WO2011142027A1 - イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母 - Google Patents

イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母 Download PDF

Info

Publication number
WO2011142027A1
WO2011142027A1 PCT/JP2010/058190 JP2010058190W WO2011142027A1 WO 2011142027 A1 WO2011142027 A1 WO 2011142027A1 JP 2010058190 W JP2010058190 W JP 2010058190W WO 2011142027 A1 WO2011142027 A1 WO 2011142027A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
coa
isopropanol
acetoacetyl
seq
Prior art date
Application number
PCT/JP2010/058190
Other languages
English (en)
French (fr)
Inventor
村松 正善
米田 聡
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012514654A priority Critical patent/JP5630501B2/ja
Priority to EP10851410.0A priority patent/EP2570485B1/en
Priority to BR112012028202A priority patent/BR112012028202A2/pt
Priority to PCT/JP2010/058190 priority patent/WO2011142027A1/ja
Priority to US13/697,626 priority patent/US8828693B2/en
Priority to CN201080066774.4A priority patent/CN102892892B/zh
Publication of WO2011142027A1 publication Critical patent/WO2011142027A1/ja
Priority to US14/445,422 priority patent/US9217183B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01016Acetoacetate-CoA ligase (6.2.1.16)

Definitions

  • the present invention relates to a method for producing isopropanol using recombinant yeast having isopropanol-producing ability in which a gene group related to isopropanol biosynthesis is incorporated, and the recombinant yeast.
  • acetone and isopropanol are important chemical products as raw materials for industrial solvent resins such as paints and inks.
  • Isopropanol has been conventionally synthesized using petroleum as a raw material, but it is desired to synthesize it from biomass using a fermentation process due to the problems of depletion of oil and reduction of atmospheric CO 2 .
  • Clostridium acetobutylicum is known to fermentatively produce acetone and isopropanol together with butanol (Non-patent Document 1: Biotechnology, 2nd Edn., Vol1, p285-323, 1993).
  • Non-patent Document 2 Appl. Environ. Microbiol., 73, 1079-1085, 1998, Patent Document 1: US2008 / 293125).
  • Patent Document 2 WO 2009/008377
  • Patent Document 3 WO 2009/028582).
  • Patent Document 4 WO 2007/146377
  • Patent Document 5 WO 2007/130560
  • Patent Document 6 WO 2008/073406,
  • Patent Document 7 US 6,156,532.
  • bacteria such as Escherichia coli
  • yeasts have high resistance to organic solvents, but no examples of producing organic solvents such as isopropanol and acetone by introducing genes into yeast have been reported.
  • the present invention provides a method for producing isopropanol with excellent productivity by a fermentation process using yeast, and also provides a recombinant yeast excellent in isopropanol production ability. For the purpose.
  • the present invention includes the following.
  • the acetoacetyl-CoA synthase gene encodes a protein having the amino acid sequence set forth in SEQ ID NO: 1, or has an amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 1,
  • the method for producing isopropanol according to (2) which encodes a protein having a function of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA.
  • the isopropanol biosynthesis related gene group is a gene selected from the group consisting of an acetoacetyl CoA transferase gene, an acetoacetate decarboxylase gene, and an isopropanol dehydrogenase gene. Of isopropanol.
  • the recombinant yeast is an isopropanol biosynthesis related gene group into which a non-inherent gene is introduced among acetoacetyl-CoA transferase gene, acetoacetate decarboxylase gene and isopropanol dehydrogenase gene.
  • the method for producing isopropanol as described in (1) which is characterized in that
  • a recombinant yeast introduced with an acetoacetyl CoA synthase gene and an isopropanol biosynthesis related gene group related to a metabolic pathway for synthesizing isopropanol from acetoacetyl CoA.
  • acetoacetyl CoA synthase gene is an acetoacetyl CoA synthase gene (ORFn gene) derived from a microorganism belonging to the genus Streptomyces.
  • the acetoacetyl-CoA synthase gene encodes a protein having the amino acid sequence set forth in SEQ ID NO: 1, or has an amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 1,
  • the recombinant yeast according to (12) which encodes a protein having a function of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA.
  • the isopropanol biosynthesis related gene group is a gene selected from the group consisting of an acetoacetyl CoA transferase gene, an acetoacetate decarboxylase gene, and an isopropanol dehydrogenase gene (11) Recombinant yeast.
  • the gene group related to isopropanol biosynthesis is a gene into which a non-inherent gene is introduced among acetoacetyl CoA transferase gene, acetoacetate decarboxylase gene and isopropanol dehydrogenase gene (11)
  • a recombinant yeast having an excellent ability to produce isopropanol can be produced by introducing an acetoacetyl-CoA synthase gene and an isopropanol biosynthesis related gene group.
  • the manufacturing method of isopropanol excellent in productivity can be provided by utilizing the recombinant yeast which has isopropanol production ability. That is, according to the method for producing isopropanol according to the present invention, productivity in producing isopropanol used as a fuel or resin raw material can be improved, and the production cost of isopropanol can be reduced.
  • the method for producing isopropanol according to the present invention comprises culturing a recombinant yeast into which an acetoacetyl-CoA synthase gene and an isopropanol biosynthesis-related gene group related to a metabolic pathway for synthesizing isopropanol from acetoacetyl-CoA are introduced. To obtain isopropanol.
  • Acetoacetyl-CoA synthetase gene encodes an enzyme that has the activity of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA, or the activity of synthesizing acetoacetyl-CoA from bimolecular acetyl-CoA It is a gene.
  • An enzyme having an activity of synthesizing acetoacetyl CoA from two molecules of acetyl CoA may be referred to as thiolase.
  • an acetoacetyl-CoA synthase gene encoding an enzyme having an activity of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA.
  • an acetoacetyl-CoA synthase gene encoding an enzyme that synthesizes acetoacetyl-CoA from malonyl-CoA and acetyl-CoA is used, an enzyme that synthesizes acetoacetyl-CoA from two molecules of acetyl-CoA Compared to the case where the encoded acetoacetyl-CoA synthase gene is used, a recombinant yeast having an excellent ability to produce isopropanol can be produced.
  • a gene encoding an acetoacetyl-CoA synthase of the type having an activity of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA has been found in, for example, Streptomyces genus actinomycetes (Japanese Patent Laid-Open No. 2008-61506)
  • genes derived from Streptomyces actinomycetes can be used.
  • Examples of the acetoacetyl CoA synthase gene include a gene encoding a protein having the amino acid sequence of SEQ ID NO: 1.
  • the protein having the amino acid sequence of SEQ ID NO: 1 has an activity of synthesizing acetoacetyl CoA from malonyl CoA and acetyl CoA found in Streptomyces sp. CL190 strain, and acetoacetyl CoA is synthesized from two molecules of acetyl CoA. It is an acetoacetyl-CoA synthase that has no activity to synthesize (Japanese Patent Laid-Open No. 2008-61506).
  • the gene coding for the protein having the amino acid sequence of SEQ ID NO: 1 uses a pair of primers designed with reference to Japanese Patent Application Laid-Open No. 2008-61506, and a genomic DNA obtained from Streptomyces sp. It can be obtained by a nucleic acid amplification method (for example, PCR).
  • a gene encoding an acetoacetyl-CoA synthase (thiolase) of a type having an activity of synthesizing acetoacetyl-CoA from bimolecular acetyl-CoA is a conventionally known gene, that is, this type of acetoacetate identified in various organisms.
  • An acetyl-CoA synthase gene can be used.
  • the acetoacetyl CoA synthase gene is a gene included in the mevalonate pathway that exists in many biological species.
  • thiolase gene derived from Clostridiumacetobutylicum deposited as ATCC824.
  • the thiolase gene derived from Clostridium acetobutylicum is expressed as thlA gene and encodes a protein having the amino acid sequence of SEQ ID NO: 2.
  • Examples of thiolase genes that can be used include Schizosaccharomycesypombe, Saccharomyces cerevisiae, Escherichia coli, Macaca mulatta, Bos taurus, Drosophila melanogaster, Oryza sativa, Aspergillus oryzae, Bacillus amyloliquefaciens and Clostridium.
  • the acetoacetyl CoA synthase gene is not limited to a gene encoding a protein having the amino acid sequence of SEQ ID NO: 1 derived from Streptomyces sp. And a gene encoding a protein having an amino acid sequence having high similarity and having a function of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA.
  • the acetoacetyl CoA synthase gene is not limited to a thiolase gene encoding a protein having the amino acid sequence of SEQ ID NO: 2 derived from Clostridium acetobutylicum, and has high similarity to the amino acid sequence of SEQ ID NO: 2.
  • high similarity means, for example, a degree of coincidence of 80% or more, preferably a degree of coincidence of 90% or more, more preferably a degree of coincidence of 95% or more, and most preferably a degree of coincidence of 97% or more.
  • the degree of coincidence is calculated when the amino acid sequence of SEQ ID NO: 1 or 2 is aligned with another amino acid sequence using a program for searching for sequence similarity (sometimes referred to as a homology search program). Further, in the other amino acid sequences, the value is calculated as a ratio of amino acid residues that coincide with the amino acid sequence of SEQ ID NO: 1 or 2.
  • the acetoacetyl CoA synthase gene is a protein having an amino acid sequence in which one or more amino acids in the amino acid sequence of SEQ ID NO: 1 are substituted, deleted, added or inserted, and malonyl CoA And a gene encoding a protein having a function of synthesizing acetoacetyl-CoA from acetyl-CoA.
  • the acetoacetyl CoA synthase gene is a protein having an amino acid sequence in which one or more amino acids in the amino acid sequence of SEQ ID NO: 2 are substituted, deleted, added or inserted, It may be a gene encoding a protein having a function of synthesizing acetoacetyl-CoA from acetyl-CoA.
  • the plurality of amino acids means, for example, 2 to 30 amino acids, preferably 2 to 20, more preferably 2 to 10, and most preferably 2 to 5 amino acids.
  • the acetoacetyl CoA synthetase gene is a stringent condition for part or all of a polynucleotide comprising a base sequence complementary to the base sequence encoding the amino acid sequence of SEQ ID NO: 1. It may be a polynucleotide that hybridizes below, and that encodes a protein having a function of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA.
  • the acetoacetyl-CoA synthetase gene is a stringent condition for part or all of a polynucleotide comprising a base sequence complementary to the base sequence encoding the amino acid sequence of SEQ ID NO: 2. It may be a polynucleotide that hybridizes underneath and that encodes a protein having a function of synthesizing acetoacetyl-CoA from two molecules of acetyl-CoA.
  • hybridizing under stringent conditions means maintaining binding at 60 ° C. under 2 ⁇ SSC washing conditions.
  • Hybridization can be performed by a conventionally known method such as the method described in J. Sambrook et al. Molecular lonCloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory (1989).
  • a gene encoding an acetoacetyl-CoA synthetase having an amino acid sequence different from the amino acid sequence of SEQ ID NO: 1 as described above can be isolated from actinomycetes other than Streptomyces sp.
  • a gene encoding an acetoacetyl-CoA synthase having an amino acid sequence different from the amino acid sequence of SEQ ID NO: 2 can be isolated from Clostridium bacteria other than Clostridium acetobutylicum (ATCC824), for example.
  • the polynucleotide encoding the amino acid sequence of SEQ ID NO: 1 or 2 can be modified by a technique known in the art.
  • Mutation can be introduced into a nucleotide sequence by a known method such as Kunkel method or Gapped duplex method or a method according thereto, for example, a mutation introduction kit using site-directed mutagenesis (for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA) or the like, or using LA PCR in vitro Mutagenesis series kits (trade name, manufactured by TAKARA).
  • a mutation introduction kit using site-directed mutagenesis for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA) or the like, or using LA PCR in vitro Mutagenesis series kits (trade name, manufactured by TAKARA).
  • an acetoacetyl CoA synthase having an amino acid sequence different from the amino acid sequence of SEQ ID NO: 1 can be evaluated as follows. That is, first, a gene encoding a protein to be evaluated is introduced into a host cell so that it can be expressed, and the protein is purified by a technique such as chromatography. Malonyl CoA and acetyl CoA are added as substrates in the obtained buffer containing the protein to be evaluated. Thereafter, for example, incubation is performed at a desired temperature (for example, 10 to 60 ° C.).
  • an acetoacetyl CoA synthase having an amino acid sequence different from the amino acid sequence of SEQ ID NO: 2 can be evaluated as follows. That is, first, a gene encoding a protein to be evaluated is introduced into a host cell so that it can be expressed, and the protein is purified by a technique such as chromatography. Acetyl CoA is added as a substrate to the obtained buffer containing the protein to be evaluated. Thereafter, for example, incubation is performed at a desired temperature (for example, 10 to 60 ° C.).
  • the presence or absence of the function of synthesizing acetoacetyl-CoA from bimolecular acetyl-CoA for the protein to be evaluated by measuring the amount of substrate decrease and / or the amount of product (acetoacetyl-CoA) produced And its degree can be evaluated.
  • the isopropanol biosynthesis related gene group means a group consisting of a plurality of genes encoding enzymes involved in a metabolic pathway for biosynthesis of isopropanol as a final product using acetoacetyl CoA as a starting compound.
  • Enzymes involved in the isopropanol biosynthetic metabolic pathway include acetoacetyl-CoA transferase that synthesizes acetylacetate using acetoacetyl-CoA as a substrate, acetoacetate decarboxylase that synthesizes acetone using acetylacetate as a substrate, and isopropanol using acetone as a substrate.
  • An isopropanol dehydrogenase that synthesizes can be mentioned.
  • microorganisms having the ability to biosynthesize isopropanol include microorganisms belonging to the genus Clostridium, including, but not limited to, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharoperbutylacetonicum, Clostridium saccharoacetobutylicum, Clostridium aurantilos it can. Among them, it is preferable to use an isopropanol biosynthesis-related gene group derived from Clostridium acetobutylicum and Clostridiumijbeijerinckii whose whole genome sequence has been analyzed.
  • the acetoacetyl CoA transferase gene the ctfA gene and the ctfB gene derived from Clostridiumacetobutylicum can be used.
  • the amino acid sequence of the protein encoded by the ctfA gene is shown in SEQ ID NO: 3
  • the amino acid sequence of the protein encoded by the ctfB gene is shown in SEQ ID NO: 4.
  • an adc gene derived from Clostridium acetobutylicum can be used as the acetoacetate decarboxylase gene.
  • the amino acid sequence of the protein encoded by the adc gene is shown in SEQ ID NO: 5.
  • isopropanol dehydrogenase gene a pdh gene derived from Clostridium ⁇ beijerinckii can be used.
  • the amino acid sequence of the protein encoded by the pdh gene is shown in SEQ ID NO: 6.
  • acetoacetyl-CoA transferase ( ⁇ subunit) genes include, for example, Escherichia coli, Shigella sonnei, Pectobacterium carotovorum, Photorhabdus asymbiotica, Bacillus cereus, Citrobacter koseri, Streptococcus pyogenic, Clostridiumc The gene can be used.
  • genes derived from Escherichia ⁇ coli, Citrobacter koseri, Haemophilus influenzae, Nitrobacter hamburgensis, Streptococcus pyogenes, Clostridium difficile, and Bacillus weihenstephanensis are also used as acetoacetyl CoA transferase ( ⁇ subunit) genes other than the ctfB gene described above. Can do.
  • acetoacetate decarboxylase genes include Saccharopolyspora erythraea, Streptomyces avermitilis, Bradyrhizobium sp., Rhizobium leguminosarum, Burkholderia mallei, Ralstonia solanacearum, Francisella tularinii Can do.
  • a gene derived from Rhodococcus rubber can be used as an isopropanol dehydrogenase gene other than the pdh gene.
  • the isopropanol biosynthesis related gene group is not limited to the above-mentioned genes, and may be homologous genes to the ctfA gene derived from Clostridiumacetobutylicum, the ctfB gene and the adc gene, and the pdh gene derived from Clostridiumbeijerinckii.
  • a homologous gene can be identified by homology search using a known algorithm such as Blast or Fasta against a database storing the base sequence of the gene or the amino acid sequence of the protein.
  • the homologous gene identified using the database can be isolated from a microorganism and used by a known technique.
  • a nucleic acid fragment containing a homologous gene can be obtained by a nucleic acid amplification method using a genomic DNA extracted from a microorganism as a template and a primer designed based on the base sequence of the identified homologous gene.
  • a cDNA library is prepared by a known method for the microorganism belonging to the genus Clostridium having the isopropanol biosynthesis ability as described above, and the nucleotide sequence of the ctfA gene derived from Clostridium acetobutylicum, ctfB gene and adc gene, and the pdh gene derived from Clostridium beijerinckii
  • a homologous gene derived from a microorganism belonging to the genus Clostridium having the ability to biosynthesize isopropanol as described above can also be obtained.
  • the method for obtaining homologous genes for the ctfA gene, ctfB gene and adc gene derived from Clostridiumacetobutylicum, and the pdh gene derived from Clostridium beijerinckii is not limited to the method described above, and any method may be applied.
  • acetoacetyl-CoA synthase gene and “isopropanol biosynthesis related gene group” are incorporated into an appropriate expression vector and introduced into the host yeast.
  • the host yeast is not particularly limited as long as it can express the gene of the present invention. Examples thereof include yeasts such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Pichia pastoris.
  • acetoacetyl-CoA synthetase gene having an activity of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA
  • yeasts with high oil-fat production capacity examples include Rhodotorula glutinis, Rhodotorula gracilis, Mortierella alpina, Lipomyces starkeyi, Trichosporon sp.
  • the expression vector is preferably capable of autonomous replication in the host yeast, and at the same time comprises a promoter, a ribosome binding sequence, the above-described gene, and a transcription termination sequence.
  • the expression vector may contain a gene that controls promoter activity.
  • acetoacetyl CoA synthase gene and “isopropanol biosynthesis related gene group” are preferably introduced into the chromosome of the host yeast.
  • these genes can be stably and highly expressed, and an excellent isopropanol producing ability can be achieved.
  • a conventionally well-known method can be used suitably. As an example, a method utilizing homologous recombination with a host yeast chromosome can be used.
  • acetoacetyl CoA synthase gene and “isopropanol biosynthesis related gene group” are introduced in multiple copies on the chromosome of the host yeast.
  • these genes are highly expressed, and an excellent isopropanol production ability can be achieved.
  • a conventionally well-known method can be used suitably. As an example, a method using a multi-copy introduction type vector can be mentioned.
  • yeast When yeast is used as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris and the like are used.
  • the promoter is not particularly limited as long as it can induce expression in yeast.
  • the method for introducing the recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • the electroporation method [Becker, DM, et.al .: Methods. Enzymol., 194: 182- 187 (1990)]
  • spheroplast method [Hinnen, A. et al.:Proc. Natl. Acad. Sci., USA, 75: 1929-1933 (1978)]
  • lithium acetate method [Itoh, H .: J .Bacteriol., 153: 163-168 (1983)].
  • the host yeast may have at least one endogenous gene among the above-mentioned “isopropanol biosynthesis-related genes”. In this case, it is only necessary to introduce genes other than the endogenous gene among the above-mentioned “isopropanol biosynthesis-related genes”.
  • acetoacetyl-CoA there may be a possibility that a sufficient amount of acetoacetyl-CoA is not present in the cell to biosynthesize isopropanol.
  • the equilibrium of this reaction is directed to the direction in which acetyl CoA is synthesized from acetoacetyl CoA. Therefore, it is considered difficult to proceed in the direction of acetoacetyl-CoA synthesis unless there is a strong reaction for converting the synthesized acetoacetyl-CoA to the next substance.
  • the culture conditions for culturing yeast introduced with the above-mentioned “acetoacetyl-CoA synthase gene” and “isopropanol biosynthesis related gene group” are not particularly limited, and auxotrophy and drug resistance of the host yeast are not limited.
  • the culture medium may be used under normal conditions.
  • isopropanol can be obtained from the supernatant fraction after separating the cells from the medium by means such as centrifugation.
  • an organic solvent such as ethyl acetate and methanol is added to the supernatant fraction and sufficiently stirred. It can isolate
  • Example 1 Streptomyces sp. CL190 strain ORFn gene or Saccharomyces cerevisiae ERG10 gene as acetoacetyl CoA synthase gene, Clostridium acetobutylicum ctfA gene and ctfB gene as acetoacetyl CoA transferase gene, acetoacetate A recombinant yeast was prepared by introducing an adc gene derived from Clostridium acetobutylicum as a decarboxylase and a pdh gene derived from Clostridium beijerinckii as an isopropanol dehydrogenase gene, and the isopropanol production ability was examined.
  • the ORFn gene encodes an acetoacetyl-CoA synthase having an activity of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA.
  • the ERG10 gene encodes an acetoacetyl-CoA synthase having an activity of synthesizing acetoacetyl-CoA from two molecules of acetyl-CoA.
  • an expression vector (pEXP (Ura) -ADC-CTFA-CTFB) having a ctfA gene, a ctfB gene and an adc gene is used to introduce these genes into a chromosome, and recombination is excellent in acetone production ability.
  • Yeast was selected. Thereafter, the selected recombinant yeast was further introduced into a chromosome using an expression vector (pDI626PGK-T-iPDH) having the pdh gene, and a recombinant yeast excellent in isopropanol production ability was selected.
  • one of the genes is further introduced into the chromosome using the expression vector having the ORFn gene (pESCpgkgap-HIS-ORFn) or the expression vector having the ERG10 gene (pESCpgkgap-HIS-ERG10) to the selected recombinant yeast. Then, isopropanol production ability was evaluated.
  • Saccharomyces cerevisiae YPH499 (Stratagene) was used as the yeast.
  • the following medium was used for the culture of YPH499.
  • SD (-URA-TRP-HIS) SD medium was manufactured by BIO101.
  • SD (-URA-TRP-HIS) medium SD medium excluding uracil, tryptophan and histidine was used.
  • the genomic DNA of yeast YPH499 was prepared according to the following method. First, Saccharomyces cerevisiae YPH499 (Stratagene) was cultured in 3 ml of YPD medium at 30 ° C for 1 day. 1.5 ml of the culture solution was subjected to a genomic DNA preparation kit (Gentra Puregene Yeast / Bact.kit) manufactured by QIAGEN to prepare genomic DNA.
  • Saccharomyces cerevisiae YPH499 (Stratagene) was cultured in 3 ml of YPD medium at 30 ° C for 1 day. 1.5 ml of the culture solution was subjected to a genomic DNA preparation kit (Gentra Puregene Yeast / Bact.kit) manufactured by QIAGEN to prepare genomic DNA.
  • the reaction solution was purified using a MinElute PCR purification kit manufactured by QIAGEN.
  • the obtained amplified fragment was digested with restriction enzymes SacI and SacII. Agarose gel electrophoresis was performed, and a 712 bp fragment was excised and purified using a MinElute Gel extraction kit manufactured by QIAGEN.
  • it was ligated to a pDI626GAP ((APP. Env. Micro., 2009, 5536-5543)) vector digested with restriction enzymes SacI and SacII.
  • the obtained sequence was sequenced to confirm that the target plasmid was prepared.
  • the plasmid thus obtained was named pDI626PGKpro.
  • Primer (50 pmol): SalI-Tpgk1 FW; 5'TTA AGT CGA CAT TGA ATT GAA TTG AAA TCG ATA GAT C 3 '(SEQ ID NO: 9) KpnI-Tpgk1 RV2; 5'TTA AGG TAC CGC TTC AAG CTT ACA CAA CAC 3 '(SEQ ID NO: 10) Template: Yeast YPH499 genomic DNA (0.4 ⁇ g) Reaction solution: 1x Pfu Ultra II reaction buffer (Stratagene); 10 nmol dNTP; 1 ⁇ l Pfu Ultra II fusion HS DNA polymerase (Stratagene); 50 ⁇ l solution reaction: 95 ° C 5 min- (95 ° C 30 sec, 55 ° C 30 sec 72 ° C., 2 minutes) ⁇ 25 cycles—72 ° C., 3 minutes—4 ° C.
  • the reaction solution was purified using MinElute PCR purification kit manufactured by QIAGEN, and then digested with restriction enzymes SalI and KpnI. Agarose gel electrophoresis was performed, and a 330 bp fragment was excised and purified using MinElute Gel extraction kit manufactured by QIAGEN.
  • the pDI626PGKpro vector was digested with the restriction enzymes SalI and KpnI. The obtained sequence was sequenced to confirm that the target plasmid was prepared. The plasmid thus obtained was named pDI626PGK.
  • pDI626PGK-T The above pDI626PGK was digested with the restriction enzyme SbfI, and the reaction solution was purified using MinElute PCR purification kit manufactured by QIAGEN. Thereafter, the ends were blunted using a TaKaRaBIO Blunting kit and further digested with the restriction enzyme KpnI. Agarose gel electrophoresis was performed, and a 3650 bp fragment was excised and purified using MinElute Gel extraction kit manufactured by QIAGEN. This was used as a vector for ligation. Next, pRS524GAP (APP. Env.
  • Micro., 2009, 5536-5543) was digested with restriction enzymes PmaCI and KpnI. Agarose gel electrophoresis was performed, and a 765 bp fragment was excised and purified using a MinElute Gel extraction kit manufactured by QIAGEN to obtain an insert. These ligations were performed, and the obtained sequence was sequenced to confirm that the target plasmid was prepared. The plasmid thus obtained was designated as pDI626PGK-T.
  • the reaction solution was purified using the MinElute PCR purification kit manufactured by QIAGEN, and then digested with restriction enzymes BamHI and EcoRI. Agarose gel electrophoresis was performed, and a 686 bp fragment was excised and purified using a MinElute Gel extraction kit manufactured by QIAGEN. It was ligated to a pESC-HIS (purchased from STRATAGENE) vector digested with restriction enzymes BamHI and EcoRI. The obtained sequence was sequenced to confirm that the target plasmid was prepared. The plasmid thus obtained was named pESCgap-HIS. Preparation of pESCpgkgap-HIS PCR was performed under the following conditions.
  • the reaction solution was purified using the MinElute PCR purification kit manufactured by QIAGEN, and then digested with restriction enzymes MunI and EcoRI. Agarose gel electrophoresis was performed, and a 718 bp fragment was excised and purified using a MinElute Gel extraction kit manufactured by QIAGEN.
  • the pESCgap-HIS vector was digested with the restriction enzyme EcoRI and BAP-treated, and then ligated. It was confirmed by colony PCR that the insert was ligated in the correct direction, and a plasmid was prepared. The sequence was sequenced and it was confirmed that the target plasmid was prepared. The plasmid thus obtained was named pESCpgkgap-HIS.
  • pESCpgkgap-HIS-ORFn is a vector for introducing an ORFn gene derived from Streptomyces sp.
  • strain CL190 which is codon designed to be optimally expressed in Saccharomyces cerevisiae YPH499, onto the chromosome of Saccharomyces cerevisiae YPH499.
  • This ORFn gene is regulated by the PGK promoter and is constitutively expressed.
  • the reaction solution was purified using MinElute PCR purification kit manufactured by QIAGEN, and then digested with restriction enzymes BamHI and XhoI. After agarose gel electrophoresis, a 1209 bp fragment was excised and purified using a MinElute Gel extraction kit manufactured by QIAGEN. The obtained DNA fragment was ligated to the pESCpgkgap-HIS vector digested with restriction enzymes BamHI and XhoI. The sequence was sequenced and it was confirmed that the target plasmid was prepared. The plasmid thus obtained was named pESCpgkgap-HIS-ERG10.
  • pESCpgkgap-HIS-ERG10 is a vector for introducing a thiolase gene derived from Saccharomyces cerevisiae YPH499 onto the chromosome of Saccharomyces cerevisiae YPH499.
  • This ORFn gene is regulated by the PGK promoter and is constitutively expressed.
  • pEXP (Ura) -ADC-CTFA-CTFB ⁇ Preparation of pEXP (Ura) -ADC-CTFA-CTFB>
  • the adc gene, ctfA gene and ctfB gene derived from Clostridium acetobutylicum ATCC824 strain were each cloned into pT7Blue vector.
  • entry clones pENT-ADC, pENT-CTFA and pENT-CTFB
  • pEXP (Ura) -ADC-CTFA-CTFB was produced by incorporating the obtained entry clone into an expression vector (pDEST626 (2008)). Details are as follows.
  • PCR was performed under the following conditions.
  • Template Genomic DNA of the above ATCC824 strain (0.4 ⁇ g) Reaction solution: 1 ⁇ Pfu Ultra II reaction buffer (Stratagene); 10 nmol dNTP; 1 ⁇ l Pfu Ultra II fusion HS DNA polymerase (Stratagene); 50 ⁇ l solution reaction: 95 ° C. 5 minutes- (95 ° C. 30 seconds, 60 ° C.
  • a 735 bp fragment amplified by stock PCR was blunt-end cloned into the pT7Blue vector (Takara Bio) using the Perfectly Blunt Cloning Kit manufactured by Novagen.
  • the cloned sequence was sequenced and confirmed to be the base sequence (CA-P0165) of the adc gene of Clostridium acetobutylicum ATCC824 strain.
  • the plasmid thus obtained was named pT7Blue-ADC.
  • pT7Blue-ADC was digested with restriction enzymes BamHI and SalI, and a 771 bp fragment was excised and ligated to the pDI626 vector similarly digested with restriction enzymes BamHI and SalI.
  • the obtained sequence was sequenced to confirm that the target plasmid was prepared.
  • the plasmid thus obtained was named pDI626-ADC.
  • PCR was performed with the following primers using the obtained pDI626-ADC as a template.
  • PCR was performed under the following conditions.
  • a 657 bp fragment amplified by stock PCR was similarly cloned using a Perfectly Blunt Cloning Kit manufactured by Novagen.
  • the cloned sequence was sequenced and confirmed to be the base sequence (CA-P0163) of the ctfA gene of Clostridium acetobutylicum ATCC824 strain.
  • the plasmid thus obtained was named pT7Blue-CTFA.
  • pT7Blue-CTFA was digested with restriction enzymes BamHI and SalI, a 693 bp fragment was excised, and ligated to the pDI626PGK vector similarly digested with restriction enzymes BamHI and SalI.
  • the obtained sequence was sequenced to confirm that the target plasmid was prepared.
  • the plasmid thus obtained was named pDI626PGK-CTFA.
  • PCR was performed using the obtained pDI626PGK-CTFA as a template and the following primers.
  • PCR was performed under the following conditions.
  • a 666 bp fragment amplified by stock PCR was cloned using a Perfectly Blunt Cloning Kit manufactured by Novagen.
  • the cloned sequence was sequenced and confirmed to be the base sequence (CA-P0164) of the ctfB gene of Clostridium acetobutylicum ATCC824 strain.
  • the plasmid thus obtained was named pT7Blue-CTFB.
  • pT7Blue-CTFB was digested with restriction enzymes BamHI and SalI, and a 771 bp fragment was excised and ligated to the pDI626 vector similarly digested with restriction enzymes BamHI and SalI.
  • the obtained sequence was sequenced to confirm that the target plasmid was prepared.
  • the plasmid thus obtained was named pDI626-CTFB (+ A).
  • PCR was performed under the following conditions using the following primers in order to correct the mutation sites in the primers.
  • the reaction solution was purified using the MinElute PCR purification kit manufactured by QIAGEN, and then digested with restriction enzymes BamHI and SalI. Agarose gel electrophoresis was performed, and a 702 bp fragment was excised and purified using a MinElute Gel extraction kit manufactured by QIAGEN.
  • the pDI626 vector digested with restriction enzymes BamHI and SalI was ligated. The obtained sequence was sequenced to confirm that the mutation site was corrected.
  • the plasmid thus obtained was named pDI626-CTFB.
  • PCR was performed using pDI626-CTFB as a template and the following primers.
  • Primer SacI-convA-F; 5'TAG GGA GCT CAT CAC AAG TTT GTA CAA AAA AGC TG 3 '(SEQ ID NO: 33) KpnI-convA-R; 5'TTA AGG TAC CAT CAC CAC TTT GTA CAA GAA AGC 3 '(SEQ ID NO: 34) Mold: RfA (Invitrogen Gateway Vector Conversion System) (0.5 ng) Primer (50 pmol): Reaction solution: 1x Pfu Ultra II reaction buffer (Stratagene); 10 nmol dNTP; 1 ⁇ l Pfu Ultra II fusion HS DNA polymerase (Stratagene); 50 ⁇ l solution reaction: 95 ° C.
  • the RfA used as a template is Reading Frame Cassette A of Gateway Vector Conversion System.
  • the reaction solution was purified using a MinElute PCR purification kit manufactured by QIAGEN and then digested with restriction enzymes SacI and KpnI. Perform agarose gel electrophoresis, excise the 1717 bp fragment, purify it using the QIAGEN MinElute Gel extraction kit, and then ligate it to the pDI626GAP vector (APP. Env. Micro., 2009, 5536) digested with the restriction enzymes SacI and KpnI. did. The obtained sequence was sequenced to confirm that the target plasmid was prepared. The plasmid thus obtained was named pDEST626 (2008).
  • GGGGTTTCCGCGGTCTAGAGCCACC SEQ ID NO: 36
  • GGATCCGTCGACGGGG SEQ ID NO: 37
  • pDI626PGK-T-iPDH Preparation of pDI626PGK-T-iPDH
  • pCR2.1-iPDH was digested with restriction enzymes SacII and SalI
  • a 1080 bp fragment was excised and similarly ligated to the above pDI626PGK-T vector digested with restriction enzymes SacII and SalI.
  • the obtained sequence was sequenced to confirm that the target plasmid was prepared.
  • the plasmid thus obtained was designated as pDI626PGK-T-iPDH.
  • pDI626PGK-T-iPDH is a vector for introducing the pdh gene derived from Clostridium beijerinckii NRRL B593 strain, which is codon designed to be optimally expressed in Saccharomyces cerevisiae YPH499, onto the chromosome of Saccharomyces cerevisiae YPH499.
  • This pdh gene is regulated by the PGK promoter and is constitutively expressed.
  • ⁇ Transformation 1> first, pEXP (Ura) -ADC-CTFA-CTFB constructed as described above was linearized by cutting with restriction enzymes AatII and BssHII, and after ethanol precipitation, dissolved in 0.1 ⁇ TE Buffer, Saccharomyces cerevisiae YPH499 (Stratagene) was transformed using Frozen EZ yeast transformation kit (Zymoresearch). The obtained clones were subjected to colony PCR, and it was confirmed that adc gene, ctfA gene and ctfB gene were introduced in 25 clones. Moreover, the acetone production amount in the obtained clone was measured, and the strain with the highest acetone production amount was named # 3-17.
  • pDI626PGK-T-iPDH constructed as described above was linearized by cutting with restriction enzymes AatII and BssHII, and after ethanol precipitation, dissolved in 0.1 ⁇ TE Buffer, Frozen EZ yeast transformation kit (Zymoresearch) was used to transform acetone-producing yeast # 3-17.
  • the resulting 14 clones were subjected to colony PCR, and it was confirmed that the pdh gene was introduced in 13 clones.
  • the amount of isopropanol produced in the obtained clones was measured, and the strain with the highest isopropanol production was named # 15-10.
  • # 15-10 was then transformed with pESCpgkgap-HIS-ERG10 (0.5 ⁇ g) constructed as described above.
  • the transformation method followed the method of Frozen EZ yeast transformation kit (manufactured by Zymoresearch) as described above. After the transformation treatment, it was applied to an SD (-URA-TRP-HIS) medium, cultured for 5 days at 30 ° C., and the colonies that appeared were passaged. After confirming that the ERG10 gene was introduced by PCR, the obtained strain was named ERG10 / # 15-10 strain.
  • # 15-10 was transformed with pESCpgkgap-HIS-ORFn (0.5 ⁇ g) constructed as described above. After confirming that the ORFn gene was introduced by PCR, the obtained strain was named ORFn / # 15-10 strain.
  • Isopropanol productivity was evaluated for the recombinant yeast (ERG10 / # 15-10 strain and ORFn / # 15-10 strain) prepared in the above-described Transformation 3. Specifically, first, 30 ⁇ l of a recombinant yeast solution thawed from a glycerol stock was inoculated into a disposable glass test tube (16 ⁇ 100 mm, manufactured by ASAHI TECHNO GLASS) containing 3 ml of a medium. The test tube was shaken for 66 hours at 30 ° C., 130 strokes / min (Takasaki 2-stage shaking incubator TXY-16R-2FL type) to prepare a preculture solution.
  • Headspace sampler analysis conditions Headspace sampler: HP7694 (Hewlett-Packard) Zone Temp. Oven: 60 °C Loop ; 150 °C TR.LINE; 200 °C Event Time: GC CYCLE TIME; 35 min Vial EQ TIME; 15min PRESSURIZ.
  • the downward triangle indicates the # 15-10 strain
  • the upward triangle indicates the ERG10 / # 15-10 strain
  • the black circle indicates the ORFn / # 15-10 strain.
  • Table 1 shows the result of comparing the amount of isopropanol produced in 96 hours after the start of the main culture.
  • an acetoacetyl-CoA synthase gene was further introduced into a recombinant yeast into which isopropanol biosynthesis-related genes related to the metabolic pathway for synthesizing isopropanol from acetoacetyl-CoA were introduced. It was revealed that the recombinant yeast can greatly improve the productivity of isopropanol.
  • an acetoacetyl-CoA synthetase gene encoding an enzyme having an activity of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA it has an activity of synthesizing acetoacetyl-CoA from two molecules of acetyl-CoA
  • an acetoacetyl CoA synthase gene (thiolase) encoding an enzyme was introduced, the productivity of isopropanol was dramatically improved. This was thought to be because the yeast used as the host inherently had lipid synthesis ability and inherently sufficient malonyl-CoA used for this lipid synthesis pathway.
  • acetoacetyl-CoA synthase gene encoding an enzyme having an activity of synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA and isopropanol from acetoacetyl-CoA It was found that recombinant yeast having higher isopropanol productivity can be produced by introducing an isopropanol biosynthesis related gene group related to a metabolic pathway for synthesizing.
  • Escherichia coli is used as a host, and an recombinant acetoacetyl-CoA synthase gene is introduced into a recombinant Escherichia coli that has been introduced with an isopropanol biosynthesis-related gene group related to the metabolic pathway for synthesizing isopropanol from acetoacetyl-CoA.
  • the introduced recombinant Escherichia coli was prepared, and isopropanol productivity was evaluated.
  • Clostridium acetobutylicum ATCC (824) strain was anaerobically cultured in 3 ml of Difco clostridium enriched medium according to a conventional method for 2 days.
  • Genomic DNA was prepared from 1.5 ml of the culture solution using a genomic DNA preparation kit (Gentra Puregene Yeast / Bact. Kit) manufactured by QIAGEN.
  • thiA gene a thiolase gene derived from Clostridium acetobutylicum
  • PCR was performed using the following primers.
  • CAC2873-F 5'-ATG AAA GAA GTT GTA ATA GCT AGT GCA G-3 '(SEQ ID NO: 38)
  • CAC2873-R 5'-CTA GCA CTT TTC TAG CAA TAT TGC TG-3 '(SEQ ID NO: 39)
  • the pair of primers was 50 pmol.
  • the composition of the reaction solution was a 50 ⁇ l solution containing 10 nmol of dNTP and 1 ⁇ l of Pfu Ultra II fusion HS DNA polymerase (Stratagene) in 1 ⁇ Pfu Ultra II reaction buffer (Stratagene).
  • the PCR thermal cycle was performed at 95 ° C. for 5 minutes, followed by 30 cycles of 95 ° C. for 30 seconds, 60 ° C. for 30 seconds and 72 ° C. for 3 minutes, followed by 72 ° C. for 3 minutes. After the reaction, the stock was stored at 4 ° C.
  • the approximately 1.2 kb fragment amplified by PCR was blunt-end cloned into the pT7-Blue vector using Novagen PerfectlyPerBlunt CloningitKit.
  • the cloned sequence was sequenced and confirmed to be the thiA gene of Clostridium acetobutylicum ATCC (824) strain.
  • the plasmid thus obtained was designated as pT7Blue-CAC2873.
  • acat-NdeI-F 5'-AAA CAT ATG AAA GAA GTT GTA ATA GC-3 '(SEQ ID NO: 40)
  • acat-XhoI-R 5'-AAA CTC GAG CTA GCA CTT TTC TAG CAA T-3 '(SEQ ID NO: 41)
  • PT7Blue-CAC2873 prepared above was used as a template in PCR.
  • the pair of primers was 10 pmol.
  • the composition of the reaction solution was a 50 ⁇ l solution containing 12.5 nmol of dNTP and 1 ⁇ l of Pfu Ultra TM II fusion HS DNA polymerase (Stratagene) in 1 ⁇ Pfu Ultra TM II reaction buffer (Stratagene).
  • the PCR thermal cycle was performed at 95 ° C for 2 minutes, followed by 5 cycles of 95 ° C for 20 seconds, 43 ° C for 20 seconds and 72 ° C for 40 seconds, followed by 95 ° C for 20 seconds, 50 ° C. 30 cycles of 20 seconds at 72 ° C. and 40 seconds at 72 ° C. were performed, followed by 3 minutes at 72 ° C. After the reaction, the stock was stored at 4 ° C.
  • the approximately 1.2 bp DNA fragment amplified by PCR was purified with MinElute® PCR® Purification® Kit and cloned into the pCR-Blunt® II-Topo vector using Zero® Blunt® TOPO® PCR® Cloning® Kit kit.
  • the obtained vector was designated as pCR-Blunt II-TOPO-thiA.
  • pCR-Blunt II-TOPO-thiA was cleaved with NdeI and XhoI, and a DNA fragment of about 1.2 Kbp was purified by agarose gel electrophoresis and inserted into the NdeI-XhoI site of pCDF-Duet (Novagen).
  • the obtained plasmid was designated as pCDFDuet-thiA.
  • acetoacetyl-CoA synthase gene derived from Clostridium acetobutylicum and synthesizing acetoacetyl-CoA from malonyl-CoA and acetyl-CoA was cloned as follows. First, PCR was performed using the following primers.
  • OrfN-NdeI-F 5'-AAA CAT ATG ACC GAC GTC CGA TTC CGC AT 3 '(SEQ ID NO: 42)
  • OrfN-XhoI-R 5'-AAA CTC GAG TTA CCA CTC GAT CAG GGC GA 3 '(SEQ ID NO: 43)
  • 20 ng of pHISORFn was used as a template.
  • the pHISORFn described in JP 2008-61506 A was used.
  • the pair of primers was 15 pmol.
  • the composition of the reaction solution was a 50 ⁇ l solution containing 10 nmol dNTP and 0.5 ⁇ l PrimeSTAR HS DNA Polymerase (Takara Bio) in 1 ⁇ PrimeSTAR GC Buffer (Mg 2+ plus) (Takara Bio).
  • the thermal cycle of PCR is 94 ° C for 1 minute followed by 5 cycles of 98 ° C for 10 seconds, 53 ° C for 5 seconds and 72 ° C for 1 minute, then 98 ° C for 10 seconds at 60 ° C. 30 cycles of 5 seconds at 72 ° C for 1 minute were performed, followed by 5 minutes at 72 ° C.
  • the stock was stored at 4 ° C.
  • the approximately 1 Kbp DNA fragment amplified by PCR was purified with MinElute® PCR® Purification® Kit and cloned into the pCR-Blunt® II-Topo vector using the Zero® Blunt® TOPO® PCR® Cloning® Kit kit.
  • the obtained vector was designated as pCR-Blunt II-TOPO-orfN.
  • pCR-Blunt II-TOPO-orfN was cleaved with NdeI and XhoI, and a DNA fragment of about 1 Kbp was purified by agarose gel electrophoresis and inserted into the NdeI-XhoI site of pCDF-Duet (Novagen).
  • the obtained plasmid was designated as pCDFDuet-orfN.
  • ctfA and ctfB genes which are acetoacetyl-CoA transferase genes derived from Clostridium acetobutylicum, were cloned.
  • PCR shown below was performed using the genomic DNA prepared as described above as a template.
  • PfuUltra II fusion HS DNA polymerase manufactured by STRATAGEN
  • primers underlined portions are restriction enzyme sites
  • ctfAB-NdeI-F 5'-ATT CAT ATG AAC TCT AAA ATA ATT AGA TTT GAA AAT TTA AGG TC-3 '(SEQ ID NO: 44)
  • ctfAB-NdeI-R 5'-AGA CTC GAG CTA AAC AGC CAT GGG TCT AAG-3 '(SEQ ID NO: 45)
  • the composition of the reaction solution in PCR was as follows.
  • the PCR thermal cycle was performed at 95 ° C for 2 minutes, followed by 30 cycles of 95 ° C for 30 seconds, 54.8 ° C for 30 seconds and 72 ° C for 2 minutes, and then 72 ° C for 7 minutes. After the reaction, the stock was stored at 4 ° C.
  • PCR (manufactured by Eppendruf) was performed under the above conditions, and a 1324 bp fragment was excised by 0.8% agarose gel electrophoresis.
  • the fragment excised using QIAquickquiGel Extraction Kit (manufactured by QIAGEN) was purified and digested with NdeI and XhoI. Further, after purification with QIAquick PCR-Purification Kit (QIAGEN), it was inserted into the NdeI and XhoI sites of pETDuet-1 (Merck). The obtained sequence was sequenced to confirm that the intended plasmid was prepared. The plasmid thus obtained was named pETDuet-ctfAB.
  • adc gene an acetoacetate decarboxylase gene derived from Clostridium acetobutylicum, was cloned.
  • PCR shown below was performed using the genomic DNA prepared as described above as a template.
  • PfuUltra II fusion HS DNA polymerase manufactured by STRATAGEN
  • primers underlined portions are restriction enzyme sites
  • adc-SalI-F 5'-CAC GTC GAC AAG GAG ATA TAA TGT TAA AGG ATG AAG TAA TTA AAC A-3 '(SEQ ID NO: 46)
  • adc-NotI-R 5'-CAC GCG GCC GC T TAC TTA AGA TAA TCA TAT ATA ACT TCA GC-3 '(SEQ ID NO: 47)
  • the composition of the reaction solution in PCR was as follows.
  • the PCR thermal cycle was performed at 95 ° C for 2 minutes, followed by 30 cycles of 95 ° C for 20 seconds, 54.8 ° C for 20 seconds, and 72 ° C for 3 minutes, followed by 72 ° C for 3 minutes. In addition, after the reaction was completed, it was stocked at 13 ° C.
  • PCR (manufactured by Eppendruf) was performed under the above conditions, and a 735 bp fragment was excised by 1% agarose gel electrophoresis.
  • the fragment excised using QIAquickquiGel Extraction Kit (manufactured by QIAGEN) was purified and digested with SalI and NotI.
  • QIAquick PCR-Purification Kit (QIAGEN)
  • QIAquick PCR-Purification Kit QIAGEN
  • it was inserted into the SalI and NotI sites of pETDuet-1 (Merck).
  • the obtained sequence was sequenced to confirm that the intended plasmid was prepared.
  • the plasmid thus obtained was named pETDuet-ADC.
  • Expression vectors for expressing the ctfA gene, ctfB gene and adc gene in E. coli were constructed as follows. First, pETDuet-ADC prepared above was digested with SalI and NotI, a 753 bp fragment containing the adc gene was excised by 0.8% agarose gel electrophoresis, and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). Moreover, pETDuet-ctfAB produced above was digested with SalI and NotI, and the obtained 6677 bp was ligated with the fragment. The obtained vector was named pETDuet-ADC-ctfAB.
  • pdh gene an isopropanol dehydrogenase gene derived from Clostridium beijerinckii, was cloned.
  • PCR shown below was performed using pCR2.1-iPDH prepared in Example 1 as a template.
  • PfuUltra II fusion HS DNA polymerase manufactured by STRATAGEN
  • primers underlined portions are restriction enzyme sites
  • PDH-EcoRI-F 5'-G GA ATT CC A TGA AAG GTT TCG CAA TGT T-3 '(SEQ ID NO: 48)
  • PDH-PstI-R 5'- AA C TGC AG A ACC AAT GCA TTG GTT ACA AAA TGA CTA CGG -3 '(SEQ ID NO: 49)
  • the composition of the reaction solution in PCR was as follows.
  • the PCR thermal cycle was performed at 95 ° C for 2 minutes, followed by 30 cycles of 95 ° C for 30 seconds, 50 ° C for 30 seconds and 72 ° C for 2 minutes, and then 72 ° C for 7 minutes. After the reaction, the stock was stored at 4 ° C.
  • PCR (manufactured by Eppendruf) was performed under the above conditions, and a 1056 bp fragment was excised by 0.8% agarose gel electrophoresis.
  • the fragment excised using MiniEluteElGel Extraction Kit (manufactured by QIAGEN) was purified and digested with EcoRI and PstI. After purification with QIAquick PCR-Purification Kit (QIAGEN), it was inserted into the EcoRI and PstI sites of pCOLADuet-1 (Merck). The obtained sequence was sequenced to confirm that the intended plasmid was prepared.
  • the plasmid thus obtained was named pCOLADuet-PDH.
  • E. coli production> The pCDFDuet-thiA, pCDFDuet-orfN, pETDuet-ADC-ctfAB, and pCOLADuet-PDH prepared above are classified into E. coli BL21 (DE3) E. coli K strains manufactured by Takara Bio Inc. in the combinations of A to F shown in Table 5 below. E. coli NovaBlue (DE3) was transformed. Recombinant E. coli transformed with the combination of the expression vectors A to F into E.
  • E. coli BL21 (DE3) was named A / BL21, B / BL21, C / BL21, D / BL21, E / BL21 and F / BL21, respectively.
  • SD-7 medium was prepared as follows. NH 4 Cl 7.0 g, KH 2 PO 4 1.5 g, Na 2 HPO 4 1.5 g, K 2 SO 4 0.35 g, MgSO 4 7H 2 O 0.17 g, Difco Yeast Extract 5.0 g, Trace Element 0.8 ml 0.8 After dissolving in L deionized water, the pH was adjusted to 7.0 with 5M NH 4 OH. The whole volume was made up to 1 L with deionized water and autoclaved.
  • SD-8 medium was prepared as follows. NH 4 Cl 7.0 g, KH 2 PO 4 7.5 g, Na 2 HPO 4 7.5 g, K 2 SO 4 0.85 g, MgSO 4 7H 2 O 0.17 g, Difco yeast extract 10.0 g, 1 L of trace element 0.8 ml was dissolved in deionized water and autoclaved.
  • the culture solution stored frozen at ⁇ 30 ° C. was thawed at room temperature.
  • 1 ml of the culture solution was put into an Eppendorf tube that had been weighed in advance, and centrifuged at 13000 rpm for 10 minutes at 4 ° C. using a cooling small centrifuge (manufactured by TOMY).
  • the Eppendorf tube from which the supernatant was removed was dried at a temperature of Low for about 4 hours using Speed Vac (manufactured by SAVANT). Thereafter, the weight of the Eppendorf tube was measured, and the value obtained by subtracting the weight measured in advance was taken as the dry cell weight.
  • test tube with screw cap containing the remaining culture solution (4 ml) is centrifuged at 1000 g for 5 minutes at room temperature using a desktop multi-centrifuge LC-230 (manufactured by TOMY). Separated into cells. 2 ml of the supernatant was placed in a 20 ml headspace crimp vial, capped and placed in a 60 ° C. warm bath for 15 minutes. Thereafter, component analysis was performed on isopropanol and the like by GC-MS / HSS.
  • GC-MS / HSS was an HP6890 / 5973/7694 GC-MS / HSS system (manufactured by Hewlett-Packard).
  • the column used was J & W DB-624 (0.32 mm ⁇ 60 m, film thickness 1.8 ⁇ m), and the analysis conditions were as follows.
  • ⁇ GC-MS analysis conditions > [Inlet parameters] Inlet temperature: 260 °C Split ratio: 1/20 Carrier gas: Helium 1.0ml / min [Oven heating conditions] Heat at 40 ° C for 5 minutes Heat to 75 ° C at 5 ° C / min Heat to 260 ° C at 100 ° C / min [Detector conditions] Detector temperature: 260 ° C ⁇ Head space sampler conditions> [Zoom Temp] Oven: 60 °C Loop: 150 ° C Transfer Line: 200 °C [Event Time] GC Cycle Time: 35 minutes Vial EQ Time: 15 minutes Pressuriz.
  • the gene encoding an enzyme using malonyl-CoA and acetyl-CoA as a substrate is more isopropanol-producing than the gene encoding an enzyme using bimolecular acetyl-CoA synthesis as a substrate. It has been found that the effect of improving is low.
  • Example 1 it was shown that the use of an acetoacetyl-CoA synthetase gene encoding an enzyme having malonyl-CoA and acetyl-CoA as substrates can significantly improve isopropanol productivity.
  • Example 1 cannot be predicted from the knowledge obtained from recombinant Escherichia coli introduced with the acetoacetyl-CoA synthase gene and the isopropanol biosynthesis related gene group.

Abstract

発酵プロセスを利用して優れた生産性でイソプロパノールを製造する。アセトアセチルCoA合成酵素遺伝子と、アセトアセチルCoAからイソプロパノールを合成する一群の酵素をコードする遺伝子群(イソプロパノール合成関連遺伝子群)とを導入した組換え酵母を培養することで培地にイソプロパノールを高生産する。

Description

イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母
 本発明は、イソプロパノール生合成に関連する遺伝子群が組み込まれたイソプロパノール生産能を有する組換え酵母を利用したイソプロパノール製造方法及び当該組換え酵母に関する。
 近年、石油資源の枯渇、地球レベルの炭酸ガス発生量の削減が叫ばれており、今後、石油価格の高騰が予想され、石油代替材料の開発が求められている。例えば、太陽エネルギーにより水と炭酸ガスから植物が作り出したバイオマス、糖、澱粉、油脂、タンパク等をバイオコンバージョンし、石油代替材料として利用する試みが実用化されている。一例として、石油を使用するプラスチックの代替物質として、植物由来のポリ乳酸やポリブチレンサクシネートを生産する技術開発が取り組まれている。また、米国・ブラジル等では糖、澱粉などからエタノールを発酵生産し、石油から精製される自動車燃料にブレンドして用いることも行われている。
 また、塗料・インキ等の工業用溶剤樹脂原料として重要な化成品としてアセトンやイソプロパノール(2-プロパノールと同義)がある。イソプロパノールは、従来、石油を原料として合成されていたが、石油枯渇、大気中のCO2削減の問題から発酵プロセスを用いてバイオマスから合成することが望まれている。従来、Clostridium acetobutylicumがブタノールと共にアセトンとイソプロパノールを発酵生産することが知られている(非特許文献1:Biotechnology, 2nd Edn., vol1, p285-323, 1993)。Clostridium acetobutylicum由来のアセトン合成遺伝子を大腸菌に導入しアセトンが合成されることも公知である(非特許文献2:Appl. Environ. Microbiol., 73, 1079-1085, 1998、特許文献1:US2008/293125、特許文献2:WO 2009/008377、特許文献3:WO 2009/028582)。
 さらに、Clostridium acetobutylicum由来のアセトン合成遺伝子に加え、イソプロパノール脱水素酵素遺伝子を導入した大腸菌を用いてイソプロパノールを合成する例が報告されている(非特許文献3:Appl. Environ. Microbiol., 64, 7814-7818, 2007)。しかしながら、大腸菌を始めとする細菌類は有機溶媒耐性が低いことが問題視されており、それを解決するためのいくつかの方法が知られているがまだ工業的に有機溶剤を生産するには耐性が不十分である(特許文献4:WO 2007/146377、特許文献5:WO 2007/130560、特許文献6:WO 2008/073406、特許文献7:US 6,156,532)。大腸菌等の細菌類では、細胞膜が有機溶媒に対して弱いことが問題であり、細菌類は有機溶媒生産に不向きであると考えられる。一方、酵母類は有機溶媒耐性能が高いが、酵母に遺伝子を導入してイソプロパノールやアセトンといった有機溶媒を生産する例は報告されていない。
US 2008/293125 WO 2009/008377 WO 2009/028582 WO 2007/146377 WO 2007/130560 WO 2008/073406 US 6,156,532
Biotechnology, 2nd Edn., vol1, p285-323, 1993 Appl. Environ. Microbiol., 73, 1079-1085, 1998 Appl. Environ. Microbiol., 64, 7814-7818, 2007
 そこで、本発明は、上述したような実情に鑑み、酵母を利用して、発酵プロセスにより優れた生産性でイソプロパノールを製造する方法を提供するとともに、イソプロパノール生産能に優れた組換え酵母を提供することを目的とする。
 上述した目的を達成するため、本発明者らが鋭意検討した結果、アセトアセチルCoA合成酵素遺伝子と、アセトアセチルCoAからイソプロパノールを合成する一群の酵素をコードする遺伝子群(イソプロパノール合成関連遺伝子群)とを導入した組換え酵母を培養したところ、イソプロパノールを高生産することを見いだし、本発明を完成するに至った。本発明は以下を包含する。
 (1)アセトアセチルCoA合成酵素遺伝子、及びアセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群が導入された組換え酵母を培養し、培養物からイソプロパノールを取得することを特徴とするイソプロパノールの製造方法。
 (2)上記アセトアセチルCoA合成酵素遺伝子は、アセチルCoAとマロニルCoAとをアセトアセチルCoAに変換する反応を触媒する酵素をコードすることを特徴とする(1)記載のイソプロパノールの製造方法。
 (3)上記アセトアセチルCoA合成酵素遺伝子は、Streptomyces属の微生物由来の遺伝子(ORFn遺伝子)であることを特徴とする(2)記載のイソプロパノールの製造方法。
 (4)上記アセトアセチルCoA合成酵素遺伝子は、配列番号1記載のアミノ酸配列を有するタンパク質をコードする、又は配列番号1のアミノ酸配列に対して80%以上の一致度を有するアミノ酸配列を有し、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能を有するタンパク質をコードするものであることを特徴とする(2)記載のイソプロパノールの製造方法。
 (5)イソプロパノール生合成関連遺伝子群は、アセトアセチルCoA転移酵素遺伝子、アセト酢酸脱炭酸酵素遺伝子及びイソプロパノール脱水素酵素遺伝子からなる群のなかから選ばれる遺伝子であることを特徴とする(1)記載のイソプロパノールの製造方法。
 (6)上記組換え酵母は、イソプロパノール生合成関連遺伝子群として、アセトアセチルCoA転移酵素遺伝子、アセト酢酸脱炭酸酵素遺伝子及びイソプロパノール脱水素酵素遺伝子のうち内在しない遺伝子が導入されたものであることを特徴とする(1)記載のイソプロパノールの製造方法。
 (7)アセトアセチルCoA転移酵素遺伝子は、Clostridium acetobutylicum由来のctfA遺伝子及びctfB遺伝子であることを特徴とする(5)又は(6)記載のイソプロパノールの製造方法。
 (8)アセト酢酸脱炭酸酵素遺伝子は、Clostridium acetobutylicum由来のadc遺伝子であることを特徴とする(5)又は(6)記載のイソプロパノールの製造方法。
 (9)イソプロパノール脱水素酵素遺伝子は、Clostridium beijerinckii由来のpdh遺伝子であることを特徴とする(5)又は(6)記載のイソプロパノールの製造方法。
 (10)上記アセトアセチルCoA合成酵素遺伝子、上記イソプロパノール生合成関連遺伝子群は、宿主となる酵母のゲノム内に導入されていることを特徴とする(1)記載のイソプロパノールの製造方法。
 (11)アセトアセチルCoA合成酵素遺伝子、及びアセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群が導入された組換え酵母。
 (12)上記アセトアセチルCoA合成酵素遺伝子は、アセチルCoAとマロニルCoAとをアセトアセチルCoAに変換する反応を触媒する酵素をコードすることを特徴とする(11)記載の組換え酵母。
 (13)上記アセトアセチルCoA合成酵素遺伝子は、Streptomyces属の微生物由来のアセトアセチルCoA合成酵素遺伝子(ORFn遺伝子)であることを特徴とする(12)記載の組換え酵母。
 (14)上記アセトアセチルCoA合成酵素遺伝子は、配列番号1記載のアミノ酸配列を有するタンパク質をコードする、又は配列番号1のアミノ酸配列に対して80%以上の一致度を有するアミノ酸配列を有し、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能を有するタンパク質をコードするものであることを特徴とする(12)記載の組換え酵母。
 (15)イソプロパノール生合成関連遺伝子群は、アセトアセチルCoA転移酵素遺伝子、アセト酢酸脱炭酸酵素遺伝子及びイソプロパノール脱水素酵素遺伝子からなる群のなかから選ばれる遺伝子であることを特徴とする(11)記載の組換え酵母。
 (16)イソプロパノール生合成関連遺伝子群として、アセトアセチルCoA転移酵素遺伝子、アセト酢酸脱炭酸酵素遺伝子及びイソプロパノール脱水素酵素遺伝子のうち内在しない遺伝子が導入されたものであることを特徴とする(11)記載の組換え酵母。
 (17)アセトアセチルCoA転移酵素遺伝子は、Clostridium acetobutylicum由来のctfA遺伝子及びctfB遺伝子であることを特徴とする(15)又は(16)記載の組換え酵母。
 (18)アセト酢酸脱炭酸酵素遺伝子は、Clostridium acetobutylicum由来のadc遺伝子であることを特徴とする(15)又は(16)記載の組換え酵母。
 (19)イソプロパノール脱水素酵素遺伝子は、Clostridium beijerinckii由来のpdh遺伝子であることを特徴とする(15)又は(16)記載の組換え酵母。
 本発明によれば、アセトアセチルCoA合成酵素遺伝子と、イソプロパノール生合成関連遺伝子群とを導入することで、優れたイソプロパノール生産能を有する組換え酵母を作製することができる。本発明においては、イソプロパノール生産能を有する組換え酵母を利用することで生産性に優れたイソプロパノールの製造方法を提供できる。すなわち、本発明に係るイソプロパノールの製造方法によれば、燃料や樹脂原料として使用されるイソプロパノールを製造する際の生産性を向上させることができ、イソプロパノール生産コストを低減させることができる。
#15-10株、ERG10/#15-10株及びORFn/#15-10株について、イソプロパノール生産量を経時的に測定した結果を示す特性図である。
 以下、本発明を詳細に説明する。
 本発明に係るイソプロパノールの製造方法は、アセトアセチルCoA合成酵素遺伝子、及びアセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群が導入された組換え酵母を培養し、培養物からイソプロパノールを取得するものである。
 アセトアセチルCoA合成酵素遺伝子
 アセトアセチルCoA合成酵素遺伝子とは、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性、又は二分子のアセチルCoAからアセトアセチルCoAを合成する活性を有する酵素をコードする遺伝子である。なお、二分子のアセチルCoAからアセトアセチルCoAを合成する活性を有する酵素をチオラーゼと称する場合もある。
 特に本発明においては、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有する酵素をコードするアセトアセチルCoA合成酵素遺伝子を使用することが好ましい。マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有する酵素をコードするアセトアセチルCoA合成酵素遺伝子を使用した場合には、二分子のアセチルCoAからアセトアセチルCoAを合成する活性を有する酵素をコードするアセトアセチルCoA合成酵素遺伝子を使用した場合と比較して、非常に優れたイソプロパノール生産能を有する組換え酵母を作製することができる。
 マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有するタイプのアセトアセチルCoA合成酵素をコードする遺伝子は、例えば、Streptomyces属の放線菌において見いだされており(特開2008-61506号公報)、例えばStreptomyces属の放線菌由来の遺伝子を使用することができる。
 このアセトアセチルCoA合成酵素遺伝子としては、例えば、配列番号1のアミノ酸配列を有するタンパク質をコードする遺伝子を挙げることができる。配列番号1のアミノ酸配列を有するタンパク質は、放線菌Streptomyces sp. CL190株において見いだされたマロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有し、二分子のアセチルCoAからアセトアセチルCoAを合成する活性を有しないアセトアセチルCoA合成酵素である(特開2008-61506号公報)。
 配列番号1のアミノ酸配列を有するタンパク質をコードする遺伝子は、特開2008-61506号公報を参照して設計した一対のプライマーを用い、放線菌Streptomyces sp. CL190株から得たゲノムDNAを鋳型とした核酸増幅法(例えばPCR)により取得することができる。
 一方、二分子のアセチルCoAからアセトアセチルCoAを合成する活性を有するタイプのアセトアセチルCoA合成酵素(チオラーゼ)をコードする遺伝子は、従来公知の遺伝子、すなわち各種の生物において同定された本タイプのアセトアセチルCoA合成酵素遺伝子を使用することができる。なお、アセトアセチルCoA合成酵素遺伝子は、多くの生物種に存在するメバロン酸経路に含まれる遺伝子である。
 一例としては、Clostridium acetobutylicum(ATCC824として寄託されている)由来チオラーゼ遺伝子を挙げることができる。Clostridium acetobutylicum由来のチオラーゼ遺伝子は、thlA遺伝子と表記され、配列番号2のアミノ酸配列を有するタンパク質をコードしている。また、チオラーゼ遺伝子としては、例えばSchizosaccharomyces pombe、Saccharomyces cerevisiae、Escherichia coli、Macaca mulatta、Bos taurus、Drosophila melanogaster、Oryza sativa、Aspergillus oryzae、Bacillus amyloliquefaciens及びClostridium kluyveri由来の遺伝子を使用することができる。
 ところで、本発明において、アセトアセチルCoA合成酵素遺伝子としては、放線菌Streptomyces sp. CL190株由来の配列番号1のアミノ酸配列を有するタンパク質をコードする遺伝子に限定されず、配列番号1のアミノ酸配列に対して高い類似性を有するアミノ酸配列を有し、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能を有するタンパク質をコードする遺伝子であってもよい。また、本発明において、アセトアセチルCoA合成酵素遺伝子としては、Clostridium acetobutylicum由来の配列番号2のアミノ酸配列を有するタンパク質をコードするチオラーゼ遺伝子に限定されず、配列番号2のアミノ酸配列に対して高い類似性を有するアミノ酸配列を有し、二分子のアセチルCoAからアセトアセチルCoAを合成する機能を有するタンパク質をコードする遺伝子であってもよい。ここで、高い類似性とは、例えば80%以上の一致度を意味し、好ましくは90%以上の一致度、より好ましくは95%以上の一致度、最も好ましくは97%以上の一致度を意味する。なお、一致度の値は、配列類似性を検索するプログラム(相同性検索プログラムと称される場合もある)を用いて、配列番号1又は2のアミノ酸配列と他のアミノ酸配列とをアライメントした際に、当該他のアミノ酸配列における、配列番号1又は2のアミノ酸配列に対して一致したアミノ酸残基の割合として算出される値である。
 また、本発明において、アセトアセチルCoA合成酵素遺伝子としては、配列番号1のアミノ酸配列における1又は複数個のアミノ酸が置換、欠失、付加又は挿入されたアミノ酸配列を有するタンパク質であって、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能を有するタンパク質をコードする遺伝子であってもよい。また、本発明において、アセトアセチルCoA合成酵素遺伝子としては、配列番号2のアミノ酸配列における1又は複数個のアミノ酸が置換、欠失、付加又は挿入されたアミノ酸配列を有するタンパク質であって、二分子のアセチルCoAからアセトアセチルCoAを合成する機能を有するタンパク質をコードする遺伝子であってもよい。ここで、複数個のアミノ酸とは、例えば2~30個のアミノ酸を意味し、好ましくは2~20個、より好ましくは2~10個、最も好ましくは2~5個のアミノ酸を意味する。
 さらに、本発明において、アセトアセチルCoA合成酵素遺伝子としては、配列番号1のアミノ酸配列をコードする塩基配列に対して相補的な塩基配列を含むポリヌクレオチドの一部又は全部に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能を有するタンパク質をコードするポリヌクレオチドであってもよい。また、本発明において、アセトアセチルCoA合成酵素遺伝子としては、配列番号2のアミノ酸配列をコードする塩基配列に対して相補的な塩基配列を含むポリヌクレオチドの一部又は全部に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、二分子のアセチルCoAからアセトアセチルCoAを合成する機能を有するタンパク質をコードするポリヌクレオチドであってもよい。ここで、ストリンジェントな条件下でハイブリダイズするとは、60℃で2×SSC洗浄条件下で結合を維持することを意味する。ハイブリダイゼーションは、J. Sambrook et al. Molecular Cloning, A Laboratory Manual,2nd Ed., Cold Spring Harbor Laboratory(1989)に記載されている方法等、従来公知の方法で行うことができる。
 上述したような、配列番号1のアミノ酸配列とは異なるアミノ酸配列を有するアセトアセチルCoA合成酵素をコードする遺伝子は、例えば、Streptomyces sp. CL190株以外の放線菌から単離することができる。また、配列番号2のアミノ酸配列とは異なるアミノ酸配列を有するアセトアセチルCoA合成酵素をコードする遺伝子は、例えば、Clostridium acetobutylicum(ATCC824)以外のClostridium属細菌から単離することができる。また、配列番号1又は2のアミノ酸配列をコードするポリヌクレオチドを、当該技術分野で公知の手法によって改変することによって行うことができる。塩基配列に変異を導入するには、Kunkel法またはGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-KやMutant-G(何れも商品名、TAKARA社製))等を用いて、あるいはLA PCR in vitro Mutagenesisシリーズキット(商品名、TAKARA社製)を用いて変異が導入される。
 配列番号1のアミノ酸配列とは異なるアミノ酸配列を有するアセトアセチルCoA合成酵素の活性は以下のように評価することができる。すなわち、先ず、評価対象のタンパク質をコードする遺伝子を発現可能なように宿主細胞に導入し、クロマトグラフィー等の手法によってタンパク質を精製する。得られた評価対象のタンパク質を含む緩衝液中に、基質としてマロニルCoAとアセチルCoAとを添加する。その後、例えば所望の温度(例えば10~60℃)でインキュベートする。そして、反応終了後、基質の減少量及び/又は生成物(アセトアセチルCoA)の生成量を測定することで、評価対象のタンパク質について、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能の有無及びその程度を評価することができる。このとき、得られた評価対象のタンパク質を含む緩衝液中に、基質としてアセチルCoAのみを添加し、同様に、基質の減少量及び/又は生成物生成量を測定することで、二分子のアセチルCoAからアセトアセチルCoAを合成する活性の有無について検討することができる。
 配列番号2のアミノ酸配列とは異なるアミノ酸配列を有するアセトアセチルCoA合成酵素の活性は以下のように評価することができる。すなわち、先ず、評価対象のタンパク質をコードする遺伝子を発現可能なように宿主細胞に導入し、クロマトグラフィー等の手法によってタンパク質を精製する。得られた評価対象のタンパク質を含む緩衝液中に、基質としてアセチルCoAとを添加する。その後、例えば所望の温度(例えば10~60℃)でインキュベートする。そして、反応終了後、基質の減少量及び/又は生成物(アセトアセチルCoA)の生成量を測定することで、評価対象のタンパク質について、二分子のアセチルCoAからアセトアセチルCoAを合成する機能の有無及びその程度を評価することができる。
イソプロパノール生合成関連遺伝子群
 イソプロパノール生合成関連遺伝子群とは、アセトアセチルCoAを出発化合物として最終生産物であるイソプロパノールを生合成する代謝経路に関与する酵素をコードする複数の遺伝子からなる群を意味する。イソプロパノール生合成代謝経路に関与する酵素としては、アセトアセチルCoAを基質としてアセチル酢酸を合成するアセトアセチルCoA転移酵素、アセチル酢酸を基質としてアセトンを合成するアセト酢酸脱炭酸酵素及び、アセトンを基質としてイソプロパノールを合成するイソプロパノール脱水素酵素を挙げることができる。
 これら酵素をコードする各遺伝子は、イソプロパノールの生合成能を有する微生物から単離することができる。イソプロパノール生合成能を有する微生物としては、特に限定されないが、細菌を挙げることができる。イソプロパノール生合成能を有する微生物としては、Clostridium属の微生物、特に限定されないが、Clostridium acetobutylicum、Clostridium beijerinckii、Clostridium saccharoperbutylacetonicum、Clostridium saccharoacetobutylicum、Clostridium aurantibutyricum、Clostridium pasteurianum、Clostridium sporogenes、Clostridium cadaveris及びClostridium tetanomorphumを挙げることができる。なかでも、全ゲノム配列が解析されているClostridium acetobutylicum及びClostridium beijerinckii由来のイソプロパノール生合成関連遺伝子群を使用することが好ましい。
 特に、アセトアセチルCoA転移酵素遺伝子としては、Clostridium acetobutylicum由来のctfA遺伝子及びctfB遺伝子を使用することができる。ctfA遺伝子がコードするタンパク質のアミノ酸配列を配列番号3に示し、ctfB遺伝子がコードするタンパク質のアミノ酸配列を配列番号4に示す。また、アセト酢酸脱炭酸酵素遺伝子としては、Clostridium acetobutylicum由来のadc遺伝子を使用することができる。adc遺伝子がコードするタンパク質のアミノ酸配列を配列番号5に示す。さらに、イソプロパノール脱水素酵素遺伝子は、Clostridium beijerinckii由来のpdh遺伝子を使用することができる。pdh遺伝子がコードするタンパク質のアミノ酸配列を配列番号6に示す。
 上述したctfA遺伝子以外にもアセトアセチルCoA転移酵素(αサブユニット)遺伝子としては、例えば、Escherichia coli、Shigella sonnei、Pectobacterium carotovorum、Photorhabdus asymbiotica、Bacillus cereus、Citrobacter koseri、Streptococcus pyogenes、Clostridium difficile及びClostridium beijerinckii由来の遺伝子を使用することができる。また、上述したctfB遺伝子以外にもアセトアセチルCoA転移酵素(βサブユニット)遺伝子としては、Escherichia coli、Citrobacter koseri、Haemophilus influenzae、Nitrobacter hamburgensis、Streptococcus pyogenes、Clostridium difficile及びBacillus weihenstephanensis由来の遺伝子を使用することができる。さらに、adc遺伝子以外にもアセト酢酸脱炭酸酵素遺伝子としては、Saccharopolyspora erythraea、Streptomyces avermitilis、Bradyrhizobium sp.、Rhizobium leguminosarum、Burkholderia mallei、Ralstonia solanacearum、Francisella tularensis、Clostridium botulinum及びClostridium beijerinckii由来の遺伝子を使用することができる。さらにまた、pdh遺伝子以外にもイソプロパノール脱水素酵素遺伝子としては、Rhodococcus ruber由来の遺伝子を使用することができる。
 また、イソプロパノール生合成関連遺伝子群としては、上述した遺伝子に限定されず、Clostridium acetobutylicum由来のctfA遺伝子、ctfB遺伝子及びadc遺伝子、並びにClostridium beijerinckii由来のpdh遺伝子に対する相同遺伝子であってもよい。相同遺伝子は、遺伝子の塩基配列やタンパク質のアミノ酸配列が格納されたデータベースに対して、BlastやFasta等の公知のアルゴリズムを用いた相同性検索によって特定することができる。データベースを用いて特定した相同遺伝子は、公知の手法によって微生物から単離して使用することができる。すなわち、微生物から抽出したゲノムDNAを鋳型とし、特定した相同遺伝子の塩基配列に基づいて設計したプライマーを用いた核酸増幅法によって相同遺伝子を含む核酸断片を得ることができる。
 また、上述したようなイソプロパノール生合成能を有するClostridium属微生物について公知の手法によってcDNAライブラリーを作製し、Clostridium acetobutylicum由来のctfA遺伝子、ctfB遺伝子及びadc遺伝子、並びにClostridium beijerinckii由来のpdh遺伝子の塩基配列に基づいて設計したプローブと特異的にハイブリダイズするcDNAを特定することで、上述したようなイソプロパノール生合成能を有するClostridium属微生物由来の相同遺伝子を得ることもできる。
 なお、Clostridium acetobutylicum由来のctfA遺伝子、ctfB遺伝子及びadc遺伝子、並びにClostridium beijerinckii由来のpdh遺伝子に対する相同遺伝子の取得方法は、上述した手法に限定されず、如何なる手法を適用しても良い。
宿主酵母への形質転換
 上述した「アセトアセチルCoA合成酵素遺伝子」及び「イソプロパノール生合成関連遺伝子群」は、適当な発現ベクターに組み込まれ、宿主酵母に導入される。ここで、宿主酵母としては、本発明の遺伝子を発現できるものであれば特に限定されるものではない。例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)、ピキア・パストリス(Pichia pastoris)などの酵母が挙げられる。
 また、宿主酵母としては、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有するアセトアセチルCoA合成酵素遺伝子を使用する場合、特に、油脂生産能が高い酵母を使用することが好ましい。脂質代謝経路においてマロニルCoAは基質の一部となっているため、油脂生産能の高い酵母では、マロニルCoAの合成速度及び/又は合成量が高い。よって、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有するアセトアセチルCoA合成酵素遺伝子を使用する場合、油脂生産能が高い酵母を使用することで、イソプロパノール生産性の向上が期待される。このような油脂生産能の高い酵母としては、例えば、Rhodotorula glutinis、Rhodotorula gracilis、Mortierella alpina、Lipomyces starkeyi、Trichosporon sp.、Saccharomycopsis lipolytica、Endomyces magnusii、Cryptococcus albidus、Rhodosporidium toruloides及びHansenula polymorphaを挙げることができる。
 酵母を宿主とする場合、発現ベクターは、宿主酵母中で自律複製可能であると同時に、プロモーター、リボゾーム結合配列、上述した遺伝子、転写終結配列により構成されていることが好ましい。また、発現ベクターには、プロモーター活性を制御する遺伝子が含まれていてもよい。
 また、上述した「アセトアセチルCoA合成酵素遺伝子」及び「イソプロパノール生合成関連遺伝子群」は、宿主酵母の染色体上に導入されることが好ましい。これら遺伝子を染色体上に導入した組換え酵母では、これら遺伝子が安定的に高発現でき、優れたイソプロパノール生産能を達成できる。なお、これら遺伝子を染色体上に導入するには、特に限定されず、従来公知の手法を適宜使用することができる。一例としては、宿主酵母の染色体との相同組換えを利用する方法を使用することができる。
 また、上述した「アセトアセチルCoA合成酵素遺伝子」及び「イソプロパノール生合成関連遺伝子群」は、宿主酵母における染色体上に多コピーで導入されることが好ましい。これら遺伝子を染色体上に多コピーで導入した組換え酵母では、これら遺伝子が高発現することとなり優れたイソプロパノール生産能を達成できる。なお、これら遺伝子を染色体上に多コピーで導入するには、特に限定されず、従来公知の手法を適宜使用することができる。一例としては、多コピー導入型のベクターを使用する方法を挙げることができる。
 酵母を宿主とする場合は、例えばサッカロマイセス・セレビシエ、シゾサッカロマイセス・ポンベ、ピキア・パストリスなどが用いられる。この場合、プロモーターとしては酵母中で発現誘導できるものであれば特に限定されず、例えばgal1プロモーター、gal10プロモーター、ヒートショックタンパク質プロモーター、MFα1プロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、AOX1プロモーターなどが挙げられる。
 酵母への組換えベクターの導入方法としては、酵母にDNAを導入する方法であれば特に限定されず、例えばエレクトロポレーション法[Becker, D.M.,et al.: Methods. Enzymol., 194:182-187 (1990)]、スフェロプラスト法[Hinnen, A. et al.:Proc. Natl. Acad. Sci., USA, 75:1929-1933(1978)]、酢酸リチウム法[Itoh, H.:J. Bacteriol.,153:163-168 (1983)]などが挙げられる。
 また、宿主酵母には、上述した「イソプロパノール生合成関連遺伝子」のうち少なくとも1以上の内在遺伝子を有するものであっても良い。この場合、上述した「イソプロパノール生合成関連遺伝子」のうち、内在遺伝子以外を導入すればよい。
イソプロパノールの製造
 上述した「アセトアセチルCoA合成酵素遺伝子」及び「イソプロパノール生合成関連遺伝子群」が導入された組換え酵母を、グルコース等の炭素源を含む培地で培養することによって、イソプロパノールの生合成が進行する。一般に、目的物質の生産能を付与する又は増強する目的で、酵母に所定の遺伝子を導入しても所期の目的を達成できない場合が少なくない。理由としては、外来生物種由来の遺伝子を安定的に且つ十分な量で発現させることが困難であることが挙げられる。また、イソプロパノールを生合成するのに十分な量のアセトアセチルCoAが細胞内に存在していない可能性も挙げられる。例えば、2分子のアセチルCoAがチオラーゼによって結合してアセトアセチルCoAが合成される場合、この反応の平衡はアセトアセチルCoAからアセチルCoAが合成される方向に向いている。よって、合成されたアセトアセチルCoAを次の物質に変換する強い反応が無ければ、アセトアセチルCoA合成方向に進めることが難しいと考えられる。
 なお、上述した「アセトアセチルCoA合成酵素遺伝子」及び「イソプロパノール生合成関連遺伝子群」が導入された酵母を培養する際の培養条件としては、特に限定されず、宿主酵母の栄養要求性や薬剤耐性に合致した培地を使用し、通常の条件で培養すればよい。
 また、合成されたイソプロパノールは培地中に存在するため、遠心分離等の手段によって培地から菌体を分離した後の上清画分からイソプロパノールを取得することができる。上清画分からイソプロパノールを単離するには、例えば、上清画分に酢酸エチル及びメタノール等の有機溶媒を添加し、十分に撹拌する。水層と溶媒層とに分離し、溶媒層からイソプロパノールを抽出することができる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
〔実施例1〕
 本実施例では、アセトアセチルCoA合成酵素遺伝子としてStreptomyces sp. CL190株由来のORFn遺伝子又はSaccharomyces cerevisiae由来のERG10遺伝子と、アセトアセチルCoA転移酵素遺伝子としてClostridium acetobutylicum由来のctfA遺伝子及びctfB遺伝子と、アセト酢酸脱炭酸酵素としてClostridium acetobutylicum由来のadc遺伝子と、イソプロパノール脱水素酵素遺伝子としてClostridium beijerinckii由来のpdh遺伝子とを導入した組み換え酵母を作製し、イソプロパノール生産能を検討した。
 なお、ORFn遺伝子は、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有するアセトアセチルCoA合成酵素をコードしている。ERG10遺伝子は、二分子のアセチルCoAからアセトアセチルCoAを合成する活性を有するアセトアセチルCoA合成酵素をコードしている。
 本実施例では、先ず、ctfA遺伝子、ctfB遺伝子及びadc遺伝子を有する発現ベクター(pEXP(Ura)-ADC-CTFA-CTFB)を用いてこれら遺伝子を染色体に導入し、アセトン生産能に優れた組換え酵母を選抜した。その後、選抜された組換え酵母に、pdh遺伝子を有する発現ベクター(pDI626PGK-T-iPDH)を用いて当該遺伝子を染色体に更に導入し、イソプロパノール生産能に優れた組換え酵母を選抜した。次に、選抜された組換え酵母に、ORFn遺伝子を有する発現ベクター(pESCpgkgap-HIS-ORFn)又はERG10遺伝子を有する発現ベクター(pESCpgkgap-HIS-ERG10)を用いていずれかの遺伝子を染色体に更に導入し、イソプロパノール生産能を評価した。
 なお、本実施例では、酵母として、Saccharomyces cerevisiae YPH499(Stratagene社製)を使用した。YPH499の培養には以下の培地を使用した。
YPD培地
2% Bacto Peptone (DIFCO社製) 
1% Bacto Yeast extract (DIFCO社製) 
2% D-Glucose (和光純薬社製)
SD(-URA-TRP-HIS)
 SD培地はBIO101社製のものを用いた。SD(-URA-TRP-HIS)培地はSD培地のウラシル、トリプトファン、ヒスチジンを除いたものを使用した。
 また、酵母YPH499のゲノムDNAの調製は以下の方法に従った。先ず、Saccharomyces cerevisiae YPH499(Stratagene社製)を3mlのYPD培地で30℃、1日間培養した。培養液1.5mlをQIAGEN社製ゲノムDNA調製キット(Gentra Puregene Yeast/Bact.kit)に供しゲノムDNAを調製した。
<pESCpgkgap-HIS-ORFnの作製>
pDI626PGKproの作製
 以下の条件でPCRを行った。
プライマー(50 pmol):
SacI-Ppgk1 FW;5’TAG GGA GCT CCA AGA ATT ACT CGT GAG TAA GG 3’(配列番号7)
SacII-Ppgk1 RV;5’ATA ACC GCG GTG TTT TAT ATT TGT TGT AAA AAG TAG 3’ (配列番号8)
鋳型:酵母YPH499のゲノムDNA(0.4μg)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 5分-(95℃ 30秒、55℃ 30秒、72℃ 2分)×25サイクル-72℃ 3分-4℃ストック
 PCRの反応終了後、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製した。得られた増幅断片を制限酵素SacIとSacIIで消化した。アガロースゲル電気泳動を行ない、712bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製した。同様に制限酵素SacIとSacIIで消化したpDI626GAP((APP. Env. Micro., 2009, 5536-5543))ベクターにライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDI626PGKproと命名した。
pDI626PGKの作製
 以下の条件でPCRを行った。
プライマー(50 pmol):
SalI-Tpgk1 FW;5’TTA AGT CGA CAT TGA ATT GAA TTG AAA TCG ATA GAT C 3’ (配列番号9)
KpnI-Tpgk1 RV2;5’TTA AGG TAC CGC TTC AAG CTT ACA CAA CAC 3’ (配列番号10)
鋳型:酵母YPH499のゲノムDNA(0.4μg)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 5分-(95℃ 30秒、55℃ 30秒、72℃ 2分)×25サイクル-72℃ 3分-4℃ストック
 PCRの反応終了後、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製後、制限酵素SalIとKpnIで消化した。アガロースゲル電気泳動を行ない、330bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製した。制限酵素SalIとKpnIで消化した上記pDI626PGKproベクターにライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDI626PGKと命名した。
pDI626PGK-Tの作製
 上記pDI626PGKを制限酵素SbfIで消化し、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製した。その後、TaKaRaBIO社製Blunting kitを用いて末端を平滑化し、さらに制限酵素KpnIで消化した。アガロースゲル電気泳動を行ない、3650bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製した。これをライゲーションするためのベクターとした。次にpRS524GAP(APP. Env. Micro., 2009, 5536-5543)を制限酵素PmaCIとKpnIで消化した。アガロースゲル電気泳動を行ない、765bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製しインサートとした。これらのライゲーションを行ない、得られた配列のつなぎ目をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDI626PGK-Tと命名した。
pESCgap-HISの作製
 以下の条件でPCRを行った。
プライマー(50 pmol):
EcoRI-Pgap-F;5’CAC GGA ATT CCA GTT CGA GTT TAT CAT TAT CAA 3’ (配列番号11)
BamHI-Pgap-R;5’CTC TGG ATC CTT TGT TTG TTT ATG TGT GTT TAT TC 3’ (配列番号12)
鋳型:pDI626GAPプラスミド(1ng)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 2分-(95℃ 30秒、55℃ 30秒、72℃ 2分)×25サイクル-72℃ 3分-4℃ストック
 PCRの反応終了後、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製後、制限酵素BamHIとEcoRIで消化した。アガロースゲル電気泳動を行ない、686bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製した。制限酵素BamHIとEcoRIで消化したpESC-HIS(STRATAGENE社より購入)ベクターにライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpESCgap-HISと命名した。 
pESCpgkgap-HISの作製
 以下の条件でPCRを行った。
プライマー(50 pmol):
MunI-Ppgk1-F;5’TAG GCA ATT GCA AGA ATT ACT CGT GAG TAA GG 3’ (配列番号13)
EcoRI-Ppgk1-R;5’ATA AGA ATT CTG TTT TAT ATT TGT TGT AAA AAG TAG 3’ (配列番号14)
鋳型:pDI626PGKプラスミド(1ng)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 2分-(95℃ 30秒、55℃ 30秒、72℃ 2分)×25サイクル-72℃3分-4℃ストック
 PCRの反応終了後、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製後、制限酵素MunIとEcoRIで消化した。アガロースゲル電気泳動を行ない、718bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製した。制限酵素EcoRIで消化し、BAP処理した上記pESCgap-HISベクターにライゲーションした。インサートが正しい方向にライゲーションされていることをコロニーPCRで確認し、プラスミドを調製した。配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpESCpgkgap-HISと命名した。
pCR2.1-ORFnの作製
 Streptomyces sp. CL190株由来のORFn遺伝子の塩基配列を元にし、この塩基配列に含まれているSaccharomyces cerevisiaeにおけるレアコドンを出現頻度が高いコドンとするように設計した。設計した塩基配列を配列番号15に示す。また、本実施例では設計した塩基配列からなる核酸断片を合成した。また、合成したORFn遺伝子の上流非翻訳領域にggatccgccacc(配列番号16)、下流非翻訳領域にctcgagの合成DNA配列を付与した。この合成遺伝子をプラスミドpCR2.1(Invitrogen社製)に導入し、得られたプラスミドをpCR2.1-ORFnと命名した。
pESCpgkgap-HIS-ORFnの作製
 上記pCR2.1-ORFnを制限酵素BamHIとXhoIで消化後、1002bpの断片を切り出し、同様に制限酵素BamHIとXhoIで消化した上記pESCpgkgap-HISベクターにライゲーションした。得られた配列を制限酵素で解析し、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpESCpgkgap-HIS-ORFnと命名した。pESCpgkgap-HIS-ORFnは、Saccharomyces cerevisiae YPH499において最適に発現するようにコドンが設計された、Streptomyces sp. CL190株由来のORFn遺伝子をSaccharomyces cerevisiae YPH499の染色体上に導入するベクターである。なお、このORFn遺伝子は、PGKプロモーターにより発現制御され、恒常的に発現する。
<pESCpgkgap-HIS-ERG10の作製>
 以下の条件でPCRを行った。
プライマー(50 pmol):
ERG10-F;5’GGG GGG ATC CGC CAC CAT GTC TCA GAA CGT TTA CAT TGT ATC 3’ (配列番号17)
ERG10-R;5’GGG GCT CGA GTC ATA TCT TTT CAA TGA CAA TAG AGG 3’ (配列番号18)
鋳型:YPH499のゲノムDNA(0.3μg)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 5分-(95℃ 30秒、55℃ 30秒、72℃ 2分)×30サイクル-72℃ 3分-4℃ストック
 PCRの反応終了後、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製した後、制限酵素BamHIとXhoIで消化した。アガロースゲル電気泳動を行なった後、1209bpの断片を切り出し、QIAGEN社製MinElute Gel extraction kitを用いて精製した。得られたDNA断片を制限酵素BamHIとXhoIで消化した上記pESCpgkgap-HISベクターにライゲーションした。配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpESCpgkgap-HIS-ERG10と命名した。pESCpgkgap-HIS-ERG10は、Saccharomyces cerevisiae YPH499由来のチオラーゼ遺伝子をSaccharomyces cerevisiae YPH499の染色体上に導入するベクターである。なお、このORFn遺伝子は、PGKプロモーターにより発現制御され、恒常的に発現する。
<pEXP(Ura)-ADC-CTFA-CTFBの作製>
 Clostridium acetobutylicum ATCC824株由来のadc遺伝子、ctfA遺伝子及びctfB遺伝子をそれぞれpT7Blueベクターにクローニングした。得られたベクターをpDI626にクローニングした後、Gatewayドナーベクター(Invitrogen社)を用いてエントリークローン(pENT-ADC、pENT-CTFA及びpENT-CTFB)を作製した。そして、得られたエントリークローンを発現ベクター(pDEST626(2008))に組み込むことで、pEXP(Ura)-ADC-CTFA-CTFBを作製した。詳細は以下の通りである。
pENT-ADCの作製
 adc遺伝子のエントリークローン(pENT-ADC)を以下のように作製した。
 先ず、以下の条件でPCRを行った。
プライマー(50 pmol):
adc-F;5’ATG TTA AAG GAT GAA GTA ATT AAA CAA ATT AG 3’ (配列番号19)
adc-R;5’TTA CTT AAG ATA ATC ATA TAT AAC TTC AGC TC 3’ (配列番号20)
鋳型:上記ATCC824株のゲノムDNA(0.4μg)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 5分-(95℃ 30秒、60℃ 30秒、72℃ 2分)×30サイクル-72℃ 3分-4℃ストック
 PCRで増幅した735bpの断片をNovagen社製Perfectly Blunt Cloning Kitを用いてpT7Blueベクター(タカラバイオ社)にブラントエンドクローニングした。クローニングした配列をシークエンスしClostridium acetobutylicum ATCC824株のadc遺伝子の塩基配列(CA-P0165)であることを確認した。こうして得られたプラスミドをpT7Blue-ADCと命名した。
 次に、pT7Blue-ADCを制限酵素BamHIとSalIで消化し、771bpの断片を切り出して、同様に制限酵素BamHIとSalIで消化したpDI626ベクターにライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDI626-ADCと命名した。
 次に、得られたpDI626-ADCを鋳型にして、以下のプライマーでPCRを行った。
プライマー:
08-189-adc-attB1-Fw;5’GGG GAC AAG TTT GTA CAA AAA AGC AGG CTC AGT TCG AGT TTA TCA TTA TC 3’ (配列番号21)
08-189-adc-attB4-Rv;5’GGG GAC AAC TTT GTA TAG AAA AGT TGG GTG GGC CGC AAA TTA AAG CCT TC 3’ (配列番号22)
 得られた1809bpのPCR産物をgateway BP反応によりドナーベクターpDONR221 P1-P4に導入した。得られたクローンのシーケンスを行ない、インサートの全塩基配列に変異個所が無いことを確認した。こうして得られたプラスミドをpENT-ADCと命名した。
pENT-CTFAの作製
 ctfA遺伝子のエントリークローン(pENT-CTFA)を以下のように作製した。
 先ず、以下の条件でPCRを行った。
プライマー(50 pmol):
ctfA-F;5’ATG AAC TCT AAA ATA ATT AGA TTT GAA AAT TTA AGG 3’ (配列番号23)
ctfA-R;5’TTA TGC AGG CTC CTT TAC TAT ATA ATT TA 3’ (配列番号24)
鋳型:上記ATCC824株のゲノムDNA(0.4μg)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 5分-(95℃ 30秒、60℃ 30秒、72℃ 2分)×30サイクル-72℃ 3分-4℃ストック
 PCRで増幅した657bpの断片をNovagen社製Perfectly Blunt Cloning Kitを用いて同様にクローニングした。クローニングした配列をシークエンスしClostridium acetobutylicum ATCC824株のctfA遺伝子の塩基配列(CA-P0163)であることを確認した。こうして得られたプラスミドをpT7Blue-CTFAと命名した。
 次に、pT7Blue-CTFAを制限酵素BamHIとSalIで消化し、693bpの断片を切り出して、同様に制限酵素BamHIとSalIで消化したpDI626PGKベクターにライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDI626PGK-CTFAと命名した。
 次に、得られたpDI626PGK-CTFAを鋳型にして、以下のプライマーを用いてPCRを行った。
プライマー:
08-189-ctfA-attB4r-Fw;5’GGG GAC AAC TTT TCT ATA CAA AGT TGG CTT CAA GCT TAC ACA ACA CGG 3’ (配列番号25)
08-189-ctfA-attB3r-Rv;5’GGG GAC AAC TTT ATT ATA CAA AGT TGT CAA GAA TTA CTC GTG AGT AAG G 3’ (配列番号26)
 得られた1823bpのPCR産物をgateway BP反応によりドナーベクターpDONR221 P4r-P3rに導入した。得られたクローンのシーケンスを行ない、インサートの全塩基配列に変異個所が無いことを確認した。こうして得られたプラスミドをpENT-CTFAと命名した。
pENT-CTFBの作製
 ctfB遺伝子のエントリークローン(pENT-CTFB)を以下のように作製した。
 先ず、以下の条件でPCRを行った。
プライマー(50 pmol):
ctfB-F;5’ATG ATT AAT GAT AAA AAC CTA GCG AAA G 3’ (配列番号27)
ctfB-R;5’CTA AAC AGC CAT GGG TCT AAG TTC 3’ (配列番号28)
鋳型:上記ATCC824株のゲノムDNA(0.4μg)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 5分-(95℃ 30秒、60℃ 30秒、72℃ 2分)×30サイクル-72℃ 3分-4℃ストック
 PCRで増幅した666bpの断片をNovagen社製Perfectly Blunt Cloning Kitを用いてクローニングした。クローニングした配列をシークエンスし、Clostridium acetobutylicum ATCC824株のctfB遺伝子の塩基配列(CA-P0164)であることを確認した。こうして得られたプラスミドをpT7Blue-CTFBと命名した。
 次に、pT7Blue-CTFBを制限酵素BamHIとSalIで消化し、771bpの断片を切り出して、同様に制限酵素BamHIとSalIで消化したpDI626ベクターにライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDI626-CTFB(+A)と命名した。
 次に、プライマー中の変異個所を修正するために以下のプライマーを用いて以下の条件でPCRを行った。
プライマー(50 pmol):
BamHI-ctfB-F;5’TAG TGG ATC CGA TGA TTA ATG ATA AAA ACC 3’ (配列番号29)
pDI626MCS-seqF;5’CCT AGA CTT CAG GTT GTC TAA C 3’ (配列番号30)
鋳型:pDI626-CTFB(+A)(1 ng)
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 2分-(95℃ 30秒、55℃ 30秒、72℃ 1分)×20サイクル-72℃ 3分-4℃ストック
 PCRの反応終了後、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製後、制限酵素BamHIとSalIで消化した。アガロースゲル電気泳動を行ない、702bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製した。制限酵素BamHIとSalIで消化したpDI626ベクターにライゲーションした。得られた配列をシークエンスし、変異個所が修正されていることを確認した。こうして得られたプラスミドをpDI626-CTFBと命名した。
 次に、pDI626-CTFBを鋳型にして、以下のプライマーを用いてPCRを行った。
プライマー:
08-189-ctfB-attB3-Fw;5’GGG GAC AAC TTT GTA TAA TAA AGT TGG GCC GCA AAT TAA AGC CTT C 3’ (配列番号31)
08-189-ctfB-attB2-Rv;5’GGG GAC CAC TTT GTA CAA GAA AGC TGG GTA CAG TTC GAG TTT ATC ATT ATC 3’ (配列番号32)
 得られた1737bpのPCR産物をgateway BP反応によりドナーベクターpDONR221 P3-P2に導入した。得られたクローンのシーケンスを行ない、インサートの全塩基配列に変異個所が無いことを確認した。こうして得られたプラスミドをpENT-CTFBと命名した。
pDEST626(2008)の作製
 以下の条件でPCRを行った。
プライマー:
SacI-convA-F;5’TAG GGA GCT CAT CAC AAG TTT GTA CAA AAA AGC TG 3’ (配列番号33)
KpnI-convA-R;5’TTA AGG TAC CAT CAC CAC TTT GTA CAA GAA AGC 3’ (配列番号34)
鋳型:RfA(Invitrogen社製 Gateway Vector Conversion System)(0.5 ng)
プライマー(50 pmol):
反応液:1x Pfu Ultra II reaction buffer(Stratagene);10 nmol dNTP;1μl Pfu Ultra II fusion HS DNA polymerase (Stratagene);を含む50μl溶液
反応:95℃ 2分-(95℃ 30秒、55℃ 30秒、72℃ 1分30秒)×20サイクル-72℃ 3分-4℃ストック
 なお、鋳型としたRfAは、Gateway Vector Conversion SystemのReading Frame CassetteAである。PCRの反応終了後、反応液をQIAGEN社製MinElute PCR purification kitを用いて精製後、制限酵素SacIとKpnIで消化した。アガロースゲル電気泳動を行ない、1717bpの断片を切り出してQIAGEN社製MinElute Gel extraction kitを用いて精製後、制限酵素SacIとKpnIで消化したpDI626GAPベクター(APP. Env. Micro., 2009, 5536)にライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDEST626(2008)と命名した。
pEXP(Ura)-ADC-CTFA-CTFBの作製 
 上述のように得られた3つのエントリークローン(pENT-ADC、pENT-CTFA及びpENT-CTFB)をGateway LR反応により発現ベクターpDEST626(2008)に組み込んだ。得られたクローンについて、PCRでインサートサイズの確認を行ない、正しく組換えが行なわれたことを確認した。シークエンスを行ない、配列にエラーの無いことを確認した。こうして得られたプラスミドをpEXP(Ura)-ADC-CTFA-CTFBと命名した。
<pDI626PGK-T-iPDHの作製>
 pCR2.1-iPDHの作製
 先ず、GenBankに登録されているClostridium beijerinckii NRRL B593由来のpdh遺伝子の塩基配列を元にし、この塩基配列に含まれているSaccharomyces cerevisiaeにおけるレアコドンを出現頻度が高いコドンとするように設計した。また、本実施例では設計した塩基配列からなる核酸断片を合成した(配列番号35)。また、合成したpdh遺伝子の上流非翻訳領域にGGGGTTTCCGCGGTCTAGAGCCACC(配列番号36)、下流非翻訳領域にGGATCCGTCGACGGGG(配列番号37)の合成DNA配列を付与した。このプラスミドをpCR2.1-iPDHと命名した。
pDI626PGK-T-iPDHの作製
 次に、pCR2.1-iPDHを制限酵素SacIIとSalIで消化し、1080bpの断片を切り出して、同様に制限酵素SacIIとSalIで消化した上記pDI626PGK-Tベクターにライゲーションした。得られた配列をシークエンスし、目的とするプラスミドが作製されていることを確認した。こうして得られたプラスミドをpDI626PGK-T-iPDHと命名した。pDI626PGK-T-iPDHは、Saccharomyces cerevisiae YPH499において最適に発現するようにコドンが設計された、Clostridium beijerinckii NRRL B593株由来のpdh遺伝子をSaccharomyces cerevisiae YPH499の染色体上に導入するベクターである。なお、このpdh遺伝子は、PGKプロモーターにより発現制御され、恒常的に発現する。
<形質転換1>
 本実施例では、先ず、上述のように構築されたpEXP(Ura)-ADC-CTFA-CTFBを制限酵素 AatII及びBssHIIで切断して線状化し、エタノール沈殿後、0.1×TE Bufferに溶解し、Frozen EZ yeast transformation kit(Zymoresearch社製)を用いてSaccharomyces cerevisiae YPH499(Stratagene社製)を形質転換した。得られたクローンをコロニーPCRし、25クローンでadc遺伝子、ctfA遺伝子及びctfB遺伝子が導入されていることを確認した。また、得られたクローンにおけるアセトン生産量を測定し、アセトン生産量が最も多い株を#3-17と命名した。
<形質転換2>
 本実施例では、次に、上述のように構築されたpDI626PGK-T-iPDHを制限酵素AatII及びBssHIIで切断して線状化し、エタノール沈殿後、0.1×TE Buffer に溶解、Frozen EZ yeast transformation kit (Zymoresearch社製)を用いてアセトン高生産酵母#3-17を形質転換した。得られた14クローンをコロニーPCRし、13クローンでpdh遺伝子が導入されていることを確認した。得られたクローンにおけるイソプロパノール生産量を測定し、イソプロパノール生産量が最も多い株を#15-10と命名した。
<形質転換3>
 本実施例では、次に、上述のように構築されたpESCpgkgap-HIS-ERG10(0.5μg)を用いて、#15-10を形質転換した。形質転換法は、上記と同様に、Frozen EZ yeast transformation kit(Zymoresearch社製)の方法に従った。形質転換処理の後にSD(-URA-TRP-HIS)培地に塗布し、5日間30℃で培養した後、現れたコロニーを継代した。PCRでERG10遺伝子が導入されていることを確認後、得られた株をERG10/#15-10株と命名した。 
 また、同様に、上述のように構築されたpESCpgkgap-HIS-ORFn(0.5μg)を用いて、#15-10を形質転換した。PCRでORFn遺伝子が導入されていることを確認後、得られた株をORFn/#15-10株と命名した。
<イソプロパノール生産性試験>
 上述した形質転換3において作製した組換え酵母(ERG10/#15-10株及びORFn/#15-10株)について、イソプロパノールの生産性を評価した。具体的には、先ず、3mlの培地の入ったガラス製ディスポーザブル試験管(16×100mm、ASAHI TECHNO GLASS社製)にグリセロールストックより解凍した組換え酵母溶液30μlを植菌した。30℃、130ストローク/min(高崎2段振盪培養機TXY-16R-2FL型)で66時間試験管を振盪し、前培養液を作製した。次に、100mlの培地を含む300mlの三角フラスコに1mlの前培養液を植菌し、オリエンタル技研二段式培養機(IFM-I I-S型)で、30℃、130rpmで240時間回転培養した。本培養開始後、24H、48H、72H、96H、168H、240Hで、O.D.600nmを測定し、サンプリングを行なった。
 培養液3mlを、スクリューキャップ付試験管(TST SCR 16-100;16×100mm ASAHI TECHNO GLASS社製)に入れ、室温で5分、1000gで遠心分離(TOMY LC-230型)した。上澄液2mlを、20ml容量のHSSバイアルに入れ、締結した後、60℃、15分熱処理をおこなった。その後HSS-GC/MS分析によりアセトン、イソプロパノールを分析した。予め濃度既知の標準液を調製し検量線を引くことで、サンプルの濃度を定量した。HSS-GC/MSの分析条件を以下に示す。
ヘッドスペースサンプラー分析条件
 ヘッドスペースサンプラー:HP7694(Hewlett-Packard)
 Zone Temp.
  Oven;60℃
  Loop;150℃
  TR.LINE;200℃
 Event Time:
  GC CYCLE TIME;35min
  Vial EQ TIME;15min
  PRESSURIZ. TIME;0.50min
  Loop Fill TIME;0.2min
  Loop EQ TIME;0.2min
  INJECT TIME;1.00min
 Vial Prameter
  SHAKE;HIGH
 その他
  バイアル加圧;15psi
  ループサイズ;3ml
GC-MS分析条件
 GC/MS:HP6890/5973 GC/MSシステム(Hewlett-Packard)
 使用カラム:J&W DB-624 (0.32mm x 60m、フィルム厚1.8μm)
 インレット温度:260℃
 検出器温度:260℃
 インジェクションパラメーター:
  スプリット比;1/20
  キャリヤーガス;ヘリウム 1.0ml/分
  オーブン加熱条件;40℃で5分→5℃/分で75℃まで加熱→100℃/分で260℃まで加熱→260℃で16 分
<測定結果>
 上述した形質転換2で作製した#15-10株、上述した形質転換3で作製したERG10/#15-10株及びORFn/#15-10株について、イソプロパノール生産量を経時的に測定した結果を図1に示す。図1において、下向きの三角は#15-10株、上向きの三角はERG10/#15-10株、黒丸はORFn/#15-10株を示す。また、本培養開始後、96時間におけるイソプロパノール生産量を比較した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図1及び表1から判るように、アセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群が導入された組換え酵母に対して、更にアセトアセチルCoA合成酵素遺伝子を導入した組換え酵母によれば、イソプロパノールの生産性を大幅に向上できることが明らかとなった。特に、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有する酵素をコードするアセトアセチルCoA合成酵素遺伝子を導入した場合には、二分子のアセチルCoAからアセトアセチルCoAを合成する活性を有する酵素をコードするアセトアセチルCoA合成酵素遺伝子(チオラーゼ)を導入した場合と比較すると、イソプロパノールの生産性が飛躍的に向上していた。これは、宿主として使用した酵母が、本来的に脂質合成能を有しており、この脂質合成経路に利用するマロニルCoAを本来的に十分有しているためと考えられた。したがって、この結果から、特に脂質合成能に優れた酵母に対して、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する活性を有する酵素をコードするアセトアセチルCoA合成酵素遺伝子とアセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群とを導入することで、より優れたイソプロパノール生産性を有する組換え酵母を作製できることがわかった。
〔参考例1〕
 本参考例では、宿主として大腸菌を使用し、アセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群が導入された組換え大腸菌に対して、更にアセトアセチルCoA合成酵素遺伝子を導入した組換え大腸菌を作製し、イソプロパノール生産性を評価した。
<Clostridium acetobutylicum のゲノムDNAの調製>
 Clostridium acetobutylicum ATCC(824)株を常法に従い3mlのDifco社製クロストリジウム強化培地で30℃、2日間嫌気培養した。QIAGEN社製ゲノムDNA調製キット(Gentra Puregene Yeast/Bact.kit)を用いて培養液1.5mlからゲノムDNAを調製した。
<pT7Blue-CAC2873の作製>
 Clostridium acetobutylicum由来のチオラーゼ遺伝子であるthiA遺伝子を以下のようにクローニングした。先ず、以下のプライマーを用いてPCRを行った。
CAC2873-F:5’-ATG AAA GAA GTT GTA ATA GCT AGT GCA G-3’(配列番号38)
CAC2873-R:5’-CTA GCA CTT TTC TAG CAA TAT TGC TG-3’(配列番号39)
 PCRにおいて鋳型としては上記で調製したClostridium acetobutylicum ATCC(824)株のゲノムDNAを0.1μg使用した。また、上記一対のプライマーは50pmolとした。反応液組成は1x Pfu Ultra II reaction buffer(Stratagene)中に10nmolのdNTP及び1μlのPfu Ultra II fusion HS DNA polymerase (Stratagene)を含む50μl溶液とした。PCRのサーマルサイクルは、95℃で5分の後、95℃で30秒、60℃で30秒及び72℃で3分を1サイクルとして30サイクル行い、その後72℃で3分とした。また反応終了後は4℃でストックした。
 PCRで増幅した約1.2kbの断片をNovagen社製Perfectly Blunt Cloning Kitを用いてpT7-Blueベクターにブラントエンドクローニングした。クローニングした配列をシークエンスし、Clostridium acetobutylicum ATCC(824)株のthiA遺伝子であることを確認した。こうして得られたプラスミドをpT7Blue-CAC2873と命名した。
<pCDFDuet-thiAの作製>
 大腸菌において上記thiA遺伝子を発現するための発現ベクターを以下のように構築した。先ず、以下のプライマーを用いてPCRを行った。
acat-NdeI-F:5’-AAA CAT ATG AAA GAA GTT GTA ATA GC-3’(配列番号40)
acat-XhoI-R:5’-AAA CTC GAG CTA GCA CTT TTC TAG CAA T-3’(配列番号41)
 PCRにおいて鋳型としては上記で調製したpT7Blue-CAC2873を使用した。また、上記一対のプライマーは10pmolとした。反応液組成は1xPfu UltraTMII reaction buffer (Stratagene)中に12.5 nmolのdNTP及び1μlのPfu UltraTMII fusion HS DNA polymerase (Stratagene)を含む50μl溶液とした。PCRのサーマルサイクルは、95℃で2分の後、95℃で20秒、43℃で20秒及び72℃で40秒を1サイクルといして5サイクル行い、その後、95℃で20秒、50℃で20秒及び72℃で40秒を1サイクルとして30サイクル行い、その後72℃で3分とした。また反応終了後は4℃でストックした。
 PCRで増幅した約1.2bpのDNA断片をMinElute PCR Purification Kitで精製し、Zero Blunt TOPO PCR Cloning Kitキットを用い、pCR-Blunt II-Topoベクターにクローニングした。得られたベクターをpCR-Blunt II-TOPO-thiAと命名した。pCR-Blunt II-TOPO-thiAをNdeIとXhoIで切断し、アガロースゲル電気泳動で約1.2KbpのDNA断片を精製し、pCDF-Duet(Novagen社製)のNdeI-XhoI部位に挿入した。得られたプラスミドをpCDFDuet-thiAとした。
<pCDFDuet-orfNの作製>
 Clostridium acetobutylicum由来であり、マロニルCoAとアセチルCoAからアセトアセチルCoAを合成するアセトアセチルCoA合成酵素遺伝子を以下のようにクローニングした。先ず、以下のプライマーを用いてPCRを行った。
OrfN-NdeI-F:5’-AAA CAT ATG ACC GAC GTC CGA TTC CGC AT 3’(配列番号42)
OrfN-XhoI-R:5’-AAA CTC GAG TTA CCA CTC GAT CAG GGC GA 3’(配列番号43)
 PCRにおいて鋳型としてはpHISORFnを20ng使用した。pHISORFnは、特開2008-61506号公報に記載のものを使用した。また、上記一対のプライマーは15 pmolとした。反応液組成は1x PrimeSTAR GC Buffer(Mg2+plus) (タカラバイオ社製)中に10nmolのdNTP及び0.5μlのPrimeSTAR HS DNA Polymerase (タカラバイオ社製)を含む50μl溶液とした。PCRのサーマルサイクルは、94℃で1分の後、98℃で10秒、53℃で5秒及び72℃で1分を1サイクルとして5サイクル行い、その後、98℃で10秒、60℃で5秒、72℃で1分を1サイクルとして30サイクル行い、その後72℃で5分とした。また反応終了後は4℃でストックした。
 PCRで増幅した約1KbpのDNA断片をMinElute PCR Purification Kitで精製し、Zero Blunt TOPO PCR Cloning Kitキットを用い、pCR-Blunt II-Topoベクターにクローニングした。得られたベクターをpCR-Blunt II-TOPO-orfNと命名した。pCR-Blunt II-TOPO-orfNをNdeIとXhoIで切断し、アガロースゲル電気泳動で約1KbpのDNA断片を精製し、pCDF-Duet(Novagen社製)のNdeI-XhoI部位に挿入した。得られたプラスミドをpCDFDuet-orfNとした。
<pETDuet-ctfABの構築>
 Clostridium acetobutylicum由来のアセトアセチルCoA転移酵素遺伝子であるctfA遺伝子及びctfB遺伝子をクローニングした。先ず、上述のように調整したゲノムDNAをテンプレートにして以下に示すPCRを行った。PCRではPfuUltra II fusion HS DNA polymerase(STRATAGEN社製)及び以下のプライマー(下線部は制限酵素サイト)を使用した。
ctfAB-NdeI-F:5’-ATT CAT ATG AAC TCT AAA ATA ATT AGA TTT GAA AAT TTA AGG TC-3’ (配列番号44)
ctfAB-NdeI-R:5’-AGA CTC GAG CTA AAC AGC CAT GGG TCT AAG-3’ (配列番号45)
 PCRにおける反応液の組成は、下記の通りとした。
Figure JPOXMLDOC01-appb-T000002
 PCRのサーマルサイクルは、95℃で2分の後、95℃で30秒、54.8℃で30秒及び72℃で2分を1サイクルとして30サイクル行い、その後72℃で7分とした。また反応終了後は4℃でストックした。
 上記の条件でPCR(eppendruf社製)を行い、0.8%アガロースゲル電気泳動で1324bpの断片を切り出した。QIAquick Gel Extraction Kit(QIAGEN社製)を用いて切り出した断片を精製し、NdeI及びXhoIで消化した。さらにQIAquick PCR Purification Kit(QIAGEN社製)で精製した後、pETDuet-1(メルク社製)のNdeI、XhoIサイトに挿入した。得られた配列をシークエンスし、目的とされるプラスミドが作製されていることを確認した。こうして得られたプラスミドをpETDuet-ctfABと命名した。
<pETDuet-ADCの構築>
 Clostridium acetobutylicum由来のアセト酢酸脱炭酸酵素遺伝子であるadc遺伝子をクローニングした。先ず、上述のように調整したゲノムDNAをテンプレートにして以下に示すPCRを行った。PCRではPfuUltra II fusion HS DNA polymerase(STRATAGEN社製)及び以下のプライマー(下線部は制限酵素サイト)を使用した。
adc-SalI-F:5’-CAC GTC GAC AAG GAG ATA TAA TGT TAA AGG ATG AAG TAA TTA AAC A-3’(配列番号46)
adc-NotI-R:5’-CAC GCG GCC GCT TAC TTA AGA TAA TCA TAT ATA ACT TCA GC-3’(配列番号47)
 PCRにおける反応液の組成は、下記の通りとした。
Figure JPOXMLDOC01-appb-T000003
 PCRのサーマルサイクルは、95℃で2分の後、95℃で20秒、54.8℃で20秒及び72℃で3分を1サイクルとして30サイクル行い、その後72℃で3分とした。また反応終了後は13℃でストックした。
 上記の条件でPCR(eppendruf社製)を行い、1%アガロースゲル電気泳動で735bpの断片を切り出した。QIAquick Gel Extraction Kit(QIAGEN社製)を用いて切り出した断片を精製し、SalI及びNotIで消化した。さらに、QIAquick PCR Purification Kit(QIAGEN社製)で精製した後、pETDuet-1(メルク社製)のSalI、NotIサイトに挿入した。得られた配列をシークエンスし、目的とされるプラスミドが作製されていることを確認した。こうして得られたプラスミドをpETDuet-ADCと命名した。
<pETDuet-ADC-ctfABの構築>
 大腸菌において上記ctfA遺伝子、ctfB遺伝子及びadc遺伝子を発現するための発現ベクターを以下のように構築した。先ず、上記で作製したpETDuet-ADCをSalI及びNotIで消化し、0.8%アガロースゲル電気泳動でadc遺伝子を含む753bpの断片を切り出し、QIAquick Gel Extraction Kit(QIAGEN社製)を用いて精製した。また、上記で作製したpETDuet-ctfABをSalI及びNotIで消化し、得られた6677bpと上記断片をライゲーションした。得られたベクターをpETDuet-ADC-ctfABと命名した。
<pCOLADuet-PDHの構築>
 Clostridium beijerinckii由来のイソプロパノール脱水素酵素遺伝子であるpdh遺伝子をクローニングした。先ず、上述の実施例1で作製したpCR2.1-iPDHを鋳型に用いて以下に示すPCRを行った。PCRではPfuUltra II fusion HS DNA polymerase(STRATAGEN社製)及び以下のプライマー(下線部は制限酵素サイト)を使用した。
PDH-EcoRI-F:5’- GGA ATT CCA TGA AAG GTT TCG CAA TGT T-3’ (配列番号48)
PDH-PstI-R:5’- AAC TGC AGA ACC AAT GCA TTG GTT ACA AAA TGA CTA CGG -3’ (配列番号49)
 PCRにおける反応液の組成は、下記の通りとした。
Figure JPOXMLDOC01-appb-T000004
 PCRのサーマルサイクルは、95℃で2分の後、95℃で30秒、50℃で30秒及び72℃で2分を1サイクルとして30サイクル行い、その後72℃で7分とした。また反応終了後は4℃でストックした。
 上記の条件でPCR(eppendruf社製)を行い、0.8%アガロースゲル電気泳動で1056bpの断片を切り出した。MiniElute Gel Extraction Kit(QIAGEN社製)を用いて切り出した断片を精製し、EcoRI及びPstIで消化した。QIAquick PCR Purification Kit(QIAGEN社製)で精製した後、pCOLADuet-1(メルク社製)のEcoRI、PstIサイトに挿入した。得られた配列をシークエンスし目的とされるプラスミドが作製されていることを確認した。こうして得られたプラスミドをpCOLADuet-PDHと命名した。
<組換え大腸菌作製>
 上記で作製したpCDFDuet-thiA、pCDFDuet-orfN、pETDuet-ADC-ctfAB、pCOLADuet-PDHを下記表5に示すA~Fの組み合わせで、タカラバイオ社製大腸菌BL21(DE3)大腸菌K株に分類される大腸菌NovaBlue(DE3)を形質転換した。A~Fの発現ベクターの組み合わせを大腸菌BL21(DE3)に形質転換した組み換え大腸菌を、それぞれA/BL21、B/BL21、C/BL21、D/BL21、E/BL21、F/BL21と命名した。A~Fの発現ベクターの組み合わせを大腸菌NovaBlue(DE3)に形質転換した組み換え大腸菌を、それぞれA/NB、B/NB、C/NB、D/NB、E/NB、F/NBと命名した。
Figure JPOXMLDOC01-appb-T000005
 得られた組み換え大腸菌を培養するに際して、先ず下記組成のトレースエレメントを調整した。
Figure JPOXMLDOC01-appb-T000006
 また、培地としてSD-7培地を以下のように調整した。NH4Cl7.0g、KH2PO41.5g、Na2HPO41.5g、K2SO40.35g、MgSO4・7H2O0.17g、Difco社製酵母エキス5.0g、トレースエレメント0.8mlを0.8Lの脱イオン水に溶解した後、5M NH4OHでpH7.0に調整した。脱イオン水で全量を1Lにしオートクレーブ滅菌した。
 さらに、培地としてSD-8培地を以下のように調整した。NH4Cl7.0g、KH2PO47.5g、Na2HPO47.5g、K2SO40.85g、MgSO4・7H2O0.17g、Difco社製酵母エキス10.0g、トレースエレメント0.8mlを1Lの脱イオン水に溶解した後、オートクレーブ滅菌した。
 さらに、上述した各組み換え大腸菌をSD-7培地或いはSD-8培地で培養する際には、必要に応じて下記表に示す抗生物質を添加した。なお、表中、Amp:アンピシリン、Km:カナマイシン(SIGMA社製)、Str:ストレプトマイシン及びTet:テトラサイクリンを意味する。
Figure JPOXMLDOC01-appb-T000007
 得られた組み換え大腸菌それぞれについて、最終濃度2%のグルコース(和光純薬社製)を含む5mlのSD-7培地に単一コロニーを植菌し、37℃で一晩培養した。次に、最終濃度2%のグルコースを含む50mlのSD-8培地を500mlのバッフル付三角フラスコに入れ、一晩培養した培養液500μlを植菌し、37℃、130rpmで培養を行った。O.D600が1.0以下のところで、最終濃度0.1mMのIPTGを添加し、さらに培養を続けた。IPTG添加後、0、3、6、9、24、30時間後に培養液5mlをスクリューキャップ付試験管に分注し、-30℃で保存した(一部、48時間後も実施)。なお、IPTG添加後24時間目に最終濃度が2%になるようにGlucoseを追添加した。
 その後、-30℃で凍結保存した培養液を室温で解凍した。Vortexでよく攪拌した後、予め重量を測定しておいたエッペンドルフチューブに培養液1mlを入れ、冷却小型遠心機(TOMY社製)を用いて、13000rpm、10分、4℃で遠心分離した。上清を除去したエッペンドルフチューブをSpeed Vac(SAVANT社製)を用いて、温度:Lowで約4時間乾燥させた。その後、エッペンドルフチューブの重量を測定し、あらかじめ測定しておいた重量を引いた値を、乾燥菌体重量とした。
 残りの培養液(4ml)が入ったスクリューキャップ付試験管を、卓上多本架遠心機LC-230(TOMY社製)を用いて、1000g、5分、室温にて遠心分離し、上清と菌体に分離した。上清2mlを20mlヘッドスペース用クリンプバイアルビンに入れ、キャップをして、60℃の温浴中に15分入れた。その後、GC-MS/HSSにて、イソプロパノール等について成分分析を行った。
 GC-MS/HSSは、HP6890/5973/7694 GC-MS/HSSシステム(Hewlett-Packard社製)を用いた。使用カラムはJ&W DB-624 (0.32mm×60m、フィルム厚1.8μm)であり、分析条件は以下の通りとした。
<GC-MS分析条件>
[インレットパラメーター] 
インレット温度:260℃
スプリット比:1/20
キャリヤーガス:ヘリウム 1.0ml/分
[オーブン加熱条件] 
40℃で5分加熱
5℃/分で75℃まで加熱
100℃/分で260℃まで加熱
[ディテクター条件]
検出器温度:260℃
<ヘッドスペースサンプラー条件>
[Zoom Temp] 
Oven:60℃
Loop:150℃
Transfer Line:200℃
[Event Time]
GC Cycle Time:35分
Vial EQ Time:15分
Pressuriz. Time:0.5分
Loop Fill Time:0.2分
Loop EQ Time:0.2分
Inject Time:1.0分
[Vial Parameter]
Shake:HIGH
[その他]
バイアル加圧:15psi
<標準物質>
エタノール(比重:0.789)
アセトン(比重:0.789)
イソプロパノール(比重:0.784)
酢酸(比重:1.05)
 上記標準物質を適当な濃度に調整し、検量線から%濃度(V/V)を算出し、さらに比重を考慮して重量濃度を計算した。本参考例で作製した組換え大腸菌のアセトン及びイソプロパノールの生産量を下記表にまとめた。
Figure JPOXMLDOC01-appb-T000008
 この結果から、ctfAB遺伝子及びadc遺伝子に加えて、pdh遺伝子を導入した組換え大腸菌では、アセトンの生産量が低下するとともにイソプロパノール生産量が向上している事が判る。また、ctfAB遺伝子、adc遺伝子及びpdh遺伝子を導入した組換え大腸菌に対して、アセトアセチルCoA合成酵素遺伝子を更に導入した組換え大腸菌では、イソプロパノール生産量が飛躍的に向上していることが判る。しかしながら、アセトアセチルCoA合成酵素遺伝子のなかでも、マロニルCoA及びアセチルCoAを基質とする酵素をコードする遺伝子は、二分子のアセチルCoA合成を基質とする酵素をコードする遺伝子と比較すると、イソプロパノール生産性を向上させる効果が低いことが判った。一方、実施例1では、マロニルCoA及びアセチルCoAを基質とする酵素をコードするアセトアセチルCoA合成酵素遺伝子を利用した方がイソプロパノールの生産性をより顕著に向上できることを示した。すなわち、実施例1で示したこの結果は、アセトアセチルCoA合成酵素遺伝子とイソプロパノール生合成関連遺伝子群とを導入した組換え大腸菌から得られた知見から予測できない結果であると言える。

Claims (17)

  1. アセトアセチルCoA合成酵素遺伝子、及びアセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群が導入された組換え酵母を培養し、培養物からイソプロパノールを取得することを特徴とするイソプロパノールの製造方法。
  2. 上記アセトアセチルCoA合成酵素遺伝子は、アセチルCoAとマロニルCoAとをアセトアセチルCoAに変換する反応を触媒する酵素をコードすることを特徴とする請求項1記載のイソプロパノールの製造方法。
  3. 上記アセトアセチルCoA合成酵素遺伝子は、Streptomyces属の微生物由来の遺伝子(ORFn遺伝子)であることを特徴とする請求項2記載のイソプロパノールの製造方法。
  4. 上記アセトアセチルCoA合成酵素遺伝子は、配列番号1記載のアミノ酸配列を有するタンパク質をコードする、又は配列番号1のアミノ酸配列に対して80%以上の一致度を有するアミノ酸配列を有し、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能を有するタンパク質をコードするものであることを特徴とする請求項2記載のイソプロパノールの製造方法。
  5. イソプロパノール生合成関連遺伝子群は、アセトアセチルCoA転移酵素遺伝子、アセト酢酸脱炭酸酵素遺伝子及びイソプロパノール脱水素酵素遺伝子からなる群のなかから選ばれる遺伝子であり、上記組換え酵母は、これらイソプロパノール生合成関連遺伝子群の遺伝子のうち内在しない遺伝子が導入されたものであることを特徴とする請求項1記載のイソプロパノールの製造方法。
  6. アセトアセチルCoA転移酵素遺伝子は、Clostridium acetobutylicum由来のctfA遺伝子及びctfB遺伝子であることを特徴とする請求項5記載のイソプロパノールの製造方法。
  7. アセト酢酸脱炭酸酵素遺伝子は、Clostridium acetobutylicum由来のadc遺伝子であることを特徴とする請求項5又は6記載のイソプロパノールの製造方法。
  8. イソプロパノール脱水素酵素遺伝子は、Clostridium beijerinckii由来のpdh遺伝子であることを特徴とする請求項5乃至7いずれか一項記載のイソプロパノールの製造方法。
  9. 上記アセトアセチルCoA合成酵素遺伝子、上記イソプロパノール生合成関連遺伝子群は、宿主となる酵母のゲノム内に導入されていることを特徴とする請求項1記載のイソプロパノールの製造方法。
  10. アセトアセチルCoA合成酵素遺伝子、及びアセトアセチルCoAからイソプロパノールを合成する代謝経路に関連するイソプロパノール生合成関連遺伝子群が導入された組換え酵母。
  11. 上記アセトアセチルCoA合成酵素遺伝子は、アセチルCoAとマロニルCoAとをアセトアセチルCoAに変換する反応を触媒する酵素をコードすることを特徴とする請求項10記載の組換え酵母。
  12. 上記アセトアセチルCoA合成酵素遺伝子は、Streptomyces属の微生物由来のアセトアセチルCoA合成酵素遺伝子(ORFn遺伝子)であることを特徴とする請求項11記載の組換え酵母。
  13. 上記アセトアセチルCoA合成酵素遺伝子は、配列番号1記載のアミノ酸配列を有するタンパク質をコードする、又は配列番号1のアミノ酸配列に対して80%以上の一致度を有するアミノ酸配列を有し、マロニルCoAとアセチルCoAとからアセトアセチルCoAを合成する機能を有するタンパク質をコードするものであることを特徴とする請求項11記載の組換え酵母。
  14. イソプロパノール生合成関連遺伝子群は、アセトアセチルCoA転移酵素遺伝子、アセト酢酸脱炭酸酵素遺伝子及びイソプロパノール脱水素酵素遺伝子からなる群のなかから選ばれる遺伝子であり、これらイソプロパノール生合成関連遺伝子群の遺伝子のうち内在しない遺伝子が導入されたものであることを特徴とする請求項11記載の組換え酵母。
  15. アセトアセチルCoA転移酵素遺伝子は、Clostridium acetobutylicum由来のctfA遺伝子及びctfB遺伝子であることを特徴とする請求項14記載の組換え酵母。
  16. アセト酢酸脱炭酸酵素遺伝子は、Clostridium acetobutylicum由来のadc遺伝子であることを特徴とする請求項14又は15記載の組換え酵母。
  17. イソプロパノール脱水素酵素遺伝子は、Clostridium beijerinckii由来のpdh遺伝子であることを特徴とする請求項14乃至16いずれか一項記載の組換え酵母。
PCT/JP2010/058190 2010-05-14 2010-05-14 イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母 WO2011142027A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012514654A JP5630501B2 (ja) 2010-05-14 2010-05-14 イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母
EP10851410.0A EP2570485B1 (en) 2010-05-14 2010-05-14 Process for production of isopropanol, and genetically modified yeast capable of producing isopropanol
BR112012028202A BR112012028202A2 (pt) 2010-05-14 2010-05-14 Método para a produção de isopropanol e levedura recombinante capaz de produzir isoprapanol.
PCT/JP2010/058190 WO2011142027A1 (ja) 2010-05-14 2010-05-14 イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母
US13/697,626 US8828693B2 (en) 2010-05-14 2010-05-14 Method for producing isopropanol and recombinant yeast capable of producing isopropanol
CN201080066774.4A CN102892892B (zh) 2010-05-14 2010-05-14 异丙醇的制造方法和具有异丙醇生产能力的重组酵母
US14/445,422 US9217183B2 (en) 2010-05-14 2014-07-29 Method for producing isopropanol and recombinant yeast capable of producing isopropanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058190 WO2011142027A1 (ja) 2010-05-14 2010-05-14 イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/697,626 A-371-Of-International US8828693B2 (en) 2010-05-14 2010-05-14 Method for producing isopropanol and recombinant yeast capable of producing isopropanol
US14/445,422 Division US9217183B2 (en) 2010-05-14 2014-07-29 Method for producing isopropanol and recombinant yeast capable of producing isopropanol

Publications (1)

Publication Number Publication Date
WO2011142027A1 true WO2011142027A1 (ja) 2011-11-17

Family

ID=44914095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058190 WO2011142027A1 (ja) 2010-05-14 2010-05-14 イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母

Country Status (6)

Country Link
US (1) US8828693B2 (ja)
EP (1) EP2570485B1 (ja)
JP (1) JP5630501B2 (ja)
CN (1) CN102892892B (ja)
BR (1) BR112012028202A2 (ja)
WO (1) WO2011142027A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533080A (ja) * 2012-09-14 2015-11-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se グリセロール代謝欠失大腸菌株におけるセリノール生産

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217183B2 (en) * 2010-05-14 2015-12-22 Toyota Jidosha Kabushiki Kaisha Method for producing isopropanol and recombinant yeast capable of producing isopropanol
EP3049529B1 (en) * 2013-09-23 2019-04-24 Braskem S.A. Engineered enzyme having acetoacetyl-coa hydrolase activity, microorganisms comprising same, and methods of using same
CN104031892A (zh) * 2014-06-30 2014-09-10 南京林业大学 一种亮氨酸脱氢酶和编码该脱氢酶的基因

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156532A (en) 1995-02-20 2000-12-05 Ajinomoto Co., Inc. Stress-resistant microorganism and method of producing fermentative product
WO2007130560A2 (en) 2006-05-05 2007-11-15 E. I. Du Pont De Nemours And Company Solvent tolerant microorganisms and methods of isolation
WO2007146377A1 (en) 2006-06-15 2007-12-21 E. I. Du Pont De Nemours And Company Solvent tolerant microorganisms and methods of isolation
JP2008061506A (ja) 2006-09-04 2008-03-21 Adeka Corp 新規なアセトアセチルCoA合成酵素、それをコードするDNA配列、当該酵素の製造方法および当該酵素を利用したメバロン酸の製造方法
WO2008073406A2 (en) 2006-12-12 2008-06-19 E. I. Du Pont De Nemours And Company Solvent tolerant microorganisms
US20080293125A1 (en) 2007-04-18 2008-11-27 Gevo, Inc. Engineered microorganisms for producing isopropanol
WO2009008377A1 (ja) 2007-07-11 2009-01-15 Mitsui Chemicals, Inc. イソプロピルアルコール生産細菌及びこれを用いたイソプロピルアルコール生産方法
WO2009028582A1 (ja) 2007-08-29 2009-03-05 Research Institute Of Innovative Technology For The Earth イソプロパノール生産能を有する形質転換体
WO2009131040A1 (ja) * 2008-04-25 2009-10-29 財団法人地球環境産業技術研究機構 イソプロパノール生産能を有するコリネ型細菌の形質転換体
US20090293125A1 (en) 2008-05-21 2009-11-26 Symantec Corporation Centralized Scanner Database With Qptimal Definition Distribution Using Network Queries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212044A (ja) 2007-03-02 2008-09-18 Adeka Corp 標識されたr−メバロン酸の製造方法
AU2008310573A1 (en) 2007-10-12 2009-04-16 The Regents Of The University Of California Microorganism engineered to produce isopropanol

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156532A (en) 1995-02-20 2000-12-05 Ajinomoto Co., Inc. Stress-resistant microorganism and method of producing fermentative product
WO2007130560A2 (en) 2006-05-05 2007-11-15 E. I. Du Pont De Nemours And Company Solvent tolerant microorganisms and methods of isolation
WO2007146377A1 (en) 2006-06-15 2007-12-21 E. I. Du Pont De Nemours And Company Solvent tolerant microorganisms and methods of isolation
JP2008061506A (ja) 2006-09-04 2008-03-21 Adeka Corp 新規なアセトアセチルCoA合成酵素、それをコードするDNA配列、当該酵素の製造方法および当該酵素を利用したメバロン酸の製造方法
WO2008073406A2 (en) 2006-12-12 2008-06-19 E. I. Du Pont De Nemours And Company Solvent tolerant microorganisms
US20080293125A1 (en) 2007-04-18 2008-11-27 Gevo, Inc. Engineered microorganisms for producing isopropanol
WO2009008377A1 (ja) 2007-07-11 2009-01-15 Mitsui Chemicals, Inc. イソプロピルアルコール生産細菌及びこれを用いたイソプロピルアルコール生産方法
WO2009028582A1 (ja) 2007-08-29 2009-03-05 Research Institute Of Innovative Technology For The Earth イソプロパノール生産能を有する形質転換体
WO2009131040A1 (ja) * 2008-04-25 2009-10-29 財団法人地球環境産業技術研究機構 イソプロパノール生産能を有するコリネ型細菌の形質転換体
US20090293125A1 (en) 2008-05-21 2009-11-26 Symantec Corporation Centralized Scanner Database With Qptimal Definition Distribution Using Network Queries

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Biotechnology", 1993, pages: 285 - 323
"Biotechnology", vol. 1, 1993, pages: 285 - 323
APP. ENV. MICRO., 2009, pages 5536
APP. ENV. MICRO., 2009, pages 5536 - 5543
APPL. ENVIRON. MICROBIOL., vol. 64, 2007, pages 7814 - 7818
APPL. ENVIRON. MICROBIOL., vol. 73, 1998, pages 1079 - 1085
BECKER, D .M. ET AL., METHODS. ENZYMOL., vol. 194, 1991, pages 182 - 187
HANAI, T. ET AL.: "Engineered Synthetic Pathway for Isopropanol Production in Escherichia coli.", APPL. ENVIRON. MICROBIOL., vol. 73, no. 24, 2007, pages 7814 - 7818, XP002537687 *
HINNEN, A. ET AL., PROC. NATL. ACAD. SCI., U.S.A., vol. 75, 1978, pages 1929 - 1933
ITOH, H., J. BACTERIOL., vol. 153, 1983, pages 163 - 168
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
JOJIMA, T. ET AL.: "Production of isopropanol by metabolically engineered Escherichia coli.", APPL. MICROBIOL. BIOTECHNOL., vol. 77, no. 6, 2008, pages 1219 - 1224, XP019586231 *
See also references of EP2570485A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533080A (ja) * 2012-09-14 2015-11-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se グリセロール代謝欠失大腸菌株におけるセリノール生産

Also Published As

Publication number Publication date
US8828693B2 (en) 2014-09-09
EP2570485B1 (en) 2015-08-12
CN102892892B (zh) 2017-10-17
JPWO2011142027A1 (ja) 2013-07-22
JP5630501B2 (ja) 2014-11-26
CN102892892A (zh) 2013-01-23
US20130177954A1 (en) 2013-07-11
EP2570485A4 (en) 2013-12-25
EP2570485A1 (en) 2013-03-20
BR112012028202A2 (pt) 2022-08-02

Similar Documents

Publication Publication Date Title
JP5056897B2 (ja) 2−ブタノールの製造方法及び2−ブタノール生産能を有する組換え微生物
JP4760951B2 (ja) ブタノール生産能を有する組換え微生物及びブタノールの製造方法
JP5387756B2 (ja) 組換え酵母及びこれを用いた物質生産方法
US20220325253A9 (en) Glycerol free ethanol production
JP5761352B2 (ja) アルカンの製造方法及びアルカン合成能を有する組換え微生物
JP5630501B2 (ja) イソプロパノールの製造方法及びイソプロパノール生産能を有する組換え酵母
US20170356016A1 (en) Modified microorganisms and methods for production of useful products
WO2014207113A1 (en) Yeasts engineered for the production of valuable chemicals from sugars
JP7026671B2 (ja) ベチバー
WO2020132737A2 (en) Modulation of carbon flux through the meg and c3 pathways for the improved production of monoethylene glycol and c3 compounds
JP5803563B2 (ja) イソブタノールの製造方法
CN112410353B (zh) 一种fkbS基因、含其的基因工程菌及其制备方法和用途
US9217183B2 (en) Method for producing isopropanol and recombinant yeast capable of producing isopropanol
WO2020264400A2 (en) Compositions and methods for synthesis of terpenoids

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066774.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514654

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13697626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005893

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2010851410

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028202

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012028202

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121101