WO2011144002A1 - Sar图像旁瓣抑制方法 - Google Patents
Sar图像旁瓣抑制方法 Download PDFInfo
- Publication number
- WO2011144002A1 WO2011144002A1 PCT/CN2011/073547 CN2011073547W WO2011144002A1 WO 2011144002 A1 WO2011144002 A1 WO 2011144002A1 CN 2011073547 W CN2011073547 W CN 2011073547W WO 2011144002 A1 WO2011144002 A1 WO 2011144002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- sar
- spatial spectrum
- support region
- sar system
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000001629 suppression Effects 0.000 title claims abstract description 31
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 230000003595 spectral effect Effects 0.000 claims abstract description 6
- 238000001228 spectrum Methods 0.000 claims description 87
- 238000005315 distribution function Methods 0.000 claims description 11
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 230000001788 irregular Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract 1
- 238000004088 simulation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/10—Image enhancement or restoration using non-spatial domain filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/2813—Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10044—Radar image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20224—Image subtraction
Definitions
- the present invention relates to the field of radar imaging technology, and more particularly to a SAR (synthetic aperture radar) image sidelobe suppression method.
- SAR synthetic aperture radar
- the SAR system can be seen as linear, and the linear system impulse response can be represented by a sine type function.
- Many important SAR image quality parameters can be estimated by impulse response, such as two quality parameters related to sidelobe performance - PSLR (peak side-lobe ratio) and ISLR (integrated side-lobe ratio). , integrated sidelobe ratio) can be measured by impulse response.
- the size of the PSLR determines the ability of the strong target to cover the adjacent weak target.
- ISLR indicates the extent to which the local dark area in the SAR image is overwhelmed by the energy leakage in the surrounding bright area.
- the present invention provides a method for suppressing sidelobe of SAR images based on deformation of spatial spectrum support regions.
- the sidelobe suppression effect of the method is obvious and the image resolution is not lost, and the implementation is simple, the calculation amount is small and the noise is not sensitive, and the implementation is also very convenient, and can be directly used for processing the original SAR image.
- the basic idea of the present invention is: By analyzing the relationship between the spatial spectrum support region distribution and the impulse response of the SAR system, it is found that the deformation of the spatial spectrum support region causes the change of the side lobes of the impulse response, which leads to the side lobes of the target in the SAR image. Corresponding changes have also taken place, but the information about the main lobe has not changed, so that the separation of the main lobe and the side lobe can be achieved by the side lobe difference information between the two SAR images, thereby realizing effective side lobes. inhibition.
- a synthetic aperture radar image sidelobe suppression method which specifically includes the following steps:
- the two-dimensional Fourier transform of the original synthetic aperture radar SAR image is used to obtain the spatial spectrum image of the SAR system;
- the support region of the spatial spectrum of the SAR system is a regular shape or an irregular shape.
- the extraction The support area of the spatial spectrum of the SAR system is: According to the formula AA) dish ⁇ ⁇ k x 'leg,
- nax calculates the support region of the spatial spectrum of the rectangular SAR system, where A(JC is
- the supporting the spatial region of the SAR system is deformed, and the spatial spectrum image of the SAR system after the deformation of the spatial spectrum supporting region is obtained:
- the support region of the other spatial spectrum is deformed, and the spatial spectrum image of the SAR system after the deformation of the spatial spectrum support region of the diamond is obtained, wherein, for the deformed SAR system spatial spectrum image, F(k x , k y) is
- F(k x is a deformation function, and represents the minimum and maximum values of the range of the spatial spectrum direction of the SAR system, respectively, min and respectively represent the minimum and maximum values of the range of the spatial spectrum direction of the SAR system.
- the image sidelobe suppression method specifically includes the following steps:
- the first one SAR system spatial spectrum acquisition
- a ⁇ k x ,k y ) ⁇ -A(k x -ak y ,k y )+ -A(k x ,k y - ⁇ )
- a '( ⁇ , is the distribution function after the deformation of the spatial spectrum support area.
- the spatial spectrum of the system ⁇ ' ⁇ ⁇ , ), ie, ⁇ ⁇ , is obtained.
- Em , y) e s , y) - 3 ⁇ 4 , y).
- the beneficial effects of the invention are: sidelobe suppression using the difference information of the side lobes of the SAR image after deformation of the spatial spectrum support region, which not only effectively suppresses the side lobes during the side lobes suppression, but also does not lose images. Resolution.
- the entire implementation process of the present invention involves only some simple arithmetic operations, and does not involve complex operations such as inversion and feature decomposition. Therefore, the present invention is simple in implementation, small in computation, insensitive to noise, and convenient to implement. Can be used directly to process raw SAR images.
- FIG. 1 is a flow chart of a sidelobe suppression method for a synthetic aperture radar image provided by the present invention
- FIG. 2 is a schematic diagram showing a spatial distribution of a point target SAR e ⁇ y) calculated in a simulation experiment
- FIG. 3 is a point target calculated in a simulation experiment.
- Figure 4 is a schematic diagram showing the spatial distribution of the point target SAR image ⁇ y) calculated in the simulation experiment
- Figure 5 is a schematic diagram showing the spatial distribution of the point target SAR image calculated in the simulation experiment.
- the first trick of the flowchart is the spatial spectrum acquisition of the SAR system, which is implemented by performing a two-dimensional Fourier transform on the original SAR image.
- the second parameter is the deformation of the spatial spectrum support region, including the calculation of the spatial spectrum support region distribution function and the spatial spectrum support region deformation of the SAR system.
- the spatial spectrum support region distribution function of the SAR system it is necessary to determine the values of the dish, the dish, and the dish.
- the specific calculation relationship is described in the document "Radar Imaging Technology", p. 78, ed., et al., Electronic Industry Press, 2005.
- the third trick is the generation and normalization of SAR images.
- the spatial spectrum ' «, ) of the SAR system is then subjected to two-dimensional inverse Fourier transform to generate a SAR image transformed by the spatial spectrum support region, and then normalized to the original SAR image and the deformed SAR image of the spatial spectrum support region. deal with.
- the fourth ⁇ is the main sidelobe separation, which calculates the main sidelobe superimposed image and the remaining sidelobe image).
- the fifth parameter is sidelobe suppression. The remaining sidelobe image is subtracted from the main sidelobe superimposed image, and the sidelobe suppression result is output (, .
- a synthetic aperture radar image sidelobe suppression method which specifically includes the following steps: First: SAR system spatial spectrum acquisition 2D Fourier transform of the original SAR image to obtain the SAR system spatial spectrum E ( k x ,k y ) , ie:
- the spatial spectrum E( ⁇ , ) of the original SAR image can be used to calculate the space of the imaging system.
- the spectrum distribution range that is, the spatial spectrum support area distribution function ⁇ ( ⁇ , ).
- the spatial spectrum support region may be a regular shape, such as a rectangle; or an irregular shape, such as a fan shape or a combined shape, wherein the combined shape is a rectangular trapezoid or the like.
- the spatial spectrum support region distribution function A, k y ) of the above shape is modified as follows: In the above formula, the distribution function of the spatial spectrum support region after deformation satisfies A' d F(k x , k y ) Is the deformation function, ⁇ ) ⁇ 0,1 ⁇ , whose argument has a value range of ⁇
- the spatial spectrum support region of any shape may be converted into any other shape.
- the present application does not limit the shape before deformation and the shape after deformation.
- the deformation function is:
- e ⁇ x,y ⁇ [E k x ,k y )e dk Y dk normalize the original SAR image and the deformed SAR image respectively.
- Let e(x, y) and e'(x, y) be normalized to e(x, y) and ex, y) respectively, ie e(x, y) and ex, y) satisfy: e( x,y) .
- FIG. 2 to FIG. 5 are processing results of a simulation experiment performed by an embodiment of the present invention, wherein the coordinate units of the X-axis and the y-direction of each graph coordinate axis are meters, wherein the X direction represents the azimuth direction of the SAR image, and the y direction Indicates the distance direction of the SAR image, and the z direction represents the normalized SAR image amplitude value.
- the basic parameters of the simulation experiment are set as follows:
- the transmitted signal bandwidth is 200E+6 Hz; the transmitted signal center frequency is 10E+9 Hz; the vertical distance from the radar antenna to the ideal point target is 10E+3 meters; the resulting synthetic aperture length is 200 meters.
- FIG. 2 is a schematic diagram showing the spatial distribution of the point target SAR e ⁇ y calculated in the simulation experiment.
- the side lobe of the point target SAR e ⁇ y in Figure 2 is the X direction and the y direction, respectively, that is, the spatial distribution of the side lobes is along the X coordinate axis direction and the y coordinate axis direction, respectively, and the PSLR in both the X direction and the y direction is as high as possible.
- -13.3dB ISLR is -10.1dB in both the X and y directions. It can be seen that the sidelobe level of the SAR image without any sidelobe suppression processing is very high.
- Figure 3 is a schematic diagram showing the spatial distribution of the point target SAR image, y), calculated in the simulation experiment. It can be seen from Fig. 3 that the side lobes of ⁇ , are more complicated. In addition to the side lobes of the X and y directions, side lobes of non-X and non y directions appear, such that ⁇ ⁇ , and ⁇ , There is a certain amount of sidelobe trend difference information.
- Figure 4 is a schematic diagram showing the spatial distribution of the point target SAR image ⁇ , y) calculated in the simulation experiment.
- the point target SAR image is mainly embodied as the sidelobe distribution of the point target SAR image.
- the main lobe of the point target SAR image ⁇ has been removed, that is, the side lobes of ⁇ , y) are separated separately, so it can be called For the remaining side lobe image.
- Figure 5 is a schematic diagram showing the spatial distribution of point target SAR images calculated in the simulation experiment.
- the point target SAR image is the result of the sidelobe suppression obtained by the method provided by the present invention.
- Fig. 5 most of the side lobes of the point target SAR image are suppressed, leaving only the main lobe and a few side lobes. Therefore, the SAR image sidelobe suppression method based on the deformation of the spatial spectrum support region does not lose image resolution.
- Both the X-direction and the y-direction PSLR of the point target SAR image are reduced to -26.9 dB, and both the X-direction and the y-direction ISLR are reduced to -26.8 dB, indicating that the SAR image sidelobe suppression method provided by the present invention is excellent in performance.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
SAR图像旁瓣抑制方法 本申请要求于 2010 年 5 月 18 日提交中国专利局、 申请号为 201010175094.8、发明名称为" SAR图像谱变形旁瓣抑制方法" 的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及雷达成像技术领域, 更具体地说, 涉及一种 SAR( synthetic aperture radar, 合成孔径雷达)图像旁瓣抑制方法。
背景技术
SAR系统可看作是线性的, 线性系统冲激响应可用 sine型函数表示。 许 多重要的 SAR图像质量参数都可以通过冲激响应予以估计, 如与旁瓣性能有 关的两个质量参数一 PSLR(peak side-lobe ratio ,峰值旁瓣比)和 ISLR (integrated side-lobe ratio, 积分旁瓣比)都可通过冲激响应测量。 PSLR的大小决定了强目 标点对邻近弱目标点的遮盖能力, ISLR表示 SAR图像中局部暗区被周围亮区 的能量泄露所淹没的程度。
旁瓣性能直接影响 SAR图像中信息的利用,特别是在 SAR图像解译和目 标判读过程中, 高旁瓣的 SAR图像将大大降低系统对弱目标的处理能力, 同 时强目标的判读精度也会因为旁瓣干扰而受到影响。 低旁瓣的 SAR图像不仅 便于目视判读, 而且对于情报的自动或者半自动处理都是有利的。在不进行任 何旁瓣抑制处理情况下, SAR图像的 PSLR和 ISLR取值都过高, 约为 -13dB 和 -10dB左右。
为了获取低旁瓣 SAR图像, 人们提出了各种各样的旁瓣抑制方法, 大致 可分为两类:其一是使用线性加权法来降低旁瓣电平,但这需要付出展宽主瓣、 降低分辨率的代价; 其二是采用一些非线性的处理方法, 以保证不损失图像分 辨率。与线性加权法相比, 当前已有的非线性处理方法大都比较复杂且运算量 很大。 就目前而言, SAR 图像的高旁瓣问题一直没有得到有效解决。 因此, 研究在保证分辨率的条件下, 简单、 有效的旁瓣抑制方法对于 SAR系统的研 制和 SAR图像的应用都非常有价值。
发明内容
本发明为了有效解决 SAR图像的高旁瓣问题, 提供了一种基于空间频谱 支撑区变形的 SAR图像旁瓣抑制方法。 本方法的旁瓣抑制效果明显且不损失 图像分辨率, 同时实现简单, 运算量小并且对噪声不敏感, 实施起来也非常方 便, 可直接用于对原始 SAR图像进行处理。
本发明的基本思路是: 通过分析 SAR系统空间频谱支撑区分布和冲激响 应的关系发现, 空间频谱支撑区变形会造成冲激响应旁瓣走向的变化, 进而导 致 SAR图像中目标的旁瓣走向也发生相应变化, 而有关主瓣的信息却没有发 生改变, 这样就可通过两幅 SAR图像之间的旁瓣走向差异信息来实现目标主 瓣和旁瓣的相互分离, 进而实现有效的旁瓣抑制。
本发明的技术方案是: 一种合成孔径雷达图像旁瓣抑制方法, 具体包括下 述歩骤:
对原始合成孔径雷达 SAR图像进行二维傅里叶变换, 得到 SAR系统空间 频谱图像;
提取所述 SAR系统空间频谱的支撑区,对所述 SAR系统空间频谱的支撑 区进行变形, 得到空间频谱支撑区变形后的 SAR系统空间频谱图像;
对所述空间频谱支撑区变形后的 SAR系统空间频谱图像进行二维逆傅里 叶变换, 得到变形后的 SAR图像;
分别对所述原始 SAR图像和所述变形后的 SAR图像进行归一化处理; e(x, y) \ + \ 2e,(x, y) -e(x, y
^^) =5 ^'^ _1 2^^_^'^分别计算主旁瓣叠加图像和分离出主瓣后的 剩余旁瓣图像, 其中, es( ,) 为主旁瓣叠加图像, (x,y)为分离出主瓣后的剩 余旁瓣图像, 为归一化的原始 SAR图像, 为归一化的变形后 SAR
将所述主旁瓣叠加图像减去剩余旁瓣图像,得到旁瓣抑制后的 SAR图像 ( 优选的, 所述 SAR系统空间频谱的支撑区为规则形状或不规则形状。 优选的, 所述提取所述 SAR系统空间频谱的支撑区为:
按照公式 A A) 皿 ≤ ≤kx '腿 ,
匪≤^≤ : nax计算矩形的 SAR 系统空间频谱的支撑区, 其中, A(JC为
SAR系统空间频谱的支撑区, min和 分别表示 SAR系统空间频谱 ^方向 取值范围的最小值和最大值, min和 分别表示 SAR系统空间频谱 方向 取值范围的最小值和最大值。 优选的, 所述对所述 SAR系统空间频谱的支撑区进行变形, 得到空间频 谱支撑区变形后的 SAR系统空间频谱图像包括:
按 照 公 式 A kx,k = A(ix,k F(ix,k
1, K min≤k <0 and + k„ < k„≤ + k„
F(kx ) = 1, 0≤k <k and— - - + k一≤ k ≤
0, other 空间频谱的支撑区进行变形, 得到菱形的空间频谱支撑区变形后的 SAR系统 空间频谱图像, 其中, 为变形后的 SAR系统空间频谱图像, F(kx,ky)为
F(kx 是形变函数, 和 分别表示 SAR系统空间频谱 方向取值范 围的最小值和最大值, min和 分别表示 SAR系统空间频谱 方向取值范 围的最小值和最大值。 一种合成孔径雷达图像旁瓣抑制方法, 具体包括下述歩骤:
第一歩: SAR系统空间频谱获取
对原始 SAR 图像 ^, 进行二维傅立叶变换得到 SAR 系统空间频谱 即:
E(kx,ky) = jje(x, y)e-KkxX+kyy)dxdy
)
1 k . <k <kxmax,k . <k <k
o 其它 上式中 皿和 分别表示 系统空间频谱 ^方向取值范围的最小值 和最大值, 和 皿分别表示 系统空间频谱 方向取值范围的最小值 和最大值。
对空间频谱支撑区分布函数 进行变形, 采用如下方式:
A\kx,ky) =^-A(kx -aky,ky)+ -A(kx,ky -β )
根据空间频谱支撑区变形后的分布函数^^'^), 求出变形后的 系统 空间频谱 Ε'^χ, ), 即 、 、 ΑΆ, 、。
对£'^,^)进行二维逆傅立叶变换得到空间频谱支撑区变形后的 图像 e'( ,y), 即: dkYdk
四歩: 主旁瓣分离
再计算分离出主瓣后的剩余旁瓣图像 ^3 , 即:
e , y) = ^ (x, y) \ - \ 2e' (x, y) -e(x, y) l| 第五歩: 旁瓣抑制
用主旁瓣叠加图像减去剩余旁瓣图像, 得到旁瓣被抑制后对应的 SAR图 像 , 即
em , y) = es , y)― ¾ , y)。 本发明的有益效果是: 利用空间频谱支撑区变形后与变形前 SAR图像旁 瓣走向的差异信息进行旁瓣抑制,这使得在旁瓣抑制过程中不仅有效地抑制了 旁瓣, 而且不损失图像分辨率。此外, 在本发明的整个实施过程都只是涉及一 些简单的算术运算,不涉及求逆、特征分解等复杂运算,因此本发明实现简单, 运算量小, 对噪声不敏感, 并且实施起来也非常方便, 可直接用于对原始 SAR 图像进行处理。
附图说明
图 1为本发明所提供的合成孔径雷达图像旁瓣抑制方法的流程图; 图 2为仿真实验中计算的点目标 SAR e^y)的空间分布示意图; 图 3为仿真实验中计算的点目标 SAR图像 ( ,y)的空间分布示意图; 图 4为仿真实验中计算的点目标 SAR图像 ^y)的空间分布示意图; 图 5为仿真实验中计算的点目标 SAR图像 的空间分布示意图。 具体实施方式
下面结合附图对本发明提供的合成孔径雷达图像旁瓣抑制方法进行详细 说明。
图 1是本发明所提供的合成孔径雷达图像旁瓣抑制方法的流程图。该流程 图的第一歩是 SAR系统空间频谱 获取, 通过对原始 SAR图像 ^, 进 行二维傅立叶变换来实现。 第二歩是空间频谱支撑区变形, 包括计算 SAR系 统空间频谱支撑区分布函数 和空间频谱支撑区变形, 其中计算 SAR系 统空间频谱支撑区分布函数时需要确定 皿、 皿、 和 皿的取值, 具 体的计算关系式参见文献 "雷达成像技术 "第 78页, 保铮等编著, 电子工业 出版社 2005年出版。 第三歩是 SAR 图像生成与归一化, 首先求得变形后的
SAR系统空间频谱 '«, ), 然后对其进行二维逆傅立叶变换生成空间频谱支 撑区变形后的 SAR图像 , , 而后对原始 SAR图像和空间频谱支撑区变形 后的 SAR图像都作归一化处理。 第四歩是主旁瓣分离, 计算主旁瓣叠加图像 和剩余旁瓣图像 )。 第五歩是旁瓣抑制, 用主旁瓣叠加图像减去剩 余旁瓣图像, 输出旁瓣抑制结果 (, 。
本发明的技术方案是: 一种合成孔径雷达图像旁瓣抑制方法, 具体包括下 述歩骤: 第一歩: SAR系统空间频谱获取 对原始 SAR 图像 进行二维傅立叶变换得到 SAR 系统空间频谱 E(kx,ky) , 即:
E(kx ,ky ) = jj e(x, y)e~i k^y)dxdy 第二歩: 空间频谱支撑区变形 利用原始 SAR图像的空间频谱 E(^, )可以计算成像系统的空间频谱分布 范围, 也即空间频谱支撑区分布函数 Α(^, )。 其中, A(^, )e {0,l}, kx, ≤ kx≤ kx ' min和 分别表示 SAR系统空间频谱 方向取值范围的最小值和最大值, min和 max分别表示 SAR系统空间频谱 方向取值范围的最小值和最大值。 表示的空间频谱支撑区可以是规则 形状, 如矩形; 也可以是不规则的形状, 如扇形或组合形状, 其中, 组合形状 如为矩形附加梯形等。 对上述形状的空间频谱支撑区分布函数 A , ky )进行如下变形:
上式中 为变形后的空间频谱支撑区分布函数,满足 A' d F(kx ,ky )
是形变函数, ^ ) {0,1} , 其自变量取值范围为 ^
匪≤^≤ : nax。 需要说明的是, 在本申请技术方案中, 可以将任意形状的 空间频谱支撑区转变为任意的另一种形状。本申请对变形前的形状和变形后的 形状并不进行限定。
为了能够清楚地说明变形过程,下面以将矩形的空间频谱支撑区转变为菱 形为例:
当空间频谱支撑区 )为矩形时, 其
A(kx,ky) =
0 其它
若将矩形的支撑空间变为最大面积的菱形, 则形变函数为:
1 ≤kx≤0 and -^kx ky≤ -fk ^ +
χ χ
F(kx ) = 1 Q≤k <k and— ^^ + υ ,,≤—
0, other 第三歩: SAR图像生成与归一化
根据空间频谱支撑区变形后的分布函数 A^, ), 求出变形后的 SAR系统 空间频谱 E'(lx ,ky) , 即 E'(kx ,ky) = A'(kx , ky )E(kx ,k
对 E'(Hy)进行二维逆傅立叶变换得到空间频谱支撑区变形后的 SAR图像 e'(x,y) , 即:
e\x,y)= ί [E kx,ky)e dkYdk 对原始 SAR图像 和变形后的 SAR图像 分别进行归一化处理,
并设 e(x, y)和 e'(x, y)归一化后分别为 e(x, y)和 e x, y), 即 e(x, y)和 e x, y)满足: e(x,y) = 。
y)\-\2e' (x, y)-e(x,y) l|
图 2至图 5是利用本发明一具体实施方式进行仿真实验的处理结果,每幅 图坐标轴的 X方向和 y方向的坐标单位都为米, 其中 X方向表示 SAR图像的 方位向, y方向表示 SAR图像的距离向, z方向表示归一化的 SAR图像幅度 值。 仿真实验的基本参数设置如下:
发射信号带宽为 200E+6赫兹; 发射信号中心频率为 10E+9赫兹; 雷达天 线到理想点目标的垂直航线距离为 10E+3米; 形成的合成孔径长度为 200米。
图 2是仿真实验中计算的点目标 SAR e^y)的空间分布示意图。 图 2 中点目标 SAR e^y)的旁瓣走向分别为 X方向和 y方向,即旁瓣的空间分 布分别沿着 X坐标轴方向和 y坐标轴方向, 其 X方向和 y方向 PSLR均高达 -13.3dB, X方向和 y方向 ISLR都为 -10.1dB。 可见, 未经任何旁瓣抑制处理的 SAR图像的旁瓣电平是非常高的。
图 3是仿真实验中计算的点目标 SAR图像 ,y)的空间分布示意图。从图 3可以看出, ^, 的旁瓣走向较为复杂, 除了 X方向和 y方向的旁瓣走向外, 还出现了非 X方向和非 y方向的旁瓣走向,这样 ^χ, 与 ^, 就存在一定的旁 瓣走向差异信息。
图 4是仿真实验中计算的点目标 SAR图像 ^,y)的空间分布示意图。点目 标 SAR图像 主要体现为点目标 SAR图像 的旁瓣分布,点目标 SAR 图像 ^, 的主瓣已经被去除了, 也就是说 ^,y)将 的旁瓣单独分离了出 来, 因此可以称之为剩余旁瓣图像。
图 5是仿真实验中计算的点目标 SAR图像 的空间分布示意图。 点 目标 SAR 图像 即为利用本发明所提供方法得到的旁瓣抑制后的结果, 由图 5可知, 点目标 SAR图像 的大部分旁瓣都抑制了, 只留下了的主 瓣和少许旁瓣, 因而这种基于空间频谱支撑区变形的 SAR图像旁瓣抑制方法 并不损失图像分辨率。 点目标 SAR图像 的 X方向和 y方向 PSLR都降 低至 -26.9dB, 同时 X方向和 y方向 ISLR则都降低到 -26.8dB, 说明本发明提 供的 SAR图像旁瓣抑制方法性能优良。
Claims
1、 对原始合成孔径雷达 SAR图像进行二维傅里叶变换, 得到 SAR系统空间 频谱图像;
提取所述 SAR系统空间频谱的支撑区,对所述 SAR系统空间频谱的支撑 区进行变形, 得到空间频谱支撑区变形后的 SAR系统空间频谱图像;
对所述空间频谱支撑区变形后的 SAR系统空间频谱图像进行二维逆傅里 叶变换, 得到变形后的 SAR图像;
2、 根据权利要求 1所述的方法, 其特征在于, 所述 SAR系统空间频谱的 支撑区为规则形状或不规则形状。
3、 根据权利要求 1所述的方法, 其特征在于, 所述提取所述 SAR系统空 间频谱的支撑区为: 按照公式 x,m x x,ma ' y,mm y , max < <
0 其它 匪≤^≤ : nax计算矩形的 SAR 系统空间频谱的支撑区, 其中, A( , ky )为
SAR系统空间频谱的支撑区, mm和 max分别表示 SAR系统空间频谱 ^方向 取值范围的最小值和最大值, min和 max分别表示 SAR系统空间频谱 方向 取值范围的最小值和最大值。
4、 根据权利要求 3所述的方法, 其特征在于, 所述对所述 SAR系统空间 频谱的支撑区进行变形, 得到空间频谱支撑区变形后的 SAR系统空间频谱图 像包括
1 k ≤ ≤0 and + ,― < < -^k + .
kx
k
F{kx ) = ≤kx≤kw and ; k. < 对矩形的 SAR系统 other 空间频谱的支撑区进行变形, 得到菱形的空间频谱支撑区变形后的 SAR系统 间频谱图像, 其中, 为变形后的 SAR系统空间频谱图像, F kx,ky 为 F tA.,ytv)是形变函数, ,和^ 分别表示 SAR系统空间频谱 ^方向取值范 围的最小值和最大值, min和 max分别表示 SAR系统空间频谱 方向取值范 围的最小值和最大值。
5、 一种合成孔径雷达图像旁瓣抑制方法, 其特征在于, 具体包括下述歩 骤:
第一歩: SAR系统空间频谱获取
对原始 SAR 图像 e(, 进行二维傅立叶变换得到 SAR 系统空间频谱 E(kx,ky); 第二歩: 空间频谱支撑区变形
利用下式计算 SAR系统空间频谱的支撑区分布函数^^' ):
k . ≤k <kxmax,k . ≤k <kvmax
对空间频谱支撑区分布函数 进行变形, 采用如下方式:
A'(kx , ky ) =^MK - ky , ky ) + ^A(kx , ky - )
上式中 3( ,丽 - kyi 3( y,max—k
对 '«Λ)进行二维逆傅立叶变换得到空间频谱支撑区变形后的 SAR图像 e'(x, y ) . 对原始 SAR图像 e(, 和变形后的 SAR图像 e'(,y)分别进行归一化处理, 并设 ^ ^, 和 e' 归一化后分别为 和 ;
第四歩: 主旁瓣分离
第五歩: 旁瓣抑制
用主旁瓣叠加图像 (, 减去剩余旁瓣图像 ^,3 , 得到旁瓣被抑制后对 应的 SAR图像 , 。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/395,821 US20130050017A1 (en) | 2010-05-18 | 2011-04-29 | Side lobe suppression method for synthetic aperture radar (sar) image |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101750948A CN101839982B (zh) | 2010-05-18 | 2010-05-18 | 一种合成孔径雷达图像旁瓣抑制方法 |
CN201010175094.8 | 2010-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011144002A1 true WO2011144002A1 (zh) | 2011-11-24 |
Family
ID=42743482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/073547 WO2011144002A1 (zh) | 2010-05-18 | 2011-04-29 | Sar图像旁瓣抑制方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130050017A1 (zh) |
CN (1) | CN101839982B (zh) |
WO (1) | WO2011144002A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113567978A (zh) * | 2021-07-29 | 2021-10-29 | 电子科技大学 | 一种多基分布式雷达协同成像方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101839982B (zh) * | 2010-05-18 | 2012-04-25 | 中国人民解放军国防科学技术大学 | 一种合成孔径雷达图像旁瓣抑制方法 |
CN102721965B (zh) * | 2012-06-08 | 2013-08-21 | 北京航空航天大学 | 用于合成孔径雷达成像处理的全向旁瓣抑制方法 |
CN103969644B (zh) * | 2013-01-31 | 2016-06-01 | 中国人民解放军国防科学技术大学 | 一种多通道调频连续波sar成像方法 |
CN103336270B (zh) * | 2013-03-29 | 2015-10-28 | 重庆大学 | Isar图像成像质量评定方法 |
CN104181532A (zh) * | 2014-08-30 | 2014-12-03 | 西安电子科技大学 | 基于模值约束的sar图像旁瓣抑制方法 |
CN104635230B (zh) * | 2015-03-05 | 2017-05-10 | 北京航空航天大学 | 一种用于mimo‑sar近场测量成像方位向旁瓣抑制的方法 |
CN105699947B (zh) * | 2016-01-25 | 2018-06-19 | 电子科技大学 | 一种sar图像旁瓣抑制方法 |
CN105842665B (zh) * | 2016-03-17 | 2018-01-12 | 电子科技大学 | 一种基于频谱加权的sar图像旁瓣抑制方法 |
CN106419955B (zh) * | 2016-09-07 | 2019-08-13 | 苏州国科昂卓医疗科技有限公司 | 超声波束合成方法的应用及剪切波超声弹性成像方法 |
CN106772276B (zh) * | 2016-12-21 | 2019-05-21 | 南京信息工程大学 | 一种地球同步轨道圆迹sar水平面二维旁瓣抑制方法 |
CN108761466B (zh) * | 2018-05-17 | 2022-03-18 | 国网内蒙古东部电力有限公司检修分公司 | 波束域广义旁瓣相消超声成像方法 |
CN111583267B (zh) * | 2020-05-13 | 2024-02-27 | 中国科学院空天信息创新研究院 | 基于广义模糊c均值聚类的快速sar图像旁瓣抑制方法 |
CN113281704B (zh) * | 2021-04-27 | 2024-04-02 | 维沃移动通信有限公司 | 方位角确定方法、装置、电子设备和介质 |
CN113640801B (zh) * | 2021-09-17 | 2023-07-28 | 内蒙古工业大学 | 用于地基sar低旁瓣成像模式的方法、装置及存储介质 |
CN118294956A (zh) * | 2024-04-19 | 2024-07-05 | 临沂大学 | 一种基于特征提取的改进谱变形旁瓣抑制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997012257A1 (en) * | 1995-09-29 | 1997-04-03 | Environmental Research Institute Of Michigan | Super spatially variant apodization (super sva) |
WO2008014243A1 (en) * | 2006-07-25 | 2008-01-31 | Harris Corporation | System and method for geometric apodization |
CN101464513A (zh) * | 2007-12-21 | 2009-06-24 | 中国电子科技集团公司第五十研究所 | 一种非连续谱高频雷达距离旁瓣抑制装置及其抑制方法 |
CN101639934A (zh) * | 2009-09-04 | 2010-02-03 | 西安电子科技大学 | 基于轮廓波域块隐马尔可夫模型sar图像去噪方法 |
CN101839982A (zh) * | 2010-05-18 | 2010-09-22 | 中国人民解放军国防科学技术大学 | 一种合成孔径雷达图像旁瓣抑制方法 |
-
2010
- 2010-05-18 CN CN2010101750948A patent/CN101839982B/zh not_active Expired - Fee Related
-
2011
- 2011-04-29 WO PCT/CN2011/073547 patent/WO2011144002A1/zh active Application Filing
- 2011-04-29 US US13/395,821 patent/US20130050017A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997012257A1 (en) * | 1995-09-29 | 1997-04-03 | Environmental Research Institute Of Michigan | Super spatially variant apodization (super sva) |
WO2008014243A1 (en) * | 2006-07-25 | 2008-01-31 | Harris Corporation | System and method for geometric apodization |
CN101464513A (zh) * | 2007-12-21 | 2009-06-24 | 中国电子科技集团公司第五十研究所 | 一种非连续谱高频雷达距离旁瓣抑制装置及其抑制方法 |
CN101639934A (zh) * | 2009-09-04 | 2010-02-03 | 西安电子科技大学 | 基于轮廓波域块隐马尔可夫模型sar图像去噪方法 |
CN101839982A (zh) * | 2010-05-18 | 2010-09-22 | 中国人民解放军国防科学技术大学 | 一种合成孔径雷达图像旁瓣抑制方法 |
Non-Patent Citations (4)
Title |
---|
TIAN, XUWEN ET AL.: "Analyzation of SAR Image Adaptive Sidelobe Reduction Algorithms and Experiments", REMOTE SENSING TECHNOLOGY AND APPLICATION, vol. 17, no. 3, June 2002 (2002-06-01), pages 148 - 153 * |
WANG, JIAN ET AL.: "Adaptive 2D Sidelobe Suppression Technique for SAR Image", SIGNAL PROCESSING, vol. 25, no. 7, July 2009 (2009-07-01), pages 1108 - 1114 * |
WANG, LIANG ET AL.: "Non-orthogonal Sidelobes Suppression in Image Formation of UWB SAR", SIGNAL PROCESSING, vol. 22, no. 1, February 2006 (2006-02-01), pages 28 - 31 * |
ZHANG, XIANYI ET AL.: "Application of Apodization Filtering Sidelobe Suppression Technique to Synthetic Aperture Radar", JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, vol. 30, no. 4, April 2008 (2008-04-01), pages 902 - 905 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113567978A (zh) * | 2021-07-29 | 2021-10-29 | 电子科技大学 | 一种多基分布式雷达协同成像方法 |
CN113567978B (zh) * | 2021-07-29 | 2023-04-25 | 电子科技大学 | 一种多基分布式雷达协同成像方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130050017A1 (en) | 2013-02-28 |
CN101839982A (zh) | 2010-09-22 |
CN101839982B (zh) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011144002A1 (zh) | Sar图像旁瓣抑制方法 | |
JP6392289B2 (ja) | レーダーおよびソナー用途における固定小数点高速フーリエ変換のスケーリング | |
CN107403134B (zh) | 基于局部梯度三边的图域多尺度红外弱小目标检测方法 | |
CN111024209B (zh) | 一种适用于矢量水听器的线谱检测方法 | |
CN107315714B (zh) | 一种去卷积功率谱估计方法 | |
CN102222335B (zh) | 一种彩色图像的四元数匹配方法 | |
Tulgar et al. | Improved pencil back-projection method with image segmentation for far-field/near-field SAR imaging and RCS extraction | |
CN105137181A (zh) | 基于Nuttall-Kaiser组合窗双谱线插值的谐波分析方法 | |
JP6292772B2 (ja) | レーダ画像処理装置及びレーダ画像処理方法 | |
CN105044680B (zh) | 多峰值低多普勒旁瓣的相位编码信号设计方法 | |
Xiong et al. | A resample-based SVA algorithm for sidelobe reduction of SAR/ISAR imagery with noninteger Nyquist sampling rate | |
CN110749882A (zh) | 基于频域滤波的图像域扇贝抑制方法及系统 | |
JP2015532848A (ja) | 画像組織(tissue)動作推定 | |
CN116047163A (zh) | 一种电力系统间谐波检测方法及装置 | |
CN110764089A (zh) | 一种超分辨率毫米波mimo阵列实时成像方法 | |
Zhao et al. | Block NLMS cancellation algorithm and its real-time implementation for passive radar | |
EP0834079A1 (en) | A power spectral density estimation method and apparatus | |
Cai et al. | Detecting and Removing Phase Jitters for the Phase Synchronization of LT-1 Bistatic SAR | |
KR100321439B1 (ko) | 슈퍼공간가변아포디제이션(슈퍼sva) | |
CN109871575B (zh) | 一种基于时域fft的电磁干扰接收机窗函数的设计方法 | |
CN113397533B (zh) | 一种弱生命信号提取方法、装置、电子设备和存储介质 | |
CN115542304A (zh) | 基于传递函数拟合与相位匹配的自干扰信号抑制方法 | |
CN111110259B (zh) | 一种识别滤线栅安装状态并进行栅影抑制的方法 | |
CN112327305A (zh) | 一种快速频域宽带mvdr声纳波束形成方法 | |
CN109884597A (zh) | 一种vhf频段目标特性测量方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11782919 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13395821 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11782919 Country of ref document: EP Kind code of ref document: A1 |