET51, 为所述辅助电源单元 11和所述 M0SFET51供电。 所述辅助电源 单元 11将来自所述第一电压调整单元 53的电压进行转换后分别发送给所 述风扇 20和所述控制单元 12, 为所述风扇 20和所述控制单元 12供电。 所述控制单元 12根据由所述 M0SFET51的漏极 511获得的电压信号输出检 测电压信号, 并根据由所述上位机获取的参考功率值输出功率控制信号, 并将所述检测电压信号和所述功率控制信号发送至所述功率调整单元 13。 所述功率调整单元 13根据所述检测电压信号和功率控制信号获得输 出功率调整信号, 并利用所述输出功率调整信号调整所述 M0SFET51 的电 流, 从而调整所述 M0SFET51的输出功率。
具体的, 当外部供电电源是交流电源时, 所述电子加热器利用所述整 流单元 52能够将所述交流电能整流为直流电能, 并且利用所述第一电压 调整单元 53还能将整流后的电压进行滤波、 稳压等整形, 为所述功率器 件和辅助电源单元提供更稳定的电压。 其中, 所述整流单元 52的工作原 理可以参照本发明实施例四中的描述。
进一步的, 在本实施例中, 所述辅助电源单元 11 的输入端连接到所 述第一电压调整单元 53的输出端, 而在实施例四中, 所述辅助电源单元 11 的输入端直接连接在外部供电电源。 由于本实施例中所述第一电压调 整单元 53的输出的电能比所述外部供电电源输出的电能更加稳定, 因此 在本实施例中为所述辅助电源单元 11提供的电能也更加稳定。
当电源系统供电电压变化时,本发明提供的电子加热器能够智能调整 M0SFET 的电流使其输出功率保持不变, 故工作人员无需更换不同的电子 加热器就可以使机拒保持在同一工作温度; 另外, 当电源系统供电电压不 变, 但是机拒的容量变化时, 本发明提供的电子加热器能够调整 M0SFET 的电流使其输出功率变大或变小以维持不同容量机拒的正常工作温度,故 工作人员无需为不同容量的机拒匹配不同功率的电子加热器。 因此, 利用 本发明实施例的电子加热器,降低了电子加热器备件的库存成本以及维护 成本。
如图 6所示, 本发明实施例六提供了一种电子加热器, 在图 5的基础 上, 还包括: 第二电压调整单元 61。
其中,所述第二电压调整单元 61的第一输入端 611和第二输入端 612 分别连接到所述整流单元 52 的第一输出端 523和第二输出端 524, 用于 接收所述整流单元提供的电能供给;所述第二电压调整单元的第一输出端 613和第二输出端 614连接到所述第一电压调整单元的第一输入端 531和 第二输入端 532,用于为所述第一电压调整单元提供调整后的电能。也即, 第二电压调整单元位于所述整流单元和所述第一电压调整单元中间,且三 者是并联关系。
当外部供电电源供电时, 所述整流单元 52将所述外部供电电源的电 压经整流后发送给所述第二电压调整单元 61, 所述第二电压调整单元 61 将来自所述整流单元 52 的电压经调整后发送给所述第一电压调整单元 53, 以使所述第一电压调整单元对所述电压进行调整, 并将调整后的电压 发送给所述辅助电源单元 11 和所述 M0SFET51, 为所述辅助电源单元 11 和所述 M0SFET51供电。所述辅助电源单元 11将来自所述第一电压调整单 元的电压进行转换后分别发送给所述风扇 20和所述控制单元 12, 为所述 风扇 20和所述控制单元 12供电。 所述控制单元 12根据由所述 M0SFET51 的漏极 511获得的电压信号输出检测电压信号,并根据由所述上位机获取 的参考功率值输出功率控制信号,并将所述检测电压信号和所述功率控制 信号发送至所述功率调整单元 13。 所述功率调整单元 13根据所述检测电 压信号和功率控制信号获得输出功率调整信号,并利用所述输出功率调整 信号调整所述 M0SFET51的电流, 从而调整所述 M0SFET51的输出功率。
其中,所述第二电压调整单元可以为 PFC( Power Factor Correction, 功率因数校正)电路或升压电路。 所述 PFC电路具体用于消除大功率整流 电路的谐波, 提高电能质量; 或者当输入电流为直流时, 所述升压电路能 够提高电压, 使电流更加稳定。
当电源系统供电电压变化时,本发明提供的电子加热器能够智能调整 M0SFET 的电流使其输出功率保持不变, 故工作人员无需更换不同的电子 加热器就可以使机拒保持在同一工作温度; 另外, 当电源系统供电电压不 变, 但是机拒的容量变化时, 本发明提供的电子加热器能够调整 M0SFET 的电流使其输出功率变大或变小以维持不同容量机拒的正常工作温度,故 工作人员无需为不同容量的机拒匹配不同功率的电子加热器。 因此, 利用 本发明实施例的电子加热器,降低了电子加热器备件的库存成本以及维护 成本。
如图 7所示, 本发明实施例七提供了一种电子加热器的控制方法, 所 述电子加热器包括辅助电源单元、 控制单元、 功率调整单元以及加热源。 所述方法包括:
步骤 71、 当外部供电电源供电时, 所述辅助电源单元将所述外部供 电电源的电压转换后发送给所述控制单元, 为所述控制单元供电;
步骤 72、 所述控制单元根据由加热源获得的电压信号输出检测电压 信号, 并根据由所述上位机获取的参考功率值输出功率控制信号, 并将所 述检测电压信号和功率控制信号发送给所述功率调整单元; 步骤 73、 所述功率调整单元根据所述检测电压信号和功率控制信号 获得输出功率调整信号,并利用所述输出功率调整信号调整所述加热源的 输出功率;。
在本实施例中, 所述电子加热器的结构不同, 其工作原理也相应的改 变, 具体为:
当所述加热源包括功率器件, 所述电子加热器还包括整流单元时, 所 述整流单元将所述外部供电电源的电压进修整流后传输给所述功率器件, 为所述功率器件供电;
当所述加热源包括功率器件,所述电子加热器还包括整流单元和第一 电压调整单元时,所述整流单元将所述外部供电电源的电压整流后发送给 所述第一电压调整单元,所述第一电压调整单元将来自所述整流单元的电 压调整后发送给所述辅助电源单元和所述功率器件,为所述辅助电源单元 和所述功率器件供电;
当所述加热源包括功率器件, 所述电子加热器还包括整流单元、 第一 电压调整单元和第二电压调整单元时,所述整流单元将所述外部供电电源 的电压整流后发送给所述第二电压调整单元,所述第二电压调整单元将来 自所述整流单元的电压调整后发送给所述第一电压调整单元,以使所述第 一电压调整单元对所述电压进行调整,并将调整后的电压发送给所述辅助 电源单元和所述功率器件, 为所述辅助电源单元和所述功率器件供电。
另外, 当所述电子加热器还包括温度釆集单元和风扇时, 所述温度釆 集单元向所述控制单元输入温度信号,以使所述控制单元利用所述温度信 号控制所述风扇的转速。
当所述电子加热器还包括散热单元时 ,所述散热单元对所述加热源或 所述整流单元散热。
当所述电子加热器还包括釆样电阻时, 在加入所述釆样电阻的电路 中, 所述控制单元利用所述釆样电阻从所述加热源获得的电流信号, 并根 据所述电流信号检测所述加热源是否出现过电流。 其中,所述电子加热器的控制方法可以参照前述实施例一至实施例六 的描述。
进一步的, 在本实施例中, 所述控制单元和所述功率调整单元是分开 设置的,但在实际应用中,所述功率调整单元可以集成在所述控制单元中。
当电源系统供电电压变化时,本发明提供的电子加热器能够智能调整 其加热源的电流使其输出功率保持不变,故工作人员无需更换不同的电子 加热器就可以使机拒保持在同一工作温度; 另外, 当电源系统供电电压不 变, 但是机拒的容量变化时, 本发明提供的电子加热器能够调整其加热源 的电流使其输出功率变大或变小以维持不同容量机拒的正常工作温度,故 工作人员无需为不同容量的机拒匹配不同功率的电子加热器。 因此, 利用 本发明实施例的技术方案,降低了电子加热器备件的库存成本以及维护成 本。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种电子加热器, 其特征在于, 包括: 辅助电源单元、 控制单元、 功率调整单元以及加热源;
所述辅助电源单元用于为所述控制单元供电;
所述控制单元用于根据所述加热源的输入电压输出检测电压信号, 以 及根据预设参考功率值输出功率控制信号, 并将所述检测电压信号和所述 功率控制信号传输至所述功率调整单元;
所述功率调整单元用于根据所述检测电压信号和所述功率控制信号获 得输出功率调整信号, 并根据所述功率调整信号调整所述加热源的输入电 流。
2、 根据权利要求 1所述的电子加热器, 其特征在于,
所述辅助电源单元的输入端连接到外部供电电源, 用于接收所述外部 供电电源的电能供给; 所述辅助电源单元的输出端与所述控制单元的第一 输入端相连接, 用于实现所述的为所述控制单元供电;
所述控制单元的第一输出端和第二输出端分别连接到所述功率调整单 元的第一输入端和第二输入端, 用于实现所述的将所述检测电压信号和所 述功率控制信号传输至所述功率调整单元;
所述功率调整单元的输出端连接到所述加热源的控制端, 用于实现所 述的根据所述功率调整信号调整所述加热源的输入电流;
所述加热源的第一输入端和第二输入端分别连接到所述外部供电电源 的第一极和第二极, 用于接收所述外部供电电源的电能供给; 所述加热源 的第一输入端还连接到所述控制单元的第二输入端, 用于为所述控制单元 提供所述的输入电压。
3、根据权利要求 1所述的电子加热器,其特征在于,所述加热源包括: 第一功率器件和第二功率器件;
所述第一功率器件的第一端连接到所述外部供电电源的第一极, 所述 第一功率器件的第二端连接到所述第二功率器件的第二端, 所述第二功率 器件的第一端连接到所述外部供电电源的第二极; 所述第一功率器件的控 制端和所述第二功率器件的控制端同时连接到所述功率调整单元的输出 端; 或者
所述加热源包括: 二极管和功率器件;
所述二极管的阳极连接到所述外部供电电源的第一极, 所述二极管的 阴极连接到所述功率器件的第一端, 所述功率器件的第二端连接到所述外 部供电电源的第二极; 所述功率器件的控制端连接到所述功率调整单元的 输出端。
4、根据权利要求 1所述的电子加热器,其特征在于,所述加热源包括: 功率器件; 所述电子加热器还包括: 整流单元;
所述整流单元的第一输入端和第二输入端分别连接到所述外部供电电 源的第一极和第二极, 用于接收所述外部供电电源的电能供给; 所述整流 单元的第一输出端和第二输出端分别连接到所述功率器件的第一端和第二 端, 用于实现为所述功率器件供电; 所述功率器件的控制端连接到所述功 率调整单元的输出端, 用于根据所述功率调整单元输出的功率控制信号调 整自身的电流输出;
所述整流单元将所述外部供电电源的电压整流后发送给所述功率器 件, 为所述功率器件供电。
5、 根据权利要求 1所述的电子加热器, 其特征在于, 还包括: 整流单 元和第一电压调整单元; 所述加热源包括: 功率器件;
所述整流单元的第一输入端和第二输入端分别连接到所述外部供电电 源的第一极和第二极, 用于接收所述外部供电电源的电能供给; 所述整流 单元的第一输出端和第二输出端分别连接到所述第一电压调整单元的第一 输入端和第二输入端, 用于为所述第一电压调整单元提供整流后的电能; 所述第一电压调整单元的第一输出端和第二输出端分别连接到所述辅助电 源单元的第一输入端和第二输入端、 所述功率器件的第一端和第二端, 分 别用于为所述辅助电源单元和所述功率器件提供调整后的电能; 所述功率 器件的控制端连接到所述功率调整单元的输出端, 用于根据所述功率调整 单元输出的功率控制信号调整自身的电流输出;
所述整流单元将所述外部供电电源的电压整流后发送给所述第一电压 调整单元, 所述第一电压调整单元将来自所述整流单元的电压经调整后发 送给所述辅助电源单元和所述功率器件, 为所述辅助电源单元和所述功率 器件供电。
6、 根据权利要求 5所述的电子加热器, 其特征在于, 还包括: 第二电 压调整单元;
所述第二电压调整单元的第一输入端和第二输入端分别连接到所述整 流单元的第一输出端和第二输出端, 用于接收所述整流单元提供的电能供 给; 所述第二电压调整单元的第一输出端和第二输出端连接到所述第一电 压调整单元的第一输入端和第二输入端, 用于为所述第一电压调整单元提 供调整后的电能;
所述第二电压调整单元将来自所述整流单元的电压经调整后发送给所 述第一电压调整单元, 以使所述第一电压调整单元对来自所述第二电压调 整单元的电压进行调整。
7、 根据权利要求 1 -6任一所述的电子加热器, 其特征在于, 还包括: 温度釆集单元和风扇;
所述温度釆集单元连接到所述控制单元的第三输入端; 所述控制单元 的第三输出端连接到所述风扇;
所述温度釆集单元向所述控制单元输入温度信号, 以使所述控制单元 利用所述温度信号控制所述风扇的转速。
8、 根据权利要求 1 -6任一所述的电子加热器, 其特征在于, 还包括: 散热单元;
所述散热单元连接到所述加热源, 用于对所述加热源散热。
9、 根据权利要求 1 -6任一所述的电子加热器, 其特征在于, 还包括: 釆样电阻; 所述釆样电阻的第一端连接到所述加热源的第二输入端, 所述釆样电 阻的第二端连接到所述外部供电电源的第二极; 所述加热源的第二输入端 连接到所述控制单元的第四输入端;
所述控制单元利用由所述加热源的第二输入端获得的电流信号检测所 述加热源是否出现过电流。
10、 一种电子加热器的控制方法, 其特征在于, 当所述电子加热器包 括辅助电源单元、 控制单元、 功率调整单元以及加热源时, 包括:
当外部供电电源供电时, 所述辅助电源单元将所述外部供电电源的电 压进行转换后发送给所述控制单元, 为所述控制单元供电;
所述控制单元根据由加热源获得的电压信号输出检测电压信号, 并根 据预设参考功率值输出功率控制信号, 并将所述检测电压信号和功率控制 信号发送给所述功率调整单元;
所述功率调整单元根据所述检测电压信号和功率控制信号获得输出功 率调整信号, 并利用所述输出功率调整信号调整所述加热源的电流, 从而 调整所述加热源的输出功率。
11、 根据权利要求 10所述的方法, 其特征在于, 当所述加热源包括功 率器件, 所述电子加热器还包括整流单元时, 所述加热源由所述外部供电 电源提供电压包括:
所述整流单元将所述外部供电电源的电压整流后发送给所述功率器 件, 为所述功率器件供电。
12、 根据权利要求 10所述的方法, 其特征在于, 当所述加热源包括功 率器件, 所述电子加热器还包括整流单元和第一电压调整单元时, 所述辅 助电源单元将所述外部供电电源的电压进行转换后发送给所述控制单元包 括:
所述整流单元将所述外部供电电源的电压整流后发送给所述第一电压 调整单元, 所述第一电压调整单元将来自所述整流单元的电压经调整后发 送给所述辅助电源单元, 以使所述辅助电源单元将所述第一电压调整单元 的电压进行转换后发送给所述控制单元;
所述加热源由所述外部供电电源提供电压包括:
所述整流单元将所述外部供电电源的电压经整流后发送给所述第一电 压调整单元, 所述第一电压调整单元将来自所述整流单元的电压经调整后 发送给所述功率器件, 为所述功率器件供电。
1 3、 根据权利要求 1 2所述的方法, 其特征在于, 当所述电子加热器还 包括第二电压调整单元时, 所述整流单元将所述外部供电电源的电压整流 后发送给所述第一电压调整单元包括:
所述整流单元将所述外部供电电源的电压整流后发送给所述第二电压 调整单元, 所述第二电压调整单元将来自所述整流单元的电压经调整后发 送给所述第一电压调整单元, 以使所述第一电压调整单元对来自所述第二 电压调整单元的电压进行调整。
14、 根据权利要求 1 0-1 3任一所述的方法, 其特征在于, 当所述电子 加热器还包括温度釆集单元和风扇时, 所述温度釆集单元向所述控制单元 输入温度信号,以使所述控制单元利用所述温度信号控制所述风扇的转速。
1 5、 根据权利要求 1 0-1 3任一所述的方法, 其特征在于, 当所述电子 加热器还包括散热单元时, 所述散热单元对所述加热源散热。
1 6、 根据权利要求 1 0-1 3任一所述的方法, 其特征在于, 当所述电子 加热器还包括釆样电阻时, 所述控制单元利用所述釆样电阻从所述加热源 的第二输入端获得的电流信号, 并根据所述电流信号检测所述加热源是否 出现过电流。
PCT/CN2011/074166 2011-05-17 2011-05-17 一种电子加热器及其控制方法 WO2011144014A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800005391A CN102204403A (zh) 2011-05-17 2011-05-17 一种电子加热器及其控制方法
PCT/CN2011/074166 WO2011144014A1 (zh) 2011-05-17 2011-05-17 一种电子加热器及其控制方法
US14/081,211 US20140069909A1 (en) 2011-05-17 2013-11-15 Electronic heater and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074166 WO2011144014A1 (zh) 2011-05-17 2011-05-17 一种电子加热器及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/081,211 Continuation US20140069909A1 (en) 2011-05-17 2013-11-15 Electronic heater and method for controlling the same

Publications (1)

Publication Number Publication Date
WO2011144014A1 true WO2011144014A1 (zh) 2011-11-24

Family

ID=44662852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074166 WO2011144014A1 (zh) 2011-05-17 2011-05-17 一种电子加热器及其控制方法

Country Status (3)

Country Link
US (1) US20140069909A1 (zh)
CN (1) CN102204403A (zh)
WO (1) WO2011144014A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725445A4 (en) * 2011-06-22 2015-04-01 Shenzhen Xishuo Technology Company Ltd ELECTRIC COVER AND LOW VOLTAGE THERMOSTATIC CONTROL DEVICE THEREOF
CN102595660A (zh) * 2012-03-02 2012-07-18 济南威度电子科技有限公司 可控导通量有源电发热体及电热风发生装置
CN103970162B (zh) * 2014-05-06 2016-08-24 中国电子科技集团公司第四十一研究所 一种圆柱形同轴谐振腔体的加热装置及其温度控制方法
CN105723820B (zh) * 2014-09-16 2018-05-01 华为技术有限公司 散热方法、设备和系统
CN106033229B (zh) * 2015-03-17 2017-11-10 佛山市顺德区美的电热电器制造有限公司 电阻式热盘的功率调节电路和烹饪器具
CN105739568B (zh) * 2016-03-07 2018-12-25 四川长虹电器股份有限公司 一种控制电加热器功率的方法和制热设备
CN105682261A (zh) * 2016-03-07 2016-06-15 四川长虹电器股份有限公司 用于控制电加热器输出功率的系统及方法
US10485146B2 (en) * 2016-05-27 2019-11-19 Toshiba International Corporation Environmental control for medium-voltage drive
CN109600865A (zh) * 2018-12-29 2019-04-09 杨松 稳功电加热驱动装置及其控制方法
CN110594783B (zh) * 2019-10-15 2021-04-06 重庆利迈陶瓷技术有限公司 一种用于热面点火器的控制策略
CN111637592B (zh) * 2020-04-24 2021-10-22 广东志高暖通设备股份有限公司 底盘除冰控制方法、装置、存储介质及空调
CN114383411B (zh) * 2021-12-06 2023-04-18 广东智科电子股份有限公司 热泵烘干控制方法、装置、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2006384A1 (en) * 1989-07-14 1991-01-14 Keiichi Katayama Induction heating apparatus
WO2005122641A1 (ja) * 2004-06-07 2005-12-22 Advantest Corporation ヒータ電力制御回路およびこれを用いたバーイン装置
CN201119034Y (zh) * 2007-11-16 2008-09-17 山东瑞斯电子科技有限公司 电子加热装置
CN101492025A (zh) * 2008-01-24 2009-07-29 凯特姆两合公司 用于机动车辆的电辅助加热装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303466A (ja) * 2003-03-28 2004-10-28 Canon Inc ヒータ駆動回路
US20060249499A1 (en) * 2005-05-06 2006-11-09 Winkler Wolfgang A Heating unit
ES2353987T3 (es) * 2005-06-02 2011-03-08 Panasonic Corporation Aparato de calentamiento por inducción.
US8796602B2 (en) * 2006-02-02 2014-08-05 Panasonic Corporation Induction heating apparatus
CN101437333A (zh) * 2007-11-16 2009-05-20 青岛雅合科技发展有限公司 数字式高频开关电磁加热电源系统集成模块
CN101309529B (zh) * 2008-06-27 2010-11-17 武汉理工大学 一种大功率节能电磁灶的智能控制装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2006384A1 (en) * 1989-07-14 1991-01-14 Keiichi Katayama Induction heating apparatus
WO2005122641A1 (ja) * 2004-06-07 2005-12-22 Advantest Corporation ヒータ電力制御回路およびこれを用いたバーイン装置
CN201119034Y (zh) * 2007-11-16 2008-09-17 山东瑞斯电子科技有限公司 电子加热装置
CN101492025A (zh) * 2008-01-24 2009-07-29 凯特姆两合公司 用于机动车辆的电辅助加热装置

Also Published As

Publication number Publication date
CN102204403A (zh) 2011-09-28
US20140069909A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
WO2011144014A1 (zh) 一种电子加热器及其控制方法
CN109195419B (zh) 空调电器盒及其散热装置
TW201034336A (en) Multiple mode battery charger
JP2016524441A (ja) 消費者電子デバイス用の電力回路
JP5057928B2 (ja) 電源システム
JP2015512080A (ja) 光起電装置のシステムレベル電力点制御のためのシステム及び方法
TW200934045A (en) High efficiency charging circuit and power supplying system
CN102347699A (zh) 逆变器装置和电动工具
WO2019080198A1 (zh) 电磁感应式无线供电系统及其负载突变保护电路
KR20020004817A (ko) 전원장치
JP5360019B2 (ja) パワー半導体装置の温度測定装置
CN203378183U (zh) 变频器散热装置
CN103825430A (zh) 一种采用半导体制冷片散热的变频器
CN203747668U (zh) 一种采用半导体制冷片散热的变频器
TW201506575A (zh) 光伏組件最大功率點追蹤裝置及其方法
US20220360102A1 (en) Charging apparatus and charging method
CN207134993U (zh) 光伏逆变系统
CN104837276A (zh) 一种兼容切相调光的led无线控制系统及控制方法
CN103109430A (zh) 一种直流有刷电机的保护电路
CN107404779B (zh) 电磁加热烹饪系统及其加热控制装置
TW201035711A (en) Assistant circuit of power
CN203756570U (zh) 基于通道闸产品的电动机功放散热控制电路及散热装置
JP2005323440A (ja) インバータ装置
CN103280985A (zh) 一种可调节风机风量的变频器
CN206878732U (zh) 一种小型无刷电机控制系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000539.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11782931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11782931

Country of ref document: EP

Kind code of ref document: A1