WO2011142492A1 - Dna polymerase capable of long pcr, and genes thereof - Google Patents

Dna polymerase capable of long pcr, and genes thereof Download PDF

Info

Publication number
WO2011142492A1
WO2011142492A1 PCT/KR2010/003074 KR2010003074W WO2011142492A1 WO 2011142492 A1 WO2011142492 A1 WO 2011142492A1 KR 2010003074 W KR2010003074 W KR 2010003074W WO 2011142492 A1 WO2011142492 A1 WO 2011142492A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna polymerase
polymerase
dna
seq
pcr
Prior art date
Application number
PCT/KR2010/003074
Other languages
French (fr)
Korean (ko)
Inventor
이정현
강성균
김상진
권개경
이현숙
김윤재
배승섭
임재규
전정호
조요나
황영옥
차선신
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to PCT/KR2010/003074 priority Critical patent/WO2011142492A1/en
Priority to KR1020137000005A priority patent/KR101416097B1/en
Publication of WO2011142492A1 publication Critical patent/WO2011142492A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the present invention relates to a mutant DNA polymerase capable of performing long PCR, a gene sequence encoding the same, a preparation method, and a PCR polymerization using the same. More specifically, the present invention relates to a specific DNA derived from Thermococcus sp. The present invention relates to a DNA polymerase causing a mutation at a site, an amino acid sequence thereof, a gene encoding the mutant DNA polymerase, and a method for producing a polymerase using the same.
  • genomic sequences of some highly thermophilic microorganisms are of interest because they are characterized by heat-resistant enzymes in the field of biotechnology, and various thermally stable enzymes are used for biotechnological purposes. Is being developed.
  • thermostable thermophilic DNA polymerase and polymerase chain reaction (PCR) using the same have important contributions in protein and gene research, and are widely used in biological applications.
  • DNA polymerase genes have been cloned from various organisms, including thermophilic and archaea, and recently, highly thermophilic bacteria with higher fidelity in PCR based on proofreading activity than common Taq polymerase.
  • B family DNA polymerase was isolated and widely used from Pyrococcus sp. And Thermococcus sp. Strains. Nevertheless, high fidelity polymerases are low in DNA elongation ability and require many improvements despite the above advantages.
  • An object of the present invention is to provide a mutant DNA polymerase capable of long PCR, genes thereof.
  • the present invention is a DNA polymerase derived from Thermococcus sp. Strain and mutated to wild type TNA1_pol DNA polymerase of Korea Patent Registration No. 10-0777227 to be useful for long PCR polymerization. To provide.
  • a first aspect of the invention provides a DNA polymerase comprising the amino acid sequence of SEQ ID NO.
  • DNA polymerase refers to DNA in the 5 '-> 3' direction from deoxynucleotide triphosphate by successively adding nucleotides to the growing 3'hydroxy group using complementary template DNA strands and primers. It is an enzyme that synthesizes. The template strand determines the order of nucleotides added by Watson-Crick base pairs.
  • Mutant DNA polymerases of the present invention may also include their "functional equivalents.”
  • Functional equivalents herein include amino acid sequence variants in which some or all of the amino acid sequences of the mutant DNA polymerase are substituted or a portion of the amino acid is deleted or added.
  • the substitution of the amino acid is preferably a conservative substitution. Examples of conservative substitutions of amino acids present in nature are as follows; Aliphatic amino acids (Gly, Ala, Pro), hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr, Trp), acidic amino acids (Asp, Glu), basic amino acids (His, Lys, Arg, Gln, Asn ) And sulfur containing amino acids (Cys, Met).
  • the deletion of the amino acid is preferably located at a portion not directly involved in the activity of the DNA polymerase.
  • a second aspect of the invention provides a DNA polymerase gene encoding the amino acid sequence of SEQ ID NO.
  • the DNA polymerase gene encoding the amino acid sequence of SEQ ID NO: 2 may have various types of sequences by degeneration of heredity.
  • the gene sequence is preferably a DNA polymerase gene represented by SEQ ID NO: 1.
  • One skilled in the art can make functional equivalents to the DNA polymerase sequence of SEQ ID NO: 2, and the scope of the present invention includes gene sequences encoding such functional equivalents.
  • a third aspect of the invention provides a recombinant vector comprising the DNA polymerase gene.
  • vector refers to a nucleic acid molecule capable of binding and transferring another nucleic acid thereto.
  • expression vector includes plasmids, cosmids or phages capable of synthesizing proteins encoded by each recombinant gene carried by the vector.
  • Preferred vectors are vectors capable of self-replicating and expressing the nucleic acid to which they are bound.
  • the vector may be a vector of plasmid, cosmid, phagemid, phage, viral form. Methods of making recombinant vectors comprising the DNA polymerase gene of the present invention using such vectors are known in the art.
  • a fourth aspect of the present invention provides a host cell transformed with the recombinant vector.
  • the term 'transformation' used in the present invention means that foreign DNA or RNA is absorbed into a cell and the genotype of the cell is changed.
  • a fifth aspect of the present invention is characterized by culturing a host cell transformed with a recombinant vector comprising a DNA polymerase gene encoding the amino acid sequence of SEQ ID NO: 2 and inducing the expression of the recombinant protein to isolate the polymerase protein. It provides a method for producing a polymerase.
  • the mutant DNA polymerase of the present invention exhibits superior performance in PCR of long chain DNA compared to the wild type or mutant type, and is widely applied to various fields requiring long chain amplification such as human genome analysis. Can be.
  • Figure 1 shows the comparison of PCR amplification of the human genomic DNA of the wild type polymerase, mutant polymerase and mutant DNA polymerase of the present invention.
  • M standard marker
  • Lane 1 hprt 2.7 kb
  • Ex Taq common Taq polymerase
  • TNA1 wild type polymerase
  • TLA mutant polymerase
  • U7 which shows the mutant DNA polymerase of the present invention.
  • FIG. 2 shows a cleavage map of the recombinant plasmid vector.
  • Thermococcus genus ( Thermococcus sp.) NA1 strains were isolated from deep-sea hydrothermal spouts in the Western Pacific region of Papua New Guinea. YPS Badges It was used to culture DNA of genus NA1 strain, Culture and strain maintenance of genus NA1 were performed by standard methods. Thermococcus In order to prepare genus NA1 seed culture, YPS medium in 25 ml serum container was inoculated with a single colony formed on a pattagel plate and incubated at 90 ° C. for 20 hours. Seed culture was used to inoculate 700 ml of YPS medium in an anaerobic jar and incubated at 90 ° C. for 20 hours.
  • Thermococcus genus Escherichia coli for plasmid proliferation and nucleic acid sequencing including polymerase TNA1_pol gene of NA1 strain E. coli DH5 ⁇ strain was used.
  • E. coli BL21-Codonplus (DE3) -RIL cells stratazine, Lazola, Calif.
  • plasmid pET-24a (+) Novagen, Madison, Wisconsin
  • E. coli strains were cultured using Luria-Bertani medium at 37 ° C. and added to the medium so that kanamycin was at a final concentration of 50 ⁇ g / ml.
  • DNA manipulations were done in standard ways as described by Sambrok and Russell. Genomic DNA in the thermococcus was isolated by standard methods. Restriction enzymes and other modified enzymes were purchased from Promega (Madison, Wisconsin). Small amounts of plasmid DNA from E. coli cells were made using the plasmid mini kit (Qiagen, Hilden, Germany). DNA sequencing was performed using an automated sequencer (AB3100) using the Big Die Terminator Kit (PE Applied Biosystems, Foster City, CA).
  • pol_1 intein 1 537 amino acids originating from DNA polymerase from Thermococcus sp. Strain GE8, AJ25033.
  • IVS-B 537 amino acids of KOD DNA polymerase origin, D29671
  • 67.0% of phases to intein 537 amino acids of deep vent DNA polymerase origin, U00707
  • splicing site of intein could be predicted by sequencing because His-Asn-Cys / Thr was well conserved at Cys or Ser and C-terminal splice junctions at the N-terminus of intein.
  • a gene of mature form of polymerase TNA1_pol without intein could be expected, which was determined to be 2,322 bp encoding a protein consisting of 773 amino acid residues.
  • the estimated sequence of polymerase TNA1_pol was compared with those of other DNA polymerases.
  • the deduced mature polymerase TNA1_pol amino acid sequence was 91.0% homologous with KOD DNA polymerase (gi: 52696275), 82.0% homology with deep vent DNA polymerase (gi: 436495) and pfu DNA polymerization. It showed 79.0% homology with enzyme (gi: 18892147).
  • TNA1_pol DNA was prepared by removing intein from the polymerase full length as mentioned above.
  • Mature forms of DNA polymerase containing no intein were prepared as follows. Using primers designed to include overlapping sequences, the N-terminal and C-terminal portions of TNA1-pol were amplified, respectively. The full length of the mature TNA1_pol gene flanked by restriction enzymes Nde I and Xho I sites was then amplified using a mixture of the N-terminal and C-terminal partial amplified PCR segments as two primers and templates. It became. The amplified sequences were digested with restriction enzymes Nde I and Xho I, was linked to the restriction enzyme Nde I, and the plasmid vector pET-24a digested with Xho I (+). The conjugate was transformed into E.
  • TNA1_pol wild-type DNA polymerase TNA1_pol was prepared.
  • site-directed mutagenesis using polymerase chain reaction (PCR) using various synthetic primers corresponding to each specific site according to the existing protocol. Induced.
  • PCR polymerase chain reaction
  • DNA polymerizing activity was verified using the primers of Table 1 below in human genomic DNA PCR.
  • HpbF (SEQ ID NO: 5) HpeR (SEQ ID NO: 6) 2.7 HpaF (SEQ ID NO: 3) HpeR (SEQ ID NO: 6) 6.25 HpbF (SEQ ID NO: 5) HpgR (SEQ ID NO: 7) 10.4 RH1098F (SEQ ID NO: 4) HpeR (SEQ ID NO: 6) 15.4 RH1022F (SEQ ID NO: 8) RH1053R (SEQ ID NO: 9) 13.5
  • DNA polymerase gene sequence SEQ ID NO: 1 DNA polymerase amino acid sequence SEQ ID NO: 2
  • SEQ ID NO: 3 to 9 is a primer sequence.
  • HpaF (SEQ ID NO: 3)
  • RH1098F (SEQ ID NO: 4)
  • HpbF (SEQ ID NO: 5)
  • HpeR SEQ ID NO: 6
  • HpgR (SEQ ID NO: 7)
  • RH1022F (SEQ ID NO: 8)
  • RH1053R (SEQ ID NO: 9)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a mutant DNA polymerase capable of long PCR, and to the genes thereof, and more specifically, to a DNA polymerase that is useful in long PCR polymerization obtained by mutating a wild-type TNA1_pol DNA polymerase derived from the Thermococcus sp. strain, to a gene encoding the mutant DNA polymerase, and to a method for preparing a polymerase using same. The mutant DNA polymerase of the present invention exhibits excellent performance in the PCR of long-chain DNA, compared to conventional wild-types or mutant-types, and thus may be widely applied in various fields that require the amplification of long chains, such as human gene vector analysis, etc.

Description

롱 PCR이 가능한 DNA 중합효소 및 이의 유전자들DNA polymerase and its genes capable of long PCR
본 발명은 롱 PCR을 수행할 수 있는 돌연변이 DNA 중합효소 및 이를 암호화하는 유전자 서열, 제조방법 및 이를 이용한 PCR 중합반응에 관한 것으로서, 보다 상세하게는 써모코커스 속(Thermococcus sp.) NA1으로부터 유래하고 특정 부위에 돌연변이화를 유발시킨 DNA 중합효소, 이의 아미노산 서열, 상기 돌연변이 DNA 중합효소를 암호화하는 유전자 및 이를 이용한 중합효소 제조방법에 관한 것이다. The present invention relates to a mutant DNA polymerase capable of performing long PCR, a gene sequence encoding the same, a preparation method, and a PCR polymerization using the same. More specifically, the present invention relates to a specific DNA derived from Thermococcus sp. The present invention relates to a DNA polymerase causing a mutation at a site, an amino acid sequence thereof, a gene encoding the mutant DNA polymerase, and a method for producing a polymerase using the same.
최근 게놈 연구의 진보로 인하여 막대한 양의 유전자 서열 정보가 획득되어 왔다. 종래의 유전자 공학 및 게놈 연구 기술의 일반적인 조합과 함께, 몇몇의 고호열성 미생물의 게놈 서열은 생명공학 분야에서 열에 강한 효소라는 특성을 가지기 때문에 많은 관심을 받고 있으며, 다양한 열 안정적 효소가 생명공학적인 목적으로 개발되고 있다. Recent advances in genomic research have yielded enormous amounts of gene sequence information. With the general combination of conventional genetic engineering and genomic research techniques, the genomic sequences of some highly thermophilic microorganisms are of interest because they are characterized by heat-resistant enzymes in the field of biotechnology, and various thermally stable enzymes are used for biotechnological purposes. Is being developed.
이러한 열 안정적인 호열성 DNA 중합효소와 이를 이용한 중합효소 연쇄반응 (PCR)은 단백질 및 유전자 연구에서 중요한 기여를 하고 있으며, 현재 생물학의 응용 분야에서 널리 사용되고 있다. 실제로 50개 이상의 DNA 중합효소 유전자들이 호열성 생물 및 고세균을 포함한 다양한 생물체로부터 클론되었으며, 최근에는 일반적인 Taq 중합효소 보다 프루프리딩 (proofreading) 활성도에 기초하여 PCR 에서 높은 충실도 (fidelity)를 가지는 고호열성 세균인 파이로코커스 속 (Pyrococcus sp.) 및 써모코커스 속 (Thermococcus sp.) 균주들로부터 B 패밀리 DNA 중합효소가 분리되어 널리 사용되었다. 그렇지만, 높은 충실도의 중합효소는 DNA 신장 능력 (elongation ability)에 있어 낮기 때문에 상기 장점에도 불구하고 많은 개선이 요구된다. Such thermostable thermophilic DNA polymerase and polymerase chain reaction (PCR) using the same have important contributions in protein and gene research, and are widely used in biological applications. In fact, more than 50 DNA polymerase genes have been cloned from various organisms, including thermophilic and archaea, and recently, highly thermophilic bacteria with higher fidelity in PCR based on proofreading activity than common Taq polymerase. B family DNA polymerase was isolated and widely used from Pyrococcus sp. And Thermococcus sp. Strains. Nevertheless, high fidelity polymerases are low in DNA elongation ability and require many improvements despite the above advantages.
본 발명자들은 이미 PACMANUS 필드의 심해 열수 분출구 지역으로부터 새로운 고호열성 균주를 분리하고 16S rDNA 서열을 분석하여 써모코커스 속 (Thermococcus sp.) 균주로 동정한 다음, 이 균주로부터 열 안정적인 효소를 찾기 위하여 전체 게놈 (genome) 서열을 분석한 바 있었다. 상기 게놈 정보를 분석한 결과 상기 균주가 B 타입의 DNA 중합효소를 가지고 있는 것을 확인하고, 상기 균주로부터 DNA 중합효소에 해당하는 유전자를 클론하고 이 유전자를 대장균에서 발현시켰으며, 재조합 DNA 중합효소를 순수 분리하여 고-신장 능력 및 고-충실도를 가지는 DNA 중합효소에 대해 특허등록한 바 있었다 (대한민국 특허등록 제10-0777227호 참조).We have already isolated new highly thermophilic strains from the deep-sea hydrothermal spout area of PACMANUS field and analyzed the 16S rDNA sequence for thermococcus. Genus (Thermococcussp.) strain, and then analyzed the entire genome sequence to find a heat stable enzyme from the strain. Analysis of the genomic information confirmed that the strain had a DNA polymerase of type B, cloned the gene corresponding to the DNA polymerase from the strain and expressed this gene in E. coli, and recombinant DNA polymerase There was a patent registration for a DNA polymerase having high-extension and high-fidelity by pure separation (see Korean Patent Registration No. 10-0777227).
이에 본 발명자들은 대한민국 특허등록 제10-0777227호의 야생형 TNA1_pol DNA 중합효소를 이용하여, 롱 PCR 중합반응에 적당한 DNA 중합효소를 개발하기 위하여 노력을 계속한 결과, 써모코커스 속 (Thermococcus sp.) 균주로부터 분리된 DNA 중합효소를 돌연변이화시켜 롱(long) PCR 중합반응에 적당한 DNA 중합효소들을 선발하였고, 이들이 인간유전체 연구 등에서의 긴(long) 사슬의 DNA 증폭 반응에 유용하다는 것을 확인하고 본 발명을 완성하였다.  Therefore, the present inventors continued efforts to develop a DNA polymerase suitable for long PCR polymerization reaction using wild-type TNA1_pol DNA polymerase of Korea Patent Registration No. 10-0777227, Thermococus Genus (Thermococcussp.) DNA polymerases isolated from the strains were mutated to select DNA polymerases suitable for long PCR polymerization, and they were found to be useful for long chain DNA amplification reactions in human genome research. This invention was completed.
본 발명은 롱 PCR이 가능한 돌연변이 DNA 중합효소, 이의 유전자들을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a mutant DNA polymerase capable of long PCR, genes thereof.
상기한 목적을 위하여, 본 발명은 써모코커스 속 (Thermococcus sp.) 균주로부터 유래하고 대한민국 특허등록 제10-0777227호의 야생형 TNA1_pol DNA 중합효소를 돌연변이화 하여 긴(long) PCR 중합반응에 유용한 DNA 중합효소를 제공한다.For this purpose, the present invention is a DNA polymerase derived from Thermococcus sp. Strain and mutated to wild type TNA1_pol DNA polymerase of Korea Patent Registration No. 10-0777227 to be useful for long PCR polymerization. To provide.
본 발명의 제1의 형태는 서열번호 2의 아미노산 서열을 포함하는 DNA 중합효소를 제공한다. A first aspect of the invention provides a DNA polymerase comprising the amino acid sequence of SEQ ID NO.
본 명세서에서 사용된 "DNA 중합효소"는 상보적인 주형 DNA 가닥과 프라이머를 이용하여 뉴클레오타이드를 자라는 3'하이드록시 그룹에 연속적으로 첨가함으로써 데옥시뉴클레오타이드 트리포스페이트로부터 5' -> 3'방향으로 DNA 를 합성하는 효소이다. 주형 가닥이 왓슨-크릭 염기쌍에 의해 첨가되어지는 뉴클레오타이드의 순서를 결정한다.As used herein, "DNA polymerase" refers to DNA in the 5 '-> 3' direction from deoxynucleotide triphosphate by successively adding nucleotides to the growing 3'hydroxy group using complementary template DNA strands and primers. It is an enzyme that synthesizes. The template strand determines the order of nucleotides added by Watson-Crick base pairs.
본 발명의 돌연변이 DNA 중합효소에는 그의 "기능적 동등물"도 포함될 수 있다. 여기서 기능적 동등물은 돌연변이 DNA 중합효소의 아미노산 서열들 중에서 일부 또는 전부가 치환되거나 아미노산의 일부가 결실 또는 부가된 아미노산 서열 변형체가 포함된다. 이때 아미노산의 치환은 보존적인 치환이 되는 것이 바람직하다. 천연에 존재하는 아미노산의 보존적 치환의 예를 들면 다음과 같다; 지방족 아미노산(Gly, Ala, Pro), 소수성 아미노산(Ile, Leu, Val), 방향족 아미노산(Phe, Tyr, Trp), 산성 아미노산(Asp, Glu), 염기성 아미노산(His, Lys, Arg, Gln, Asn) 및 황 함유 아미노산(Cys, Met). 또한, 이때 아미노산의 결실은 DNA 중합효소의 활성에 직접 관여하지 않는 부분에 위치하는 것이 바람직하다. Mutant DNA polymerases of the present invention may also include their "functional equivalents." Functional equivalents herein include amino acid sequence variants in which some or all of the amino acid sequences of the mutant DNA polymerase are substituted or a portion of the amino acid is deleted or added. At this time, the substitution of the amino acid is preferably a conservative substitution. Examples of conservative substitutions of amino acids present in nature are as follows; Aliphatic amino acids (Gly, Ala, Pro), hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr, Trp), acidic amino acids (Asp, Glu), basic amino acids (His, Lys, Arg, Gln, Asn ) And sulfur containing amino acids (Cys, Met). In this case, the deletion of the amino acid is preferably located at a portion not directly involved in the activity of the DNA polymerase.
본 발명의 제2의 형태는 서열번호 2의 아미노산 서열을 암호화하는 DNA 중합효소 유전자를 제공한다. 상기 서열번호 2의 아미노산 서열을 암호화 하는 DNA 중합효소 유전자는 유전의 퇴화(degeneration)에 의하여 다양한 형태의 서열을 가질 수 있다. 상기 유전자 서열은 바람직하게는 서열번호 1로 표시되는 DNA 중합효소 유전자이다. 본 발명의 기술분야에 속하는 당업자는 서열번호 2의 DNA 중합효소 서열에 대한 기능적 동등물을 제조할 수 있으며, 본 발명의 범위는 상기 기능적 동등물을 암호화 하는 유전자 서열들을 포함한다. A second aspect of the invention provides a DNA polymerase gene encoding the amino acid sequence of SEQ ID NO. The DNA polymerase gene encoding the amino acid sequence of SEQ ID NO: 2 may have various types of sequences by degeneration of heredity. The gene sequence is preferably a DNA polymerase gene represented by SEQ ID NO: 1. One skilled in the art can make functional equivalents to the DNA polymerase sequence of SEQ ID NO: 2, and the scope of the present invention includes gene sequences encoding such functional equivalents.
본 발명의 제3의 형태는 상기 DNA 중합효소 유전자를 포함하는 재조합벡터를 제공한다.A third aspect of the invention provides a recombinant vector comprising the DNA polymerase gene.
본 발명에서 사용되는 벡터라는 용어는 다른 핵산을 그것에 결합시켜 이송시킬 수 있는 핵산 분자를 의미한다. 발현벡터란 용어는 상기 벡터에 의해 운반되는 각 재조합형 유전자에 의해 암호화되는 단백질을 합성시킬 수 있는 플라스미드, 코스미드 또는 파아지를 포함한다. 바람직한 벡터는 그것이 결합된 핵산을 자기 복제 및 발현시킬 수 있는 벡터이다. 상기 벡터는 플라스미드, 코스미드, 파지미드, 파지, 바이러스 형태의 벡터일 수 있다. 상기 벡터를 이용하여 본 발명의 DNA 중합효소 유전자를 포함하는 재조합 벡터를 만드는 방법은 당업계에 공지되어 있다.The term vector, as used in the present invention, refers to a nucleic acid molecule capable of binding and transferring another nucleic acid thereto. The term expression vector includes plasmids, cosmids or phages capable of synthesizing proteins encoded by each recombinant gene carried by the vector. Preferred vectors are vectors capable of self-replicating and expressing the nucleic acid to which they are bound. The vector may be a vector of plasmid, cosmid, phagemid, phage, viral form. Methods of making recombinant vectors comprising the DNA polymerase gene of the present invention using such vectors are known in the art.
본 발명의 제4의 형태는 상기 재조합벡터로 형질전환된 숙주세포를 제공한다. 본 발명에서 사용되는 '형질전환'이란 용어는 외래 DNA 또는 RNA가 세포에 흡수되어 세포의 유전형이 변화되는 것을 말한다.A fourth aspect of the present invention provides a host cell transformed with the recombinant vector. The term 'transformation' used in the present invention means that foreign DNA or RNA is absorbed into a cell and the genotype of the cell is changed.
본 발명의 제5의 형태는 서열번호 2의 아미노산 서열을 암호화하는 DNA 중합효소 유전자를 포함하는 재조합벡터로 형질전환된 숙주세포를 배양하고 재조합 단백질의 발현을 유도하여 중합효소 단백질을 분리하는 것을 특징으로 하는 중합효소 제조방법을 제공한다.A fifth aspect of the present invention is characterized by culturing a host cell transformed with a recombinant vector comprising a DNA polymerase gene encoding the amino acid sequence of SEQ ID NO: 2 and inducing the expression of the recombinant protein to isolate the polymerase protein. It provides a method for producing a polymerase.
본 발명의 돌연변이 DNA 중합효소는 기존의 야생형이나 돌연변이형에 비해 긴(long) 사슬의 DNA에 대한 PCR에 있어서 월등한 성능을 나타냄으로써 인간의 유전체 분석 등 긴 사슬의 증폭이 필요한 다양한 분야에 널리 응용될 수 있다.The mutant DNA polymerase of the present invention exhibits superior performance in PCR of long chain DNA compared to the wild type or mutant type, and is widely applied to various fields requiring long chain amplification such as human genome analysis. Can be.
도 1은 야생형 중합효소, 돌연변이형 중합효소 및 본 발명의 돌연변이 DNA 중합효소의 인간 게놈 DNA에 대한 PCR 증폭을 비교한 결과를 나타낸 것이다. M, 표준 마커; 레인 1, hprt 2.7kb; 레인 2, hprt 6.25kb; 레인3, hprt 10.4kb; 레인 4, β-글로빈 13.5kb; 레인 5, 미토콘드리아 16.2kb; Ex Taq, 일반적인 Taq 중합효소; TNA1, 야생형 중합효소; TLA, 돌연변이형 중합효소; U7, 본 발명의 돌연변이 DNA 중합효소를 나타낸 것이다. Figure 1 shows the comparison of PCR amplification of the human genomic DNA of the wild type polymerase, mutant polymerase and mutant DNA polymerase of the present invention. M, standard marker; Lane 1, hprt 2.7 kb; Lane 2, hprt 6.25 kb; Lane 3, hprt 10.4 kb; Lane 4, β-globin 13.5 kb; Lane 5, mitochondria 16.2 kb; Ex Taq, common Taq polymerase; TNA1, wild type polymerase; TLA, mutant polymerase; U7, which shows the mutant DNA polymerase of the present invention.
도 2는 재조합 플라스미드 벡터의 개열지도를 나타낸 것이다. 2 shows a cleavage map of the recombinant plasmid vector.
이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
참고예 1. 야생형 중합효소 TNA1_pol 유전자의 클로닝 및 일차적 서열 분석Reference Example 1. Cloning and Primary Sequence Analysis of the Wild-Type Polymerase TNA1_pol Gene
써모코커스 (Thermococcus sp.) NA1 균주는 파퓨아뉴기니 서태평양 영역의 심해 열수 분출구로부터 분리되었다. YPS 배지가 써모코커스 속 NA1 균주를 배양하여 DNA 조작하기 위하여 사용되었고, 써모코커스 속 NA1의 배양 및 균주 유지는 표준적인 방법에 의하여 행하여졌다. 써모코커스 속 NA1 종균 배양을 준비하기 위하여, 25 ml 혈청용기에 들어있는 YPS 배지에 파타겔 플레이트 (phytagel plate) 위에 형성된 단일 콜로니를 접종하였고, 20시간 동안 90℃에서 배양하였다. 종균 배양은 혐기적 단지 (jar)에서 YPS 배지 700 ml을 접종하는데 사용되었고, 20시간 동안 90℃에서 배양되었다.Thermococcus genus (Thermococcus sp.) NA1 strains were isolated from deep-sea hydrothermal spouts in the Western Pacific region of Papua New Guinea. YPS Badges It was used to culture DNA of genus NA1 strain, Culture and strain maintenance of genus NA1 were performed by standard methods. Thermococcus In order to prepare genus NA1 seed culture, YPS medium in 25 ml serum container was inoculated with a single colony formed on a pattagel plate and incubated at 90 ° C. for 20 hours. Seed culture was used to inoculate 700 ml of YPS medium in an anaerobic jar and incubated at 90 ° C. for 20 hours.
실시예 1. 야생형 중합효소 TNA1_pol 유전자의 제조 및 이의 돌연변이화Example 1 Preparation of Wild-type Polymerase TNA1_pol Gene and Mutation thereof
써모코커스 (Thermococcus sp.) NA1 균주의 중합효소 TNA1_pol 유전자를 포함하는 플라스미드 증식 및 핵산 서열분석을 위해 대장균 E. coli DH5α균주가 사용되었다. 대장균 BL21-Codonplus(DE3)-RIL 세포 (스트라타진, 라졸라, 캘리포니아) 및 플라스미드 pET-24a(+) (노바겐, 메이디슨, 위스콘신)이 유전자 발현을 위해 사용되었다. 대장균 균주는 37℃에서 루리아-베르타니(Luria-Bertani) 배지를 사용하여 배양되었고, 카나마이신이 최종 농도 50㎍/ml이 되도록 배지에 첨가되었다.Thermococcus genus (Thermococcus sp.) Escherichia coli for plasmid proliferation and nucleic acid sequencing including polymerase TNA1_pol gene of NA1 strainE. coli DH5α strain was used. E. coli BL21-Codonplus (DE3) -RIL cells (stratazine, Lazola, Calif.) And plasmid pET-24a (+) (Novagen, Madison, Wisconsin) were used for gene expression. E. coli strains were cultured using Luria-Bertani medium at 37 ° C. and added to the medium so that kanamycin was at a final concentration of 50 μg / ml.
또한, DNA 조작은 샘브록 및 러셀에 의해 기술된 바와 같이 표준적인 방법으로 행하여졌다. 써모코커스 속의 게놈 DNA 는 표준적인 방법으로 분리되었다. 제한효소 및 다른 변형 효소는 프로메가 (메이디슨, 위스콘신)로부터 구매하였다. 대장균 세포로부터 플라스미드 DNA의 적은 양의 제조는 플라스미드 미니 키트 (퀴아겐, 힐덴, 독일)을 이용하여 행하여졌다. DNA 서열분석은 빅다이 터미네이터 키트 (PE Applied Biosystems, 포스터 시, 캘리포니아)를 이용하여 자동 서열분석기 (AB3100)를 사용하여 행하여졌다.In addition, DNA manipulations were done in standard ways as described by Sambrok and Russell. Genomic DNA in the thermococcus was isolated by standard methods. Restriction enzymes and other modified enzymes were purchased from Promega (Madison, Wisconsin). Small amounts of plasmid DNA from E. coli cells were made using the plasmid mini kit (Qiagen, Hilden, Germany). DNA sequencing was performed using an automated sequencer (AB3100) using the Big Die Terminator Kit (PE Applied Biosystems, Foster City, CA).
게놈 서열을 분석한 결과, 1,308개의 아미노산으로 구성된 단백질을 암호화하는 오픈 리딩 프레임 (3,927 bp)이 발견되었고, B 패밀리 타입 DNA 중합효소와 매우 높은 유사성을 보였다. 유추되어진 아미노산 서열로부터 얻어진 단백질의 분자량은 151.9 kDa 이었고, 이것은 평균적인 열안정적 DNA 중합효소에 대하여 예측되는 크기보다 훨씬 컸다. 또한 서열 분석을 통하여 상기 DNA 중합효소 유전자가 추정의 3'-5'엑소뉴클레아제 도메인, α-유사 DNA 중합효소 도메인 및 진핵생물 및 고세균의 α-유사 DNA 중합효소 사이에 보존된 중간지역 (Pol III)에 위치한 1605 bp (535 아미노산)의 하나의 인프레임된 서열 (intervening sequence)을 포함하는 것을 확인하였다. 또한, 유추된 인테인 (intein)의 아미노산 서열은 다른 고세균 중합효소의 인테인과 매우 유사한 점도 보였고, pol_1 인테인 1 (Thermococcus sp. strain GE8로부터 유래한 DNA 중합효소 기원 537개 아미노산들, AJ25033)에 81.0%의 상동성, IVS-B (KOD DNA 중합효소 기원 537개 아미노산들, D29671)에 69.0% 상동성 및 인테인 (Deep vent DNA 중합효소 기원 537개 아미노산들, U00707)에 67.0%의 상동성을 보였다.Analysis of the genomic sequence revealed an open reading frame (3,927 bp) encoding a protein consisting of 1,308 amino acids and showed very high similarity with the B family type DNA polymerase. The molecular weight of the protein obtained from the inferred amino acid sequence was 151.9 kDa, which was much larger than expected for the average thermostable DNA polymerase. In addition, sequence analysis revealed that the DNA polymerase gene was conserved between the putative 3'-5 'exonuclease domain, the α-like DNA polymerase domain, and the α-like DNA polymerase of eukaryotes and archaea. It was confirmed to include one intervening sequence of 1605 bp (535 amino acids) located in Pol III). Also, the amino acid sequence of inferred intein was very similar to that of other archaea polymerases, and pol_1 intein 1 (537 amino acids originating from DNA polymerase from Thermococcus sp. Strain GE8, AJ25033). At 81.0% homology, 69.0% homology to IVS-B (537 amino acids of KOD DNA polymerase origin, D29671) and 67.0% of phases to intein (537 amino acids of deep vent DNA polymerase origin, U00707) I showed same sex.
또한, 인테인의 스플라이싱 부위는 인테인의 N-말단에서의 Cys 또는 Ser 및 C-말단 스플라이스 연결부에서 His-Asn-Cys/Thr가 잘 보존되어 있어서 서열 분석에 의하여 예측될 수 있었다. 따라서, 인테인을 포함하지 않는 성숙한 형태의 중합효소 TNA1_pol 의 유전자가 예상되어질 수 있고, 이것은 773개 아미노산 잔기들로 구성된 단백질을 암호화하는 2,322 bp 일 것으로 판단되었다. 중합효소 TNA1_pol의 추정된 서열은 다른 DNA 중합효소의 것들과 비교되었다. 페어와이즈 어라인먼트에서, 유추되어진 성숙한 중합효소 TNA1_pol 아미노산 서열은 KOD DNA 중합효소 (gi:52696275)와 91.0% 상동성, 딥 벤트 DNA 중합효소(gi:436495)와 82.0% 상동성 및 pfu DNA 중합효소(gi:18892147)와 79.0% 상동성을 보였다. PCR 증폭에 있어서 중합효소 TNA1_pol의 성능을 확인하기 위하여, TNA1_pol DNA 는 상기 언급한 바와 같이 중합효소 전장 길이로부터 인테인을 제거하여 제조되었다.In addition, the splicing site of intein could be predicted by sequencing because His-Asn-Cys / Thr was well conserved at Cys or Ser and C-terminal splice junctions at the N-terminus of intein. Thus, a gene of mature form of polymerase TNA1_pol without intein could be expected, which was determined to be 2,322 bp encoding a protein consisting of 773 amino acid residues. The estimated sequence of polymerase TNA1_pol was compared with those of other DNA polymerases. In the pairwise alignment, the deduced mature polymerase TNA1_pol amino acid sequence was 91.0% homologous with KOD DNA polymerase (gi: 52696275), 82.0% homology with deep vent DNA polymerase (gi: 436495) and pfu DNA polymerization. It showed 79.0% homology with enzyme (gi: 18892147). To confirm the performance of polymerase TNA1_pol in PCR amplification, TNA1_pol DNA was prepared by removing intein from the polymerase full length as mentioned above.
인테인 (intein)을 포함하지 않는 DNA 중합효소의 성숙한 형태는 다음과 같이 제조되었다. 오버랩핑 서열을 포함하도록 디자인된 프라이머를 이용하여, TNA1-pol의 N-말단 부분 및 C-말단 부분을 각각 증폭하였다. 그 다음, 제한효소 NdeI 및 XhoI 부위에 의해 플랭크 (flank)된 성숙한 TNA1_pol 유전자의 전장 길이가 두 개의 프라이머 및 주형으로서 상기 N-말단 및 C-말단 부분 증폭된 PCR 분절의 혼합물을 이용하여 증폭되었다. 증폭된 서열은 제한효소 NdeI 및 XhoI으로 소화되었고, 제한효소 NdeI 및 XhoI 으로 소화된 플라스미드 벡터 pET-24a(+)에 연결되었다. 연결물 (ligate)은 대장균 DH5α에 형질전환되었다. 정확한 구조체를 가진 후보자들이 제한효소에 의하여 확인되었고, 클론의 DNA 서열을 분석하여 성숙된 DNA 중합효소의 유전자를 함유하는 것이 확인하여 야생형의 DNA 중합효소 TNA1_pol를 제조하였다. 상기 TNA_pol의 특정부위를 돌연변이화 시키기 위하여, 기존의 프로토콜에 따라 각각의 특정 부위에 해당하는 다양한 합성 프라이머들을 사용하여 중합효소 연쇄반응 (PCR)을 이용하여 특정 부위에 돌연변이화 (site-directed mutagenesis)를 유도하였다. 상기 돌연변이 된 DNA 중합효소의 활성을 검증하여 긴(long) 사슬 증폭이 가능한 DNA 중합효소를 탐색하여, 서열번호 2의 DNA 중합효소를 발명하였다. Mature forms of DNA polymerase containing no intein were prepared as follows. Using primers designed to include overlapping sequences, the N-terminal and C-terminal portions of TNA1-pol were amplified, respectively. The full length of the mature TNA1_pol gene flanked by restriction enzymes Nde I and Xho I sites was then amplified using a mixture of the N-terminal and C-terminal partial amplified PCR segments as two primers and templates. It became. The amplified sequences were digested with restriction enzymes Nde I and Xho I, was linked to the restriction enzyme Nde I, and the plasmid vector pET-24a digested with Xho I (+). The conjugate was transformed into E. coli DH5α. Candidates with the correct structure were identified by restriction enzymes, and the DNA sequences of the clones were analyzed to confirm that they contained the genes of the mature DNA polymerase. Thus, wild-type DNA polymerase TNA1_pol was prepared. In order to mutate the specific site of the TNA_pol, site-directed mutagenesis using polymerase chain reaction (PCR) using various synthetic primers corresponding to each specific site according to the existing protocol. Induced. By examining the activity of the mutated DNA polymerase and searching for DNA polymerase capable of long chain amplification, the DNA polymerase of SEQ ID NO: 2 was invented.
실시예 2. 긴(long) PCR 활성 검증Example 2. Long PCR Activity Verification
본 발명에 따라 제조된 DNA 중합효소의 활성을 검증하기 위하여 인간의 게놈 DNA PCR에 하기 표1의 프라이머를 이용하여 DNA 중합활성을 검증하였다. In order to verify the activity of the DNA polymerase prepared according to the present invention, DNA polymerizing activity was verified using the primers of Table 1 below in human genomic DNA PCR.
표 1
Top Bottom Size
HpbF(서열번호 5) HpeR(서열번호 6) 2.7
HpaF(서열번호 3) HpeR(서열번호 6) 6.25
HpbF(서열번호 5) HpgR(서열번호 7) 10.4
RH1098F(서열번호 4) HpeR(서열번호 6) 15.4
RH1022F(서열번호 8) RH1053R(서열번호 9) 13.5
Table 1
Top Bottom Size
HpbF (SEQ ID NO: 5) HpeR (SEQ ID NO: 6) 2.7
HpaF (SEQ ID NO: 3) HpeR (SEQ ID NO: 6) 6.25
HpbF (SEQ ID NO: 5) HpgR (SEQ ID NO: 7) 10.4
RH1098F (SEQ ID NO: 4) HpeR (SEQ ID NO: 6) 15.4
RH1022F (SEQ ID NO: 8) RH1053R (SEQ ID NO: 9) 13.5
이의 검증 결과 도 1에 나타난 바와 같이 본 발명의 DNA 중합효소가 긴(long) 사슬의 인간 유전체의 증폭에 효과적인 것을 확인하였다.As a result of the verification, as shown in FIG. 1, it was confirmed that the DNA polymerase of the present invention was effective for amplifying a long genome of the human genome.
전체 9개의 서열을 첨부함. DNA 중합효소 유전자 서열 서열번호 1, DNA 중합효소 아미노산 서열 서열번호 2, 서열번호 3 내지 9는 프라이머 서열.Attached a total of 9 sequences. DNA polymerase gene sequence SEQ ID NO: 1, DNA polymerase amino acid sequence SEQ ID NO: 2, SEQ ID NO: 3 to 9 is a primer sequence.
HpaF (서열번호 3)HpaF (SEQ ID NO: 3)
RH1098F (서열번호 4) RH1098F (SEQ ID NO: 4)
HpbF (서열번호 5) HpbF (SEQ ID NO: 5)
HpeR (서열번호 6HpeR (SEQ ID NO: 6
HpgR (서열번호 7) HpgR (SEQ ID NO: 7)
RH1022F (서열번호 8) RH1022F (SEQ ID NO: 8)
RH1053R (서열번호 9) RH1053R (SEQ ID NO: 9)

Claims (6)

  1. 서열번호 2의 아미노산 서열을 포함하는 DNA 중합효소.A DNA polymerase comprising the amino acid sequence of SEQ ID NO.
  2. 서열번호 2의 아미노산 서열을 암호화하는 DNA 중합효소 유전자.A DNA polymerase gene encoding the amino acid sequence of SEQ ID NO.
  3. 제 2 항에 있어서, 상기 DNA 중합효소 유전자는 서열번호 1인 것을 특징으로 하는 DNA 중합효소 유전자.The DNA polymerase gene according to claim 2, wherein the DNA polymerase gene is SEQ ID NO: 1.
  4. 제 2 항의 DNA 중합효소 유전자를 포함하는 재조합벡터.Recombinant vector comprising a DNA polymerase gene of claim 2.
  5. 제 4 항의 재조합벡터로 형질전환된 숙주세포.A host cell transformed with the recombinant vector of claim 4.
  6. 제 5 항의 숙주세포를 배양하고 재조합 단백질의 발현을 유도하여 중합효소 단백질을 분리하는 것을 특징으로 하는 중합효소 제조방법.A method for producing a polymerase, comprising culturing the host cell of claim 5 and inducing the expression of the recombinant protein to separate the polymerase protein.
PCT/KR2010/003074 2010-05-14 2010-05-14 Dna polymerase capable of long pcr, and genes thereof WO2011142492A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2010/003074 WO2011142492A1 (en) 2010-05-14 2010-05-14 Dna polymerase capable of long pcr, and genes thereof
KR1020137000005A KR101416097B1 (en) 2010-05-14 2010-05-14 DNA Polymerase for Long PCR and Genes Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/003074 WO2011142492A1 (en) 2010-05-14 2010-05-14 Dna polymerase capable of long pcr, and genes thereof

Publications (1)

Publication Number Publication Date
WO2011142492A1 true WO2011142492A1 (en) 2011-11-17

Family

ID=44914536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003074 WO2011142492A1 (en) 2010-05-14 2010-05-14 Dna polymerase capable of long pcr, and genes thereof

Country Status (2)

Country Link
KR (1) KR101416097B1 (en)
WO (1) WO2011142492A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043769A1 (en) * 2005-10-08 2007-04-19 Korea Ocean Research & Development Institute Hyperthermophilic dna polymerase and methods of preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043769A1 (en) * 2005-10-08 2007-04-19 Korea Ocean Research & Development Institute Hyperthermophilic dna polymerase and methods of preparation thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAE, H. ET AL.: "Characterization of DNA polymerase from the hyperthermophilic archaeon Thermococcus marinus and its applicaiton to PCR", EXTREMOPHILES, vol. 13, no. 4, 3 May 2009 (2009-05-03), pages 657 - 667 *
NISHIOKA, M. ET AL.: "Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme", JOURNAL OF BIOTECHNOLOGY., vol. 88, no. 2, 15 June 2001 (2001-06-15), pages 141 - 149 *
TAKAGI, M. ET AL.: "Characterization of DNA polymerase from Pyrococcus sp. strain KOD 1 and its application to PCR", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 63, November 1997 (1997-11-01), pages 4504 - 4510 *

Also Published As

Publication number Publication date
KR101416097B1 (en) 2014-07-08
KR20130030799A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
Bath et al. His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus
CN102421892B (en) A diguanylate cyclase, method of producing the same and its use in the manufacture of cyclic-di-gmp and analogues thereof
Backert et al. Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins
Valiunas et al. Evaluation of the DNA-dependent RNA polymerase β-subunit gene (rpoB) for phytoplasma classification and phylogeny
CN108570461B (en) Alkaline protease BmP mutant for improving specific activity and coding gene thereof
JP2019129847A (en) Dna polymerases from red sea brine pool organisms
CN102094028A (en) Chinese rose RcLEA coding sequence and application thereof
JP5394928B2 (en) THERMUSEGGERTSSONII DNA polymerase
KR100777230B1 (en) Mutant dna polymerases and their genes from themococcus
KR100844358B1 (en) Mutant DNA Polymerases and Their Genes
WO2011142492A1 (en) Dna polymerase capable of long pcr, and genes thereof
Wang et al. Novel cyanophage photosynthetic gene psbA in the floodwater of a Japanese rice field
CN115896063A (en) High-fidelity Pfu DNA polymerase mutant, preparation method and application thereof
KR100825279B1 (en) Protein for enhancing dna polymerase activity and genes encoding it
KR102026836B1 (en) Novel lipase gene Lip-1420 derived from soil metagenome and use thereof
KR101203920B1 (en) Phosphatase of Sequence Number 6 and Genes Encoding it
CN107619832B (en) Chloronitrophenol compound oxidoreductase gene cluster cnpAB and application thereof
KR20110126009A (en) Dna polymerase p7 and genes thereof
KR20110126011A (en) Dna polymerase t7 and genes thereof
KR20110126012A (en) Dna polymerase f7 and genes thereof
Ghauri et al. Phylogenetic Analysis of Bacterial Isolates from Man-Made High-pH, High-Salt Environments and Identification of Gene-Cassette–Associated Open Reading Frames
Meena et al. Molecular characterization, phylogenetic and in silico sequence analysis data of trehalose biosynthesis genes; otsA and otsB from the deep sea halophilic actinobacteria, Streptomyces qinglanensis NIOT-DSA03
Basila Mutational studies to characterize the interaction between the GTPase McrB and the endonuclease McrC
Keown From Single Amino Acid to Environmental Ecology and Back: The Saga of DNA Polymerase I
KR100860083B1 (en) Novel gene encoding lipase from tidal flat metagenome and a lipase protein encoded by it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000005

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10851444

Country of ref document: EP

Kind code of ref document: A1