WO2011143855A1 - 移动终端的测试方法及系统 - Google Patents

移动终端的测试方法及系统 Download PDF

Info

Publication number
WO2011143855A1
WO2011143855A1 PCT/CN2010/076105 CN2010076105W WO2011143855A1 WO 2011143855 A1 WO2011143855 A1 WO 2011143855A1 CN 2010076105 W CN2010076105 W CN 2010076105W WO 2011143855 A1 WO2011143855 A1 WO 2011143855A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
mobile terminal
resource
time period
occupied
Prior art date
Application number
PCT/CN2010/076105
Other languages
English (en)
French (fr)
Inventor
杨小锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011143855A1 publication Critical patent/WO2011143855A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for testing a mobile terminal.
  • BACKGROUND OF THE INVENTION Since the parameter consistency of electronic components used in mobile communication terminal products is usually insufficient to meet the performance requirements of equipment frequency, power level and other parameters, the RF test and calibration process naturally becomes an indispensable one in the development and production process. Steps, and baseband testing is indispensable for early detection of product hazards, product quality assurance, and manufacturing capabilities. Therefore, relevant production tests are required in mobile communication terminal manufacturing plants. On the other hand, the instruments and resources invested in these tests are quite expensive, and the cost of the instruments allocated to each unit of production test time becomes the most important part of the manufacturing cost of the product.
  • the conventional production test process generally requires three stations to be continuously performed.
  • One station performs the Baseband Test (BB test), one station performs the RF calibration test, and another station performs the RF index test.
  • BB test Baseband Test
  • the board test is performed at the baseband test station.
  • the probe test method of the ICT online test is used to check whether the PCBA board is soldered reliably, whether the hardware function is realized, whether the software can work normally, etc.; then the second station receives the radio frequency.
  • the circuit and the transmitting circuit are respectively subjected to a calibration test (hereinafter referred to as calibration;); finally, the third station is subjected to the final test of the RF index (hereinafter referred to as the final test) to check whether the risk calibration result satisfies the requirement.
  • This traditional test method has two defects. First, each product to be tested needs to be tested at three test stations. The product needs to be opened and shut down three times and the test fixture system is replaced, which wastes operation time and manpower. At the same time, repeating the process of switching on and off is also a waste of efficiency. Second, in the latter two stations, the RF calibration and final measurement of the transmitting and receiving circuits are respectively performed. Both of these processes require the use of a mobile phone tester.
  • the present invention is directed to a method and system for testing a wireless mobile terminal to solve at least one of the above problems when testing a mobile terminal by using a conventional test solution in the related art. .
  • a method for testing a mobile terminal including: performing a receiver test (Receiver Test, RX for short) on a first mobile terminal in a same period of time, The second mobile terminal performs a Transmitter Test (TX test), wherein the RX test includes a receiving circuit calibration test and a receiving indicator test; and the TX test includes a transmitting circuit calibration test and a transmission index test.
  • RX test Receiveiver Test
  • TX test Transmitter Test
  • a test system for a mobile terminal comprising: a receiver RX test device, configured to perform an RX test on a first mobile terminal during a time period, wherein the RX test includes a receiving circuit The calibration test and the reception indicator test; the transmitter TX test device is configured to perform a TX test on the second mobile terminal during the time period, wherein the TX test includes a transmit circuit calibration test and a transmission index test.
  • the RX test and the TX test are performed in parallel on the mobile terminal in the same period of time, which solves the problem that the idle test is wasted when the mobile terminal is tested by the traditional test scheme in the related art, and the instrument can be improved. Utilization, reducing test costs.
  • FIG. 1 is a block diagram of a test system of a mobile terminal according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing a test method of a mobile terminal according to a preferred embodiment of the present invention
  • FIG. 4 is a structural block diagram of a test system of a mobile terminal according to an embodiment of the present invention
  • FIG. 5 is a block diagram of a mobile terminal according to a preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the mobile terminal for example, a mobile phone
  • an instrument since the transmitting and receiving test functions of the mobile terminal (for example, a mobile phone) tester (hereinafter referred to as an instrument) are separately operated in series, it is idle waste for the instrument. In order to improve the utilization of the test system, there is a need for a solution that can reduce the amount of resources and idle resources.
  • the test system performs a receiver test (RX test;) on the first mobile terminal, and performs a transmitter test (TX test) on the second mobile terminal, where the RX test includes a receiving circuit calibration test and a receiving indicator test; Includes transmitter circuit calibration test and emission indicator test.
  • RX test receiver test
  • TX test transmitter test
  • the transmitting circuit calibration portion of the 4 bar conventional calibration test and the final measurement portion of the final measurement station are combined into a TX test
  • the receiving circuit calibration portion and the final measurement station in the conventional calibration test are combined.
  • the final measurement part of the receiving indicator is merged into the RX test.
  • the traditional baseband test station of the Pakistani is classified as the BB test, and the three test parts are no longer divided into three production stations, but merged into one BRT intelligent test station. .
  • the test system's transmit and receive test devices perform parallel tests on two mobile terminals (eg, mobile phones).
  • the receiving test device may perform an RX test on one mobile terminal in the same time period, and the transmitting test device performs a transmitter TX test on the other mobile terminal. Therefore, the utilization rate of the test system can be effectively improved, and the test cost can be reduced.
  • two mobile terminals can be tested in parallel at the same time.
  • the test system can perform a BB test on the third mobile terminal in the same time period.
  • the test system includes two BB test devices, one RX test device, one TX test device, and two test fixtures: Test fixture 1 (Testerl) and Test fixture 2 (Tester2) (also three Test Fixture).
  • Testerl is connected to a BB test unit via a BB test line
  • Tester 2 is connected to another BB test unit via a BB test line.
  • Both Testerl and Tester2 are connected to the RX test set and the TX test set via a smart fixture system. Wherein, the switching between the RX test device and the TX test device between Testerl and Tester2 is performed by the intelligent fixture system under the control of a computer program.
  • the mobile terminal system can also acquire which mobile terminal (the first mobile terminal is still the second mobile terminal)
  • the mobile terminal is responsible for what test (TX test or RX test) is being performed, that is, the smart jig system can know the current test state of the mobile terminal under test.
  • the industrial computer and the intelligent fixture communicate data through the RS232 interface
  • the industrial computer and the test instrument communicate through the General-purpose Interface Bus (GPIB) interface
  • the industrial computer passes the Universal Serial Bus (Universal Serial Bus).
  • USB General-purpose Interface Bus
  • the USB cable is connected to the mobile terminal to be tested for communication via the intelligent fixture system.
  • the application and allocation of all resources can be controlled by the BRT intelligent test program running on an industrial computer.
  • the RX test performed on the first mobile terminal is successful, detecting whether the first mobile terminal has completed the TX test; if the first mobile terminal has completed the TX test, the first mobile terminal Passing all tests, otherwise, determining whether the current TX test resource is occupied; if not, performing a TX test on the first mobile terminal; if yes, continuing to apply for a TX test after the first mobile terminal waits for a predetermined time Resources.
  • the predetermined time may be a configured duration
  • the first mobile terminal continues to apply for the ⁇ test resource after a predetermined time. If the TX test is not occupied by another thread, the first test is performed. A mobile terminal can apply for a TX test resource. If the TX test is still occupied by another thread at this time, the first mobile terminal needs to continue to wait until another thread completes the release of the TX test resource.
  • the entire workflow described above is coordinated by a set of control software running on an industrial computer. As shown in Figure 1, Testerl and Tester2 respectively correspond to one test thread and one monitoring thread.
  • the test fixture is open without testing, and the monitoring thread continuously detects the fixture state.
  • the device under test (Device Under Test, DUT for short) is placed on the corresponding fixture and the start button is pressed to close the fixture.
  • the corresponding monitoring thread detects that the fixture is closed and then runs.
  • the test thread stops monitoring the thread and begins to enter the test process.
  • the test thread performs "initialization”, "BB test”, “RX test,”, "TX test”, and the test is completed in four steps. In any step, the test is completed as long as the test fails, and the control fixture is completed after the test is completed. Open the stop test thread and start again The monitoring thread performs the test of the next DUT.
  • the phone began BB test initialization is complete, start applying the instrument test after BB resource RX testing is completed, if the resource is busy
  • RX Tester is another explanation for RX testing, the program can apply for TX resources for TX testing. After the RX test (or TX test) is completed, if the TX test (or RX test) is not performed, continue to apply for the TX instrument resource (or RX instrument resource). If the instrument is still busy, wait until another thread completes the relevant functional test to release the resource. After all the test steps are completed, a test of the DUT can be completed. The fixture is started to monitor the thread for the next DUT test.
  • Step S202 Set up the entire hardware environment and start the system.
  • step S204 The system self-tests, checks whether the connection of the instrument is normal, whether the fixture can communicate normally, and whether the monitoring thread and the test thread corresponding to the fixture run successfully.
  • step S206 The test thread state is set to stop state, the monitoring thread state is set to the running state, the corresponding fixture displays the waiting test state, and the monitoring thread continuously detects whether the fixture is closed.
  • Step S208 Based on step S206, the jig is placed in the DUT, and the jig close button is pressed. Then proceed to step 4 to gather S210. Correspondingly, the test system needs to detect if the clamp is closed. If yes, step S210 is performed, otherwise, the detection is continued. Step S210: When the monitoring thread detects that the clamp is closed, the monitoring thread is stopped, and then the test thread sets the running state to start the test. After the initialization test is completed, step S212 is performed. Step S212: First, the BB test is performed. If the BB test result fails, step S230 is directly performed, otherwise step S214 is performed. Step S214: Apply for the RX test resource.
  • Step S216 Perform an RX test, and if the RX test result fails, proceed directly to step S230. If the test is successful, step 4 is gathered to S220.
  • Step S218 It is judged whether the DUT has undergone the TX test. If the TX test has been performed, the process proceeds to step S214 again. Waiting to continue to apply for the RX resource. If the TX test has not been performed, proceed to step S222 to apply for the TX resource.
  • Step S220 It is determined whether the DUT has undergone the TX test.
  • Step S232 If the TX test is performed, the process proceeds to step S232. If the TX test has not been performed, the process proceeds to step S222 to apply for the TX resource. Step S222: Apply for the TX test resource. If the TX resource is idle, the application is successful, and the step S224 is performed to directly occupy the TX resource. If the application fails, the process proceeds to step S226. Step S224: Perform a TX test. If the TX test result fails, step S230 is directly performed. If the test is successful, step 4 is performed. Step S226: It is determined whether the DUT has undergone the RX test. If the RX test is performed, the process proceeds to step S222 to wait for the application of the TX resource again.
  • Step S228 It is determined whether the DUT has undergone the RX test. If the RX test has been performed, the process proceeds to step S232. If the RX test has not been performed, the process proceeds to step S214 to apply for the RX resource.
  • the BB test, the RX test, and the TX test are continuously performed in sequence for each mobile terminal in a time period including the same time period; or sequentially, for each mobile terminal, in a time period including the same time period Perform BB test, TX test and RX test. Since the above three tests are continuously performed on one terminal to be tested, the above three tests are performed at three stations, and the three opening and closing operations and the replacement of the test fixture system are performed when the production test is avoided in the related art. The problem. This saves operating time and labor and improves test efficiency. For each DUT, from the horizontal perspective, the time period of the test is the same time as above. The time period of the segment.
  • the above preferred implementation process is described below in conjunction with FIG. Figure 3 shows the test sequence for parallel testing of two mobile terminals. As shown in Figure 3, the two mobile terminals are interleaved in time. Among them, for each such test process, the DUT only needs to be turned on and off once, and the BB test is faster, and can be continuously performed with the initialization process.
  • the signal analyzer for the TX test in the instrument system is performing the TX test of Tester 1
  • the signal source for the RX test is not idle, but the RX test of Tester2 is performed.
  • Testerl is tested and replaced with the next DUT for initialization and BB testing
  • Tester2 obtains the signal analyzer resource for TX testing.
  • FIG. 3 the flow of performing the BB test, the RX test, and the TX test is shown in FIG. 3.
  • the flow of the BB test, the TX test, and the RX test may also be performed.
  • 4 is a block diagram showing the structure of a test system of a mobile terminal according to an embodiment of the present invention. As shown in FIG. 4, the test system includes: an RX test device 40 and a TX test device 42.
  • the RX test device 40 is configured to perform an RX test on the first mobile terminal in a period of time, where the RX test includes a receiving circuit calibration test and a receiving indicator test;
  • the TX test device 42 is configured to perform a TX test on the second mobile terminal during the foregoing time period, where the TX test includes a transmit circuit calibration test and a transmit index test.
  • the RX test set of the test system performs an RX test on one mobile terminal, and the TX test set performs a TX test on the other mobile terminal. Therefore, the utilization rate of the test system can be effectively improved, and the test cost can be reduced.
  • the above system may further include: a BB testing device 44, configured to perform a BB test on the third mobile terminal during a time period.
  • the above system may further include: a first detecting device 46 (equivalent to The smart fixture system is configured to: after the time period, when the RX test performed on the first mobile terminal is successful, detecting whether the first mobile terminal has completed the TX test; and the first processing device 48 is configured to: And the current TX test resource is occupied, after waiting for a predetermined time, continue to apply for the TX test resource for the first mobile terminal; then the TX test device 42 is further used to detect whether the output of the device is negative, and the current TX test In the case where the resource is not occupied, the TX test is performed on the first mobile terminal.
  • a first detecting device 46 equivalent to The smart fixture system is configured to: after the time period, when the RX test performed on the first mobile terminal is successful, detecting whether the first mobile terminal has completed the TX test
  • the first processing device 48 is configured to: And the current TX test resource is occupied, after waiting for a predetermined time, continue to apply for the TX test resource for the first mobile terminal; then the
  • the system further includes: a second detecting device 50 (corresponding to the smart fixture system) configured to detect, after the time period, that the TX test performed on the second mobile terminal is successful, detecting whether the second mobile terminal is completed
  • the RX test device is configured to: after waiting for the predetermined time, continue to apply for the RX test resource for the second mobile terminal, in the case that the output of the detection device is negative, and the current RX test resource is occupied; the RX test device 40.
  • the method further is configured to perform an RX test on the second mobile terminal if the output of the detecting device is no, and the current RX test resource is not occupied.
  • the utilization rate of the most expensive test equipment resources in production is improved from the viewpoint of reducing production cost of the enterprise.
  • the independent signal source plus analyzer architecture of the RX and TX test equipment it is very suitable to develop a non-signaling test system to replace the traditional signaling test system to achieve greater efficiency improvement, and Many mobile terminal solution providers in the industry have fully supported non-signaling test solutions, so the system is easier to set up.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention.
  • any tampering, equivalent substitution, improvement, etc. shall be included in the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种移动终端的测试方法及系统。该方法包括:在同一个时间段内,测试系统对第一移动终端执行接收机RX测试,对第二移动终端执行发射机TX测试,其中,RX测试包括接收电路校准测试和接收指标测试;TX测试包括发射电路校准测试和发射指标测试。通过本发明,可以提高仪器利用率,降低测试成本。

Description

移动终端的测试方法及系统 技术领域 本发明涉及通信领域,具体而言, 涉及一种移动终端的测试方法及系统。 背景技术 由于移动通讯终端产品所用电子元器件的参数一致性通常不足以满足设 备频率、 功率电平和其它参数的性能要求, 所以射频测试和校准过程自然就 成为了研发和生产过程中不可缺少的一个步骤, 而基带测试对于尽早发现产 品隐患、 保证产品质量、 提升厂商生产制造能力有不可缺少的作用, 所以在 移动通讯终端制造工厂都需要进行相关的生产测试。 另一方面, 这些测试的 仪器和资源投入相当昂贵, 分摊到每一个单位生产测试时间上的仪器成本就 成为了产品制造成本中最主要的部分。 所以提高仪器和测试资源的利用率是 移动通讯终端制造厂商降氏产品成本应对市场竟争的最重要手段。 相关技术中, 传统的生产测试过程一般是需要三个工位连续进行的。 一 个工位进行的是基带测试(Baseband Test, 简称 BB测试), 一个工位进行的 是射频校准测试, 另外还有一个工位进行射频指标测试。 首先在基带测试工 位进行单板测试, 釆用 ICT在线测试的探针测试方法检验 PCBA单板是否焊 接可靠, 硬件功能是否实现, 软件是否能正常工作等; 然后第二个工位对射 频接收电路和发射电路分别进行校准测试(以下简称校准;); 最后再到第三个 工位进行射频指标最终测试 (以下简称终测)来检-险校准结果是否满足要求。 这种传统的测试方法有两个缺陷, 第一、 每一个待测产品都需要分别在 三个测试工位测试, 产品需要进行三次开、 关机操作及更换测试夹具系统, 浪费了操作时间和人力, 同时重复进行开关机过程也是一种效率的浪费; 第 二、 在后两个工位上都分别要进行发射、 接收电路的射频校准和终测, 这两 个过程都需要用到手机测试仪, 由于手机测试仪 (以下简称仪器) 的发射和 接收测试功能实际上是分开串行工作的, 这对于仪器来说至少造成了 50%的 闲置浪费, 通常仪器的价格比较昂贵, 单台价格一般五六十万乃至上百万, 产量提升增加仪器就需要投入大量的资金, 制造企业往往难以承受, 因此如 果把这 50%的闲置时间得以充分利用, 对企业来说就大大的降低了投资, 提 高了单位投资的产出量。 发明内容 针对相关技术中釆用传统的测试方案对移动终端测试时, 造成仪器闲置 浪费的问题, 本发明的主要目的在于提供一种无线移动终端的测试方法及系 统, 以解决上述问题至少之一。 才艮据本发明的一个方面, 提供了一种移动终端的测试方法, 包括: 在同 一个时间段内, 测试系统对第一移动终端执行接收机测试( Receiver Test, 简 称为 RX测试), 对第二移动终端执行发射机测试(Transmitter Test, 简称 TX 测试), 其中, RX测试包括接收电路校准测试和接收指标测试; TX测试包 括发射电路校准测试和发射指标测试。 根据本发明的另一个方面, 提供了一种移动终端的测试系统, 包括: 接 收机 RX测试装置, 用于在一个时间段内, 对第一移动终端执行 RX测试, 其中, RX测试包括接收电路校准测试和接收指标测试;发射机 TX测试装置, 用于在时间段内, 对第二移动终端执行 TX测试, 其中, TX测试包括发射电 路校准测试和发射指标测试。 通过本发明, 在同一个时间段内, 对移动终端并行执行 RX测试和 TX 测试, 解决了相关技术中釆用传统的测试方案对移动终端测试时, 造成仪器 闲置浪费的问题, 进而可以提高仪器利用率, 降低测试成本。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据本发明实施例的移动终端的测试系统的架构图; 图 2是才艮据本发明优选实施例的移动终端的测试方法的流程图; 图 3是才艮据本发明优选实施例的移动终端的测试时序图; 图 4是才艮据本发明实施例的移动终端的测试系统的结构框图; 图 5是才艮据本发明优选实施例的移动终端的测试系统的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 相关技术中, 由于移动终端 (例如, 手机) 测试仪(以下简称仪器) 的 发射和接收测试功能是分开串行工作的,因而对于仪器来说造成了闲置浪费。 为了提高测试系统的利用率, 因而需要一种能够减 ' j、资源闲置的方案。
段内, 测试系统对第一移动终端执行接收机测试( RX测试;), 对第二移动终 端执行发射机测试 (TX测试), 其中, RX测试包括接收电路校准测试和接 收指标测试; TX测试包括发射电路校准测试和发射指标测试。 在上述实施例中, 4巴传统的校准测试中的发射电路校准部分和终测工位 的发射指标终测部分合并为 TX测试, 把传统的校准测试中的接收电路校准 部分和终测工位的接收指标终测部分合并为 RX测试, 巴传统的基带测试工 位归为 BB测试, 而且这三个测试部分不再分为三个生产工位进行, 而是合 并为一个 BRT智能测试工位。 釆用上述方法,测试系统的发射和接收测试装置分别对两台移动终端(例 如, 手机) 进行并行的测试。 可以在同一个时间段内, 接收测试装置对一台 移动终端执行 RX测试,发射测试装置对另一台移动终端执发射机 TX测试。 因而可以有效提高测试系统的利用率, 降氐测试成本。 上面提到的技术方案中, 可以同时对两台移动终端进行并行测试, 可选 地, 在同一个时间段内, 上述测试系统还可以对第三移动终端执行 BB测试。 为了实现上述测试方法, 需要搭建一套适应该方法的测试系统。 以下结 合图 1描述该测试系统的架构。 如图 1所示, 该测试系统包括两个 BB测试 装置、 一个 RX测试装置、 一个 TX测试装置、 以及两个测试夹具: 测试夹 具 1 ( Testerl ) 和测试夹具 2 ( Tester2 ) (也可以三个测试夹具)。 Testerl 与 一台 BB测试装置通过 BB测试线连接, Tester2与另一台 BB测试装置通过 BB测试线连接。 Testerl和 Tester2均通过一个智能夹具系统分别与 RX测试 装置和 TX测试装置相连接。 其中, RX测试装置和 TX测试装置在 Testerl 和 Tester2之间切换是由该智能夹具系统在计算机程序的控制下完成的。优选 地, 该智能夹具系统还可以获取到哪台移动终端 (第一移动终端还是第二移 动终端)正在进行什么测试( TX测试还是 RX测试)的信息, 即智能夹具系 统能够获知被测移动终端的当前测试状态。 其中, 工业计算机和智能夹具通过 RS232接口进行数据通讯, 工业计算 机和测试仪器通过通用接口总线( General-purpose Interface Bus, 简称 GPIB ) 接口进行通讯, 工业计算机通过通用串行总线 (Universal Serial Bus, 简称
USB )线缆经智能夹具系统和待测移动终端连接进行通讯。 所有资源的申请、 分配可以由运行在工业计算机上的 BRT智能测试程序进行控制。 优选地, 在经过上述同一时间段之后, 如果对第一移动终端执行的 RX 测试成功, 则检测第一移动终端是否已完成 TX测试; 如果第一移动终端已 经完成 TX测试, 则第一移动终端通过全部测试, 否则, 判断当前 TX测试 资源是否被占用; 如果否, 则对所述第一移动终端执行 TX测试; 如果是, 则在所述第一移动终端等待预定时间后, 继续申请 TX测试资源。 在优选实施过程中, 上述预定时间可以为一个配置的时长, 则所述第一 移动终端在预定时间后继续申请 τχ测试资源, 如果 jt匕时 TX测试已经不被 另一线程占用了, 则第一移动终端可以申请到 TX测试资源。 如果此时 TX 测试仍然被另一线程占用, 则第一移动终端需要继续等待, 直到另一线程完 成 TX测试资源的释放。 优选地, 在经过上述同一时间段之后, 如果对第二移动终端的 TX测试 成功, 则检测第二移动终端是否已完成 RX测试; 如果第二移动终端已经完 成 RX测试, 则第二移动终端通过全部测试, 否则, 在当前 RX测试资源未 被占用的情况下, 对第二移动终端执行 RX测试, 在当前 RX测试资源被占 用的情况下, 第二移动终端等待预定时间后, 继续申请 RX测试资源。 在优选实施过程中, 上述整个工作流程由一套运行在工业计算机上的控 制软件协调进行。 如图 1所示, Testerl和 Tester2分别各对应一个测试线程 和一个监控线程, 程序运行后, 在没有进行测试的情况下, 测试夹具处于打 开状态, 监控线程在持续检测夹具状态。 操作员开始进行测试时会在对应的 夹具上放入待测的移动通讯终端产品 ( Device Under Test, 简称为 DUT ) 并 按下启动按钮闭合夹具, 对应的监控线程检测到夹具合上后即运行测试线程 停止监控线程开始进入测试过程。 测试线程分别进行"初始化"、 "BB测试"、 "RX测试,,、 "TX测试,,四个步骤后测试完成, 在任何一个步骤里只要测试失 败则测试也完成, 测试完成后则控制夹具打开停止测试线程, 同时再次启动 监控线程进行下一个 DUT的测试。 由于 BB测试的仪器成本比较氐所以两个 Tester分另1 J配备一套, 手机初 始化完成后开始进行 BB测试, BB测试完毕后开始申请 RX测试的仪器资源, 如果 RX资源忙说明另一个 Tester正在进行 RX测试则程序可以申请 TX资 源进行 TX测试。 RX测试 (或 TX测试)完成后若 TX测试 (或 RX测试)没有进 行则继续申请 TX仪器资源 (或 RX仪器资源),如仪器仍然忙则等待直到另一 线程完成相关功能测试释放资源。 全部测试步 4聚完成后即可完成一个 DUT 的测试打开夹具启动监控线程进行下一个 DUT的测试。 以下结合图 2描述上述优选实施过程。 图 2 示出了釆用本发明提供的测试方法对一台移动终端进行测试的流 程。 该流程主要包括以下处理: 步骤 S202: 搭建好整个硬件环境, 启动系统。 然后执行步骤 S204。 步骤 S204: 系统自检, 检查仪器连接是否正常、 夹具是否能正常通讯, 夹具对应的监控线程及测试线程是否成功运行。 然后进行步骤 S206。 步骤 S206: 测试线程状态置为停止装态, 监控线程状态置为运行状态, 对应的夹具显示等待测试状态, 监控线程持续探测夹具是否闭合。 步骤 S208: 基于步骤 S206, 夹具放入 DUT, 按下夹具闭合按钮。 然后 进行步 4聚 S210。 对应地, 测试系统需要检测夹具是否闭合。 如果是, 则执行步骤 S210, 否则, 则继续检测。 步骤 S210: 监控线程探测到夹具闭合则该监控线程就被置停止状态, 然 后测试线程置运行状态启动测试。 初始化测试完后即进行步骤 S212。 步骤 S212: 先进行 BB测试, 如果 BB测试结论失败, 则直接进行步骤 S230, 否则进行步骤 S214。 步骤 S214: 申请 RX测试资源, 如果 RX资源空闲则申请成功直接进行 步骤 S216测试同时占用 RX资源, 申请失败则进行步骤 S218。 步骤 S216:进行 RX测试,如果 RX测试结论失败则直接进行步骤 S230, 测试成功则进行步 4聚 S220。 步骤 S218: 判断该 DUT是否进行过 TX测试, 若进行过 TX测试, 则 再次进行步骤 S214。 等待继续申请 RX资源, 若没进行过 TX测试则进行步 骤 S222申请 TX资源。 步骤 S220: 判断该 DUT是否进行过 TX测试, 若进行过 TX测试则进 行步骤 S232, 若没进行过 TX测试则进行步骤 S222申请 TX资源。 步骤 S222: 申请 TX测试资源, 如果 TX资源空闲则申请成功直接进行 步骤 S224测试同时占用 TX资源, 申请失败则进行步骤 S226。 步骤 S224:进行 TX测试,如果 TX测试结论失败则直接进行步骤 S230, 测试成功则进行步 4聚 S228。 步骤 S226: 判断该 DUT是否进行过 RX测试, 若进行过 RX测试则再 次进行步骤 S222等待继续申请 TX资源, 若没进行过 RX测试则进行步骤 S214申请 RX资源。 步骤 S228: 判断该 DUT是否进行过 RX测试, 若进行过 RX测试则进 行步骤 S232, 若没进行过 RX测试则进行步骤 S214申请 RX资源。 步骤 S230: 测试失败, 弹开夹具, 同时亮红灯表示测试失败, 并再次进 行步骤 S206等待下一个 DUT测试。 步骤 S232: 测试成功, 弹开夹具, 同时亮绿灯表示测试成功, 并再次进 行步骤 S206等待下一个 DUT测试。 优选地, 在包括同一时间段的时间段内, 对每个移动终端按顺序连续执 行 BB测试、 RX测试以及 TX测试; 或者在包括同一时间段的时间段内, 对 每个移动终端按顺序连续执行 BB测试、 TX测试以及 RX测试。 由于对一台待测终端, 连续执行上述三种测试, 因而避免了相关技术中 进行生产测试时, 分别在三个工位进行上述三种测试, 并且进行三次开、 关 机操作及更换测试夹具系统的问题。 从而可以节省操作时间和人力, 提高测 试效率。 对于每台 DUT 而言, 从横向来看, 测试的时间段是包括上述同一时间 段的时间段。 如果可以合理设置测试时间, 例如, 每一台移动终端的初始化 时间与 BB测试时间之和=每一台移动终端的 RX测试时间 =每一台移动终端 的 TX测试时间, 则并行对两台或三台移动终端进行测试时, 可以充分利用 测试资源, 大大提高利用效率。 以下结合图 3描述上述优选实施过程。 图 3示出了对两台移动终端进行并行测试的测试时序。 如图 3所示, 对 两台移动终端在时间上交错测试。 其中, 对每一台这样测试过程中 DUT 只 需要进行一次开关机及初始化, 而 BB测试又比较快, 可以和初始化过程连 续进行。 仪器系统中用于 TX测试的信号分析仪在进行 Tester 1的 TX测试的 时候, 用于 RX测试的信号源并不会闲置, 而是在进行 Tester2的 RX测试。 当 Testerl测试完毕更换下一个 DUT进行初始化及 BB测试的时候, Tester2 获取信号分析仪资源进行 TX测试。 需要注意的是, 图 3中示出了执行 BB测试、 RX测试、 TX测试的流程, 当然, 在优选实施过程中, 也可以执行 BB测试、 TX测试、 RX测试的流程。 图 4是才艮据本发明实施例的移动终端的测试系统的结构框图。 如图 4所 示, 该测试系统包括: RX测试装置 40和 TX测试装置 42。
RX测试装置 40 , 用于在一个时间段内, 对第一移动终端执行 RX测试, 其中, RX测试包括接收电路校准测试和接收指标测试;
TX测试装置 42 , 用于在上述时间段内, 对第二移动终端执行 TX测试, 其中, TX测试包括发射电路校准测试和发射指标测试。 在同一个时间段内, 测试系统的 RX测试装置对一台移动终端执行 RX 测试, TX测试装置对另一台移动终端执发射机 TX测试。 因而可以有效提高 测试系统的利用率, 降低测试成本。 优选地, 如图 5所示, 上述系统还可以包括: BB测试装置 44 , 用于在 时间段内对第三移动终端执行 BB测试。 通过上述处理, BB测试、 RX测试、 TX测试这三项或其中的任意两项 在同一个测试过程中连续完成, 无需占用多个测试工位。 优选地, 如图 5所示, 上述系统还可以包括: 第一检测装置 46 (相当于 上述智能夹具系统), 用于在时间段之后, 对第一移动终端执行的 RX测试成 功时, 检测第一移动终端是否已完成 TX测试; 第一处理装置 48 , 用于在检 测装置输出为否, 且当前 TX测试资源被占用的情况下, 在等待预定时间后, 继续为第一移动终端申请 TX测试资源; 则上述 TX测试装置 42 , 还用于在 检测装置输出为否, 且当前 TX测试资源未被占用的情况下, 对第一移动终 端执行 TX测试。 优选地, 上述系统还可以包括: 第二检测装置 50 (相当于上述智能夹具 系统), 用于在时间段之后, 对第二移动终端执行的 TX测试成功时, 检测第 二移动终端是否已完成 RX测试; 第二处理装置 52 , 用于在检测装置输出为 否, 且当前 RX测试资源被占用的情况下, 在等待预定时间后, 继续为第二 移动终端申请 RX测试资源; 上述 RX测试装置 40 , 还用于在检测装置输出 为否, 且当前 RX测试资源未被占用的情况下, 对第二移动终端执行 RX测 试。 上述系统的各个装置, 相互结合的优选工作方式可以参见图 2至图 4中 的描述, 此处不再赘述。 综上所述, 借助本发明提供的上述实施例, 从企业降低生产成本的角度 来看, 提高了生产中最昂贵的测试装置资源的利用率。 在测试系统中, 由于 釆用了 RX和 TX测试装置独立的信号源加分析仪架构, 非常适合开发非信 令测试系统用来代替传统的信令测试系统以达到更大的效率提升, 并且, 业 界的多家移动终端方案供应商已经完全支持非信令测试方案, 因而本系统上 更易于搭建。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何爹改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种移动终端的测试方法, 其特征在于, 所述方法包括:
在同一个时间段内,测试系统对第一移动终端执行接收机 RX测试, 对第二移动终端执行发射机 TX测试, 其中, 所述 RX测试包括接收电 路校准测试和接收指标测试; 所述 TX测试包括发射电路校准测试和发 射指标测试。
2. 根据权利要求 1所述的方法, 其特征在于, 还包括:
在所述同一个时间段内,所述测试系统对第三移动终端执行基带 BB 测试。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 还包括:
在所述同一时间段之后, 如果对所述第一移动终端执行的 RX测试 成功, 则检测所述第一移动终端是否已完成 TX测试;
如果所述第一移动终端已经完成 TX测试, 则所述第一移动终端通 过全部测试, 否则, 判断当前 TX测试资源是否被占用;
如果否, 则对所述第一移动终端执行 TX测试;
如果是, 则在所述第一移动终端等待预定时间后, 继续申请 TX测 试资源。
4. 根据权利要求 1或 2所述的方法, 其特征在于, 还包括:
在所述同一时间段之后, 如果对所述第二移动终端的 TX测试成功, 则检测所述第二移动终端是否已完成 RX测试;
如果所述第二移动终端已经完成 RX测试, 则所述第二移动终端通 过全部测试, 否则, 在当前 RX测试资源未被占用的情况下, 对所述第 二移动终端执行 RX测试, 在当前 RX测试资源被占用的情况下, 所述 第二移动终端等待预定时间后, 继续申请 RX测试资源。
5. 根据权利要求 1所述的方法, 其特征在于, 还包括以下之一:
在包括所述同一时间段的时间段内, 对每个移动终端按顺序连续执 行所述 BB测试、 所述 RX测试以及所述 TX测试; 在包括所述同一时间段的时间段内, 对每个移动终端按顺序连续执 行所述 BB测试、 所述 TX测试以及所述 RX测试。
6. 根据权利要求 5所述的方法, 其特征在于, 对每个移动终端连续执行测 试包括:
如果当前测试成功, 则对该移动终端执行下一种测试, 直至该移动 终端通过全部测试。
7. —种移动终端的测试系统, 其特征在于, 还包括:
接收机 RX测试装置, 用于在一个时间段内, 对第一移动终端执行 RX测试, 其中, 所述 RX测试包括接收电路校准测试和接收指标测试; 发射机 TX测试装置, 用于在所述时间段内, 对第二移动终端执行 TX测试, 其中, 所述 TX测试包括发射电路校准测试和发射指标测试。
8. 根据权利要求 7所述的系统, 其特征在于, 还包括:
基带 BB 测试装置, 用于在所述时间段内对第三移动终端执行 BB 测试。
9. 根据权利要求 7所述的系统, 其特征在于, 所述系统还包括:
第一检测装置, 用于在所述时间段之后, 对所述第一移动终端执行 的 RX测试成功时, 检测所述第一移动终端是否已完成 TX测试;
第一处理装置, 用于在所述检测装置输出为否, 且当前 TX测试资 源被占用的情况下, 在等待预定时间后, 继续为所述第一移动终端申请 TX测试资源;
则所述 TX测试装置, 还用于在所述检测装置输出为否, 且当前 TX 测试资源未被占用的情况下, 对所述第一移动终端执行 TX测试。
10. 根据权利要求 7所述的系统, 其特征在于, 所述系统还包括:
第二检测装置, 用于在所述时间段之后, 对所述第二移动终端执行 的 TX测试成功时, 检测所述第二移动终端是否已完成 RX测试;
第二处理装置, 用于在所述检测装置输出为否, 且当前 RX测试资 源被占用的情况下, 在等待预定时间后, 继续为所述第二移动终端申请 RX测试资源; 则所述 RX测试装置, 还用于在所述检测装置输出为否, 且当前 RX 测试资源未被占用的情况下, 对所述第二移动终端执行 RX测试。
PCT/CN2010/076105 2010-05-18 2010-08-18 移动终端的测试方法及系统 WO2011143855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010182139.4A CN101834680B (zh) 2010-05-18 2010-05-18 移动终端的测试方法及系统
CN201010182139.4 2010-05-18

Publications (1)

Publication Number Publication Date
WO2011143855A1 true WO2011143855A1 (zh) 2011-11-24

Family

ID=42718626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076105 WO2011143855A1 (zh) 2010-05-18 2010-08-18 移动终端的测试方法及系统

Country Status (2)

Country Link
CN (1) CN101834680B (zh)
WO (1) WO2011143855A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168583A (zh) * 2013-05-17 2014-11-26 深圳市豪恩安全科技有限公司 一种无线双向通讯测试方法、装置和系统
CN107528642A (zh) * 2017-08-21 2017-12-29 上海源岷投资管理有限公司 一种乡村沼气数据采集的无线设备的生产测试方法及装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450316B (zh) * 2014-07-31 2018-03-23 展讯通信(上海)有限公司 校准通信终端的方法
CN104158613B (zh) * 2014-09-04 2016-03-16 太仓市同维电子有限公司 一种无线射频测试中板测校准测试方法
CN104243068A (zh) * 2014-09-11 2014-12-24 苏州佳世达电通有限公司 一种无线校正与测试系统
CN104702347A (zh) * 2015-02-11 2015-06-10 为准(北京)电子科技有限公司 一种无线通信终端测试设备
CN104811253B (zh) * 2015-03-13 2017-03-29 深圳市极致汇仪科技有限公司 无线综合测试仪
CN105791498B (zh) * 2016-03-02 2018-09-21 广东欧珀移动通信有限公司 手机射频性能测试方法
CN107222878B (zh) * 2016-03-22 2020-12-22 中国移动通信集团终端有限公司 一种终端的测试方法和装置
CN111194044B (zh) * 2018-11-14 2023-09-19 中国移动通信集团辽宁有限公司 专线拨测方法、装置、设备和介质
CN111367783B (zh) * 2018-12-25 2022-02-08 北京微播视界科技有限公司 应用程序的测试方法、装置及电子设备
CN109709424A (zh) * 2018-12-29 2019-05-03 中电科仪器仪表有限公司 一种emc自动测试系统多测试项并行测试的实现方法
CN110430271A (zh) * 2019-08-09 2019-11-08 中国工商银行股份有限公司 一种移动设备管理的方法及装置
CN117269723A (zh) * 2023-09-25 2023-12-22 深圳市南方硅谷半导体股份有限公司 用wifi芯片内建的高精度电路产品测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805313A (zh) * 2005-11-21 2006-07-19 海信集团有限公司 移动终端的快速并行射频测试系统及其测试方法
CN101409590A (zh) * 2007-10-12 2009-04-15 深圳富泰宏精密工业有限公司 手机射频测试方法
CN101437261A (zh) * 2008-12-26 2009-05-20 北京五龙电信技术公司 移动通信终端射频测试系统
CN101534161A (zh) * 2009-04-15 2009-09-16 北京天碁科技有限公司 一种对收发信机进行校准的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805313A (zh) * 2005-11-21 2006-07-19 海信集团有限公司 移动终端的快速并行射频测试系统及其测试方法
CN101409590A (zh) * 2007-10-12 2009-04-15 深圳富泰宏精密工业有限公司 手机射频测试方法
CN101437261A (zh) * 2008-12-26 2009-05-20 北京五龙电信技术公司 移动通信终端射频测试系统
CN101534161A (zh) * 2009-04-15 2009-09-16 北京天碁科技有限公司 一种对收发信机进行校准的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168583A (zh) * 2013-05-17 2014-11-26 深圳市豪恩安全科技有限公司 一种无线双向通讯测试方法、装置和系统
CN104168583B (zh) * 2013-05-17 2018-07-20 深圳市豪恩安全科技有限公司 一种无线双向通讯测试方法、装置和系统
CN107528642A (zh) * 2017-08-21 2017-12-29 上海源岷投资管理有限公司 一种乡村沼气数据采集的无线设备的生产测试方法及装置

Also Published As

Publication number Publication date
CN101834680B (zh) 2014-02-05
CN101834680A (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
WO2011143855A1 (zh) 移动终端的测试方法及系统
CN103249069B (zh) 移动终端的测试方法及测试设备、移动终端的测试系统
US9906971B2 (en) Ageing detection method and device
CN106656654B (zh) 一种网络故障诊断方法及故障诊断装置
KR101024050B1 (ko) 이동 전화 검증을 위한 시스템 및 방법
WO2007115461A1 (fr) Système et procédé de test
WO2014134984A1 (zh) 一种测试方法及系统
CN105553754A (zh) 一种无线通信设备可测试性设计方法
CN103077114A (zh) 基于测温装置通信协议的自动化测试方法
CN103778058B (zh) 基于ttcn‑3的tetra数字集群空中接口测试方法及系统
CN105827333A (zh) 基带芯片自动化测试的系统及方法
US7623856B2 (en) Method for testing communication protocol having collection of internal information of a mobile communication terminal by an external module
CN113407469B (zh) 一种参数配置方法及装置、存储介质及电子装置
WO2021109049A1 (zh) 一种pcba智能自动测试方法及系统
CN102201877A (zh) 一种基于ttcn-3的数字对讲机空中接口测试方法及装置
CN100382512C (zh) 测试装置及方法
CN108494507A (zh) 一种路由器射频信号参数测试方法和测试系统
CN114509656B (zh) 一种igbt驱动单板智能检测系统
CN110943891A (zh) 一种用于交换机端口广播风暴的检测装置
CN113447793B (zh) 一种测试电路板的装置及方法
CN113890606B (zh) 开放无线接入网通信设备测试系统和方法
CN218181079U (zh) 测试装置
CN117792436B (zh) 宽带载波模块的检测装置
CN217954640U (zh) 一种模组测试装置以及模组测试系统
CN219777821U (zh) 车机测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851613

Country of ref document: EP

Kind code of ref document: A1