WO2011142160A1 - デジタル放送受信装置およびデジタル放送受信方法 - Google Patents

デジタル放送受信装置およびデジタル放送受信方法 Download PDF

Info

Publication number
WO2011142160A1
WO2011142160A1 PCT/JP2011/054506 JP2011054506W WO2011142160A1 WO 2011142160 A1 WO2011142160 A1 WO 2011142160A1 JP 2011054506 W JP2011054506 W JP 2011054506W WO 2011142160 A1 WO2011142160 A1 WO 2011142160A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
broadcast
information
unit
motion warning
Prior art date
Application number
PCT/JP2011/054506
Other languages
English (en)
French (fr)
Inventor
城杉 孝敏
村上 真一
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010107857A external-priority patent/JP2011239119A/ja
Priority claimed from JP2010107856A external-priority patent/JP5478353B2/ja
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to CN2011800230347A priority Critical patent/CN102884806A/zh
Priority to US13/696,624 priority patent/US20130094617A1/en
Publication of WO2011142160A1 publication Critical patent/WO2011142160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/488Data services, e.g. news ticker
    • H04N21/4882Data services, e.g. news ticker for displaying messages, e.g. warnings, reminders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4348Demultiplexing of additional data and video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4382Demodulation or channel decoding, e.g. QPSK demodulation

Definitions

  • the present invention relates to a technique for transmitting and receiving emergency information transmitted by digital broadcasting.
  • the emergency warning broadcast activation flag included in the digital broadcast transmission signal is monitored, and if the emergency warning broadcast activation flag is “1”, forced service switching or normal energization from the standby state is performed. It is possible to provide emergency warning broadcasts to viewers quickly by shifting to. (See Patent Document 1)
  • Patent Document 1 discloses a reduction in power consumption in a so-called standby state where emergency warning broadcasting is monitored.
  • the emergency alert broadcast activated by the emergency alert broadcast activation flag has the emergency alert broadcast signal compressed and encoded on the transmission side, and it has been necessary to perform decompression decoding processing on the receiver side for reproduction. . For this reason, a delay time for compression / decompression has occurred before the emergency warning broadcast is reproduced.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide detailed operations of a transmission device and a reception device capable of reproducing emergency earthquake warnings transmitted by digital broadcasting without delay as much as possible. There is.
  • a transmission method and a reception device having a transmission method and a reception method capable of reproducing the emergency earthquake early warning on the receiver side without delay as much as possible. Can be provided.
  • FIG. 1 is a block diagram showing a configuration of a digital broadcast receiving apparatus that receives earthquake motion warning information transmitted using an AC signal included in segment number # 0 in Embodiment 1 according to the present invention.
  • FIG. 2 shows a block diagram of an embodiment of a digital broadcast transmitting apparatus that transmits a digital broadcast received by the digital broadcast receiving apparatus of the present invention.
  • a plurality of MPEG-2 transport streams (hereinafter referred to as TS) are re-multiplexed into one TS, subjected to transmission path coding processing, and then subjected to IFFT (Inverse Fast).
  • the signal is converted into an OFDM (Orthogonal Frequency Division Multiplexing) transmission signal composed of a plurality of subcarriers by Fourier Transform and transmitted as a broadcast wave.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the OFDM transmission signal in this digital broadcasting system has a configuration in which 13 OFDM segments obtained by dividing a transmission bandwidth of 6 MHz into 14 parts are connected, and hierarchical transmission of up to three layers is possible in units of OFDM segments. It has become.
  • the central segment (segment number # 0) can be set as a partial reception layer assuming reception by a mobile receiver such as a mobile phone.
  • FIG. 31 shows the segment structure.
  • a receiver that can receive all 13 segments of the OFDM transmission signal is called a 13-segment receiver, and a receiver that can receive one central segment of the OFDM transmission signal is called a one-segment receiver.
  • TMCC Transmission Multiplexing Configuration
  • Control control information for smooth demodulation operation of the receiver, such as system identification, transmission parameter switching index, emergency warning broadcast start flag, transmission parameters of each layer, etc.
  • AC auxiliary Channel
  • This frame configuration is shown in FIG. In FIG. 32, the carrier positions and the number of carriers of TMCC signals and AC signals added as OFDM subcarriers differ depending on transmission parameters. Details will be described later.
  • emergency warning broadcasting activated by an emergency warning broadcast activation flag transmitted by TMCC is a system that provides emergency information to viewers when a tsunami warning is issued due to the occurrence of an earthquake. It is used to inform more quickly.
  • the broadcast station sets the emergency alert broadcast activation flag included in the TMCC signal to “ON” and broadcasts the content with the content that can be recognized as the emergency alert broadcast.
  • the Earthquake Early Warning is a method for immediately estimating the magnitude of an epicenter or earthquake by analyzing initial microtremors (so-called P waves) and main motions (so-called S waves) captured by a seismometer near the epicenter immediately after the occurrence of an earthquake. This is information that estimates the seismic intensity of major motions in each location based on the information and informs it as quickly as possible.
  • the Earthquake Early Warning is intended to ensure the safety of the viewer without panicking according to the surrounding situation by notifying the viewer before a strong shake arrives. This earthquake early warning is transmitted using an AC signal included in segment number # 0.
  • Earthquake motion warning information refers to information related to earthquake motion warning performed in accordance with the provisions of Article 13, Paragraph 1 of the Meteorological Business Law (Act No. 165 of 1974).
  • 201 is an information source encoding unit
  • 202 is an MPEG2 multiplexing unit
  • 203 is a TS remultiplexing unit
  • 204 is an RS (Reed-Solomon) encoding unit
  • 205 is a layer division unit.
  • Reference numeral 206 denotes a parallel processing unit, which includes three systems a, b, and c.
  • 207 is a hierarchical synthesis unit
  • 208 is a time interleaving unit
  • 209 is a frequency interleaving unit
  • 210 is an OFDM frame configuration unit
  • 211 is an inverse fast Fourier transform (hereinafter IFFT) unit
  • 212 is a guard interval addition unit
  • 213 is a transmission unit
  • 214 is a pilot signal component
  • 215 is a TMCC signal component
  • 216 is an AC signal component.
  • a transport stream (TS) defined in MPEG2 Systems is converted into one TS by re-multiplexing one or a plurality of inputs, and after a plurality of transmission path encodings are performed according to the service intention, Finally, it is transmitted as one OFDM signal.
  • the transmission spectrum of television broadcasting is formed by connecting 13 OFDM blocks (hereinafter referred to as OFDM segments) obtained by dividing the channel bandwidth of television broadcasting into 14 equal parts. By structuring the carrier configuration of the OFDM segment so that a plurality of segments can be connected, a transmission bandwidth suitable for media can be realized in segment width units.
  • channel coding is performed in units of OFDM segments, a part of one television channel can be a fixed reception service and the rest can be a mobile reception service.
  • Such transmission is defined as hierarchical transmission.
  • Each layer is configured by one or a plurality of OFDM segments, and parameters such as a carrier modulation scheme, an inner code coding rate, and a time interleave length can be set for each layer.
  • the number of possible layers is up to 3 levels, and partial reception is also counted as one layer.
  • the number of segments and transmission path coding parameters in each layer are determined according to the organization information, and are transmitted by the TMCC signal as control information for assisting the operation of the receiver.
  • transmission path coding can be performed for frequency interleaving only within that segment. Thereby, a part of television service can be partially received.
  • this digital broadcasting system has three different OFDM carrier intervals. These are identified as system modes.
  • the carrier interval is about 4 kHz in mode 1, about 2 kHz in mode 2, and about 1 kHz in mode 3. Although the number of carriers varies depending on the mode, the information bit rate that can be transmitted in any mode is the same.
  • the information source encoding unit 201 encodes the video signal, the audio signal, and the data, and the MPEG2 multiplexing unit 202 generates one TS.
  • the plurality of TSs output from the plurality of MPEG2 multiplexing units are input to the TS remultiplexing unit 203 so as to have an arrangement suitable for signal processing in units of data segments.
  • the TS re-multiplexing unit 203 it is converted into a burst signal format of 188 bytes by a clock that is four times the IFFT sample clock, and a Reed-Solomon outer code is added and converted into a single TS by the RS encoding unit 204.
  • the hierarchical division unit 205 divides the hierarchy according to the designation of the hierarchical information, and inputs it to a maximum of three parallel processing units 206a, 206b, and 206c.
  • the parallel processing units 206a, 206b, and 206c digital data processing such as error correction coding and interleaving, and carrier modulation are mainly performed, respectively.
  • a delay correction is performed in advance for a delay time difference between hierarchies caused by a time axis operation of byte interleaving and bit interleaving, thereby adjusting timing. Error correction, interleave length, and carrier modulation scheme are set independently in each layer.
  • the signal hierarchically combined by the layer combining unit 207 effectively demonstrates error correction coding capability against electric field fluctuations and multipath interference in mobile reception.
  • the data is input to the time interleaver 208 and the frequency interleaver 209.
  • the time interleaving method is convolutional interleaving in order to shorten the combined delay time and suppress the memory capacity of the receiver.
  • the frequency interleave unit is configured by combining inter-segment and inter-segment interleaving so that a sufficient interleaving effect can be exhibited while ensuring a segment structure.
  • TMMP Transmission and Multiplexing Configuration and Control
  • AC Alternative Channel
  • OFDM frame configuration section 210 information data from frequency interleaving section 209, pilot signal for synchronous reproduction from pilot signal configuration section 214, TMCC signal from TMCC configuration section 215, and AC signal from AC signal configuration section 216 are used.
  • An OFDM frame is constructed. This frame configuration is shown in FIG. Si, j represents a carrier symbol in the data segment after interleaving.
  • SP Spcattered Pilot
  • SP is a reference pilot symbol for the receiver to perform quasi-synchronous detection. As shown in FIG. 32, it is inserted once in 12 carriers in the carrier direction and once in 4 symbols in the symbol direction. If SP is interpolated in the symbol direction on the receiving side, SP of 3 (12/4) carrier interval can be obtained.
  • the guard interval length is 1/4 of the effective symbol length
  • multipath up to the maximum delay time that does not cause intersymbol interference is achieved by interpolation processing (transmission path characteristics estimation) by SP of 3 carrier intervals.
  • the guard interval ratio is 1/4
  • an SP of 4 carrier intervals may be used in principle, but it is inserted once in 4 symbols in the symbol direction in consideration of the characteristics of the interpolation filter.
  • the example of FIG. 32 is mode 1, but the carrier number in mode 1 is from 0 to 107, whereas in mode 2 and mode 3, it is from 0 to 215 and from 0 to 431, respectively.
  • the AC signal is arranged as shown in FIG. 32 and has a data amount of 204 bits per carrier. In addition, two AC signals are arranged for each segment in mode 1, four in mode 2, and eight in mode 3.
  • TMCC signals are arranged as shown in FIG. 32 and have a data amount of 204 bits per carrier. Further, one TMCC signal is arranged for each segment in mode 1, two in mode 2, and four in mode 3.
  • All signals after the frame configuration are converted into OFDM signals by IFFT operation of IFFT section 211, guard intervals are added by guard interval adding section 212 and converted to OFDM transmission signals, and digital broadcasting at a frequency determined by transmitting section 213 Converted to a signal.
  • 101 is an antenna
  • 102 is a channel selection unit
  • 103 is an orthogonal demodulation unit
  • 104 is a fast Fourier transform (hereinafter referred to as FFT) unit
  • 105 is a demodulation and decoding operation that performs demodulation and decoding operations of the present digital broadcasting system from the FFT unit 104 to the TS output.
  • FFT fast Fourier transform
  • 106 is a descrambling unit
  • 107 is a demux unit
  • 108 is a compressed broadcast video signal
  • 114 and 115 are switching units
  • 109 is decoded via the switching unit 114
  • 110 is an audio output unit for outputting a broadcast audio signal decoded via the switching unit 115, and these are mainstream blocks for reproducing the broadcast video signal and the broadcast audio signal. It is.
  • Reference numeral 111 denotes a synchronous reproduction unit
  • 112 denotes a frame extraction unit
  • 113 denotes a TMCC decoding unit, which performs synchronous signal reproduction for performing the operation of the demodulation decoding unit 105 and obtains information such as transmission parameters.
  • the channel selection unit 102, the TMCC decoding unit 113, and the switching units 114 and 115 constitute a broadcast receiving unit 119.
  • 116 is an AC decoding part
  • 117 is a discrimination part, and these constitute the earthquake motion warning information receiving part 120.
  • the switching units 114 and 115 switch between the video signal and the audio signal of the decoding unit 108 and the determination unit 117, respectively.
  • 118 is a control unit that performs operation control and power control of the broadcast receiving unit 119 and the earthquake motion warning information receiving unit 120.
  • Control unit 118, broadcast receiving unit 119, and earthquake motion warning information receiving unit 120 constitute digital broadcast receiving apparatus 121.
  • the channel frequency band to be received by the channel selection unit 102 is extracted from the digital broadcast received by the antenna 101, the UHF television broadcast channel is designated, and the signal selected by the orthogonal demodulation unit 103 is orthogonally demodulated into a baseband signal.
  • the FFT unit 104 converts the frequency axis processing, and FFT is performed for a period corresponding to an effective symbol among the OFDM symbols. At that time, the multipath situation of the received signal is taken into consideration, and the FFT processing is performed in an appropriate period.
  • the demodulation / decoding unit 105 performs demodulation processing on each carrier on the frequency axis (for example, synchronous demodulation using scattered pilots (SP: see FIG.
  • TS transport stream
  • the descramble unit 106 scrambles the TS signal that has been scrambled for copyright protection, and outputs the descrambled signal to the demax unit 107.
  • a desired compressed broadcast video signal and a compressed digital signal of the broadcast audio signal are extracted and output to the decoding unit 108.
  • the decoding unit 108 decodes the compressed broadcast video signal and the compressed broadcast audio signal, the decoded broadcast video signal is sent to the video output unit 109 via the switching unit 114, and the decoded broadcast audio signal is the switching unit 115. Is output to the audio output unit 110.
  • the synchronization reproduction unit 111 receives the baseband signal from the orthogonal demodulation unit 103 and reproduces the OFDM symbol synchronization signal and the FFT sample frequency according to the mode and the guard interval length.
  • the mode and guard interval length can also be determined based on the correlation of the guard period of the OFDM signal.
  • the frequency position of the TMCC signal is detected from the output signal of the FFT unit 104.
  • the frame extraction unit 112 demodulates the TMCC signal at the detected frequency position and extracts a frame synchronization signal from the TMCC signal.
  • the frame synchronization signal is output to the synchronization reproduction unit 111, and phase adjustment with the symbol synchronization signal is performed.
  • the TMCC decoding unit 113 performs error correction of the differential cyclic code on the demodulated TMCC signal, and extracts TMCC information such as a hierarchical structure and transmission parameters.
  • the TMCC information is output to the demodulation / decoding unit 105 and used as various control information for the demodulation / decoding process.
  • the earthquake motion warning information receiving unit 120 includes an AC decoding unit 116 and a discrimination unit 117.
  • the AC decoding unit 116 extracts the seismic motion warning information when the configuration identification of the AC signal of the segment No. 0 of the FFT output indicates that the seismic motion warning information is transmitted (“001”, “110”: described later). . If the configuration identification is other than that, the AC signal is not decoded.
  • the extracted seismic motion warning information is discriminated by the discriminating unit 117, and when the seismic motion warning is to be issued, the information is converted into a video signal or an audio signal.
  • the video signal is sent to the video output unit 109 via the switching unit 114.
  • the audio signal is output to the audio output unit 110 via the switching unit 115.
  • the control unit 118 controls the switching units 114 and 115 when the emergency warning broadcast activation flag information from the TMCC decoding unit 113 and the seismic motion warning information from the seismic motion warning information receiving unit 120 are input and the seismic motion warning should be issued. Then, the video signal for the earthquake motion warning is output to the video output unit 109, and the audio signal for the earthquake motion warning is output to the audio output unit 110.
  • AC signal is an additional information signal related to broadcasting. Additional information related to broadcasting refers to additional information related to transmission control of modulated waves or earthquake motion warning information. Earthquake motion warning information is transmitted using the segment No. 0 AC carrier.
  • the AC signal is arranged as shown in FIG. 32 and has a data amount of 204 bits per carrier.
  • Fig. 3 shows the bit assignment of 204 bits B0 to B203 of the AC signal arranged in segment No.0.
  • One bit of B0 is used as a reference for differential demodulation.
  • the 3 bits from B1 to B3 are used as configuration identification to distinguish whether it is additional information or earthquake motion warning information.
  • Additional information or seismic motion warning information is sent out by 200 bits from B4 to B203.
  • earthquake motion warning information the same ground motion warning information is transmitted on all AC carriers in segment No. 0.
  • seismic motion warning information transmitted on different AC carriers can be analog-added on the receiver side, so that even smaller CN ratios can be received. .
  • Fig. 4 shows the standard for differential demodulation of B0.
  • the modulation method of the AC carrier is DBPSK, and the amplitude and phase reference for differential demodulation are given by Wi in FIG.
  • Fig. 5 shows the bit allocation when the seismic motion warning information is transmitted by the AC signal of segment No.0.
  • the AC is used for broadcasters as usual and transmits additional information related to transmission control of modulated waves.
  • ‘001’ and ‘110’ representing the transmission of the earthquake motion warning information have the same code as the first 3 bits (B1 to B3) of the TMCC synchronization signal, and are alternately transmitted for each frame at the same timing as the TMCC signal.
  • ⁇ 13 bits of B4 to B16 are used as synchronization signals.
  • the code obtained by concatenating the configuration identification and the synchronization signal is the same code as the TMCC synchronization signal and is composed of a 16-bit word.
  • the same bits as the TMCC synchronization signals (B1 to B16) are allocated, and w0 and w1 are alternately transmitted for each frame at the same timing to transmit the same code as TMCC. Since analog addition can be performed between the TMCC and the AC signal, the reception sensitivity of frame synchronization in the receiver can be improved.
  • 2 bits B17 to B18 are the start / end flags of earthquake motion warning information.
  • FIG. 6 shows the meaning of the start / end flag of the earthquake motion warning information.
  • 2 bits are assigned as the start / end flag of the seismic motion warning information in order to indicate that the receiver is automatically activated and that the seismic motion warning information is transmitted by an AC signal.
  • the start / end flag when representing the seismic motion warning detailed information or its test signal is set to ‘00’.
  • 2 bits are used for the start / end flag, and the inverted signal has the maximum intersymbol distance. Also, “10” and “01” are not used in order to ensure the reliability of the start / end flag.
  • Fig. 7 shows the meaning of the earthquake motion warning information update flag.
  • the update flag is incremented by 1 each time a change occurs in the details of the series of seismic motion warning details transmitted when the start / end flag is '00', '00' is the start value, and '11' Next to, it shall return to '00'.
  • the update flag is set to “11”.
  • Figure 8 shows an example of sending update flags.
  • the first report, the second report,... Show the state where the signal identification shown in FIG. 9 (described later) or the contents of the earthquake motion information shown in FIG. Even if the current time or page type shown in FIG. 10 (described later) changes, the value of the update flag does not change.
  • Fig. 9 shows the meaning of signal identification.
  • the signal identification of earthquake motion warning information is a signal used to identify the type of earthquake motion warning detailed information.
  • signal identification '000' / '001' / '010' / '011' is transmitted, and when the start / end flag is '11', signal identification '111' Is sent out.
  • the seismic motion warning detailed test signal (with / without corresponding area) and the seismic motion warning detailed information (with / without corresponding area) are not sent simultaneously.
  • the total number of earthquake motion information can be sent up to two, but the test signal and this signal are not sent simultaneously.
  • the 88 bits from B24 to B111 are the detailed information on earthquake motion warning.
  • Fig. 10 shows the details. Bit allocation of detailed information on earthquake motion warning is specified for each signal identification.
  • a receiver that supports automatic startup with time adjustment using TOT (Time Offset Table) or a communication line, etc., receives the data by comparing the receiver time with the transmitted time information. The reliability of the seismic motion warning information can be confirmed.
  • TOT Time Offset Table
  • the allocation of information to be transmitted differs depending on the page type code.
  • the receiver can know which information is transmitted by checking the page type. When the page type is “0”, as shown in FIG. 11 (described later), information indicating the target area of the earthquake motion warning is transmitted. When the page type is ‘1’, information on the earthquake motion alarm source is transmitted as shown in FIG. 12. However, the seismic motion information of both page types “0” and “1” is not necessarily transmitted.
  • the page type is set to ‘0’ and all the earthquake motion information is set to ‘1’.
  • Broadcaster identification 11 bit is uniquely assigned to broadcasters nationwide. Broadcasters can be identified only by AC signals.
  • Fig. 11 shows earthquake motion information when the page type is '0'.
  • the information indicates the target area of the earthquake motion warning
  • FIG. 11 shows the bit allocation of the target area.
  • the bit assigned to the area including the target area of the earthquake motion warning is “0”, and the bit allocated to the area not including the target area of the earthquake motion warning is “1”. If earthquake information is not sent, set all to '1'.
  • the earthquake motion information (regional information) of page type '0' may be sent as the first and second, respectively.
  • the update flag is not updated when the transmission of alarm information (regional information) changes from the first to the second, or from the second to the first.
  • FIG. 12 shows earthquake motion information when the page type is “1”.
  • “Earthquake motion warning identification” assigns 9 bits to identify earthquake motion warning information when multiple earthquake motion warnings occur. If it is determined based on the time (in seconds) to distinguish multiple earthquake motion warning information, it is possible to identify the earthquake motion warning information for the past 8 minutes and 32 seconds with 9-bit earthquake motion warning identification. . By comparing the current time of B24 to B54 with the occurrence time of B101 to B110, the number of seconds that have elapsed since the occurrence of the earthquake motion can be known.
  • the B57 seismic motion information identification is “0” when the transmitted seismic motion information is the first information, and “1” when the second information is the second information.
  • the occurrence time is based on the same standard year / month / day / hour / hour / minute / second as the current time indicated by B24 to B54, the number of seconds elapsed from the reference time is expressed in binary, and the lower 10 bits are assigned MSB first.
  • the 10 bits of B112 to B121 shall be CRC-10.
  • the parity bits generated by using the shortened code (187,105) of the differential cyclic code (273,191) are set in the 82 bits of B122 to B203, similarly to the error correction code of TMCC.
  • the configuration identifications B1 to B3 and the synchronization signals B4 to B16 are not subject to error correction.
  • the information of B17 to B121 is error-correction coded with the shortened code (187,105) of the difference set cyclic code (273,191).
  • the configuration identification is set to the value shown in FIG.
  • the start / end flag is set to “With seismic motion warning detailed information: '00” ”, and at the same time, an update flag, signal identification, seismic motion warning detailed information, and a parity bit are set.
  • the start / end flag is set to “No earthquake motion warning detailed information: '11'”.
  • FIG. 13 shows a TMCC signal configuration (TMCC carrier bit allocation).
  • the TMCC signal is used to transmit information related to the demodulation operation of the receiver, such as a hierarchical configuration and transmission parameters of each OFDM segment.
  • the synchronization signal consists of a 16-bit word.
  • the synchronization signal is used to establish synchronization of the TMCC signal and OFDM frame synchronization.
  • the polarity of the synchronization signal is inverted for each frame. Since the TMCC information is not inverted every frame, pseudo synchronization pull-in can be avoided by inversion every frame.
  • the segment format identification is a signal for identifying whether the segment is a differential modulation unit or a synchronous modulation unit. It is composed of 3 -bit words, and is assigned “111” in the case of the differential modulation unit and “000” in the case of the synchronous modulation unit.
  • the number of TMCC carriers varies depending on the segment format. When the partial reception segment belongs to the synchronous modulation unit, there is only one TMCC carrier. Even in this case, 3 bits are assigned to the identification signal so that reliable decoding is possible, and the inverted signal has the maximum intersymbol distance.
  • TMCC information is information that assists the demodulation and decoding operations of the receiver, such as system identification, transmission parameter switching index, emergency warning broadcast activation flag, current information, and next information.
  • the current information indicates the current hierarchical configuration and transmission parameters, and the next information indicates the transmission parameters after switching.
  • the transmission parameter switching index is counted down to notify the receiver of the switching and take timing.
  • This index usually takes a value of ‘1111’, but when the transmission parameter is switched, 1 is subtracted for each frame from 15 frames before the switching. It should be noted that after “0000”, it returns to “1111”.
  • the switching timing is the next frame synchronization for sending “0000”. That is, the new transmission parameter is applied from the frame returned to ‘1111’.
  • the next information can be set or changed at an arbitrary time before the switching countdown, but cannot be changed during the countdown.
  • FIG. 15 shows transmission parameter information included in the current / next information. If there is no unused layer or next information in the transmission parameter information, those bits are set to ‘1’.
  • Fig. 16 shows the allocation of emergency warning broadcast activation flags.
  • the activation flag is set to '1' when activation control for the receiver is performed, and the activation flag is set to '0' when activation control is not performed.
  • the partial reception flag is set to “1” when the segment at the center of the transmission band is set for partial reception, and is set to “0” otherwise.
  • segment No. 0 is set for partial reception
  • the hierarchy is defined as the A hierarchy in FIG. If there is no next information, the flag is set to ‘1’.
  • the concatenated transmission phase correction amount is control information used in the terrestrial digital audio broadcasting system with a common transmission system.
  • TMCC information Of the 102 bits of TMCC information, 90 bits are currently defined, but the remaining 12 bits are reserved for future expansion. In operation, all the reserved bits are stuffed with '1'.
  • TMCC information B20 to B121 is error-correction-encoded with a shortened code (184,102) of the difference set cyclic code (273,191).
  • TMCC information requires transmission reliability higher than that of a data signal in order to specify transmission parameters and control a receiver.
  • the error correction code of TMCC is a shortened code of the difference set cyclic code (273,191) ( 184,102). Further, since the TMCC signal is transmitted by a plurality of carriers, it is possible to reduce the required C / N and improve the reception performance by analog addition of the signals.
  • the TMCC signal can be received with a smaller C / N than the data signal.
  • the synchronization signal and the segment format identification information are excluded from the error correction target, and all bits of a plurality of TMCC carriers are made the same to enable majority determination for each bit including parity bits.
  • EWS emergency alert broadcasting
  • the TMCC emergency warning broadcast activation flag is always set to '1' during the period in which emergency warning broadcasting is performed by any service in the TS (network), regardless of the sending layer. .
  • a receiver that supports automatic activation periodically monitors the activation flag for TMCC emergency warning broadcasting.
  • the emergency information descriptor is described in the descriptor area 1 of the PMT of the service that performs the emergency alert broadcast. In order to clearly indicate that an emergency warning broadcast is being performed to an EWS-compatible receiver, the descriptor is always described in the PMT of the emergency warning broadcast service itself.
  • the flag can be set to “1”.
  • the period from when the emergency alert activation flag is set to “0” to “1” is set to 1 second or more and 4 OFDM Frames or more.
  • the operator since the receiver continues the EWS process for 90 seconds after the emergency warning activation flag becomes '0', the operator must change the target area for 90 seconds without changing the EWS.
  • the emergency alarm activation flag must be set to '1'.
  • the emergency information descriptor in the descriptor area 1 in the PMT of the reception TS is monitored.
  • start_end_flag 1 of the emergency information descriptor and area_code corresponds to the area code set in the receiver, the service described in the emergency information descriptor is selected and received.
  • the monitoring of the PMT is continued while the emergency warning broadcast activation flag of TMCC is “1”.
  • the emergency alert broadcast ends when the TMCC emergency alert broadcast activation flag becomes 0 or when the PMT emergency information descriptor is deleted. However, emergency warning broadcasts may be resumed due to the operation of “Changes in description of emergency information descriptor”.
  • the area code set in the receiver may differ from the actual location. Therefore, start operation should be performed regardless of area_code in the above fixed receiver operation (2). However, this does not apply when the receiving area can be specified by other means.
  • Other operations are basically the same as the above fixed receiver operation, but it is also effective to perform a warning operation to the viewer such as blinking the portable receiver as an alternative means of the EWS reception process.
  • FIG. 17 shows the above emergency information descriptor change and receiver operation.
  • the start_end_flag value of the emergency information descriptor is used as the end signal side '0' from the beginning.
  • the descriptor will continue to be described in the PMT.
  • the emergency information descriptor is deleted from the PMT when the TMCC emergency warning broadcast activation flag becomes “0”.
  • the AC carrier in the segment No. 0 is extracted and demodulated, and the transmission of the seismic motion warning information is confirmed by the configuration identification shown in FIG. 5, and further synchronization is established.
  • the analog motion addition of all the AC carriers in segment No. 0 allows the earthquake motion warning information to be reduced even with low noise. Demodulation becomes possible. For example, if there are N AC carriers, the amplitude of the seismic motion warning information is N times, whereas the noise is uncorrelated in each AC carrier and therefore does not become N times (in terms of power, the seismic motion warning information Is only N times the square of N).
  • the AC decoding unit 116 checks the configuration identification portion shown in FIG. 5 and confirms that the earthquake motion warning information has been sent to the AC, as described in FIG. Is the same as the TMCC sync signal, so that the analog identification of the code identifying the configuration identification and the sync signal and the TMCC sync signal is added to the TMCC for the above reason. Can also reproduce the synchronization signal with low noise.
  • the 3-bit part from the head of the TMCC synchronization signal and the configuration identification part shown in FIG. 5 of the AC carrier in the segment No. 0 It is possible to determine that the earthquake motion warning information has been sent to the AC when all three bits are correlated.
  • the channel selection unit 102, the quadrature demodulation unit 103, the FFT unit 104, the synchronous reproduction unit 111, the frame extraction unit 112, and the AC decoding unit 116 are always operating. .
  • the operations of the channel selection unit 102, the quadrature demodulation unit 103, the FFT unit 104, the synchronous reproduction unit 111, and the frame extraction unit 112 are performed only for the segment No. 0, that is, the one-segment part when receiving the earthquake motion warning information. Thereby, it can be set as a low power consumption operation
  • the control unit 118 is always operating.
  • the AC carrier in segment No. 0 is extracted and demodulated by the AC decoding unit 116, and the earthquake motion warning information start / end flag shown in FIG. 5 is monitored in the sense shown in FIG. 6, and the initial stage, that is, the earthquake motion warning information is generated. In a state where no information is reported, the state of switching from “no earthquake motion warning information” to “with earthquake motion warning information” is monitored.
  • the discriminating unit 117 is in a stopped state at an initial stage, that is, a stage where the earthquake motion warning information is not issued (the earthquake motion warning information start / end flag is “no earthquake motion warning information”).
  • the demodulation / decoding unit 105, the descrambling unit 106, the demax unit 107, the decoding unit 108, the switching units 114 and 115, the video output unit 109, and the audio output unit 110 are stopped. It is in a state.
  • the TMCC decoding unit 113 is always operating when trying to receive an emergency alert broadcast, and monitors the emergency alert broadcast activation flag shown in FIG.
  • the channel selection unit 102, the quadrature demodulation unit 103, the FFT unit 104, the synchronous reproduction unit 111, and the frame extraction unit 112 are always operating.
  • the operations of the channel selection unit 102, the quadrature demodulation unit 103, the FFT unit 104, the synchronous reproduction unit 111, and the frame extraction unit 112 need only be performed for segment No. 0, that is, only the one-segment part when receiving an emergency warning broadcast. . Thereby, it can be set as a low power consumption operation
  • the AC decoding unit 116 starts from “no seismic motion warning detailed information”.
  • the state of switching to “there is detailed earthquake motion warning information” is detected, and “there is detailed earthquake motion warning information”, that is, the information that the earthquake motion warning information is issued is transmitted to the control unit 118.
  • the control unit 118 sends a control signal that causes the determination unit 117 to be in a normal state and the broadcast reception unit 119 to be in a standby state.
  • the AC decoding unit 116 extracts and confirms the seismic motion warning information start / end flag, the seismic motion warning information update flag, the identification flag shown in FIG. 5 when the seismic motion warning information start / end flag becomes “earthquake motion warning detailed information available”.
  • the signal, details of earthquake motion warning information, CRC-10, and parity bit data are output to the determination unit 117.
  • the determination unit 117 that has entered the normal state receives the data from the AC decoding unit 116, performs error correction of the shortened code of the difference set cyclic code, performs CRC-10 error detection, and then performs signal identification shown in FIG. The meaning is confirmed and the meaning shown in FIG. 9 is determined. Then, predetermined processing is performed according to each meaning, and the discrimination information is sent to the control unit 118.
  • the control unit 118 Based on the discrimination information from the discrimination unit 117, the control unit 118 changes the broadcast reception unit 119 that has been in the standby state from the standby state to the normal state when the identification signal is “detailed information on earthquake motion warning (with applicable area)”.
  • the switching units 114 and 115 are controlled so as to select a signal from the determination unit 117.
  • the video signal and the audio signal indicating the detailed information on the seismic motion warning from the determination unit 117 are output to the video output unit 109 and the audio output unit 110, respectively, and the seismic motion warning is performed.
  • the broadcast receiving unit 119 is controlled to be in the standby state.
  • the switching units 114 and 115, the video output unit 109, and the audio output unit 110 may be controlled to be in the standby state.
  • the above shows an example in which the broadcast receiving unit 119 is controlled from the standby state to the normal state
  • the switching units 114 and 115, the video output unit 109, and the audio output unit 110 are normally changed from the broadcast receiving unit 119 in the standby state.
  • the standby state switching units 114 and 115, the video output unit 109, and the audio output unit 110 may be controlled to be in a normal state.
  • the normal state represents a state that is operating normally, the standby state is not operating, but the state can be immediately shifted to the normal state, and the stopped state is not operating.
  • the standby state of the broadcast receiving unit 119, the switching units 114 and 115, the video output unit 109, and the audio output unit 110 refers to energization so that video output or audio output can be performed quickly when the normal state is reached.
  • the discriminating unit 117 confirms the signal identification shown in FIG. 5 and discriminates the meaning shown in FIG. 9.
  • the identification signal is “Earthquake motion warning detailed information (with corresponding area)”
  • a buzzer sound or voice A warning by flashing light or a display is displayed.
  • the discriminating unit 117 outputs the earthquake detailed information and time information such as the prefecture information and the epicenter information where strong shaking is expected as shown in FIG. 10, FIG. 11 and FIG. Or count down to the time when the earthquake is expected to occur.
  • the control unit 118 controls the broadcast receiving unit 119 that has been in the standby state from the standby state to the normal state, and controls the switching units 114 and 115 to select the signal from the determination unit 117.
  • the video signal and the audio signal indicating the detailed information on the seismic motion warning from the determination unit 117 are output to the video output unit 109 and the audio output unit 110, respectively, and the seismic motion warning is performed.
  • the discriminating unit 117 discriminates “earthquake motion warning detailed information (no corresponding area)”, the video output unit 109 and the audio output unit 110 are not output. However, depending on the case, the same operation as “there is a corresponding area” is performed, and the video output unit 109 displays earthquake detailed information such as prefecture information and epicenter information expected to be strongly shaken, or the audio output unit 110. You may make it output by voice.
  • the discriminating unit 117 discriminates the “test signal for detailed earthquake motion warning information (with relevant area)” or “the test signal for detailed earthquake motion warning information (without relevant region)”, this is generally performed by the seismic motion warning information receiving unit 120. This is effective when the operation is confirmed in the test mode, ignored in the normal operation mode, and is not output to the video output unit 109 or the audio output unit 110. In the test mode, for example, video information or audio indicating that the mode is the test mode for each operation of “seismic motion warning detailed information (with corresponding area)” or “earthquake motion warning detailed information (without corresponding area)”. Multiplex information.
  • the discriminating unit 117 always needs to check the signal identification when the earthquake motion warning information start / end flag is “detailed information on earthquake motion warning”, but at least when the state of the earthquake motion warning information update flag changes, the signal identification is always performed. Confirm.
  • the AC decoding unit 116 is monitoring the state where the earthquake motion warning information start / end flag is switched from “with detailed earthquake motion warning information” to “without detailed earthquake motion warning information”, and the earthquake motion warning information start / end flag is “ In the case of “No detailed earthquake motion warning information”, information “No detailed earthquake motion warning information” is transmitted to the control unit 118.
  • the control unit 118 sends a signal that causes the determination unit 117 to stop.
  • the determination unit 117 receives this and enters a stop state.
  • the control unit 118 sends a control signal to the broadcast receiving unit 119.
  • the broadcast receiving unit 119 receives this signal, keeps the broadcast receiving unit 119 in a normal state for a certain period of time, and switches the switching units 114 and 115 to the decoding unit 108 side. At this time, the decoded broadcast video signal from the digital broadcast decoding unit 108 received by the channel selection unit 102 is output to the video output unit 109, and the decoded broadcast audio signal is output to the audio output unit 110 for a predetermined time. After the elapse, the broadcast receiving unit 119 is brought into a stopped state. On the other hand, the control unit 118 controls the AC decoding unit 116 to stop data output from the AC decoding unit 116 to the determination unit 117.
  • the stop state of the broadcast receiving unit 119 means that the channel selection unit 102, the orthogonal demodulation unit 103, the FFT unit 104, the synchronous reproduction unit 111, and the frame extraction unit 112 are in one-segment operation, and the demodulation / decoding unit 105, the descrambling unit 106, the demax unit 107, the decoding unit 108, the switching units 114 and 115, the video output unit 109, and the audio output unit 110 are not operating.
  • the standby state of the broadcast receiving unit 119 means that the channel selection unit 102, the quadrature demodulation unit 103, the FFT unit 104, the synchronous reproduction unit 111, and the frame extraction unit 112 operate in the 13-segment full band, and the demodulation / decoding unit 105, the descrambling unit 106, the demax unit 107, and the decoding unit 108 are operating, and the switching units 114 and 115, the video output unit 109, and the audio output unit 110 are not operating.
  • the normal state of the broadcast receiving unit 119 is that the channel selection unit 102, the quadrature demodulation unit 103, the FFT unit 104, the synchronous reproduction unit 111, and the frame extraction unit 112 operate in the 13-segment full band, and the demodulation / decoding unit 105, the descrambling unit 106, the demax unit 107, and the decoding unit 108 are operating, and the switching units 114 and 115, the video output unit 109, and the audio output unit 110 are operating.
  • TMCC decoding unit 113 is always operating.
  • the above description is based on the assumption that the digital broadcast receiving apparatus 121 is not operating. However, the digital broadcast receiving apparatus 121 is operating, that is, the broadcast receiving unit 119 was originally in a normal state. Sometimes, the following operations are performed.
  • the AC decoding unit 116 detects a state of switching from “earthquake motion warning detailed information” to “earthquake motion warning detailed information present”, By the control signal, “there is detailed earthquake motion warning information”, that is, information on which the earthquake motion warning information is issued is transmitted to the control unit 118.
  • the control unit 118 sends a control signal that causes the determination unit 117 to be in a normal state.
  • the control unit 118 sends a control signal to the broadcast receiving unit 119, and the broadcast receiving unit 119 receives the control signal.
  • the switching unit 114, 115 receives the determination signal from the decoded broadcast video signal from the decoding unit 108.
  • the AC decoding unit 116 detects and confirms the earthquake motion warning information start / end flag and the earthquake motion warning information update flag shown in FIG.
  • the identification signal, details of earthquake motion warning information, CRC-10, and parity bit data are output to the determination unit 117.
  • the discriminating unit 117 which is in the normal state by the control signal, receives the data from the AC decoding unit 116, performs error correction of the shortened code of the difference set cyclic code, performs CRC-10 error detection, and then shows the result shown in FIG. The signal identification is confirmed, and the meaning shown in FIG. 9 is determined. Then, predetermined processing is performed according to each meaning, and the discrimination information is sent to the control unit 118.
  • the control unit 118 controls the switching units 114 and 115 to select the signal from the discrimination unit 117 when the identification signal is “seismic motion warning detailed information (with applicable area)”. To do.
  • the video signal and the audio signal indicating the detailed information on the seismic motion warning from the determination unit 117 are output to the video output unit 109 and the audio output unit 110, respectively, and the seismic motion warning is performed.
  • the AC decoding unit 116 monitors the state of switching from the earthquake motion warning information start / end flag “with detailed earthquake motion warning information” to “no detailed earthquake motion warning information”, and the earthquake motion warning information start / end flag is set to “earth motion.
  • the control unit 118 is informed of “no earthquake motion alarm detailed information”.
  • the control unit 118 sends a signal that causes the determination unit 117 to stop.
  • the determination unit 117 receives this and enters a stop state.
  • the control unit 118 sends a control signal to the broadcast receiving unit 119, and the broadcast receiving unit 119 receives this signal, and the switching unit 114 and 115 respectively decode the video signal from the determination unit 117 from the decoding unit 108.
  • Switching to the broadcast video signal is performed from the audio signal from the determination unit 117 to the decoded broadcast audio signal from the decoding unit 108.
  • the control unit 118 controls the AC decoding unit 116 to stop data output from the AC decoding unit 116 to the determination unit 117.
  • the switching units 114 and 115 are used to switch from the broadcast video signal and the broadcast audio signal of the normal television broadcast to the video signal and the audio signal of the earthquake motion warning information.
  • the switching units 114 and 115 are used to switch from the broadcast video signal and the broadcast audio signal of the normal television broadcast to the video signal and the audio signal of the earthquake motion warning information.
  • the control unit 118 receives the emergency warning broadcast activation flag information from the TMCC decoding unit 113 and the seismic motion warning information from the seismic motion warning information receiving unit 120, and controls the switching units 114 and 115 when the seismic motion warning should be issued. Then, the video signal for the earthquake motion warning is output to the video output unit 109, and the audio signal for the earthquake motion warning is output to the audio output unit 110.
  • FIG. 18 shows the transmission operation timing of the start / end flag of the earthquake motion warning information sent by the AC signal and the emergency warning broadcast start flag sent by the TMCC signal.
  • the start / end flag is “Earthquake alarm detailed information available: '00” ”, even if it is necessary to carry out emergency alarm broadcasting during the period of“ 00 ”, During the period of '00', the start flag is not set to “with start control: ON”, and the start / end flag is set to “no earthquake motion warning detailed information: '11” ”and the start flag is set to“ with start control: Set to "ON”.
  • the receiving operation of both the seismic motion warning and the emergency warning broadcast overlaps the digital broadcasting receiving device that supports both the seismic motion warning and the emergency warning broadcasting, and the receiving operation of the seismic motion warning and the emergency warning broadcast each other. It is possible to prevent a reception failure from occurring and an output of earthquake motion warning information from being hindered.
  • the receiver operation at this time will be described.
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the startup flag is “No startup control: OFF”
  • the receiver is in normal operation
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • the startup flag is “No startup control: OFF”
  • the receiver is in normal operation
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the startup flag is “No startup control: OFF”
  • the receiver is in normal operation (4)
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the startup flag is “Startup control available: ON” In case of, the receiver supports emergency alert broadcasting (5)
  • the start / end flag is "No detailed earthquake alarm information: '11'”
  • the startup flag is "No startup control: OFF” In the case of, the receiver returns to normal operation.
  • the emergency warning broadcast activation flag is“ with activation control: Since “ON” does not transmit due to overlapping, there is an effect that the receiver can respond to the seismic motion warning operation and the emergency warning broadcast without being hindered.
  • FIG. 19 shows the start / end flag of the earthquake motion warning information sent by the AC signal, the signal identification, and the transmission operation timing of the emergency warning broadcast start flag sent by the TMCC signal.
  • the start / end flag is “Earthquake motion warning detailed information: '00” ”and the signal identification is“ Earthquake motion warning detailed information (with applicable area): “000” ”. Even if it is necessary to carry out emergency warning broadcasting during the period of '00' and '000', the start flag is not set to "with start control: ON" during the period of '00' and '000'.
  • the start flag is activated. Controlled: Set to ON. In this way, the receiving operation of both the seismic motion warning and the emergency warning broadcast overlaps the digital broadcasting receiving device that supports both the seismic motion warning and the emergency warning broadcasting, and the receiving operation of the seismic motion warning and the emergency warning broadcast each other. It is possible to prevent a reception failure from occurring and an output of earthquake motion warning information from being hindered.
  • the receiver operation at this time will be described.
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag is “No startup control: OFF”
  • the receiver is in normal operation
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (with applicable area): '000” ”
  • the startup flag is “No startup control: OFF”
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is "No detailed earthquake alarm information: '111'”
  • the startup flag is "No startup control: OFF”
  • the receiver is in normal operation (4)
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag
  • the emergency alarm broadcast activation flag is“ Activated ”. Controlled: ON "is not transmitted because it overlaps, so there is an effect that the receiver can respond to the seismic motion warning operation and the emergency warning broadcast without being hindered.
  • FIG. 20 shows the start / end flag of earthquake motion warning information sent by an AC signal, signal identification, and transmission operation timing of an emergency warning broadcast start flag sent by a TMCC signal.
  • the start / end flag is “earthquake motion warning detailed information:“ 00 ”” and the signal identification is “earthquake motion warning detailed information (no corresponding area):“ 001 ”, then“ If it becomes necessary to carry out emergency warning broadcasting during the period of 00 ', 001', it will not prevent the activation flag from being "with startup control: ON" during the period of '00', '001'. . By doing in this way, there exists an effect which can broadcast emergency alert broadcast immediately. Even when the signal identification is “Earthquake motion warning detailed information test broadcast (no applicable area): '011” ”, the operation is performed with the signal identification“ Earthquake alarm detailed information (no applicable area):' 001 ””.
  • the signal identification is “Earthquake motion warning detailed information test broadcast (no applicable area
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag is "No startup control: OFF”
  • the receiver is in normal operation
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (no applicable area): '001” ”
  • the startup flag is "No startup control: OFF”
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (no applicable area): '001” ”
  • the startup flag is "Startup control available: ON”
  • the start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (no applicable area
  • the start / end flag is “earthquake motion warning detailed information: '00” ”and the signal identification is“ earthquake motion warning detailed information (no applicable area): “ In the case of 001 '", since it is not a corresponding area of the earthquake motion warning, there is an effect that the emergency warning broadcast can be performed with priority over the earthquake motion warning operation.
  • the receiver Since the receiver is a test broadcast, it will not respond in normal operation, but during maintenance such as in the receiver test mode, it will indicate that it is a test broadcast and the signal identification will be "Earthquake motion warning detailed information (with applicable areas): '000" In case of “”, follow the receiver operation when the signal identification is “Earthquake alarm detailed information (no applicable area):“ 001 ””.
  • the control unit 118 receives the emergency warning broadcast activation flag information from the TMCC decoding unit 113 and the seismic motion warning information from the seismic motion warning information receiving unit 120, and controls the switching units 114 and 115 when the seismic motion warning should be issued. Then, the video signal for the earthquake motion warning is output to the video output unit 109, and the audio signal for the earthquake motion warning is output to the audio output unit 110. The operation will be described below.
  • FIG. 21 shows the start / end flag and signal identification of the earthquake motion warning information sent by the AC signal, the transmission operation timing of the emergency warning broadcast start flag sent by the TMCC signal, and the receiving operation thereof.
  • the start / end flag is “Earthquake alarm detailed information:“ 11 ”” and the emergency warning broadcast starts and the activation flag is “with activation control: ON”, If it is necessary to issue a seismic motion warning during a period with start control, even if the start flag is "Start control: ON”, the start / end flag is set to "With detailed seismic alarm information: '00'" Start operation of earthquake alarm. The receiver operation at this time will be described.
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag is "No startup control: OFF”
  • the receiver is in normal operation
  • the start / end flag is "No detailed earthquake alarm information: '11'”
  • the signal identification is "No detailed earthquake alarm information: '111'”
  • the startup flag is "Startup control available: ON” In case of, the receiver supports emergency alert broadcasting (3)
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (with applicable area): '000” ”
  • the startup flag is “Startup control available: ON” In the case of, the receiver gives priority to seismic motion warning (4)
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag is “Star
  • the earthquake motion warning operation has priority over the emergency warning broadcast. Because it is implemented, the emergency warning broadcast has the effect of not preventing the earthquake motion warning.
  • the earthquake alarm is activated from the emergency alarm broadcast. Because it is prioritized, emergency alert broadcasting has the effect of not preventing information output in the area of the earthquake motion warning from being affected.
  • FIG. 22 shows the start / end flag and signal identification of the seismic motion warning information sent by the AC signal, the transmission operation timing of the emergency warning broadcast activation flag sent by the TMCC signal, and the receiving operation thereof.
  • the emergency warning broadcast starts and the activation flag is “with activation control: ON” during the period when the start / end flag is “No detailed earthquake motion warning information: '11” ”, If it is necessary to issue a seismic motion warning during a period with start control, even if the start flag is "Start control: ON”, the start / end flag is set to "With detailed seismic alarm information: '00'" Start operation of earthquake alarm.
  • the receiver operation when the signal identification is “detailed information on earthquake motion warning (no corresponding area): '001” ” will be described.
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is "No detailed earthquake alarm information: '111'”
  • the startup flag is "No startup control: OFF”
  • the receiver is in normal operation
  • the start / end flag is "No detailed earthquake alarm information: '11'”
  • the signal identification is "No detailed earthquake alarm information: '111'”
  • the startup flag is “Startup control available: ON”
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (no applicable area): '001” ”
  • the startup flag is “Startup control available: ON”
  • the receiver will continue to broadcast the emergency alert (4)
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the start / end flag is “earthquake motion warning detailed information: '00” ”and the signal identification is“ earthquake motion warning detailed information (no applicable area): “ In the case of 001 '", since it is not a corresponding area of the earthquake motion warning, there is an effect that the emergency warning broadcast can be performed with priority over the earthquake motion warning operation.
  • FIG. 23 shows the start / end flag and signal identification of the earthquake motion warning information sent by the AC signal, the transmission operation timing of the emergency warning broadcast activation flag sent by the TMCC signal, and the reception operation thereof.
  • the start flag is “No start control: OFF”
  • the seismic motion warning is issued and the start / end flag is “Earthquake motion warning detailed information: '00” ”.
  • the operation of the receiver when the emergency warning broadcast needs to be started during the period with the detailed earthquake motion warning information and the transmission operation with the activation flag “with activation control: ON” during that period is permitted will be described.
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag is "No startup control: OFF”
  • the receiver is in normal operation
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (with applicable area): '000” ”
  • the startup flag is “No startup control: OFF” In case of, the receiver supports the earthquake motion warning operation
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (with applicable area): '000” ”
  • the startup flag is “Startup control available: ON”
  • the receiver continues the seismic motion warning operation (4)
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the earthquake motion warning operation has priority over the emergency warning broadcast. Because it is implemented, the emergency warning broadcast has the effect of not preventing the earthquake motion warning.
  • the earthquake alarm is activated from the emergency alarm broadcast. Because it is prioritized, emergency alert broadcasting has the effect of not preventing information output in the area of the earthquake motion warning from being affected.
  • FIG. 24 shows the start / end flag and signal identification of the earthquake motion warning information sent by the AC signal, the transmission operation timing of the emergency warning broadcast start flag sent by the TMCC signal, and the reception operation thereof.
  • an earthquake motion warning is issued in the period when the activation flag is “no activation control: OFF”, and the start / end flag is “detailed information on earthquake motion alarm: '00” ”and the signal identification is“ earthquake motion alarm ”.
  • Detailed information no applicable area: When “001” is set, if it is necessary to start emergency alert broadcasting during that period, the operation flag for that period is “with start control: ON”. The operation of the receiver when permitted is described.
  • the start / end flag is “No detailed earthquake alarm information: '11” ”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag is "No startup control: OFF”
  • the receiver is in normal operation
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (no applicable area): '001” ”
  • the startup flag is "No startup control: OFF”
  • Start / end flag is “Earthquake alarm detailed information available: '00” ”
  • Signal identification is “Seismic motion warning detailed information (no applicable area): '001” ”
  • the startup flag is “Startup control available: ON”
  • the receiver supports emergency alert broadcasting (4)
  • the start / end flag is “No detailed earthquake alarm information: '11”
  • the signal identification is “No detailed earthquake alarm information: '111'”
  • the startup flag
  • the start / end flag is “earthquake motion warning detailed information: '00” ”and the signal identification is“ earthquake motion warning detailed information (no applicable area): “ In the case of 001 '", since it is not a corresponding area of the earthquake motion warning, there is an effect that the emergency warning broadcast can be performed with priority over the earthquake motion warning operation.
  • the receiver Since the receiver is a test broadcast, it will not respond in normal operation, but during maintenance such as in the receiver test mode, it will indicate that it is a test broadcast and the signal identification will be "Earthquake motion warning detailed information (with applicable areas): '000" In case of “”, follow the receiver operation when the signal identification is “Earthquake alarm detailed information (no applicable area):“ 001 ””.
  • 2501 is an input of data from the AC decoding unit 116
  • 2502 is an error correction detection unit
  • 2503 is an input of a control signal from the control unit 118
  • 2504 is a clock unit
  • 2505 is a current time setting unit
  • 2506 is a data judgment storage unit
  • 2508 is a buzzer sound generation unit
  • 2509 is a processing unit
  • 2510 is a video signal output
  • 2511 is an audio signal output
  • 2512 is an output of determination information to the control unit 118.
  • the clock unit 2504 always operates even when the discriminating unit 117 is stopped, and indicates an accurate time.
  • GPS Global Positioning System
  • use of a radio clock function that automatically corrects errors by receiving standard radio waves use of a function that automatically updates the correct time from the outside, such as the Internet, etc.
  • the current time setting unit 2505, the data determination storage unit 2506, the comparison determination unit 2507, the buzzer sound generation unit 2508, and the processing unit 2509 operate when the determination unit 117 is in the “standby state” and “normal state” and is in the “stop state”. It does not work when.
  • the current time setting unit 2505 always extracts and sets the current time from the clock unit 2504.
  • the AC decoding unit 116 determines that the earthquake motion warning information start / end flag “there is detailed earthquake motion warning information”
  • the AC decoding unit 116 sends the information “there is detailed earthquake motion warning information” to the control unit 118.
  • the control unit 118 sends a control signal for making the determination unit 117 from the stopped state to the normal state via the input 2503. Thereafter, the seismic motion warning information start / end flag and the seismic motion warning information update flag shown in FIG.
  • the error correction detection unit 2502 performs error correction of the shortened code of the differential cyclic code, and then performs CRC-10 error detection.
  • the data from the AC decoding unit 116 is confirmed by the data determination storage unit 2506 for the signal identification shown in FIG. 5 to determine the meaning shown in FIG. In the case of “There is a corresponding area”, the information shown in FIGS. 10, 11, and 12 is stored.
  • the time information is stored and simultaneously compared with the current time of the current time setting unit 2505 by the comparison determination unit 2507.
  • the sent time information in the data judgment storage unit 2506 is the current time information of the broadcasting station when the broadcasting station transmits, and has a predetermined accuracy.
  • the comparison determination unit 2507 controls the buzzer sound generation unit 2508 to generate a buzzer sound when it is determined that “the area is present” and “normal”. As a result, it is possible to accumulate broadcast waves when earthquake motion warning information has been issued in the past (hereinafter referred to as RF capture). Has time information at the time of RF capture, the current time of the current time setting unit 2505 exceeds the threshold value, and the comparison determination unit 2507 determines that it is “abnormal” and does not generate a buzzer sound. There is an effect that it is possible to prevent a malfunction in which a buzzer sound is generated by the buzzer sound generator 2508. Instead of the buzzer sound generating unit 2508, a warning may be generated by voice or a warning display by flashing light.
  • the judgment information of the comparison judgment unit 2507 is sent to the processing unit 2509 and also sent to the control unit 118 via the output 2512.
  • the processing unit 2509 stores time information, detailed earthquake information such as prefecture information and epicenter information in the data determination storage unit 2506, and at the same time, prepares output from the video signal output 2510 and prepares output from the audio signal output 2511. I do. For example, although not shown in FIG. 25, the time until the arrival of the earthquake is calculated from the installation location of the digital broadcast receiving apparatus stored in advance and the detailed earthquake information.
  • An output signal is output from the video signal output 2510 and the audio signal output 2511 only in the “normal state”.
  • the video signal output 2510 and the audio signal output 2511 receive the signal from the processing unit 2509 and output the video signal output and the audio signal output of the earthquake motion warning information, respectively.
  • To do. 11 and 12 are detailed earthquake information and time information such as prefectural information and epicenter information where strong shaking is expected, or countdown information until a time when an earthquake is expected to occur.
  • the AC decoding unit 116 monitors the state of switching from the earthquake motion warning information start / end flag “with detailed earthquake motion warning information” to “without detailed earthquake motion warning information”, and the earthquake motion warning information start / end flag is set to “detailed information about earthquake motion warning”.
  • the control unit 118 is notified of the information “No detailed seismic motion warning information”, the control unit 118 sends a signal for stopping the discriminating unit 117, and the discriminating unit 117 is connected via the input 2503. Receiving this, it will be in a stop state. That is, except for the clock unit 2504, all blocks stop operating.
  • Embodiment 2 according to the present invention will be described with reference to FIGS.
  • FIG. 26 is a block diagram showing a configuration of a digital broadcast receiving apparatus that receives earthquake motion warning information transmitted using an AC signal included in segment number # 0 transmitted by the digital broadcast transmitting apparatus of FIG.
  • Reference numerals 2601 and 2602 denote synthesizing units, and details thereof are shown in FIG.
  • FIG. 1 The difference between FIG. 1 and FIG. 26 is that the switching units 114 and 115 are replaced by combining units 2601 and 2602, respectively.
  • FIG. 27 also shows the decoding unit 108 in detail.
  • 2701 is an input of a compressed program video signal, a compressed program audio signal, and a digital signal of a data signal from the descrambling unit 106
  • 2703 is a moving picture and a still image for the compressed program video signal and the video data signal.
  • 2704 is an audio decoding unit that performs decoding processing on the compressed program audio signal and audio data signal
  • 2705 displays a moving image.
  • a moving picture plane display memory, 2706 is a still picture plane display memory for displaying a still picture
  • 2707 is a moving picture still picture switching plane display memory showing information for switching a moving picture and a still picture for each pixel
  • 2708 is a character Character graphic plane display memory for displaying graphics
  • 2709 is a caption plane display for displaying captions Mori
  • 2710 is a switching unit that switches between a moving image from moving image plane display memory 2705 and a still image from still image plane display memory 2706 on a pixel-by-pixel basis according to information in moving image still image switching plane display memory 2707;
  • An adjustment unit that adjusts the output signal combining ratio of the unit 2713, 2715 is an adjustment
  • 2717 is data input from the AC decoding unit 116.
  • Reference numeral 2718 denotes an adjustment unit that adjusts the composite ratio of the broadcast video signal that is the output signal of the adder 2716
  • 2719 denotes an adjustment unit that adjusts the composite ratio of the video signal of the earthquake motion warning information that is the output signal of the determination unit 117
  • 2720 denotes an adjustment.
  • An adder that synthesizes the output signals of the units 2718 and 2719, and 2721 is an output of a synthesized video signal that is an output signal of the adder 2720, and constitutes a synthesizer 2601.
  • Reference numeral 2722 denotes an adjustment unit that adjusts the synthesis ratio of the broadcast audio signal that is an output signal of the audio system decoding unit 2704;
  • 2723 an adjustment unit that adjusts the synthesis ratio of the audio signal of the earthquake motion warning information that is the output signal of the determination unit 117;
  • Is an adding unit that synthesizes the output signals of the adjusting units 2722 and 2723, and 2725 is an output of a synthesized speech signal that is an output signal of the adding unit 2724, and constitutes the synthesizing unit 2602.
  • the TS signal scrambled for copyright protection is descrambled by the descrambling unit 106 and input from the input 2701 to the demax unit 107.
  • the demux unit 107 extracts a desired compressed program video signal, compressed program audio signal, and data signal, and outputs them to the decoding unit 108.
  • the desired compressed program video signal and video data signal are input to the video decoder 2703, and the desired compressed program audio signal and audio data signal are input to the audio decoder 2704. .
  • the desired compressed program video signal and video data signal and the desired compressed program audio signal and audio data signal are converted into character graphics, still images, and moving images by a data stream or a data carousel. Transmission is performed as monophonic audio media. These data are decoded and separated into individual encoded monomedia data.
  • Encoded monomedia data is decoded by each decoder.
  • Audio is decoded by audio system decoding
  • video signal is decoded by video
  • character / figure / still image is decoded by character / figure / still image decoding
  • subtitle / character super is decoded by subtitle / character super decoding.
  • the character graphic, still image, and moving image are displayed by the character graphic plane display memory 2708, the still image plane display memory 2706, and the moving image plane display memory 2705, respectively, and the moving image still image switching plane display memory 2707 is displayed.
  • the synthesis is performed under the control. Note that scaling may be performed when displaying on each plane.
  • presentation control of these mono media is controlled by a framework defined by multimedia coding. Further, the caption super is displayed on the caption plane display memory 2709 by the encoding method of caption and character super, and the presentation control is performed.
  • the switching unit 2710 switches the moving image from the moving image plane display memory 2705 and the still image from the still image plane display memory 2706 for each pixel based on information in the moving image still image switching plane display memory 2707.
  • the output signal of the switching unit 2710 is adjusted by the adjustment unit 2711 to be “1 ⁇ 1” times the composition ratio.
  • the character graphic that is an output signal from the character graphic plane display memory 2708 is adjusted by the adjustment unit 2712 to the composition ratio “ ⁇ 1” times.
  • ⁇ 1 represents opacity and takes a value from 0 to 1.
  • the adder 2713 combines the output signals of the adjusters 2711 and 2712. When ⁇ 1 is 0, only the output signal of the switching unit 2710 is obtained, and when ⁇ 1 is 1, only the character graphic that is an output signal from the character graphic plane display memory 2708 is obtained.
  • the output signal of the addition unit 2713 is adjusted by the adjustment unit 2714 to be “1 ⁇ 2” times the composition ratio.
  • the subtitle which is the output signal from the subtitle plane display memory 2709 is adjusted by the adjusting unit 2715 to the composition ratio “ ⁇ 2” times.
  • ⁇ 2 represents opacity and takes a value from 0 to 1.
  • An adder 2716 combines the output signals of the adjusters 2714 and 2715. When ⁇ 2 is 0, only the output signal of the adder 2713 is provided, and when ⁇ 2 is 1, only the caption that is an output signal from the caption plane display memory 2709 is provided.
  • subtitles, character figures, still images, and moving images are combined, and a broadcast video signal is output from the adder 2716.
  • the broadcast video signal from the adding unit 2716 is adjusted by the adjusting unit 2718 to the synthesis ratio “1 ⁇ 3” times, while the video signal of the earthquake motion warning information which is the output signal from the determining unit 117 is adjusted.
  • the combination ratio is adjusted to " ⁇ 3" times, the output signals of the adjustment units 2718 and 2719 are combined in the addition unit 2720, and the output signal of the addition unit 2720 is output to the output 2721 as a composite video signal.
  • ⁇ 3 represents opacity and takes a value from 0 to 1.
  • the combined video signal output from the output 2721 is only the broadcast video signal from the adder 2716, and ⁇ 3 is 1.
  • the combined video signal output from the output 2721 is only the video signal of the earthquake motion warning information that is the output signal from the determination unit 117.
  • the broadcast audio signal from the audio system decoding unit 2704 is adjusted by the adjustment unit 2722 to the synthesis ratio “1 ⁇ 4” times, while the audio signal of the earthquake motion warning information that is the output signal from the determination unit 117 is received.
  • the adjustment unit 2723 adjusts the combination ratio to “ ⁇ 4” times, the output signals of the adjustment units 2722 and 2723 are combined by the addition unit 2724, and the output signal of the addition unit 2724 is output to the output 2725 as a synthesized speech signal.
  • ⁇ 4 represents a synthesis rate, and takes a value from 0 to 1.
  • the synthesized audio signal output from the output 2725 is only the broadcast audio signal from the audio decoding unit 2704, and ⁇ 4 is In the case of 1, the synthesized voice signal output from the output 2725 is only the voice signal of the earthquake motion warning information that is the output signal from the determination unit 117.
  • the discriminating unit 117 uses the character font information and other display information of the decoding unit 108 when creating a video signal of earthquake motion warning information, or the decoding unit 108 when creating an audio signal of earthquake motion warning information.
  • the buzzer sound type information possessed by the digital broadcast receiver 121 it is possible to have a circuit configuration that does not require the digital broadcast receiving apparatus 121 to have duplicate information. In this case, the low-cost determination unit 117 is used. There is an effect that can be.
  • the control unit 118 in FIGS. 18, 19, 20, 21, 22, 23, and 24 also includes emergency warning broadcast activation flag information from the TMCC decoding unit 113,
  • the synthesis units 2601 and 2602 are controlled, and the seismic motion warning video signal is sent to the video output unit 109 and the seismic motion warning audio signal. Can be output to the audio output unit 110.
  • Embodiment 3 according to the present invention will be described with reference to FIG.
  • the subtitle plane display memory 2709 updates the video signal of the seismic motion warning information from the determination unit 117 after updating the decoded subtitle from the video system decoding unit 2703. Alternatively, the subtitle plane display memory 2709 does not write the decoded subtitle from the video system decoding unit 2703 at the place where the video signal of the earthquake motion warning information from the determination unit 117 is written. Also, ⁇ 2 is set to a value larger than 0.5.
  • the video signal of the earthquake motion warning information when a caption is displayed in the caption plane display memory 2709, it is possible to display the video signal of the earthquake motion warning information by avoiding the display portion.
  • the image signal of the earthquake motion warning information can be displayed by avoiding the display portion.
  • the discriminating unit 117 uses the character font information and other display information of the decoding unit 108 when creating a video signal of earthquake motion warning information, or the decoding unit 108 when creating an audio signal of earthquake motion warning information.
  • the buzzer sound type information possessed by the digital broadcast receiver 121 it is possible to have a circuit configuration that does not require the digital broadcast receiving apparatus 121 to have duplicate information. In this case, the low-cost determination unit 117 is used. There is an effect that can be.
  • Embodiment 4 according to the present invention will be described with reference to FIGS. 29 and 30.
  • FIG. 29 is a diagrammatic representation of Embodiment 4 according to the present invention.
  • FIG. 29 is a block diagram showing a configuration of a digital broadcast receiving apparatus that receives earthquake motion warning information transmitted using an AC signal included in segment number # 0 transmitted by the digital broadcast transmitting apparatus of FIG.
  • FIG. 2901 is an output unit for earthquake motion warning information
  • FIG. 30 shows a block diagram of the configuration.
  • FIG. 1 The difference between FIG. 1 and FIG. 29 is that the output 2901 of the earthquake motion warning information is separated from the video output unit 109 and the audio output unit 110 which are output parts of the broadcast receiving unit 119.
  • the video signal output from the video signal output 2510 of the earthquake motion warning information from the processing unit 2509 described in FIG. 25 and the audio signal output from the audio signal output 2511 are respectively output to the video output unit 3001.
  • the audio output unit 3002 is used for output.
  • the video output unit 3001 may be a video display such as a flash device that blinks light or a video display using a simple video display device such as a 7-segment display.
  • the video output unit 109 of the broadcast receiving unit 119 outputs the video signal and the audio signal indicating the detailed information on the earthquake motion warning from the discriminating unit 117 using the video output unit 3001 and the audio output unit 3002, respectively. Control is performed so that the output from the audio output unit 110 does not interfere with the video signal and audio signal indicating the earthquake motion warning detailed information output from the video output unit 3001 and the audio output unit 3002. Specifically, the video of the video output unit 109 is darkened, made into a still image, a message indicating that seismic motion warning detailed information has been issued, and the audio of the audio output unit 110 is muted (not output) ), Reduce the volume, etc.
  • the video signal and the audio signal of the earthquake motion warning information can be made more conspicuous than the broadcast video signal and the broadcast audio signal, respectively.
  • it since it has a video output unit and audio output unit independent of the broadcast receiving unit, even if the video output unit and audio output unit of the broadcast receiving unit are not outputting, it can be quickly started up and earthquake motion warning information can be displayed. There is an effect that can be output.
  • control unit 118 in FIGS. 18, 19, 20, 21, 21, 22, 23, and 24 also includes the emergency warning broadcast activation flag information from the TMCC decoding unit 113 and the like.
  • the output unit 2901 outputs the seismic motion warning and controls the broadcast receiving unit 119 so as not to disturb the output of the seismic motion warning. To do.
  • digital broadcast receivers in FIGS. 1, 26, and 29 may be either 13-segment receivers or one-segment receivers.
  • Information source encoding unit 202 ... MPEG2 multiplexing unit 203 ... TS remultiplexing unit 204 ... RS (Reed-Solomon) encoding unit 205 ... Hierarchy division unit 206a, b, c ... Parallel processing unit 207 ... Hierarchy synthesis unit 208: Time interleaving unit 209 ... Frequency interleaving unit 210 ... OFDM frame configuration unit 211 ... Reverse high speed Fourier transform (IFFT) unit 212 ... guard interval addition unit 213 ... transmission unit 214 ... pilot signal configuration unit 215 ... TMCC signal configuration unit 216 ... AC signal configuration unit 2501, 2503, 2512 ... input 2502 ... error correction detection unit 2504 ...
  • IFFT Reverse high speed Fourier transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 デジタル放送によって伝送される緊急地震速報を極力遅延なく再生することが可能な送信装置や受信装置の詳細動作を提供する。 前記伝送信号を受信する受信部と、前記受信部で受信された伝送信号から前記デジタル放送信号を復調する放送復調部と、前記受信部で受信された伝送信号から前記緊急警報放送用起動フラグを検出する緊急警報放送用起動フラグ検出部と、前記受信部で受信された伝送信号から前記地震動警報情報信号を復調する地震動警報情報復調部とを備える。

Description

デジタル放送受信装置およびデジタル放送受信方法
 本発明は、デジタル放送によって伝送される緊急情報の送信技術、受信技術に関する。
 従来は、デジタル放送送信信号に含まれる緊急警報放送用起動フラグを監視して、緊急警報放送用起動フラグが「1」となれば、強制的なサービスの切り替えや、待機状態から通常の通電状態へ移行などにより、視聴者に素早く緊急警報放送を提供することを可能としている。(特許文献1を参照)
特開2005-333512号公報
 上記特許文献1では、緊急警報放送を監視しているいわゆるスタンバイ状態での低消費電力化について開示されている。
 しかしながら、緊急警報放送用起動フラグで起動される緊急警報放送は、送信側で緊急警報放送信号が圧縮符号化されており、再生するには受信機側で伸張復号化処理を行なう必要があった。このため、緊急警報放送を再生するまでに圧縮伸長分の遅延時間が生じていた。
 本発明はこのような状況に鑑みてなされたものであり、その目的は、デジタル放送によって伝送される緊急地震速報を極力遅延なく再生することが可能な送信装置や受信装置の詳細動作を提供することにある。
 上記目的を達成するために、例えば、特許請求の範囲に記載の構成を採用する。
 本発明によれば、緊急地震速報を発報する必要が生じたときに、極力遅延なく受信機側で緊急地震速報を再生することが可能な送信方法や受信方法を有した送信装置や受信装置を提供することができる。
本発明の第1の実施形態に係る地震動警報情報を受信することが可能なデジタル放送受信装置の構成を示すブロック図である。 本発明のデジタル放送受信装置が受信するデジタル放送を送信するデジタル放送送信装置の一実施例を示すブロック図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の動作説明を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックである地震動警報情報受信部120で受信する地震動警報情報の構成を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号の構成を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC情報の構成を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC情報の構成を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC情報の構成を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号の送出運用と受信動作の一実施例を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号と地震動警報情報受信部120で受信する地震動警報情報の送出運用の一実施例を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号と地震動警報情報受信部120で受信する地震動警報情報の送出運用の一実施例を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号と地震動警報情報受信部120で受信する地震動警報情報の送出運用の一実施例を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号と地震動警報情報受信部120で受信する地震動警報情報の送出運用と本発明の受信動作の一実施例を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号と地震動警報情報受信部120で受信する地震動警報情報の送出運用と本発明の受信動作の一実施例を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号と地震動警報情報受信部120で受信する地震動警報情報の送出運用と本発明の受信動作の一実施例を示す説明図である。 本発明の主要ブロックであるTMCC復号部113で受信するTMCC信号と地震動警報情報受信部120で受信する地震動警報情報の送出運用と本発明の受信動作の一実施例を示す説明図である。 本発明の第1の実施形態の主要ブロックである判別部117の一実施例を示すブロック図である。 本発明の第2の実施形態に係る地震動警報情報を受信することが可能なデジタル放送受信装置の構成を示すブロック図である。 本発明の第2の実施形態の主要ブロックであるデコード部108、合成部2601、2602の一実施例を示すブロック図である。 本発明の第3の実施形態の主要ブロックであるデコード部108、合成部2602の一実施例を示すブロック図である。 本発明の第4の実施形態に係る地震動警報情報を受信することが可能なデジタル放送受信装置の構成を示すブロック図である。 本発明の第4の実施形態の主要ブロックである判別部117と出力部2901の一実施例を示すブロック図である。 本発明のデジタル放送送信装置で送信されるデジタル放送の説明図である。 本発明のデジタル放送送信装置で送信されるデジタル放送の説明図である。
 以下、本発明を実施するための形態について図面を参照して詳述する。なお、図面において、同一符号は、同一または相当部分を示す。また、本発明は、図示例に限定されるものではない。
 図1は本発明に係る実施形態1におけるセグメント番号#0に含まれるAC信号を用いて伝送された地震動警報情報を受信するデジタル放送受信装置の構成を示すブロック図である。
 また、図2に本発明のデジタル放送受信装置が受信するデジタル放送を送信するデジタル放送送信装置の一実施例のブロック図を示す。
 本デジタル放送方式では、複数のMPEG-2トランスポートストリーム(MPEG-2 Transport Stream、以下、TSとする)を再多重により一つのTSとし、伝送路符号化処理を施した後、IFFT(Inverse Fast Fourier Transform)により複数のサブキャリアからなるOFDM(Orthogonal Frequency Division Multiplexing)送信信号に一括して変換し、放送波として送信する。
 ここで、本デジタル放送方式におけるOFDM送信信号は、伝送帯域幅6MHzを14等分したOFDMセグメントを13個連結した構成となっており、OFDMセグメントを単位として最大3階層までの階層伝送が可能となっている。また、OFDM送信信号の13セグメントの内、中央のセグメント(セグメント番号#0)は、携帯電話などの移動受信機での受信を想定した部分受信階層として設定できる。図31にセグメント構造を示す。なお、OFDM送信信号の13セグメント全てを受信可能な受信機を13セグメント受信機、OFDM送信信号の中央の1セグメントを受信可能な受信機をワンセグメント受信機と呼ぶ。
 本デジタル放送方式では、システム識別、伝送パラメータ切替指標、緊急警報放送用起動フラグ、各階層の伝送パラメータなど、受信機の復調動作を円滑に行なうための制御情報を伝送するTMCC(Transmission and Multiplexing Configuration Control)信号と、変調波の伝送制御に関する付加情報を伝送するための拡張用信号であるAC(Auxiliary Channel)信号が付加されたフレーム構成となっている。このフレーム構成を図32に示す。図32において、OFDMサブキャリアとして付加されるTMCC信号とAC信号のキャリア位置及びキャリア本数は、伝送パラメータによって異なる。詳細は後述する。
 ここで、TMCCによって伝送される緊急警報放送用起動フラグにより起動される緊急警報放送(EWS:Emergency Warning System)とは、地震発生による津波警報などが発令された場合に、視聴者に緊急情報をより早く知らせるために利用されているものである。緊急警報放送を運用する場合、放送局がTMCC信号に含まれる緊急警報放送用起動フラグを「ON」として、緊急警報放送と認識できるコンテンツで放送を実施する。
 更に高度化された緊急情報を伝送するシステムとして、気象庁が発表する緊急地震速報(EEW:Earthquake Early Warning)がある。緊急地震速報とは、地震の発生直後に、震源に近い地震計でとらえた初期微動(いわゆるP波)と主要動(いわゆるS波)を解析して震源や地震の規模を直ちに推定し、これに基づいて各地での主要動の震度を推定し、可能な限り素早く知らせる情報である。また、緊急地震速報では、強い揺れが到着する前に知らせることで、視聴者に対して周囲の状況に応じて慌てずに身の安全を確保することを目的としている。この緊急地震速報をセグメント番号#0に含まれるAC信号を用いて伝送する。
 なお、一般には緊急地震速報という名称が用いられるが、省令告示では地震動警報情報という名称が使われており、今後は「地震動警報情報」を用いる。
 地震動警報情報とは、気象業務法(昭和27年法律第165号)第13条第1項の規定により行われる地震動警報に関する情報のことである。
 図2を用いて、本デジタル放送方式を実現するデジタル伝送送信装置の動作を説明する。
 201は情報源符号化部、202はMPEG2多重化部、203はTS再多重部、204はRS(リード・ソロモン)符号化部、205は階層分割部である。206は並列処理部であり、a、b、cの3系統ある。207は階層合成部、208は時間インタリーブ部、209は周波数インターリーブ部、210はOFDMフレーム構成部、211は逆高速フーリエ変換(以下、IFFT)部、212はガードインターバル付加部、213は送信部、214はパイロット信号構成部、215はTMCC信号構成部、216はAC信号構成部である。
 本デジタル放送方式は、MPEG2 Systemsで規定されるトランスポートストリーム(TS)を1つ若しくは複数の入力を再多重により1つのTSとし、サービス意図に応じて複数の伝送路符号化を施した後、最終的に1つのOFDM信号として送信する。テレビジョン放送の送信スペクトルは、テレビジョン放送のチャンネル帯域幅を14等分したOFDMブロック(以下OFDMセグメントと呼ぶ)を13個連ねて構成される。OFDMセグメントのキャリア構成を複数セグメントの連結が可能なように構造化することにより、メディアに適した伝送帯域幅をセグメント幅単位で実現できる。伝送路符号化はOFDMセグメントを単位に行われるので、1テレビジョンチャンネルの中で一部を固定受信サービス、残りを移動体受信サービスとすることができる。このような伝送を階層伝送と定義する。各階層は、1つまたは複数のOFDMセグメントにより構成され、階層ごとにキャリア変調方式、内符号の符号化率、および時間インターリーブ長等のパラメータを設定することができる。なお、可能な階層数は最大3レベルまでであり、部分受信についても1つの階層として数える。各階層のセグメント数や伝送路符号化パラメータは編成情報に従って決められ、また、受信機の動作を補助する制御情報としてTMCC信号によって伝送される。13セグメントで構成されるテレビジョン放送信号の中央部のOFDMセグメントについては、そのセグメント内のみの周波数インターリーブを行う伝送路符号化が可能である。これにより、テレビジョンサービスの一部を部分的に受信することができる。
 SFNの置局間距離への適合性、或いは、移動受信におけるドップラーシフトへの耐性を考慮し、本デジタル放送方式は3つの異なるOFDMキャリア間隔を備えている。これらはシステムのモードとして識別される。キャリア間隔は、モード1では約4kHz、モード2では約2kHz、モード3では約1kHz である。モードに応じてキャリア数は異なるが、どのモードにおいても伝送可能な情報ビットレートは同じである。
 情報源符号化部201で映像信号、音声信号、データがそれぞれ符号化され、MPEG2多重化部202で一つのTSが生成される。複数のMPEG2多重化部から出力された複数のTSは、データセグメント単位の信号処理に適した配置とするためTS再多重部203に入力される。TS再多重部203において、IFFTサンプルクロックの4倍のクロックにより188バイト単位のバースト信号形式に変換され、RS符号化部204でリード・ソロモン外符号が付加されると共に単一のTSに変換される。その後、階層伝送を行う場合には、階層情報の指定に沿って階層分割部205で階層分割され、最大3系統の並列処理部206a、b、cに入力される。並列処理部206a、b、cにおいては、それぞれ、主として誤り訂正符号化、インターリーブ等のデジタルデータ処理、キャリア変調が施される。また、バイトインターリーブとビットインターリーブの時間軸操作で生じる階層間の遅延時間差に対して予め遅延補正を行い、タイミング調整を図っている。誤り訂正、インターリーブ長、キャリア変調方式はそれぞれの階層で独立に設定される。並列処理部206a、b、cでの並列処理の後、階層合成部207で階層合成された信号は、移動受信における電界変動やマルチパス妨害に対して、誤り訂正符号化の能力を有効に発揮させるため時間インターリーブ部208及び周波数インターリーブ部209に入力される。時間インターリーブの方式は、送受あわせた遅延時間を短縮し受信機のメモリー容量を抑えるため畳み込みインターリーブである。また、周波数インターリーブ部は、セグメント構造を確保しつつ、十分なインターリーブ効果が発揮できるよう、セグメント間とセグメント内のインターリーブを組み合わせて構成されている。
 複数の伝送パラメータが混在する階層伝送に対して、受信機の復調・復号を補助するため、制御情報としてTMCC(Transmission and Multiplexing Configuration Control)信号が特定のキャリアを用いて伝送される。また、放送に関する付加情報を伝送するため、特定のキャリアに割り当てられたAC(Auxiliary Channel)信号が用いられる。
 OFDMフレーム構成部210では、周波数インターリーブ部209からの情報データ、パイロット信号構成部214からの同期再生用パイロット信号、TMCC構成部215からのTMCC信号、および、AC信号構成部216からのAC信号によりOFDMフレームが構成される。このフレーム構成を図32に示す。Si,jはインターリーブ後のデータセグメント内のキャリアシンボルを表す。SP(Scattered Pilot)は受信機が準同期検波を行なうための基準パイロットシンボルである。図32に示すとおり、キャリア方向に12キャリアに1回、シンボル方向に4シンボルに1回挿入される。受信側でSPをシンボル方向に補間すれば、3(12/4)キャリア間隔のSPを得ることができる。ガードインターバル長の最大値が有効シンボル長の1/4であることから、3キャリア間隔のSPによる補間処理(伝送路特性推定)により、シンボル間干渉を生じない最大遅延時間までのマルチパスに対応することが可能である。なお、ガードインターバル比が1/4の場合、原理的には4キャリア間隔のSPであればよいが、補間フィルタの特性などを考慮し、シンボル方向には4シンボルに1回挿入されている。
 図32の例はモード1であるが、モード1のキャリア番号は0から107なのに対して、モード2、モード3 ではそれぞれ、0から215、0から431である。
 AC信号は図32に示すとおり配置され、1キャリア204ビットのデータ量を持つ。また、AC信号は各セグメントごとに、モード1では2本、モード2では4本、モード3では8本、配置される。
 TMCC信号は図32に示すとおり配置され、1キャリア204ビットのデータ量を持つ。また、TMCC信号は各セグメントごとに、モード1では1本、モード2では2本、モード3では4本、配置される。
 フレーム構成を終えた全信号はIFFT部211のIFFT演算によりOFDM信号に変換され、ガードインターバル付加部212でガードインターバルが付加されOFDM送信信号に変換され、送信部213で決められた周波数のデジタル放送信号に変換される。
 次に、図1を用いて、図2のデジタル放送送信装置によって伝送される送信信号を受信するデジタル放送受信装置の動作を説明する。
 101はアンテナ、102は選局部、103は直交復調部、104は高速フーリエ変換(以下、FFT)部、105はFFT部104以降TS出力までの本デジタル放送方式の復調・復号動作を行う復調復号部、106はデスクランブル部、107はデマックス部、108は圧縮された放送映像信号、圧縮された放送音声信号のデコード部、114、115は切替部、109は切替部114を介してデコードされた放送映像信号の表示を行う映像出力部、110は切替部115を介してデコードされた放送音声信号の出力を行う音声出力部であり、これらが放送映像信号、放送音声信号を再生する主流のブロックである。また、111は同期再生部、112はフレーム抽出部、113はTMCC復号部であり、復調復号部105の動作を行うための同期信号再生や、伝送パラメータなどの情報入手を行う。選局部102からTMCC復号部113、切替部114、115で放送受信部119が構成される。
 一方、116はAC復号部、117は判別部であり、これらで地震動警報情報受信部120が構成される。
 切替部114、115は、それぞれデコード部108と判別部117の映像信号、音声信号の切替えを行なう。
 118は制御部であり、放送受信部119や地震動警報情報受信部120の動作制御や電力制御を行う。
 制御部118、放送受信部119、地震動警報情報受信部120でデジタル放送受信装置121が構成される。
 以下、詳細に動作を説明する。アンテナ101で受信されたデジタル放送から選局部102で受信すべきチャネル周波数帯域が抽出、UHFテレビ放送チャンネルが指定され、直交復調部103でチャンネル選択された信号が直交復調されベースバンド信号とされ、FFT部104で周波数軸処理に変換され、OFDMシンボルのうち、有効シンボルに相当する期間についてFFTが実施される。その際、受信信号のマルチパスの状況が考慮され、適切な期間でFFT処理が実施される。これを受け、復調復号部105では周波数軸上の各キャリアに対して復調処理が行われ(例えば、QPSK、16QAM、64QAM用にスキャッタードパイロット(SP:図32参照)を用いた同期復調を行い、振幅、及び位相情報を検出する)、周波数軸及び時間軸のデインターリーブ、デマッピングされ、各階層に分割されビットデインターリーブ、デパンクチャ、バイトデインターリーブ、エネルギー逆拡散が行われ、ビタビ復号やRS(リード・ソロモン)復号などの誤り訂正が施されてデジタル放送信号が復調され、例えば、MPEG2システムズに規定されるトランスポートストリーム(以下、TSと略す)信号がデスクランブル部106に出力される。デスクランブル部106では著作権保護のためにスクランブルのかけられているTS信号のスクランブルが解除されデマックス部107に出力される。デマックス部107では希望された圧縮された放送映像信号や圧縮された放送音声信号のデジタル信号が抽出されデコード部108に出力される。デコード部108では圧縮された放送映像信号や圧縮された放送音声信号が復号され、復号された放送映像信号は切替部114を介して映像出力部109に、復号された放送音声信号は切替部115を介して音声出力部110に出力される。
 一方、同期再生部111では直交復調部103からのベースバンド信号を受け、モード、ガードインターバル長に応じてOFDMシンボル同期信号及びFFTサンプル周波数が再生される。モード、ガードインターバル長が未知の場合には、OFDM信号のガード期間の相関性等により判別することもできる。さらにFFT部104の出力信号からTMCC信号の周波数位置が検出される。フレーム抽出部112では検出された周波数位置のTMCC信号が復調されるとともにTMCC信号からフレーム同期信号が抽出される。フレーム同期信号は同期再生部111に出力され、シンボル同期信号との位相調整が行われる。TMCC復号部113では復調されたTMCC信号に差集合巡回符号の誤り訂正が施され、階層構造、伝送パラメータなどTMCC情報が抽出される。このTMCC情報は復調復号部105に出力され、復調復号処理の各種制御情報として利用される。
 地震動警報情報受信部120はAC復号部116と判別部117で構成される。AC復号部116ではFFT出力のセグメントNo.0のAC信号のうち構成識別が地震動警報情報の伝送であることを示すとき(「001」、「110」:後述する)、地震動警報情報を抽出する。構成識別がそれ以外である場合には、AC信号を復号しない。抽出された地震動警報情報は判別部117で情報を判別され、地震動警報を発令すべき時に、その情報を映像信号や音声信号に変換し、映像信号は切替部114を介して映像出力部109に、音声信号は切替部115を介して音声出力部110に出力される。
 制御部118は、TMCC復号部113からの緊急警報放送用起動フラグ情報や、地震動警報情報受信部120からの地震動警報情報が入力され、地震動警報を発令すべき時に、切替部114及び115を制御し、地震動警報の映像信号を映像出力部109に、地震動警報の音声信号を音声出力部110に出力させる。
 次に、図3から図12を用い、AC信号構成部216で構成され、地震動警報情報受信部120で受信する地震動警報情報の構成を説明する。
 AC信号とは放送に関する付加情報信号をいう。放送に関する付加情報とは変調波の伝送制御に関する付加情報、または地震動警報情報をいう。地震動警報情報は、セグメントNo.0のACキャリアを用いて伝送する。AC信号は図32に示すとおり配置され、1キャリア204ビットのデータ量を持つ。
 図3はセグメントNo.0に配置されるAC信号の204ビットB0~B203のビット割当てを示したものである。
 B0の1ビットは差動復調の基準とする。B1~B3の3ビットは構成識別とし、付加情報であるか、地震動警報情報であるか区別する。B4~B203の200ビットによって、付加情報または地震動警報情報を送出する。なお、地震動警報情報を送出する際は、セグメントNo.0内の全てのACキャリアで同一の地震動警報情報を送出する。セグメントNo.0内の全てのACキャリアで同一の地震動警報情報とすることにより、異なるACキャリアで伝送された地震動警報情報を受信機側でアナログ加算できるので、より小さなCN比でも受信可能となる。
 図4はB0の差動復調の基準を示したものである。ACキャリアの変調方式はDBPSKとし、差動復調の振幅及び位相基準は図4のWiで与えられる。
 図5は地震動警報情報をセグメントNo.0のAC信号で伝送する場合のビット割当てを示したものである。
 構成識別を000,010,011,100,101,111とした場合は、ACは従来通り、放送事業者向けの利用とし、変調波の伝送制御に関する付加情報を伝送する。
 構成識別を001,110とした場合は、地震動警報情報を送出する。
 地震動警報情報の伝送を表す‘001’と‘110’は、TMCCの同期信号の先頭3ビット(B1~B3)と同一の符号とし、TMCC信号と同一のタイミングでフレームごとに交互に送出する。
 B4~B16の13ビットは同期信号とする。
 地震動警報情報の場合、構成識別と同期信号を連結した符号は、TMCCの同期信号と同一符号とし、16ビットのワードで構成する。同期信号はw0=0011010111101110とそれをビット反転したw1=1100101000010001の2種類とする。TMCC同期信号(B1~B16)と同じビットを割当て、同じタイミングでフレーム毎にw0とw1を交互に送出しTMCCと同じ符号を送出する。TMCCとAC信号とでアナログ加算を行うことが出来るので、受信機におけるフレーム同期の受信感度を向上できる。
 B17~B18の2ビットは地震動警報情報の開始/終了フラグとする。
 図6は地震動警報情報の開始/終了フラグの意味を示したものである。
 地震動警報情報が発報されたときに、受信機を自動起動し、かつ、AC信号で地震動警報情報を送出していることを示すため、地震動警報情報の開始/終了フラグとして2ビットを割り当てる。
 AC信号は、伝送される情報が無い場合、全てのビットが‘1’で変調されるため、地震動警報詳細情報又はその試験信号を表す場合の開始/終了フラグを‘00’とする。また、開始/終了フラグの信頼性を向上するため、開始/終了フラグに2ビットを使用して符号間距離が最大となる反転信号とする。また、開始/終了フラグの信頼性を確保するために‘10’、‘01’は使用しない。
 地震動警報情報の送出を開始するときは、開始/終了フラグを‘11’から‘00’に変更する。また、地震動警報情報の送出を終了するときは、開始/終了フラグを‘00’から‘11’に変更する。開始/終了フラグは受信機の起動信号として使用することができる。
 B19~B20の2ビットは更新フラグとする。
 図7は地震動警報情報更新フラグの意味を示したものである。
 地震動警報情報の開始/終了フラグの値が‘00’の状態で継続中に、信号識別(B21~B23)または図10(後述)に示す地震動情報(B56~B111)の内容が更新された場合は、図7、8に示すように更新フラグの値を1ずつインクリメントし、受信機に信号識別または地震動情報が更新されたことを通知する。
 更新フラグは、開始/終了フラグが‘00’の場合に伝送される一連の地震動警報詳細情報の内容に変更が生じるごとに1ずつ増加するものとし、‘00’を開始値とし、‘11’の次は‘00’に戻るものとする。開始/終了フラグが‘11’の場合は更新フラグを‘11’とする。
 更新フラグの送出例を図8に示す。第1報、第2報…は図9(後述)に示す信号識別又は図10(後述)に示す地震動情報の内容が変化している状態を示している。図10(後述)に示す現在時刻又はページ種別が変化しても更新フラグの値は変更しない。
 B21~B23の3ビットは信号識別とする。
 図9は信号識別の意味を示す。
 地震動警報情報の信号識別は、地震動警報詳細情報の種別を識別するために使用する信号である。開始/終了フラグが‘00’の場合は、信号識別‘000’/‘001’/‘010’/‘011’を送出し、開始/終了フラグが‘11’の場合は、信号識別‘111’を送出する。また、地震動警報詳細情報の試験信号(該当地域あり/なし)と地震動警報詳細情報(該当地域あり/なし)は、同時には送出しない。
 信号識別‘100’/‘101’/‘110’は将来の拡張用とし、すべて‘1’とする。
 図12(後述)に示すように地震動情報総数は最大2つまで送出することができるが、試験信号と本信号は同時には送出しないこととする。また、信号識別が該当地域ありと該当地域なしの地震動情報を同時に送出する場合は、いずれの情報も該当地域ありの地震動情報として送出することで、少なくとも1つの地震動情報は該当地域ありであることを受信機に速やかに知らせることができる。
 B24~B111の88ビットは地震動警報詳細情報とする。
 図10にその詳細を示す。地震動警報詳細情報のビット割り当ては,信号識別毎に規定する。
 まず、信号識別が‘000’/‘001’/‘010’/‘011’の場合の地震動警報詳細情報について示す。
 現在時刻は、別途定める基準年月日時分秒からの経過秒数を二進数表記とし、下位31ビットをMSBファーストで割り当てる。地震動警報情報を伝送する場合に、TOT(Time Offset Table)や通信回線等による時刻合わせを有する自動起動に対応した受信機では、受信機の時刻と送出された時刻情報を照合することで、受信した地震動警報情報の信頼性を確認することが出来る。
 地震動情報は、ページ種別の符号によって、伝送する情報の割当てが異なる。受信機ではページ種別を確認することにより、どちらの情報が伝送されているかを知ることができる。ページ種別が゛0’の場合は、図11(後述)に示すように地震動警報の対象地域を示す情報を伝送する。ページ種別が‘1’の場合は、図12に示すように地震動警報の震源に関する情報を伝送する。但し、ページ種別‘0’と’1’の両方の地震動情報を伝送するとは限らない。
 地震動情報を送出しない場合は、ページ種別を‘0’とし、地震動情報はすべて‘1’とする。
 次に、信号識別が‘111’の場合の地震動警報詳細情報について示す。
 放送事業者識別11 ビットは、全国の放送事業者にユニークに割り付ける。AC信号のみで放送事業者を識別することができる。
 開始/終了フラグが‘11’の場合、信号識別‘111’を送出する。
 図11にページ種別が‘0’の場合の地震動情報を示す。ページ種別が‘0’の場合は、地震動警報の対象地域を示す情報とし、図11は対象地域のビット割当てを示す。地震動警報の対象地域を含む地域に割り当てられるビットは‘0’、地震動警報の対象地域を含まない地域に割り当てられるビットは‘1’とする。なお、地震動情報を送出しない場合は、すべて‘1’とする。
 複数の地震動警報が同時に発生している場合(最大総数2)、ページ種別‘0‘の地震動情報(地域情報)は、1つ目と2つ目をそれぞれ送出する場合があり、この場合、地震動警報情報(地域情報)の送出が1つ目から2つ目、もしくは2つ目から1つ目に変わる際に更新フラグは更新しない。
 図12にページ種別が‘1’の場合の地震動情報を示す。
 「地震動警報識別」は、複数の地震動警報が発生した場合に、地震動警報情報を識別するために9ビットを割り当てる。複数の地震動警報情報を区別するために、時刻(秒単位)を元に決定するものとした場合、9ビットの地震動警報識別で過去8分32秒間の地震動警報情報を識別することが可能となる。B24~B54の現在時刻とB101~B110の発生時刻を比較することにより、地震動の発生からの経過秒数を知ることができる。
 B57の地震動情報識別は、伝送されている地震動情報が1情報目の場合は‘0’、2情報目の場合は‘1’とする。
 発生時刻は、B24~B54で示される現在時刻と同じ基準年月日時分秒を基準とし、基準時刻からの経過秒数を二進数表記にして、下位10ビットをMSBファーストで割り当てる。
 B112~B121の10ビットは、CRC-10とする。
 地震動警報詳細情報に関する情報は重要な情報であり高い信頼性が要求されることから、下記パリティビットを用いた誤り訂正符号による復号後、CRCによる誤り検出を可能とする。
 B122~B203の82ビットには、TMCCの誤り訂正符号と同様に、差集合巡回符号(273,191)の短縮符号(187,105)を用い生成されたパリティビットを設定する。
 地震動警報情報は重要な情報であり、高い信頼性が要求されることから、TMCCと同様に差集合巡回符号を用いた誤り訂正符号で保護する。構成識別B1~B3及び同期信号B4~B16は誤り訂正の対象外とする。B17~B121の情報は、差集合巡回符号(273,191)の短縮符号(187,105)で誤り訂正符号化する。
 以上、図3から図12で説明した地震動警報情報の運用方法を図5を用い簡単に説明する。
 地震動警報情報をセグメントNo.0のACキャリアで伝送している場合は構成識別を図5に示す値に設定する。地震が起こり地震動警報を発報するときには、開始/終了フラグを"地震動警報詳細情報あり:‘00’"とし、同時に更新フラグ、信号識別、地震動警報詳細情報、パリティビットを設定する。地震動警報終了時に開始/終了フラグを"地震動警報詳細情報なし:‘11’"とする。
 次に、図13から図16を用い、TMCC信号構成部215で構成され、TMCC復号部113で復号するTMCC信号の構成を説明する。
 図13はTMCCの信号構成(TMCCキャリアのビット割り当て)を示す。TMCC信号は、階層構成や各OFDMセグメントの伝送パラメータ等、受信機の復調動作に関わる情報を伝送するものである。
 差動復調の振幅及び位相基準は、図4のWiで与えられる。
 同期信号は、16ビットのワードで構成される。同期信号には、w0=0011010111101110とそれをビット反転したw1=1100101000010001の2種類あり、フレーム毎にw0とw1が交互に送出される。同期信号は、TMCC信号の同期及びOFDMのフレーム同期を確立するために用いられる。TMCC情報のビットパターンが同期信号に一致して生じる疑似同期引き込み現象を防ぐために、フレーム毎に同期信号の極性反転が行われる。TMCC情報はフレーム毎に反転することはないので、フレーム毎の反転により疑似同期引き込みを避けることができる。
 セグメント形式識別は、そのセグメントが差動変調部であるか同期変調部であるかを識別するための信号である。3 ビットのワードで構成され、差動変調部の場合には‘111’、同期変調部の場合には‘000’が割り当てられる。TMCCキャリア数はセグメント形式によって異なり、部分受信セグメントが同期変調部に属する場合、1本のみとなる。この場合でも確実な復号が可能なように、識別信号に3ビットを割り当て、符号間距離が最大となる反転信号としている。
 TMCC情報は、システム識別、伝送パラメータ切り替え指標、緊急警報放送用起動フラグ、カレント情報、ネクスト情報など、受信機の復調と復号動作を補助する情報である。
 システム識別用の信号に2ビット割り当てる。地上デジタルテレビジョン放送方式によるシステムに‘00’、伝送方式が共通な地上デジタル音声放送方式に‘01’をそれぞれ設定する。残りの値はリザーブとする。
 カレント情報は現在の階層構成及び伝送パラメータを示し、ネクスト情報には切り替え後の伝送パラメータを示している。
 伝送パラメータを切り替える場合には、伝送パラメータ切り替え指標をカウントダウンすることにより、受信機に切り替えを通知しタイミングが取られる。この指標は、通常、‘1111’の値を取るが、伝送パラメータを切り替える場合には、切り替える15フレーム前からフレーム毎に1ずつ減算する。なお、‘0000’の次は、‘1111’に戻るものとする。切り替えタイミングは、‘0000’を送出する次のフレーム同期とする。すなわち、新たな伝送パラメータは、‘1111’に戻ったフレームから適用する。ネクスト情報は、切り替えカウントダウン前において任意の時刻に設定、或いは変更ができるが、カウントダウン中は変更できない。
 TMCC情報のビット割り当てを図14に示す。また、カレント・ネクスト情報に含まれる伝送パラメータ情報を図15に示す。伝送パラメータ情報において未使用の階層、又はネクスト情報が存在しない場合はそれらのビットを‘1’とする。
 図14のカレント情報並びにネクスト情報に含まれる伝送パラメータ及びフラグ(部分受信フラグ、キャリア変調方式、畳み込み符号化率、インターリーブ長、セグメント数)のいずれか一つ以上を切り替える場合には、伝送パラメータ切り替え指標をカウントダウンする。緊急警報放送用起動フラグのみを切り替える場合には、伝送パラメータ切り替え指標のカウントダウンは行わない。
 緊急警報放送用起動フラグの割り当てを図16に示す。緊急警報放送において、受信機への起動制御が行われている場合には起動フラグを‘1’とし、起動制御が行われていない場合には起動フラグを‘0’とする。
 部分受信フラグは、伝送帯域中央のセグメントが部分受信用に設定される場合には‘1’に、そうでない場合には‘0’に設定される。部分受信用にセグメントNo.0 が設定される場合、その階層は、図14中のA 階層として規定される。なお、ネクスト情報が存在しない場合、フラグは‘1’に設定される。
 連結送信位相補正量は、伝送方式が共通な地上デジタル音声放送方式で使用される制御情報である。102ビットあるTMCC情報のうち、現在90ビットが定義されているが、残りの12ビットは将来の拡張用としてリザーブする。運用上、このリザーブビットには、すべて‘1‘をスタッフィングする。
 TMCC情報B20~B121は、差集合巡回符号(273,191)の短縮符号(184,102)で誤り訂正符号化される。TMCC情報は、伝送パラメータの指定や受信機の制御を行うため、データ信号より高い伝送信頼性が必要である。受信機で連接符号の復号回路を共用することが難しいこと、また、処理遅延の観点からブロック符号が有利なことを考慮し、TMCCの誤り訂正符号は差集合巡回符号(273,191)の短縮符号(184,102)である。また、TMCC信号は複数のキャリアで伝送されるため、信号をアナログ加算することにより所要C/Nを下げ、受信性能を向上させることが可能である。これらの誤り訂正技術と加算処理により、TMCC信号はデータ信号より小さなC/Nで受信可能となる。なお、同期信号とセグメント形式識別の情報を誤り訂正の対象から外し、複数のTMCCキャリアの全ビットを同一にして、パリティビットを含めたビット毎の多数決を可能にしている。
 緊急警報放送(以下、EWSと示す)の運用について説明する。
 EWSの開始、終了に当たっては以下の手順に従う。
(開始時)
(1) EWS の条件(start_end_flag、 第1 種/第2 種種別、および地域符号)を設定した緊急情報記述子をPMTにて送出する。
(2) 放送事業者はTMCCの緊急警報放送用起動フラグを‘1’として送出する。
(3) 緊急警報放送と認識できるコンテンツで放送を開始する。
(終了時)
(1) 緊急警報放送用起動フラグを‘0’として送出する。
(2) PMTから緊急情報記述子を削除する。
(TMCC緊急警報放送用起動フラグの扱い)
 送出側ではEWSを行うサービスは送出階層によらず、TS(network)内のいずれかのサービスで緊急警報放送が行われている期間は、TMCC緊急警報放送用起動フラグは常時‘1’とする。自動起動に対応した受信機はTMCC緊急警報放送用起動フラグを周期的に監視する。
(緊急情報記述子の多重位置)
緊急情報記述子は、当該緊急警報放送を行うサービスのPMTの記述子領域1に記載される。
EWS対応受信機に対して緊急警報放送が実施中であることを明示するため、緊急警報放
送サービスそのもののPMTには必ず当該記述子を記載するものとする。それ以外のサー
ビスのPMTに緊急情報記述子を記載するかは各放送事業者の判断とする。ただし、異な
る階層のサービスを記載した場合は受信機で無視される可能性がある。
(緊急情報記述子の記載事項変更)
 緊急警報放送実施中に緊急情報記述子に記載の内容(地域符号など)を変更する必要が生じた場合は、EWS終了の手順(TMCCの緊急警報用起動フラグを‘0’とし、PMTから緊急情報記述子を削除)を実施した後、変更した緊急情報記述子をPMTに挿入後、再度TMCCの緊急警報用起動フラグを‘1’とする。若しくは、TMCCの緊急警報放送用起動フラグを‘0’にしてPMT上に緊急情報記述子を配置したまま記載事項を変更したのち、同フラグを‘1’にすることもできる。いずれの場合にも、緊急警報用起動フラグを‘0’にしてから‘1’にするまでの期間は、1秒以上かつ4 OFDM Frame 以上とする。また、受信機は緊急警報用起動フラグが‘0’となってから90秒間EWSの処理を継続するため、EWSを終了せずに対象地域の変更などを行う場合には、事業者は90秒以内に緊急警報用起動フラグを‘1’とする必要がある。
(EWS受信)
 固定受信機については、以下(1)~(4)の動作を行うこと。
(1) TMCCの緊急警報放送用起動フラグが‘0’から‘1’になった後、受信TSのPMTにある記述子領域1の緊急情報記述子を監視する。
(2) 緊急情報記述子のstart_end_flag=1でarea_codeが受信機に設定されている地域符号に該当していれば緊急情報記述子に記述されているサービスを選局し受信する。
(3) TMCCの緊急警報放送用起動フラグが‘1’の期間PMTの監視を継続する。
(4) TMCCの緊急警報放送用起動フラグが0 になった時点もしくは、PMTの緊急情報記述子が削除された時点で緊急警報放送の終了とする。ただし、「緊急情報記述子の記載事項変更」の運用により、緊急警報放送が再開される可能性があるので、緊急警報放送終了時から最低90秒間はEWSの受信処理を継続してから終了し、起動前の状態に戻る(EWS受信のサービスはラストメモリしない)。また、EWS受信中にサービスが切り替えられた場合、EWS受信処理は終了するが、TMCCの緊急警報放送用起動フラグが‘0’から‘1’になった場合は、EWS受信処理を開始する。
- 緊急情報記述子のstart_end_flag=0 の場合は、テスト放送であるため処理しないこと。
- 電源オフ(スタンバイ)時にTMCCが受信できない受信機の場合には、電源オン後TMCCの緊急警報放送用起動フラグが‘1‘の場合も受信TSのPMTにある記述子領域1の緊急情報記述子を監視し、EWS受信処理を開始する。
- 電源オフ(スタンバイ)時にTMCCが受信可能な受信機の場合には、電源オフ(スタンバイ)時にも、上記のEWSの受信処理を行う。
- EWS受信処理中に該当するPMTがなくなった場合は、緊急警報放送受信処理を終了してかまわない。
 携帯受信機については、受信機に設定されている地域符号と実際の所在地が異なる場合が考えられるため、上記固定受信機動作(2)にてarea_codeにかかわらず起動動作を行うこと。ただし、他の手段により受信地域が特定できる場合はこの限りでない。その他は上記固定受信機動作と同様の動作を原則とするが、EWS受信処理の代替手段として携帯受信機を点滅させるなど、視聴者への警告動作を行うことも有効である。
 図17に、以上の緊急情報記述子変更と受信機動作について示す。
(緊急警報放送試験信号運用)
 緊急警報放送の試験放送では、はじめから、緊急情報記述子のstart_end_flag 値を終了信号側‘0’として運用を行う。試験放送期間は、当該記述子をPMTに記載しつづけるものとする。また試験放送の終了は、TMCC緊急警報放送用起動フラグが‘0’になるのに合わせてPMTから緊急情報記述子を削除する。
 図3から図12で説明した地震動警報情報を受信する動作を図1を用い説明する。
 図1のAC復号部116において、セグメントNo.0内のACキャリアが抽出復調されるとともに図5で示した構成識別で地震動警報情報の送出が確認され、更に同期が確立される。このとき、セグメントNo.0内の全てのACキャリアで同一の地震動警報情報が送出されているため、セグメントNo.0内のACキャリア全てをアナログ加算することで、低雑音化でも地震動警報情報の復調が可能になる。例えばN本のACキャリアがあったとすれば地震動警報情報の振幅がN倍になるのに対して雑音はそれぞれのACキャリアにおいて無相関であるためN倍にならない(電力でいえば、地震動警報情報はNの2乗倍に対し雑音はN倍にしかならない)。
 また、AC復号部116において、図5で示した構成識別部分を調べてACに地震動警報情報が送出されていることの確認ができたときには、図5で説明したように、構成識別と同期信号を連結した符号はTMCCの同期信号と同一となっているので、構成識別と同期信号を連結した符号とTMCCの同期信号とをアナログ加算することで、上記した理由により、TMCCだけで再生するよりも低雑音化での同期信号を再生することができる。
 さらにまた、AC復号部116において図5で示した構成識別部分を調べる方法として、TMCCの同期信号の先頭から3ビット部分と、セグメントNo.0内のACキャリアの図5で示した構成識別部分の相関をとることにより、3ビット全てに相関がある場合にACに地震動警報情報が送出されていると判断することが可能である。
 地震動警報情報受信部120で地震動警報情報を受信しようとしているときには、選局部102、直交復調部103、FFT部104、同期再生部111、フレーム抽出部112、AC復号部116は常に動作している。選局部102、直交復調部103、FFT部104、同期再生部111、フレーム抽出部112の動作は地震動警報情報を受信しようとしているときにはセグメントNo.0、すなわちワンセグ部分のみ処理を行う。これにより、本デジタル放送の13セグメント全帯域を処理するよりも低消費電力動作とすることができる。
 また、地震動警報情報受信部120で地震動警報情報を受信しようとしているときには、制御部118は常に動作している。
 AC復号部116でセグメントNo.0内のACキャリアが抽出復調され、図5に示す地震動警報情報開始/終了フラグが図6に示す意味で監視されており、初期段階、すなわち地震動警報情報が発報されていない段階では"地震動警報情報なし"から"地震動警報情報あり"と切替わる状態が監視されている。
 判別部117は、初期段階、すなわち地震動警報情報が発報されていない段階(地震動警報情報開始/終了フラグが"地震動警報情報なし")では停止状態にある。
 また、地震動警報情報が発報されていない段階では、復調復号部105、デスクランブル部106、デマックス部107、デコード部108と、切替部114、115、映像出力部109、音声出力部110は停止状態となっている。
 TMCC復号部113は、緊急警報放送を受信しようとしているときには常に動作して
おり、図16で示した緊急警報放送用起動フラグを監視している。
なお、このとき、選局部102、直交復調部103、FFT部104、同期再生部111、フレーム抽出部112は常に動作している。選局部102、直交復調部103、FFT部104、同期再生部111、フレーム抽出部112の動作は緊急警報放送を受信しようとしているときにはセグメントNo.0、すなわちワンセグ部分のみの処理を行うのみでよい。これにより、本デジタル放送の13セグメント全帯域を処理するよりも低消費電力動作とすることができる。
 ”起動制御あり”の場合の動作は図13から図17で説明したとおりである。
 地震が起こり地震動警報情報が発報されたとき、すなわち、地震動警報情報開始/終了フラグが"地震動警報詳細情報あり"となった場合には、AC復号部116では"地震動警報詳細情報なし"から"地震動警報詳細情報あり"と切替わる状態が検出され、制御部118に"地震動警報詳細情報あり"、すなわち地震動警報情報が発報された情報が伝えられる。制御部118は、判別部117を通常状態に、放送受信部119をスタンバイ状態にさせる制御信号を送る。AC復号部116は、地震動警報情報開始/終了フラグが"地震動警報詳細情報あり"となった時点での抽出確定された図5に示す地震動警報情報開始/終了フラグ、地震動警報情報更新フラグ、識別信号、地震動警報情報詳細、CRC-10、パリティビットのデータを判別部117に出力する。
 通常状態となった判別部117では、AC復号部116からのデータを受け差集合巡回符号の短縮符号の誤り訂正が行われ、CRC-10誤り検出を行った後、図5に示す信号識別が確認され、図9に示すどの意味であるかが判別される。そして、それぞれの意味に応じ、あらかじめ設定された処理が行われ、また、その判別情報が制御部118に送られる。
 制御部118は、判別部117からの判別情報により、識別信号が”地震動警報詳細情報(該当地域あり)”の場合に、スタンバイ状態となっていた放送受信部119を、スタンバイ状態から通常状態とし、また、切替部114、115を判別部117からの信号を選択するように制御する。判別部117からの地震動警報詳細情報を示す映像信号、音声信号はそれぞれ映像出力部109、音声出力部110に出力され、地震動警報が行われる。
 なお、上記は放送受信部119がスタンバイ状態に制御される例を示したが、切替部114、115、映像出力部109、音声出力部110のみをスタンバイ状態に制御するようにしてもよい。
 さらに、上記は放送受信部119がスタンバイ状態から通常状態に制御される例を示したが、スタンバイ状態の放送受信部119から切替部114、115、映像出力部109、音声出力部110のみを通常状態に制御する、または、スタンバイ状態の切替部114、115、映像出力部109、音声出力部110を通常状態に制御するようにしてもよい。これらにより、放送受信部119を制御するよりも低消費電力で地震動警報を行なうことができる効果がある。
 ここで、通常状態とは正常に動作している状態、スタンバイ状態とは動作していないがすぐに通常状態に移行可能な状態、停止状態とは動作していない状態を表す。放送受信部119、切替部114、115、映像出力部109、音声出力部110のスタンバイ状態とは、通常状態になったときにすばやく映像出力または音声出力できるように通電しておくことをいう。
 判別部117の詳細な動作を説明する。
 判別部117は、図5に示す信号識別が確認され、図9に示すどの意味であるかを判別し、識別信号が”地震動警報詳細情報(該当地域あり)”の場合にはブザー音や音声などによる警告または光の点滅やディスプレイ表示による警告表示を行う。同時に、判別部117は、図10、図11、図12に示す強い揺れが予想される都道府県情報や震源地情報などの地震詳細情報や時刻情報を地震動警報情報の音声信号出力、映像信号出力、または地震が発生すると思われる時間までのカウントダウンを行う。同時に制御部118は、スタンバイ状態となっていた放送受信部119をスタンバイ状態から通常状態に制御し、また、切替部114、115を判別部117からの信号を選択するように制御する。判別部117からの地震動警報詳細情報を示す映像信号、音声信号はそれぞれ映像出力部109、音声出力部110に出力され、地震動警報が行われる。
 判別部117が”地震動警報詳細情報(該当地域なし)”を判別した場合、映像出力部109や音声出力部110への出力は行わない。ただし、場合によっては、"該当地域あり"と同様の動作をさせ、映像出力部109に強い揺れが予想される都道府県情報や震源地情報などの地震詳細情報を表示させる、または音声出力部110で音声出力させてもよい。
 判別部117が”地震動警報詳細情報の試験信号(該当地域あり)”または”地震動警報詳細情報の試験信号(該当地域なし)”を判別した場合、これは一般的に地震動警報情報受信部120を試験モードで動作確認しているときに有効となるものであり、普通の動作モードでは無視され、映像出力部109や音声出力部110への出力は行わない。試験モードのときは、例えば、”地震動警報詳細情報(該当地域あり)”、または、”地震動警報詳細情報(該当地域なし)”のそれぞれの動作に、テストモードであることを示す映像情報または音声情報を多重する。
 判別部117は信号識別の確認を地震動警報情報開始/終了フラグが"地震動警報詳細
情報あり"の場合常時行う必要があるが、少なくとも地震動警報情報更新フラグの状態が
変化した場合には必ず信号識別の確認を行う。
 次に、AC復号部116では地震動警報情報開始/終了フラグで"地震動警報詳細情報あり"から"地震動警報詳細情報なし"と切替わる状態が監視されており、地震動警報情報開始/終了フラグが"地震動警報詳細情報なし"となった場合には制御部118に"地震動警報詳細情報なし"の情報が伝えられる。制御部118は判別部117を停止状態とさせる信号を送る。判別部117はこれを受け、停止状態となる。同時に制御部118は制御信号を放送受信部119に送り、放送受信部119はこれを受け、一定時間のみ放送受信部119を通常状態に保ち、また、切替部114、115をデコード部108側に切替え、そのとき選局部102で受信しているデジタル放送のデコード部108からの復号された放送映像信号を映像出力部109に、復号された放送音声信号を音声出力部110に出力し、一定時間経過後、放送受信部119を停止状態とする。一方、制御部118はAC復号部116を制御し、AC復号部116から判別部117へのデータ出力を停止する。
 ここで、放送受信部119の停止状態とは、選局部102、直交復調部103、FFT部104、同期再生部111、フレーム抽出部112がワンセグ動作しており、復調復号部105、デスクランブル部106、デマックス部107、デコード部108と、切替部114、115、映像出力部109、音声出力部110が動作していない状態をいう。
 放送受信部119のスタンバイ状態とは、選局部102、直交復調部103、FFT部104、同期再生部111、フレーム抽出部112が13セグメント全帯域動作しており、復調復号部105、デスクランブル部106、デマックス部107、デコード部108が動作しており、切替部114、115、映像出力部109、音声出力部110が動作していない状態をいう。
 放送受信部119の通常状態とは、選局部102、直交復調部103、FFT部104、同期再生部111、フレーム抽出部112が13セグメント全帯域動作しており、復調復号部105、デスクランブル部106、デマックス部107、デコード部108が動作しており、切替部114、115、映像出力部109、音声出力部110が動作している状態をいう。
 なお、TMCC復号部113は常に動作している。
 以上の説明は、デジタル放送受信装置121が動作していない状態のときを前提に説明したが、デジタル放送受信装置121が動作している状態、すなわち、放送受信部119がもともと通常状態であったときには、以下の動作とする。
 地震動警報情報開始/終了フラグが"地震動警報詳細情報あり"となった場合には、AC復号部116では"地震動警報詳細情報なし"から"地震動警報詳細情報あり"と切替わる状態が検出され、制御信号により制御部118に"地震動警報詳細情報あり"、すなわち地震動警報情報が発報された情報が伝えられる。制御部118は判別部117を通常状態にさせる制御信号を送る。また、制御部118は放送受信部119に制御信号を送り、放送受信部119はこれを受け、切替部114、115それぞれに対して、デコード部108からの復号された放送映像信号から判別部117からの映像信号へ、デコード部108からの復号された放送音声信号から判別部117からの音声信号へ、切替える準備を行う。一方、AC復号部116は、地震動警報情報開始/終了フラグが"地震動警報詳細情報あり"となった時点での抽出確定された図5に示す地震動警報情報開始/終了フラグ、地震動警報情報更新フラグ、識別信号、地震動警報情報詳細、CRC-10、パリティビットのデータを判別部117に出力する。
 制御信号により通常状態となった判別部117では、AC復号部116からのデータを受け差集合巡回符号の短縮符号の誤り訂正が行われ、CRC-10誤り検出を行った後、図5に示す信号識別が確認され、図9に示すどの意味であるかが判別される。そして、それぞれの意味に応じ、あらかじめ設定された処理が行われ、また、その判別情報が制御部118に送られる。
 制御部118は、判別部117からの判別情報により、識別信号が”地震動警報詳細情報(該当地域あり)”の場合に、切替部114、115を判別部117からの信号を選択するように制御する。判別部117からの地震動警報詳細情報を示す映像信号、音声信号はそれぞれ映像出力部109、音声出力部110に出力され、地震動警報が行われる。
 次に、AC復号部116では地震動警報情報開始/終了フラグ"地震動警報詳細情報あり"から"地震動警報詳細情報なし"と切替わる状態が監視されており、地震動警報情報開始/終了フラグが"地震動警報詳細情報なし"となった場合には制御部118に"地震動警報詳細情報なし"の情報が伝えられる。制御部118は判別部117を停止状態とさせる信号を送る。判別部117はこれを受け、停止状態となる。同時に制御部118は制御信号を放送受信部119に送り、放送受信部119はこれを受け、切替部114、115それぞれに対して、判別部117からの映像信号からデコード部108からの復号された放送映像信号へ、判別部117からの音声信号からデコード部108からの復号された放送音声信号へ、切り替えが行われる。一方、制御部118はAC復号部116を制御し、AC復号部116から判別部117へのデータ出力を停止する。
 本実施形態によれば、地震動警報情報が放送されたときは、切替部114、115により、通常のテレビ放送の放送映像信号や放送音声信号から地震動警報情報の映像信号や音声信号に切替えるため、地震動警報情報を最優先で画像表示、音声出力するデジタル放送受信装置を提供することができる効果がある。また、映像出力部と音声出力部をそれぞれ1系統持つだけで良いため、簡単な構成で低価格とすることができる効果がある。さらにまた、デジタル放送受信装置121が動作していない状態のときは放送受信部119を自動起動できる効果があり、デジタル放送受信装置121が動作していた状態のときは地震動警報情報に速やかに切替えが行える効果がある。
 ここで、図2のデジタル放送送信装置で送信するTMCC信号とAC信号に関して図18、図19、図20を用いて説明する。
 また、図2のデジタル放送送信装置で送信するTMCC信号とAC信号、そしてこれを受信する図1のデジタル放送受信装置の緊急警報放送と地震動警報の受信動作(制御部118の制御方法)に関して説明する。制御部118は、TMCC復号部113からの緊急警報放送用起動フラグ情報や、地震動警報情報受信部120からの地震動警報情報を入力され、地震動警報を発令すべき時に、切替部114及び115を制御し、地震動警報の映像信号を映像出力部109に、地震動警報の音声信号を音声出力部110に出力させる。
 図18はAC信号で送られる地震動警報情報の開始/終了フラグとTMCC信号で送られる緊急警報放送用起動フラグの送信運用タイミングを示したものである。図18に示すように、まず開始/終了フラグが"地震動警報詳細情報あり:‘00’"となっていた場合、もしその‘00’の期間で緊急警報放送を実施する必要が生じても、その‘00’の期間では起動フラグを"起動制御あり:ON"にはしないで、開始/終了フラグが"地震動警報詳細情報なし:‘11’"になってから起動フラグを"起動制御あり:ON"にする。このようにすることで、地震動警報と緊急警報放送の両方に対応したデジタル放送受信装置に対し、地震動警報と緊急警報放送の両方の受信動作が重なって、地震動警報と緊急警報放送お互いの受信動作に受信不具合が生じたり、地震動警報情報の出力が阻害されることを防ぐことができる効果がある。
 このときの受信機動作を説明する。
(1) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(2) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は地震動警報動作に対応
(3) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(4) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送に対応
(5) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作に戻る
 図18の受信機動作では、開始/終了フラグが"地震動警報詳細情報あり:‘00’"の場合と、緊急警報放送用起動フラグが"起動制御あり:ON"の場合が重なって送信されないため、受信機での地震動警報動作への対応、緊急警報放送への対応が、それぞれ妨げられずに動作できる効果がある。
 図19はAC信号で送られる地震動警報情報の開始/終了フラグ、信号識別と、TMCC信号で送られる緊急警報放送用起動フラグの送信運用タイミングを示したものである。図19に示すように、まず開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域あり):‘000’"となっていた場合、もしその‘00’、‘000’の期間で緊急警報放送を実施する必要が生じても、その‘00’、‘000’の期間では起動フラグを"起動制御あり:ON"にはしないで、開始/終了フラグが"地震動警報詳細情報なし:‘11’"になってから、または、信号識別が"地震動警報詳細情報(該当地域なし):‘001’"となってから、起動フラグを"起動制御あり:ON"にする。このようにすることで、地震動警報と緊急警報放送の両方に対応したデジタル放送受信装置に対し、地震動警報と緊急警報放送の両方の受信動作が重なって、地震動警報と緊急警報放送お互いの受信動作に受信不具合が生じたり、地震動警報情報の出力が阻害されることを防ぐことができる効果がある。なお、信号識別が"地震動警報詳細情報の試験放送(該当地域あり):‘010’"の場合にも、運用は、信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合に順ずる。ただしこの場合、"地震動警報詳細情報(該当地域なし):‘001’"のかわりに"地震動警報詳細情報の試験放送(該当地域なし):‘011’"が用いられる。
 このときの受信機動作を説明する。
(1) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(2) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域あり):‘000’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は地震動警報動作に対応
(3) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(4) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送に対応
(5) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作に戻る
 図19の受信機動作では、開始/終了フラグが"地震動警報詳細情報あり:‘00’"の場合と、緊急警報放送用起動フラグが"起動制御あり:ON"の場合が重なって送信されないため、受信機での地震動警報動作への対応、緊急警報放送への対応が、それぞれ妨げられずに動作できる効果がある。
 または、開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合と、緊急警報放送用起動フラグが"起動制御あり:ON"の場合が重なって送信されないため、受信機での地震動警報動作への対応、緊急警報放送への対応が、それぞれ妨げられずに動作できる効果がある。
 図20はAC信号で送られる地震動警報情報の開始/終了フラグ、信号識別と、TMCC信号で送られる緊急警報放送用起動フラグの送信運用タイミングを示したものである。図20に示すように、まず開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合に、もしその‘00’、‘001’の期間で緊急警報放送を実施する必要が生じた場合には、その‘00’、‘001’の期間で起動フラグを"起動制御あり:ON"にすることを妨げない。このようにすることで、緊急警報放送を早急に放送する事ができる効果がある。なお、信号識別が"地震動警報詳細情報の試験放送(該当地域なし):‘011’"の場合にも、運用は、信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合に順ずる。
 まず起動フラグが"起動制御なし:OFF"の期間で地震動警報が発報され開始/終了フラグが"地震動警報詳細情報あり:‘00’"となり信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合に、もしその期間に緊急警報放送を始める必要が生じた場合で、その期間での起動フラグが"起動制御あり:ON"の送信運用を許した場合の受信機動作を説明する。
(1) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(2) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域なし):‘001’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は地震動警報動作に対応
(3) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域なし):‘001’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送に対応
(4) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域なし):‘001’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は地震動警報動作に対応
(5) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作に戻る
 図20の受信機動作では、開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合には、地震動警報の該当地域ではないため地震動警報動作より緊急警報放送を優先して実施することができる効果がある。
 なお、信号識別が"地震動警報詳細情報の試験放送(該当地域あり):‘010’"の場合にも、運用は、信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合に順ずる。また、信号識別が"地震動警報詳細情報の試験放送(該当地域なし):‘011’"の場合にも、運用は、信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合に順ずる。受信機は試験放送なので通常動作では反応しないが、受信機試験モードなどのメンテナンス時には、試験放送であることを表示して、それぞれ、信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合、信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合の受信機動作に順ずる。
 次に、図2のデジタル放送送信装置で送信するTMCC信号とAC信号、そしてこれを受信する図1のデジタル放送受信装置の緊急警報放送と地震動警報の受信動作(制御部118の制御方法)に関して、図21、図22、図23、図24を用いて説明する。
 制御部118は、TMCC復号部113からの緊急警報放送用起動フラグ情報や、地震動警報情報受信部120からの地震動警報情報を入力され、地震動警報を発令すべき時に、切替部114及び115を制御し、地震動警報の映像信号を映像出力部109に、地震動警報の音声信号を音声出力部110に出力させる。以下、動作説明する。
 図21はAC信号で送られる地震動警報情報の開始/終了フラグ、信号識別と、TMCC信号で送られる緊急警報放送用起動フラグの送信運用タイミングとその受信動作を示したものである。図21に示すように、まず開始/終了フラグが"地震動警報詳細情報なし:‘11’"の期間で緊急警報放送が始まり起動フラグが"起動制御あり:ON"となった場合に、もしその起動制御ありの期間に地震動警報を発報する必要が生じた場合は、起動フラグが"起動制御あり:ON"の場合でも、開始/終了フラグを"地震動警報詳細情報あり:‘00’"として地震動警報の運用を開始する。このときの受信機動作を説明する。
(1) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(2) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送に対応
(3) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域あり):‘000’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は地震動警報動作を優先して実施
(4) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は地震動警報動作を終了し、緊急警報放送に対応
(5) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作に戻る
 図21の受信機動作では、開始/終了フラグが"地震動警報詳細情報あり:‘00’"の場合には、緊急警報放送より地震動警報動作を優先して実施するため、緊急警報放送に地震動警報が妨げられない効果がある。
 または、開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合には、緊急警報放送より地震動警報動作を優先して実施するため、緊急警報放送に地震動警報の該当地域の情報出力が妨げられない効果がある。
 図22はAC信号で送られる地震動警報情報の開始/終了フラグ、信号識別と、TMCC信号で送られる緊急警報放送用起動フラグの送信運用タイミングとその受信動作を示したものである。図22に示すように、まず開始/終了フラグが"地震動警報詳細情報なし:‘11’"の期間で緊急警報放送が始まり起動フラグが"起動制御あり:ON"となった場合に、もしその起動制御ありの期間に地震動警報を発報する必要が生じた場合は、起動フラグが"起動制御あり:ON"の場合でも、開始/終了フラグを"地震動警報詳細情報あり:‘00’"として地震動警報の運用を開始する。このとき、信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合の受信機動作を説明する。
(1) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(2) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送に対応
(3) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域なし):‘001’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送を続行
(4) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送を続行
(5) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作に戻る
 図22の受信機動作では、開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合には、地震動警報の該当地域ではないため地震動警報動作より緊急警報放送を優先して実施することができる効果がある。
 図23はAC信号で送られる地震動警報情報の開始/終了フラグ、信号識別と、TMCC信号で送られる緊急警報放送用起動フラグの送信運用タイミングとその受信動作を示したものである。図23に示すように、まず起動フラグが"起動制御なし:OFF"の期間で地震動警報が発報され開始/終了フラグが"地震動警報詳細情報あり:‘00’"となった場合に、もしその地震動警報詳細情報ありの期間に緊急警報放送を始める必要が生じた場合で、その期間での起動フラグが"起動制御あり:ON"の送信運用を許した場合の受信機動作を説明する。
(1) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(2) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域あり):‘000’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は地震動警報動作に対応
(3) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域あり):‘000’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は地震動警報動作を続行
(4) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送に対応
(5) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作に戻る
 図23の受信機動作では、開始/終了フラグが"地震動警報詳細情報あり:‘00’"の場合には、緊急警報放送より地震動警報動作を優先して実施するため、緊急警報放送に地震動警報が妨げられない効果がある。
 または、開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合には、緊急警報放送より地震動警報動作を優先して実施するため、緊急警報放送に地震動警報の該当地域の情報出力が妨げられない効果がある。
 図24はAC信号で送られる地震動警報情報の開始/終了フラグ、信号識別と、TMCC信号で送られる緊急警報放送用起動フラグの送信運用タイミングとその受信動作を示したものである。図24に示すように、まず起動フラグが"起動制御なし:OFF"の期間で地震動警報が発報され開始/終了フラグが"地震動警報詳細情報あり:‘00’"となり信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合に、もしその期間に緊急警報放送を始める必要が生じた場合で、その期間での起動フラグが"起動制御あり:ON"の送信運用を許した場合の受信機動作を説明する。
(1) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作
(2) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域なし):‘001’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は地震動警報動作に対応
(3) 開始/終了フラグが"地震動警報詳細情報あり:‘00’"
    信号識別が"地震動警報詳細情報(該当地域なし):‘001’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送に対応
(4) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御あり:ON"
の場合、受信機は緊急警報放送を続行
(5) 開始/終了フラグが"地震動警報詳細情報なし:‘11’"
    信号識別が"地震動警報詳細情報なし:‘111’"
    起動フラグが"起動制御なし:OFF"
の場合、受信機は通常動作に戻る
 図24の受信機動作では、開始/終了フラグが"地震動警報詳細情報あり:‘00’"で信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合には、地震動警報の該当地域ではないため地震動警報動作より緊急警報放送を優先して実施することができる効果がある。
 なお、信号識別が"地震動警報詳細情報の試験放送(該当地域あり):‘010’"の場合にも、運用は、信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合に順ずる。また、信号識別が"地震動警報詳細情報の試験放送(該当地域なし):‘011’"の場合にも、運用は、信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合に順ずる。受信機は試験放送なので通常動作では反応しないが、受信機試験モードなどのメンテナンス時には、試験放送であることを表示して、それぞれ、信号識別が"地震動警報詳細情報(該当地域あり):‘000’"の場合、信号識別が"地震動警報詳細情報(該当地域なし):‘001’"の場合の受信機動作に順ずる。
 以下、本発明の主要ブロックである判別部117の一実施例を図25を用いて説明する。
 2501はAC復号部116からのデータの入力、2502誤り訂正検出部、2503は制御部118からの制御信号の入力、2504は時計部、2505は現時刻設定部、2506はデータ判断記憶部、2507は比較判断部、2508はブザー音発生部、2509は処理部、2510は映像信号出力、2511は音声信号出力、2512は制御部118への判断情報の出力である。
 時計部2504は判別部117が停止状態でも常時動作しており、正確な時刻を示している。正確な時刻とする方法としてGPS(Global Positioning System)の利用、標準電波を受信して誤差を自動修正する電波時計機能の利用、インターネットなど外部から正確な時刻を自動更新する機能の利用が考えられ、これらに限るものではないが、デジタル放送から時刻情報を得ることは後に述べる理由により好ましくない。
 現時刻設定部2505、データ判断記憶部2506、比較判断部2507、ブザー音発生部2508、処理部2509は、判別部117が"スタンバイ状態"と"通常状態"のときに動作し"停止状態"のときは動作しない。
 判別部117が制御部118からの制御信号を入力2503を介して受けスタンバイ状態または通常状態となったときに、現時刻設定部2505は時計部2504から現在時刻を常時抽出し設定する。AC復号部116が地震動警報情報開始/終了フラグの"地震動警報詳細情報あり"を判別した場合、AC復号部116は制御部118に"地震動警報詳細情報あり"の情報を送る。制御部118は判別部117を停止状態から通常状態にさせる制御信号を入力2503を介して送る。この後、制御部118からの制御信号により、入力2501を介し、AC復号部116から判別部117の誤り訂正検出部2502に、図5に示す地震動警報情報開始/終了フラグ、地震動警報情報更新フラグ、識別信号、地震動警報情報詳細、CRC-10、パリティビットのデータを出力する。誤り訂正検出部2502は差集合巡回符号の短縮符号の誤り訂正を行ない、そのあと、CRC-10誤り検出を行う。誤りがなかった場合に、AC復号部116からのデータは、データ判断記憶部2506で図5に示す信号識別が確認され、図9に示すどの意味であるかが判断され、”地震動警報詳細情報(該当地域あり)”の場合に、図10、図11、図12で示した情報が記憶される。時刻情報は記憶されると同時に比較判断部2507で現時刻設定部2505の現在時刻と比較される。送られてきたデータ判断記憶部2506内の時刻情報は放送局側が送信したときの放送局の現在時刻情報であり、定められた精度をもっている。これに放送局側の処理遅延、放送電波が受信機までに届く伝搬遅延、これを受信するデジタル放送受信装置121の処理遅延と、時計部2504の精度を加味した時間、最大でもこれらを全て加算した時間の正負(進み遅れ)以上には、データ判断記憶部2506内の時刻情報と現時刻設定部2505の現在時刻はずれることがないため、これをスレッシュホールド値として、比較判断部2507は、スレッシュホールド値内である場合には、"正常"と判断し、スレッシュホールド値を超える場合には、"異常"と判断する。比較判断部2507は"該当地域有り"且つ"正常"と判断したときにブザー音発生部2508を制御しブザー音を発生させる。これにより、過去に地震動警報情報が発報されたときの放送波を蓄積しておき(以下、RFキャプチャと示す)これを再送信されたような攻撃を受けた場合においても、RFキャプチャした信号はRFキャプチャした時点の時刻情報を持っているため、現時刻設定部2505の現在時刻とはスレッシュホールド値を超える状態となり比較判断部2507では"異常"と判断されブザー音を発生しない動作をとり、ブザー音発生部2508でブザー音を発生させるという誤作動を防ぐことができる効果がある。なお、ブザー音発生部2508の代わりに音声などによる警告発生または光の点滅による警告表示でもよい。比較判断部2507の判断情報は処理部2509に送られるとともに、出力2512を介して制御部118に送られる。
 処理部2509は、データ判断記憶部2506に時刻情報、都道府県情報や震源地情報などの地震詳細情報が記憶されると同時に、映像信号出力2510からの出力準備、音声信号出力2511からの出力準備を行う。例えば、図25では図示していないが、あらかじめ記憶してあるデジタル放送受信装置の設置場所と地震詳細情報から地震到達までの時間を計算しておくことなどを行う。
 映像信号出力2510、音声信号出力2511からは"通常状態"のときにのみ出力信号が出力される。
 比較判断部2507からの判断情報が"正常"のときに、映像信号出力2510、音声信号出力2511は、処理部2509からの信号を受け、それぞれ地震動警報情報の映像信号出力、音声信号出力を出力する。図11、図12に示す強い揺れが予想される都道府県情報や震源地情報などの地震詳細情報や時刻情報、または、地震が発生すると思われる時間までのカウントダウン情報などである。
 AC復号部116では地震動警報情報開始/終了フラグ"地震動警報詳細情報あり"から"地震動警報詳細情報なし"と切替わる状態が監視されており、地震動警報情報開始/終了フラグが"地震動警報詳細情報なし"となった場合には制御部118に"地震動警報詳細情報なし"の情報が伝えられ、制御部118は判別部117を停止状態とさせる信号を送り、判別部117は入力2503を介してこれを受け、停止状態となる。すなわち、時計部2504を除き、全てのブロックが動作を停止する。
 図25の実施例によれば、時刻情報と現在時刻の比較を行うことにより、警告発生の誤作動を防ぐことができる。
 さらに、ブザー音発生を行っているためブザー音により地震発生をいち早く知らせることができる効果がある。
 本発明に係る実施形態2について、図26および図27を用いて説明する。
 図26は図2のデジタル放送送信装置で送信されるセグメント番号#0に含まれるAC信号を用いて伝送された地震動警報情報を受信するデジタル放送受信装置の構成を示すブロック図である。
 2601、2602は合成部であり、図27にその詳細を示している。
 図1と図26との違いは、切替部114、115をそれぞれ合成部2601、2602にしたことである。
 以下、図27を用いて合成部2601、2602の説明を行なう。図27ではデコード部108も詳細に示している。
 2701はデスクランブル部106からの圧縮された番組映像信号や圧縮された番組音声信号、及びデータ信号のデジタル信号の入力、2703は圧縮された番組映像信号や映像系データ信号に対して動画、静止画、文字図形、字幕それぞれに対して復号処理を行なう映像系デコード部、2704は圧縮された番組音声信号や音声系データ信号に対して復号処理を行なう音声系デコード部、2705は動画表示をするための動画プレーン表示メモリ、2706は静止画表示をするための静止画プレーン表示メモリ、2707は動画と静止画を画素ごとに切替えるための情報を示した動画静止画切替プレーン表示メモリ、2708は文字図形を表示するための文字図形プレーン表示メモリ、2709は字幕を表示するための字幕プレーン表示メモリ、2710は動画静止画切替プレーン表示メモリ2707の情報により動画プレーン表示メモリ2705からの動画と静止画プレーン表示メモリ2706からの静止画の切替えを画素ごとに行なう切替部、2711は切替部2710の出力信号の合成比率を調整する調整部、2712は文字図形プレーン表示メモリ2708の出力信号の合成比率を調整する調整部、2713は調整部2711、2712の出力信号を合成する加算部、2714は加算部2713の出力信号の合成比率を調整する調整部、2715は字幕プレーン表示メモリ2709の出力信号の合成比率を調整する調整部、2716は調整部2714、2715の出力信号を合成する加算部であり、以上でデコード部108を構成する。加算部2716からは放送映像信号が、音声系デコード部2704からは放送音声信号が出力される。
 2717はAC復号部116からのデータ入力である。
 2718は加算部2716の出力信号である放送映像信号の合成比率を調整する調整部、2719は判別部117の出力信号である地震動警報情報の映像信号の合成比率を調整する調整部、2720は調整部2718、2719の出力信号を合成する加算部、2721は加算部2720の出力信号である合成映像信号の出力であり、以上で合成部2601を構成する。
 2722は音声系デコード部2704の出力信号である放送音声信号の合成比率を調整する調整部、2723は判別部117の出力信号である地震動警報情報の音声信号の合成比率を調整する調整部、2724は調整部2722、2723の出力信号を合成する加算部、2725は加算部2724の出力信号である合成音声信号の出力であり、以上で合成部2602を構成する。
 デコード部108の放送映像信号の合成方法を説明する。
 著作権保護のためにスクランブルのかけられているTS信号はデスクランブル部106でスクランブル解除され、入力2701からデマックス部107に入力される。デマックス部107では希望された圧縮された番組映像信号や圧縮された番組音声信号、及びデータ信号が抽出され、デコード部108に出力される。このとき、希望された圧縮された番組映像信号や映像系データ信号は映像系デコード部2703へ、希望された圧縮された番組音声信号や音声系データ信号は音声系デコード部2704へ、入力される。
 ここで、希望された圧縮された番組映像信号や映像系データ信号、及び、希望された圧縮された番組音声信号や音声系データ信号は、データストリームあるいはデータカルーセルにより、文字図形、静止画、動画、音声のモノメディアとして伝送が行われる。これらのデータを復号化し個々の符号化されたモノメディアデータに分離を行う。
 符号化されたモノメディアデータは、それぞれのデコーダにより復号される。音声は音声系デコード、動画映像信号は映像デコード、文字/図形/静止画は文字/図形/静止画デコード、字幕・文字スーパーは字幕・文字スーパーデコードでデコードされる。
 デコードされた映像系信号において、文字図形、静止画、動画像は、それぞれ文字図形プレーン表示メモリ2708、静止画プレーン表示メモリ2706、動画プレーン表示メモリ2705により表示され、動画静止画切替プレーン表示メモリ2707の制御により合成が行われる。尚、各プレーンへの表示時には、スケーリングされることがある。
 マルチメディアサービスにおいては、これらのモノメディアの提示制御はマルチメディア符号化により規定された枠組みにより制御される。また、字幕スーパーについては、字幕、文字スーパーの符号化方式により字幕プレーン表示メモリ2709に表示され、提示制御が行なわれる。
 切替部2710では、動画静止画切替プレーン表示メモリ2707の情報により、動画プレーン表示メモリ2705からの動画と静止画プレーン表示メモリ2706からの静止画を画素ごとに切替える。切替部2710の出力信号は調整部2711で合成比率を"1-α1"倍に調整される。一方、文字図形プレーン表示メモリ2708からの出力信号である文字図形は調整部2712で合成比率を"α1"倍に調整される。ここで、α1は不透明度を表し、0から1までの値をとる。加算部2713では調整部2711、2712の出力信号を合成する。α1が0の場合は切替部2710の出力信号のみとなり、α1が1の場合は文字図形プレーン表示メモリ2708からの出力信号である文字図形のみとなる。
 加算部2713の出力信号は調整部2714で合成比率を"1-α2"倍に調整される。一方、字幕プレーン表示メモリ2709からの出力信号である字幕は調整部2715で合成比率を"α2"倍に調整される。ここで、α2は不透明度を表し、0から1までの値をとる。加算部2716では調整部2714、2715の出力信号を合成する。α2が0の場合は加算部2713の出力信号のみとなり、α2が1の場合は字幕プレーン表示メモリ2709からの出力信号である字幕のみとなる。
 以上のように、字幕、文字図形、静止画、動画は合成され、加算部2716から放送映像信号が出力される。
 合成部2601では、加算部2716からの放送映像信号が調整部2718で合成比率"1-α3"倍に調整され、一方、判別部117からの出力信号である地震動警報情報の映像信号が調整部2719で合成比率"α3"倍に調整され、調整部2718、2719の出力信号が加算部2720で合成され、加算部2720の出力信号が合成映像信号として出力2721に出力される。ここで、α3は不透明度を表し、0から1までの値をとり、α3が0の場合は出力2721から出力される合成映像信号は加算部2716からの放送映像信号のみとなり、α3が1の場合は出力2721から出力される合成映像信号は判別部117からの出力信号である地震動警報情報の映像信号のみとなる。
 合成部2602では、音声系デコード部2704からの放送音声信号が調整部2722で合成比率"1-α4"倍に調整され、一方、判別部117からの出力信号である地震動警報情報の音声信号が調整部2723で合成比率"α4"倍に調整され、調整部2722、2723の出力信号が加算部2724で合成され、加算部2724の出力信号が合成音声信号として出力2725に出力される。ここで、α4は合成率を表し、0から1までの値をとり、α4が0の場合は出力2725から出力される合成音声信号は音声系デコード部2704からの放送音声信号のみとなり、α4が1の場合は出力2725から出力される合成音声信号は判別部117からの出力信号である地震動警報情報の音声信号のみとなる。
 本実施例ではα3、α4を0.5より大きい値とすることで、地震動警報情報の映像信号や音声信号を、それぞれ、放送映像信号や放送音声信号よりも目立つように提示することができる効果がある。
 なお、判別部117は、地震動警報情報の映像信号を作成する場合にデコード部108が有する文字フォント情報やその他の表示情報を使用したり、地震動警報情報の音声信号を作成する場合にデコード部108が有するブザー音種類の情報を使用することで、重複した情報をデジタル放送受信装置121に持たなくてもよい回路構成とすることも可能であり、この場合、低価格な判定部117とすることが出来る効果がある。
 また、図26の実施例においても、図18、図19、図20、図21、図22、図23、図24における制御部118は、TMCC復号部113からの緊急警報放送用起動フラグ情報や、地震動警報情報受信部120からの地震動警報情報を入力され、地震動警報を発令すべき時に、合成部2601及び2602を制御し、地震動警報の映像信号を映像出力部109に、地震動警報の音声信号を音声出力部110に出力させることができる。
 本発明に係る実施形態3について、図28を用いて説明する。
 図28は図27の合成部2601を省略し、デコード部108の字幕プレーン表示メモリ2709に直接地震動警報情報の映像信号を書き込む。字幕プレーン表示メモリ2709は映像系デコード部2703からのデコードされた字幕を更新した後に判別部117からの地震動警報情報の映像信号を更新する。または、字幕プレーン表示メモリ2709は判別部117からの地震動警報情報の映像信号が書き込まれた場所には映像系デコード部2703からのデコードされた字幕を書き込まない。また、α2を0.5より大きい値とする。
 さらに、字幕プレーン表示メモリ2709に字幕が表示されていた場合、その表示部分を避けて地震動警報情報の映像信号を表示することもできる。なお、字幕だけではなく、データ放送などで放送事業者が映像表示を強調または必須としている表示部分を避けて地震動警報情報の映像信号を表示することもできる。さらにまた、受信機が自ら重要と思われる映像表示をしている場合は、その表示部分を避けて地震動警報情報の映像信号を表示することもできる。
 以上により、映像系の合成部を増やすことなく地震動警報情報の映像信号を放送映像信号よりも目立つように合成し提示することができる効果がある。
 なお、判別部117は、地震動警報情報の映像信号を作成する場合にデコード部108が有する文字フォント情報やその他の表示情報を使用したり、地震動警報情報の音声信号を作成する場合にデコード部108が有するブザー音種類の情報を使用することで、重複した情報をデジタル放送受信装置121に持たなくてもよい回路構成とすることも可能であり、この場合、低価格な判定部117とすることが出来る効果がある。
 本発明に係る実施形態4について、図29および図30を用いて説明する。
 図29は図2のデジタル放送送信装置で送信されるセグメント番号#0に含まれるAC信号を用いて伝送された地震動警報情報を受信するデジタル放送受信装置の構成を示すブロック図である。
 2901は地震動警報情報の出力部であり、図30にその構成ブロック図を示す。
 図1と図29との違いは、地震動警報情報の出力2901を放送受信部119の出力部分である映像出力部109、音声出力部110と分離したことである。
 また、図30において、図25で説明した処理部2509からの地震動警報情報の映像信号出力2510から出力される映像信号出力、音声信号出力2511から出力される音声信号出力を、それぞれ映像出力部3001、音声出力部3002を用いて出力する。なお、映像出力部3001は光の点滅を行うフラッシュ装置等の映像表示や7セグメント表示機のような簡易映像表示装置を用いた映像表示でもよい。
 図29の制御部118は、図1及び図25で説明した、地震が起こり地震動警報情報開始/終了フラグが"地震動警報詳細情報あり"となり、識別信号が”地震動警報詳細情報(該当地域あり)”の場合に、判別部117からの地震動警報詳細情報を示す映像信号、音声信号がそれぞれ映像出力部3001、音声出力部3002を用いて出力されたときに、放送受信部119の映像出力部109、音声出力部110からの出力が、映像出力部3001、音声出力部3002から出力される地震動警報詳細情報示す映像信号、音声信号を妨げないように制御する。具体的には、映像出力部109の映像を暗くする、静止画にする、地震動警報詳細情報が発報されていることを示すメッセージを出す、また、音声出力部110の音声をミュート(出力しない)する、音量を下げる、などの動作を行なう。
 本実施例では、地震動警報情報の映像信号や音声信号を、それぞれ、放送映像信号や放送音声信号よりも目立つようにすることができる効果がある。また、放送受信部とは独立に映像出力部、音声出力部を持っているため、放送受信部の映像出力部、音声出力部が出力していない状況でも、すばやく立ち上げて、地震動警報情報を出力することができる効果がある。
 また、図29の実施例においても、図18、図19、図20、図21、図22、図23、図24における制御部118は、TMCC復号部113からの緊急警報放送用起動フラグ情報や、地震動警報情報受信部120からの地震動警報情報を入力され、地震動警報を発令すべき時に、出力部2901から地震動警報を出力し、この地震動警報の出力を妨げないように放送受信部119を制御する。
 なお、図1、図26、図29のデジタル放送受信装置は、13セグメント受信機であってもワンセグメント受信機であってもどちらでもよい。
101…アンテナ
102…選局部
103…直交復調部
104…高速フーリエ変換(FFT)部
105…復調復号部
106…デスクランブル部
107…デマックス部
108…デコード部
109…映像出力部
110…音声出力部
111…同期再生部
112…フレーム抽出部
113…TMCC復号部
114、115…切替部
116…AC復号部
117…判別部
118…制御部
119…放送受信部
120…地震動警報情報受信部
121…デジタル放送受信装置
201…情報源符号化部
202…MPEG2多重化部
203…TS再多重部
204…RS(リード・ソロモン)符号化部
205…階層分割部
206a、b、c…並列処理部
207…階層合成部
208…時間インタリーブ部
209…周波数インターリーブ部
210…OFDMフレーム構成部
211…逆高速フーリエ変換(IFFT)部
212…ガードインターバル付加部
213…送信部
214…パイロット信号構成部
215…TMCC信号構成部
216…AC信号構成部
2501、2503、2512…入力
2502…誤り訂正検出部
2504…時計部
2505…現時刻設定部
2506…データ判断記憶部
2507…比較判断部
2508…ブザー音発生部
2509…処理部
2510…映像信号出力
2511…音声信号出力
2601、2602…合成部
2701…入力
2703…映像系デコード部
2704…音声系デコード部
2705…動画プレーン表示メモリ
2706…静止画プレーン表示メモリ
2707…動画静止画切替プレーン表示メモリ
2708…文字図形プレーン表示メモリ
2709…字幕を表示するための字幕プレーン表示メモリ
2710…切替部
2711、2712、2714、2715…調整部
2713、2716…加算部
2717…データ入力
2718、2719…調整部
2720…加算部
27212725…出力
2722、2723…調整部
2724…加算部

Claims (4)

  1.  放送映像信号あるいは放送音声信号を含むデジタル放送信号と、緊急警報放送が起動されたことを示す緊急警報放送用起動フラグと、地震動警報が発報されたことを示す開始/終了フラグ、及び、当該地震動警報の内容を示す情報であって、地震動映像信号あるいは地震動音声信号に変換するための信号識別情報を含む地震動警報情報信号とを有する伝送信号を受信するデジタル放送受信装置であって、
     前記伝送信号を受信する受信部と、
     前記受信部で受信された伝送信号から前記デジタル放送信号を復調する放送復調部と、
     前記受信部で受信された伝送信号から前記緊急警報放送用起動フラグを検出する緊急警報放送用起動フラグ検出部と、
     前記受信部で受信された伝送信号から前記地震動警報情報信号を復調する地震動警報情報復調部と、
     前記放送復調部で復調されたデジタル放送信号の放送映像信号あるいは放送音声信号と、前記地震動警報情報復調部で復調された地震動警報情報信号の地震動映像信号あるいは地震動音声信号とを切替える切替部と、
     前記地震動警報情報復調部で復調された地震動警報情報信号のうち、開始/終了フラグが地震動警報が発報されたことを示すとともに、信号識別情報が地震動警報の該当地域があることを示し、かつ、前記緊急警報放送用起動フラグ検出部で検出された緊急警報放送用起動フラグが緊急警報放送が起動されたことを示している場合に、前記切替部が前記地震動映像信号あるいは前記地震動音声信号に切替えるように制御する制御部と、
    を備えることを特徴とするデジタル放送受信装置。
  2.  放送映像信号あるいは放送音声信号を含むデジタル放送信号と、緊急警報放送が起動されたことを示す緊急警報放送用起動フラグと、地震動警報が発報されたことを示す開始/終了フラグ、及び、当該地震動警報の内容を示す情報であって、地震動映像信号あるいは地震動音声信号に変換するための信号識別情報を含む地震動警報情報信号とを有する伝送信号を受信するデジタル放送受信装置であって、
     前記伝送信号を受信する受信部と、
     前記受信部で受信された伝送信号から前記デジタル放送信号を復調する放送復調部と、
     前記受信部で受信された伝送信号から前記緊急警報放送用起動フラグを検出する緊急警報放送用起動フラグ検出部と、
     前記受信部で受信された伝送信号から前記地震動警報情報信号を復調する地震動警報情報復調部と、
     前記放送復調部で復調されたデジタル放送信号の放送映像信号あるいは放送音声信号と、前記地震動警報情報復調部で復調された地震動警報情報信号の地震動映像信号あるいは地震動音声信号とを切替える切替部と、
     前記地震動警報情報復調部で復調された地震動警報情報信号のうち、開始/終了フラグが地震動警報が発報されたことを示すとともに、信号識別情報が地震動警報の該当地域がないことを示し、かつ、前記緊急警報放送用起動フラグ検出部で検出された緊急警報放送用起動フラグが緊急警報放送が起動されたことを示している場合に、前記切替部が前記放送映像信号あるいは前記放送音声信号に切替えるように制御する制御部と、
    を備えることを特徴とするデジタル放送受信装置。
  3.  放送映像信号あるいは放送音声信号を含むデジタル放送信号と、緊急警報放送が起動されたことを示す緊急警報放送用起動フラグと、地震動警報が発報されたことを示す開始/終了フラグ、及び、当該地震動警報の内容を示す情報であって、地震動映像信号あるいは地震動音声信号に変換するための信号識別情報を含む地震動警報情報信号とを有する伝送信号を受信するデジタル放送受信方法であって、
     前記伝送信号を受信する受信ステップと、
     前記受信ステップで受信された伝送信号から前記デジタル放送信号を復調する放送復調ステップと、
     前記受信ステップで受信された伝送信号から前記緊急警報放送用起動フラグを検出する緊急警報放送用起動フラグ検出ステップと、
     前記受信ステップで受信された伝送信号から前記地震動警報情報信号を復調する地震動警報情報復調ステップと、
     前記放送復調ステップで復調されたデジタル放送信号の放送映像信号あるいは放送音声信号と、前記地震動警報情報復調ステップで復調された地震動警報情報信号の地震動映像信号あるいは地震動音声信号とを切替える切替ステップと、を有し
     前記地震動警報情報復調ステップで復調された地震動警報情報信号のうち、開始/終了フラグが地震動警報が発報されたことを示すとともに、信号識別情報が地震動警報の該当地域があることを示し、かつ、前記緊急警報放送用起動フラグ検出ステップで検出された緊急警報放送用起動フラグが緊急警報放送が起動されたことを示している場合に、前記切替ステップで、前記地震動映像信号あるいは前記地震動音声信号に切替えられることを特徴とするデジタル放送受信方法。
  4.  放送映像信号あるいは放送音声信号を含むデジタル放送信号と、緊急警報放送が起動されたことを示す緊急警報放送用起動フラグと、地震動警報が発報されたことを示す開始/終了フラグ、及び、当該地震動警報の内容を示す情報であって、地震動映像信号あるいは地震動音声信号に変換するための信号識別情報を含む地震動警報情報信号とを有する伝送信号を受信するデジタル放送受信方法であって、
     前記伝送信号を受信する受信ステップと、
     前記受信ステップで受信された伝送信号から前記デジタル放送信号を復調する放送復調ステップと、
     前記受信ステップで受信された伝送信号から前記緊急警報放送用起動フラグを検出する緊急警報放送用起動フラグ検出ステップと、
     前記受信ステップで受信された伝送信号から前記地震動警報情報信号を復調する地震動警報情報復調ステップと、
     前記放送復調ステップで復調されたデジタル放送信号の放送映像信号あるいは放送音声信号と、前記地震動警報情報復調ステップで復調された地震動警報情報信号の地震動映像信号あるいは地震動音声信号とを切替える切替ステップと、を有し
     前記地震動警報情報復調ステップで復調された地震動警報情報信号のうち、開始/終了フラグが地震動警報が発報されたことを示すとともに、信号識別情報が地震動警報の該当地域がないことを示し、かつ、前記緊急警報放送用起動フラグ検出ステップで検出された緊急警報放送用起動フラグが緊急警報放送が起動されたことを示している場合に、前記切替ステップで、前記放送映像信号あるいは前記放送音声信号に切替えられることを特徴とするデジタル放送受信方法。
PCT/JP2011/054506 2010-05-10 2011-02-28 デジタル放送受信装置およびデジタル放送受信方法 WO2011142160A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800230347A CN102884806A (zh) 2010-05-10 2011-02-28 数字广播接收装置和数字广播接收方法
US13/696,624 US20130094617A1 (en) 2010-05-10 2011-02-28 Digital broadcast receiver apparatus and digital broadcast reception method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010107857A JP2011239119A (ja) 2010-05-10 2010-05-10 デジタル放送受信装置およびデジタル放送受信方法
JP2010-107857 2010-05-10
JP2010107856A JP5478353B2 (ja) 2010-05-10 2010-05-10 デジタル放送受信装置およびデジタル放送受信方法
JP2010-107856 2010-05-10

Publications (1)

Publication Number Publication Date
WO2011142160A1 true WO2011142160A1 (ja) 2011-11-17

Family

ID=44914219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054506 WO2011142160A1 (ja) 2010-05-10 2011-02-28 デジタル放送受信装置およびデジタル放送受信方法

Country Status (3)

Country Link
US (1) US20130094617A1 (ja)
CN (1) CN102884806A (ja)
WO (1) WO2011142160A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685685A (zh) * 2012-04-12 2012-09-19 蔡云萍 用于无线小区内异常事件的通知方法
CN103186966A (zh) * 2011-12-27 2013-07-03 成都市美幻科技有限公司 地震预警中地震烈度的声音提示方法
CN103546261A (zh) * 2012-07-10 2014-01-29 中国矿业大学(北京) 安防领域中的微震无线高速传输系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470980B (zh) * 2012-12-26 2015-01-21 Mstar Semiconductor Inc 解碼方法及多媒體播放系統
JP6323753B2 (ja) * 2013-06-14 2018-05-16 サン パテント トラスト 送信方法
GB2515801A (en) * 2013-07-04 2015-01-07 Sony Corp Transmitter and receiver and methods of transmitting and receiving
EP3039834B1 (en) * 2013-08-30 2018-10-24 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method and apparatus for transmitting a signal with constant envelope
CN111510250B (zh) * 2013-12-06 2023-03-31 Lg电子株式会社 发送和接收广播信号的装置和方法
US10917186B2 (en) * 2015-07-21 2021-02-09 Lg Electronics Inc. Broadcasting signal transmitting apparatus, broadcasting signal receiving apparatus, broadcasting signal transmitting method, and broadcasting signal receiving method
JP6290851B2 (ja) * 2015-12-24 2018-03-07 日本電気株式会社 信号構成装置、信号構成システム、信号構成方法、および信号構成用プログラム
CN105763953A (zh) * 2016-02-22 2016-07-13 四川长虹电器股份有限公司 电视中播放紧急警报广播的方法
JP7083622B2 (ja) * 2016-10-31 2022-06-13 日本放送協会 再多重化装置、分離装置及びチップ
JP7083623B2 (ja) * 2016-10-31 2022-06-13 日本放送協会 再多重化装置、分離装置及びチップ
IT201800006022A1 (it) * 2018-06-04 2019-12-04 Sistema, trasmettitore, ricevitore e metodo per la trasmissione e la ricezione satellitare di segnali di allarme
JP7060720B2 (ja) * 2018-10-18 2022-04-26 シャンハイ カンブリコン インフォメーション テクノロジー カンパニー リミテッド ネットワークオンチップによるデータ処理方法及び装置
US10685563B2 (en) * 2018-11-08 2020-06-16 Toyota Motor North America, Inc. Apparatus, systems, and methods for detecting, alerting, and responding to an emergency vehicle
JP2021177598A (ja) * 2020-05-08 2021-11-11 シャープ株式会社 音声処理システム、音声処理方法、及び音声処理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213105A (ja) * 2008-02-08 2009-09-17 Nhk Engineering Services Inc 地上デジタルテレビジョン放送における緊急速報を受信する受信機、及び緊急速報を送信する送信装置
JP2009260560A (ja) * 2008-04-15 2009-11-05 Ntt Docomo Inc 放送波受信端末装置及び放送番組選定方法
JP2009273040A (ja) * 2008-05-09 2009-11-19 Ntt Docomo Inc 放送配信装置、放送受信機、放送システム、放送配信方法、放送受信方法、および放送制御方法
JP2009302993A (ja) * 2008-06-16 2009-12-24 Nec Electronics Corp 緊急情報報知システム、catv受信機、及び緊急情報報知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018095B (zh) * 2006-02-07 2012-09-05 株式会社东芝 紧急信息快报系统
KR101295301B1 (ko) * 2006-11-10 2013-08-08 엘지전자 주식회사 수신기 및 이 수신기에서 방송 신호를 처리하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213105A (ja) * 2008-02-08 2009-09-17 Nhk Engineering Services Inc 地上デジタルテレビジョン放送における緊急速報を受信する受信機、及び緊急速報を送信する送信装置
JP2009260560A (ja) * 2008-04-15 2009-11-05 Ntt Docomo Inc 放送波受信端末装置及び放送番組選定方法
JP2009273040A (ja) * 2008-05-09 2009-11-19 Ntt Docomo Inc 放送配信装置、放送受信機、放送システム、放送配信方法、放送受信方法、および放送制御方法
JP2009302993A (ja) * 2008-06-16 2009-12-24 Nec Electronics Corp 緊急情報報知システム、catv受信機、及び緊急情報報知方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103186966A (zh) * 2011-12-27 2013-07-03 成都市美幻科技有限公司 地震预警中地震烈度的声音提示方法
CN102685685A (zh) * 2012-04-12 2012-09-19 蔡云萍 用于无线小区内异常事件的通知方法
CN103546261A (zh) * 2012-07-10 2014-01-29 中国矿业大学(北京) 安防领域中的微震无线高速传输系统

Also Published As

Publication number Publication date
CN102884806A (zh) 2013-01-16
US20130094617A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
WO2011142160A1 (ja) デジタル放送受信装置およびデジタル放送受信方法
KR100636216B1 (ko) 동일한 방송 서비스를 제공하는 방법 및 그 방송 수신 장치
JP5801561B2 (ja) デジタル放送送信装置およびデジタル放送送信方法
JP5478353B2 (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2011244033A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2012015930A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2011114593A (ja) デジタル放送受信装置
JP6421228B2 (ja) 送信装置、デジタル放送送信方法、デジタル放送送受信システム及びデジタル放送送受信方法
JP2011244230A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP6256959B2 (ja) 送信装置、デジタル放送送信方法、デジタル放送送受信システム及びデジタル放送送受信方法
WO2011145369A1 (ja) デジタル放送受信装置およびデジタル放送受信方法
JP6069442B2 (ja) デジタル放送送受信システム及びデジタル放送送受信方法
JP2011244041A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2011244229A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2011216926A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP5595787B2 (ja) デジタル放送受信装置及びデジタル放送受信方法
WO2012011296A1 (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2011244039A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP5698928B2 (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2011239119A (ja) デジタル放送受信装置およびデジタル放送受信方法
WO2011121813A1 (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2011244040A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP5612943B2 (ja) 送信装置並びに送信方法
JP2011244228A (ja) デジタル放送受信装置およびデジタル放送受信方法
JP2012028885A (ja) デジタル放送受信装置およびデジタル放送受信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023034.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13696624

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11780418

Country of ref document: EP

Kind code of ref document: A1