WO2011142001A1 - ヤシガラ炭の製造方法及び装置 - Google Patents

ヤシガラ炭の製造方法及び装置 Download PDF

Info

Publication number
WO2011142001A1
WO2011142001A1 PCT/JP2010/057995 JP2010057995W WO2011142001A1 WO 2011142001 A1 WO2011142001 A1 WO 2011142001A1 JP 2010057995 W JP2010057995 W JP 2010057995W WO 2011142001 A1 WO2011142001 A1 WO 2011142001A1
Authority
WO
WIPO (PCT)
Prior art keywords
coconut husk
charcoal
husk charcoal
coconut
producing
Prior art date
Application number
PCT/JP2010/057995
Other languages
English (en)
French (fr)
Inventor
道夫 中山
キアットリム ボン
Original Assignee
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチールプランテック株式会社 filed Critical スチールプランテック株式会社
Priority to JP2010518456A priority Critical patent/JP4567100B1/ja
Priority to PCT/JP2010/057995 priority patent/WO2011142001A1/ja
Publication of WO2011142001A1 publication Critical patent/WO2011142001A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/10Rotary retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a technology for producing coconut husk charcoal by dry distillation of coconut husk (PKS: Palm Kernel Shell).
  • Palm Kernel Shell (PKS), a waste from the palm oil industry, has properties similar to coal and is used as biomass fuel instead of coal.
  • PPS Palm Kernel Shell
  • Coconut husk charcoal obtained by dry distillation of coconut husk can also be used as a raw material for coconut husk activated carbon.
  • the low calorific value of coconut husk charcoal is extremely high at around 30,000 kJ / kg, which is valuable as an alternative to metallurgical coke.
  • Table 1 shows examples of industrial analysis and elemental analysis of such coconut shells and coconut shell charcoal.
  • coconut charcoal as an alternative to metallurgical coke must have a volatile content of 12% or less and a fixed carbon content of 80% or more. Desirably, a volatile content of 8% or less and a fixed carbon content of 85% or more is welcomed.
  • a method for producing coconut husk charcoal from coconut shells for example, there is a method of dry distillation using an internal combustion rotary kiln as disclosed in Patent Document 1. JP 2001-214168 A
  • the rotary kiln 31 is provided on the side of the raw material discharge port 37, the raw material input port 33 for supplying the raw material, the kiln main body 35 for dry distillation of the input raw material, the discharge port 37 for discharging the carbonized product, and the kiln main body.
  • a combustion air supply port 39 for supplying combustion air to 35 is provided.
  • a secondary combustion chamber 41 is provided on the raw material inlet 33 side, and secondary combustion air is supplied to the secondary combustion chamber 41 from a secondary combustion air inlet 42.
  • a method for producing coconut shell charcoal using the rotary kiln 31 as described above is as follows.
  • the raw material palm is supplied to the kiln main body 35 from the raw material inlet 33 and is conveyed toward the outlet side.
  • the volatile matter in the coconut shells is mainly burned by the combustion air.
  • the combustible volatile matter burns in the volatile matter combustion region 43 shown in FIG. 8, and the combustion heat is transmitted to the coconut shells in the kiln by radiant heat transfer, so that dry distillation of the coconut shells proceeds.
  • the dry distillation temperature is 700 to 800 ° C., and the residence time in the kiln is about 1 hour.
  • the heat required for dry distillation does not need to be applied from outside except when the kiln is activated.
  • the dry-distilled coconut husk charcoal is exposed to combustion air, and burnout of fixed carbon proceeds with further removal of volatile matter.
  • Coconut husk charcoal which is a product after dry distillation, is discharged from the outlet 37 and cooled by direct watering or the like.
  • the exhaust gas discharged from the raw material supply side in the kiln main body 35 still contains unburned components, and is thus diffused into the secondary combustion chamber 41 after combustion.
  • the problem in the production of coconut husk charcoal using the conventional rotary kiln 31 as shown in FIG. 8 is that the fixed carbon that is not desired to be burned due to direct heating by the combustion air partially burns, and other production Compared with methods such as the indirect heating method and the low temperature carbonization method using a shaft furnace, the ash content in the product is high and the yield is as low as about 20%. However, if it is taken out from the kiln main body 35 immediately after completion of dry distillation in order to prevent burning of fixed carbon, there is a problem that volatile matter remains in the coconut shell charcoal. That is, if the residence time in the kiln main body 35 of coconut shells is increased in order to lower the volatile content, the fixed carbon burns out.
  • the residence time in the kiln main body 35 is shortened in order to prevent the fixed carbon from burning out, the volatile matter remains. It is.
  • the equipment cost becomes expensive, and is not suitable for the production of coconut shell charcoal.
  • An object of the present invention is to obtain a method and an apparatus for producing coconut husk charcoal having a high content of fixed carbon and a low content of volatile matter using a self-combustion direct heating type rotary kiln.
  • a method for producing coconut husk charcoal according to the present invention is a coconut husk charcoal production method for producing coconut husk charcoal by dry distillation of coconut husk (PKS: Palm Kernel Shell) using a self-combustion direct heating type rotary kiln, A carbonization process for carbonizing the coconut husks by the rotary kiln, and a coconut husk using the self-holding heat by holding the hot coconut husk charcoal after the carbonization process in an insulation chamber in which inflow of air is restricted for 30 minutes or more. And a volatile matter removing step for removing volatile matter contained in the charcoal.
  • PPS Palm Kernel Shell
  • the temperature drop in the volatile matter removing step is set to 50 ° C. or less.
  • the said heat insulation chamber is provided with the function to convey the said coconut husk charcoal.
  • produces by supplying an oxidizing agent, such as air, continuously in the said heat insulation chamber, and burning a part of said coconut husk charcoal. It is characterized by promoting dry distillation with heat.
  • the manufacturing apparatus of coconut husk charcoal which concerns on this invention is coconut husk (PKS: Palm A self-combustion direct heating type rotary kiln in which Kernel Shell is charged and carbonized, and a heat insulation chamber in which coconut husk charcoal carbonized in the rotary kiln is charged, heat insulating material is attached, and air inflow can be restricted. It is characterized by comprising.
  • the heat insulation chamber has a transfer function.
  • an oxidant supply device for supplying an oxidant such as air to the heat insulation chamber is provided.
  • a carbonization process for dry distillation of coconut husks using a self-combustion direct heating type rotary kiln, and a high temperature coconut husk charcoal after the carbonization process is placed in a heat-insulated room where inflow of air is restricted and held for 30 minutes or more.
  • a volatile matter removal step for removing volatile matter contained in the coconut shell charcoal using self-holding heat thereby reducing burnout of fixed carbon in the high temperature coconut husk charcoal in the dry distillation step as much as possible, and further the final product Residual volatile matter in the inside can be sufficiently reduced.
  • a coconut husk charcoal manufacturing apparatus 1 includes a self-combustion type direct heating rotary kiln 3 and a heat insulating sealed container 5 that receives coconut husk charcoal dry-distilled in the direct heating type rotary kiln 3.
  • the self-combustion direct heating type rotary kiln 3 is provided on the upstream side of the kiln main body 7, a kiln main body 7 that carries out dry distillation while conveying raw materials by rotational movement, a combustion air supply port 9 that supplies combustion air to the kiln main body 7, and Secondary combustion chamber 11, secondary combustion air inlet 13 for introducing secondary combustion air into secondary combustion chamber 11, and raw material for introducing raw material into kiln main body 7 from the upstream side of kiln main body 7
  • the inlet 15 and the outlet 17 which discharges the carbonized product toward the heat-insulated sealed container 5 are provided. Each configuration will be described in more detail.
  • the kiln main body 7 is rotationally driven and transports the coconut husk, which is a raw material charged therein, to the discharge port 17 side while dry distillation.
  • the specification of the kiln body 7 is set so that the combustion of volatile matter is almost completed in the vicinity of the discharge port 17. This setting can be performed according to the length, diameter, inclination, and rotation speed of the kiln body 7.
  • the heat-insulated sealed container 5 is a container that accepts coconut shell charcoal discharged from the discharge port 17 and holds it in a high temperature state.
  • the heat insulating sealed container 5 is provided with a heat insulating material 19 and a sealing lid 21 for restricting the inflow of air.
  • a plurality of the heat-insulated airtight containers 5 may be prepared, and if one heat-insulated airtight container 5 becomes full, a new one may be used.
  • a continuous carry-in device such as a screw conveyor that insulates the outer wall to enable heat insulation, and continuously heats the coconut shell charcoal discharged from the discharge port 17 over about 30 minutes. You may make it convey to another preservation
  • FIG. 2 A method for producing coconut husk charcoal using the coconut husk charcoal manufacturing apparatus 1 will be described with reference to FIG.
  • a solid line indicates an example of the present invention
  • a broken line indicates a conventional method.
  • Coconut husk serving as a raw material is supplied to the kiln main body 7 from the raw material charging port 15 and is conveyed through the kiln main body 7 toward the outlet side.
  • the volatile matter in the coconut shells is mainly burned by the combustion air and rapidly heated. This combustion heat is transmitted to the coconut shells in the kiln by radiant heat transfer, and the dry distillation of the coconut shells proceeds (dry distillation process A).
  • the dry distillation temperature is 700 to 850 ° C., and it is rapidly heated and the residence time in the kiln is about 30 minutes.
  • the residence time in the rapid heating process can be controlled by the length, diameter, inclination, and rotation speed of the kiln body 7.
  • the calorific value of the volatile component is high, the heat necessary for dry distillation does not need to be applied from outside except when the kiln is activated, as described in the conventional example.
  • the coconut husk charcoal immediately downstream of the volatile matter combustion region 43 is in a state where the volatile matter is almost burned and contains a small amount of volatile matter.
  • the coconut charcoal in this state is discharged from the discharge port 17 and is put into the heat insulating sealed container 5, and the sealing lid 21 is closed in order to restrict the inflow of air.
  • maintains 30 minutes or more with a heat retention state. Hold at a high temperature for 30 minutes or more, and further promote dry distillation by the heat of its own. Since it is dry distillation in an oxygen-deficient state, burning of fixed carbon is suppressed and volatile components can be removed (volatile component removal step B).
  • the still hot coconut charcoal is allowed to cool naturally over 10 hours or is cooled by introducing an inert gas such as nitrogen into the container (cooling step C). ).
  • the exhaust gas discharged from the raw material supply side of the kiln still contains unburned components, so that it is diffused into the secondary combustion chamber 11 after combustion.
  • burnout of fixed carbon in the high-temperature coconut shell charcoal at the discharge port 17 of the kiln main body 7 can be reduced as much as possible, and the residual volatile matter in the final product can be sufficiently reduced.
  • process P most of the volatile matter is removed by rapid heating (process P), and then the high-temperature coconut shell charcoal is further exposed to the combustion air in the kiln body 7 for about 10 minutes. As the volatile matter is further removed, burnout of the fixed carbon proceeds (step Q). Therefore, in the conventional example, the yield is deteriorated. Thereafter, it is directly cooled by watering or the like (process R).
  • an air introduction device 23 is provided in the heat insulating sealed container 5 so that a small amount of air is allowed to flow.
  • the air introduction device 23 includes an air introduction tube 25 for introducing air into the heat-insulated sealed container 5, a flow meter 27, and a blower (not shown).
  • a small amount of air is sent into the heat-insulated airtight container 5 while being controlled, and a part of the high-temperature coconut shell charcoal is burned to maintain the temperature.
  • burnout of fixed carbon does not occur, combustion of residual volatile matter occurs selectively, and the fixed carbon content can be increased to reduce the volatile content.
  • the amount of air to be introduced is, for example, about 50 m 3 N / h per ton of coconut shell charcoal.
  • coconut husk charcoal having a volatile content of 12% or less and a fixed carbon content of 83% or more can be obtained by maintaining the high temperature for 120 minutes or more.
  • coconut husk charcoal with a volatile content of 8% or less and a fixed carbon content of 85% or more can be obtained by holding at a high temperature of 120 minutes or more.
  • the volatile content is 18% and the fixed carbon content is 77% even if the holding time is 180 minutes.
  • the dry distillation temperature is preferably 700 ° C. or higher in order to achieve a volatile content of 12% or less and a fixed carbon content of 80% or more. Furthermore, in order to shorten the holding time in the sealed container so that the volatile content is 12% or less and the fixed carbon content is 80% or more, it is preferable to set the dry distillation temperature to 800 ° C. or more. Manufacturing efficiency can be improved. In order to make the volatile content 8% or less and the fixed carbon content 85% or more, the dry distillation temperature is preferably 800 ° C. or more.
  • the vertical axis represents the fixed carbon content (%), and the horizontal axis represents the retention time (minute).
  • the proportion of volatile matter in Example 2 is smaller than that in Example 1.
  • the proportion of fixed carbon in Example 2 is larger than that in Example 1. From this experiment, it can be seen that by introducing a controlled amount of air into the heat-insulated sealed container, the proportion of volatile components can be reduced and the proportion of fixed carbon components can be increased.

Abstract

 自燃式の直接加熱型ロータリキルンを用いて固定炭素の含有量が80%以上、揮発分の含有量が12%以下のヤシガラ炭を製造する方法及び装置を得る。 本発明のヤシガラ炭製造方法は、自燃式直接加熱型のロータリキルンによりヤシガラ(PKS:Palm Kernel Shell)を乾留してヤシガラ炭を製造するヤシガラ炭製造方法であって、前記ロータリキルンによってヤシガラを乾留する乾留工程と、乾留工程後の高温のヤシガラ炭を空気の流入が制限された断熱室内に入れて30分以上保持することにより自己保有熱を利用して前記ヤシガラ炭に含まれる揮発分を除去する揮発分除去工程とを備えてなることを特徴とするものである。

Description

ヤシガラ炭の製造方法及び装置
 本発明は、ヤシガラ(PKS:Palm Kernel Shell)を乾留してヤシガラ炭を製造する技術に関する。
 ヤシ油産業の廃棄物であるヤシガラ(PKS:Palm Kernel Shell)は石炭に似た性状を有し、石炭代替のバイオマス燃料として利用される。またこのヤシガラを乾留して得られるヤシガラ炭は、ヤシガラ活性炭の原料にもなるが、ヤシガラ炭の低発熱量は30,000kJ/kg程度と極めて高いことから冶金用コークスの代替として価値がある。
 このようなヤシガラとヤシガラ炭の工業分析と元素分析の例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 冶金用コークス代替としてのヤシガラ炭は、揮発分12%以下、固定炭素分80%以上が必要であり、望ましくは、揮発分8%以下、固定炭素分85%以上が歓迎される。
 ヤシガラからヤシガラ炭を製造する方法としては、例えば特許文献1に示されるような内燃式のロータリキルンを用いて乾留する方法がある。
特開2001-214168号公報
 特許文献1に示されたものと同様の自燃式の直接加熱型ロータリキルンを用いてヤシガラ炭を製造するとした場合に一般的に考えられる製造方法を図8に基づいて説明する。
 まず、ロータリキルン31の構造を概説する。ロータリキルン31は、原料を投入する原料投入口33と、投入された原料を乾留するキルン本体35と、乾留された製品を排出する排出口37と、原料排出口37側に設けられてキルン本体35に燃焼空気を供給する燃焼空気供給口39とを備えている。なお、原料投入口33側には2次燃焼室41が設けられ、2次燃焼室41には2次燃焼用空気導入口42から2次燃焼用空気が供給される。
 上記のようなロータリキルン31を用いてヤシガラ炭を製造する方法は以下の通りである。
 原料のヤシガラは原料投入口33からキルン本体35に供給され、出口側に向って搬送される。搬送過程において、燃焼空気により、ヤシガラ中の揮発分が主に燃焼する。図8に示した揮発分燃焼領域43で可燃揮発分が燃焼し、燃焼熱が放射伝熱でキルン内のヤシガラに伝えられてヤシガラの乾留が進行する。
 乾留温度は700~800℃、キルン内滞留時間は1時間程度である。揮発分の発熱量が高いため、乾留に必要な熱は、キルン起動時を除いて外部から加える必要がない。
 揮発分燃焼領域43の下流側では、乾留されたヤシガラ炭が、燃焼空気にさらされて揮発分のさらなる除去と共に固定炭素の焼損が進む。
 乾留後の製品であるヤシガラ炭は排出口37から排出されて、直接散水などによって冷却される。
 キルン本体35における原料供給側から排出される排ガスにはまだ未燃分が含まれるため、2次燃焼室41で燃焼後大気放散される。
 図8に示したような従来のロータリキルン31を用いてヤシガラ炭を製造した場合の問題点は、燃焼空気による直接加熱であるために燃焼させたくない固定炭素も一部燃焼し、他の製造方法、例えば間接加熱方式やシャフト炉による低温乾留方法に比べて製品中の灰分が高く、収率が20%程度と低いことである。
 しかし、固定炭素の焼損を防止しようとして、乾留完了後すぐにキルン本体35から出すと、ヤシガラ炭中に揮発分が残ってしまうという問題がある。すなわち揮発分を下げるためにヤシガラのキルン本体35内の滞留時間を長く取ると固定炭素の焼損が起こり、固定炭素の焼損を防ぐためにキルン本体35内の滞留時間を短くすると揮発分が残ってしまうのである。
 なお、固定炭素の焼損防止のためにロータリキルン31を耐熱金属で作り、外部加熱する間接加熱方式の場合は、設備費が高価になるためヤシガラ炭製造には不向きである。
 本発明は、自燃式の直接加熱型ロータリキルンを用いて、固定炭素の含有量が多く揮発分の含有量が少ないヤシガラ炭を製造する方法及び装置を得ることを目的としている。
(1)本発明に係るヤシガラ炭製造方法は、自燃式直接加熱型のロータリキルンによりヤシガラ(PKS:Palm Kernel Shell)を乾留してヤシガラ炭を製造するヤシガラ炭製造方法であって、
 前記ロータリキルンによって前記ヤシガラを乾留する乾留工程と、乾留工程後の高温のヤシガラ炭を空気の流入が制限された断熱室内に入れて30分以上保持することにより自己保有熱を利用して前記ヤシガラ炭に含まれる揮発分を除去する揮発分除去工程とを備えてなることを特徴とするものである。
(2)また、上記(1)に記載のものにおいて、前記揮発分除去工程における温度低下を50℃以内にしていることを特徴とするものである。
(3)また、上記(1)又は(2)に記載のものにおいて、前記断熱室が前記ヤシガラ炭を搬送する機能を備えていることを特徴とするものである。
(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、前記断熱室内に空気などの酸化剤を連続供給して前記ヤシガラ炭の一部を燃焼させることにより発生する生成熱で乾留を促進させるようにしたことを特徴とするものである。
(5)また、本発明に係るヤシガラ炭の製造装置は、ヤシガラ(PKS:Palm
Kernel Shell)が装入されて乾留される自燃式直接加熱型のロータリキルンと、該ロータリキルンにおいて乾留されたヤシガラ炭が装入され、断熱材が取り付けられると共に空気の流入を制限できる断熱室とを備えたことを特徴とするものである。
(6)また、上記(5)に記載のものにおいて、前記断熱室は搬送機能を備えてなることを特徴とするものである。
(7)また、上記(5)又は(6)に記載のものにおいて、前記断熱室に空気などの酸化剤を供給する酸化剤供給装置を備えたことを特徴とするものである。
 本発明においては、自燃式直接加熱型のロータリキルンによってヤシガラを乾留する乾留工程と、乾留工程後の高温のヤシガラ炭を空気の流入が制限された断熱室内に入れて30分以上保持することにより自己保有熱を利用して前記ヤシガラ炭に含まれる揮発分を除去する揮発分除去工程とを備えたことにより、乾留工程での高温ヤシガラ炭中の固定炭素の焼損を極力少なくし、さらに最終製品中の残留揮発分を十分に減少させることができる。これによって、固定炭素の含有量が高く、揮発分が少ないヤシガラ炭を、大量生産することが可能となる。
本発明の実施の形態1に係るヤシガラ炭製造装置の説明図である。 本発明の実施の形態1に係るヤシガラ炭製造方法の説明図である。 本発明の実施の形態2に係るヤシガラ炭製造装置の説明図である。 本発明の実施の形態1に係るヤシガラ炭製造方法の効果の説明図である。 本発明の実施の形態1に係るヤシガラ炭製造方法の効果の説明図である。 本発明の実施の形態2に係るヤシガラ炭製造方法の効果の説明図である。 本発明の実施の形態2に係るヤシガラ炭製造方法の効果の説明図である。 本発明の解決しようとする課題の説明図である。
 本発明の一実施の形態に係るヤシガラ炭製造装置1は、自燃式の直接加熱型ロータリキルン3と、直接加熱型ロータリキルン3で乾留されたヤシガラ炭を受け入れる断熱密閉容器5を備えてなる。
 自燃式の直接加熱型ロータリキルン3は、回転運動により原料を搬送しながら乾留するキルン本体7と、キルン本体7に燃焼空気を供給する燃焼空気供給口9と、キルン本体7の上流側に設けられた2次燃焼室11と、2次燃焼室11に2次燃焼用の空気を導入する2次燃焼用空気導入口13と、キルン本体7の上流側からキルン本体7に原料を投入する原料投入口15と、乾留された製品を断熱密閉容器5に向けて排出する排出口17とを備えている。
 各構成をより詳細に説明する。
<キルン本体>
 キルン本体7は、回転駆動され、内部に投入された原料であるヤシガラを乾留しながら排出口17側に搬送する。キルン本体7の仕様は、排出口17の近傍で揮発分の燃焼がほぼ完了するように設定する。この設定は、キルン本体7の長さ、直径、傾斜、回転数によって行うことが可能である。
<断熱密閉容器>
 断熱密閉容器5は、排出口17から排出されるヤシガラ炭を受け入れて高温状態のまま保持する容器である。断熱密閉容器5は、断熱材19が取り付けられると共に、空気の流入を制限するために密閉用の蓋21が設けられている。
 断熱密閉容器5は、複数個準備して一つの断熱密閉容器5が満杯になれば、新たなものを使用するようにすればよい。
 断熱密閉容器5に代えて、外壁を断熱して保温可能にしたスクリューコンベアのような連続搬入装置を用いて、排出口17から排出されるヤシガラ炭を保温しながら約30分かけて連続的に別の保存場所に搬送するようにしてもよい。この場合、乾留されたヤシガラ炭の排出口17は二重ダンパー方式や、ロータリーフィーダ方式にするのが好ましい。
 上記のようなヤシガラ炭製造装置1によってヤシガラ炭を製造する方法を、図2に基づいて説明する。図2において、実線は本発明例を示し、破線が従来方法を示している。
 原料となるヤシガラが原料投入口15からキルン本体7に供給され、キルン本体7内を出口側に向って搬送される。搬送過程において、燃焼空気によりヤシガラ中の揮発分が主に燃焼して急速加熱される。この燃焼熱が放射伝熱でキルン内のヤシガラに伝えられてヤシガラの乾留が進行する(乾留工程A)。
 乾留温度は700~850℃であり、急速加熱されてキルン内滞留時間は30分程度である。急速加熱工程における滞留時間は、キルン本体7の長さ、直径、傾斜、回転数によって制御可能である。
 なお、揮発分の発熱量が高いため、乾留に必要な熱は、キルン起動時を除いて外部から加える必要がない点は従来例で説明したのと同様である。
 揮発分燃焼領域43のすぐ下流側のヤシガラ炭は、揮発分がほぼ燃焼し、若干の揮発分を含む状態となっている。この状態のヤシガラ炭が、排出口17から排出されて、断熱密閉容器5に入れられ、空気の流入を制限するために密閉用の蓋21が閉められる。断熱密閉容器5内では、保温状態のまま30分以上保持される。
 30分以上、高温状態で保持して自身の持つ熱によりさらに乾留を進める。酸素不足状態での乾留であるため、固定炭素の焼損は抑制され、揮発分を除去することができる(揮発分除去工程B)。
 断熱密閉容器5での所定の保持時間経過後、いまだ高温のヤシガラ炭は、10時間以上かけて自然放冷するか、容器内に窒素などの不活性ガスを導入して冷却する(冷却工程C)。
 なお、キルンの原料供給側から排出される排ガスにはまだ未燃分が含まれるため、2次燃焼室11で燃焼後大気放散される。
 上記の方法によれば、キルン本体7の排出口17での高温ヤシガラ炭中の固定炭素の焼損を極力少なくし、さらに最終製品中の残留揮発分を十分に減少させることができる。これによって、固定炭素の含有量80%以上、揮発分12%以下、収率25%以上で灰分が低いヤシガラ炭を、運転が容易な直接加熱型ロータリキルン3で大量生産することが可能となる。
 図2において、破線で示した従来方法の場合には、急速加熱によって揮発分の大部分が抜けた後(工程P)、高温ヤシガラ炭がキルン本体7内で10分間ほどさらに燃焼空気にさらされて揮発分のさらなる除去と共に固定炭素の焼損が進む(工程Q)。したがって、従来例では、収率が悪くなってしまうのである。この後は、散水などによる直接冷却される(工程R)。
[実施の形態2]
 本実施の形態では、断熱密閉容器5に空気導入装置23を設け、少量の空気を流入させるようにしたものである。空気導入装置23は、断熱密閉容器5に空気を導入するための空気導入管25と、流量計27と、図示しない送風装置とを備えて構成される。
 断熱密閉容器5中には少量の空気を制御しながら送り込んで、高温ヤシガラ炭の一部を燃焼させて温度を保つ。空気量を少量に制御することで、固定炭素の焼損が起こらず、残留揮発分の燃焼が選択的に起こり、固定炭素分を多くして、揮発分を少なくすることができる。導入する空気量としては、例えば、ヤシガラ炭1トン当たり50m3N/h程度である。
 試験用ロータリキルンを用いて、高温ヤシガラ炭を、600℃,700℃,800℃で乾留したあとのヤシガラ炭を、3時間断熱密閉容器内に保持する実験を行った。その結果を、図4、図5に示す。図4は縦軸が揮発分(%)を示し、横軸が保持時間(分)を示している。また、図5は縦軸が固定炭素分(%)を示し、横軸が保持時間(分)を示している。
 図4に示されるように、乾留温度700℃では、120分以上の高温保持で揮発分12%以下、固定炭素分83%以上のヤシガラ炭が得られる。また、乾留温度800℃では、120分以上の高温保持で揮発分 8%以下、固定炭素分85%以上のヤシガラ炭が得られる。
 他方、乾留温度600℃では、保持時間を180分としても、揮発分が18%、固定炭素分が77%である。
 この実験から、揮発分12%以下、固定炭素分80%以上にするためには、乾留温度を700℃以上にするのが好ましいことが分かる。さらに、密閉容器内での保持時間を短くして、揮発分12%以下、固定炭素分80%以上にするためには、乾留温度を800℃以上にするのが好ましく、このようにすることで製造効率を向上させることができる。
 また、揮発分8%以下、固定炭素分85%以上にするにも、乾留温度を800℃以上にするのが好ましい。
 実施例1と同様に、試験用ロータリキルンを用いて、高温ヤシガラ炭を、600℃,700℃,800℃で乾留したあとのヤシガラ炭を、3時間断熱密閉容器内に保持し、さらに本実施例では断熱密閉容器内に少量の空気を導入する実験を行った。空気導入量は、断熱密閉容器内温度が所定乾留温度(乾留温度±50℃)を保持できるように制御したもので、ヤシガラ炭1トン当たり50m3N/h程度であった。
 実験の結果を、図6、図7に示す。図6は縦軸が揮発分(%)を示し、横軸が保持時間(分)を示している。また、図7は縦軸が固定炭素分(%)を示し、横軸が保持時間(分)を示している。
 図4と図6を比較すると理解されるように、実施例2の方が実施例1よりも揮発分の割合が少なくなっている。他方、図5と図7を比較すると理解されるように、実施例2の方が実施例1よりも固定炭素分の割合が多くなっている。
 この実験から、断熱密閉容器に制御された量の空気を導入することで、揮発分の割合を少なくすると共に固定炭素分の割合を多くすることができることが分かる。
  1 ヤシガラ炭製造装置
  3 直接加熱型ロータリキルン
  5 断熱密閉容器
  7 キルン本体
  9 燃焼空気供給口
 11 2次燃焼室
 13 2次燃焼用空気導入口
 15 原料投入口
 17 排出口
 19 断熱材
 21 蓋
 23 空気導入装置
 25 空気導入管
 27 流量計
 31 ロータリキルン
 33 原料投入口
 35 キルン本体
 37 排出口
 39 燃焼空気供給口
 41 2次燃焼室
 42 2次燃焼用空気導入口
 43 揮発分燃焼域

Claims (7)

  1.  自燃式直接加熱型のロータリキルンによりヤシガラ(PKS:Palm Kernel Shell)を乾留してヤシガラ炭を製造するヤシガラ炭製造方法であって、
     前記ロータリキルンによって前記ヤシガラを乾留する乾留工程と、乾留工程後の高温のヤシガラ炭を空気の流入が制限された断熱室内に入れて30分以上保持することにより自己保有熱を利用して前記ヤシガラ炭に含まれる揮発分を除去する揮発分除去工程とを備えてなることを特徴とするヤシガラ炭製造方法。
  2.  前記揮発分除去工程における温度低下を50℃以内にしていることを特徴とする請求項1記載のヤシガラ炭製造方法。
  3.  前記断熱室が前記ヤシガラ炭を搬送する機能を備えていることを特徴とする請求項1又は2に記載のヤシガラ炭の製造方法。
  4.  前記断熱室内に酸化剤を連続供給して前記ヤシガラ炭の一部を燃焼させることにより発生する生成熱で乾留を促進させるようにしたことを特徴とする請求項1乃至3のいずれか一項に記載のヤシガラ炭の製造方法。
  5.  ヤシガラ(PKS:Palm Kernel Shell)が装入されて乾留される自燃式直接加熱型のロータリーキルンと、該ロータリーキルンにおいて乾留されたヤシガラ炭が装入され、断熱材が取り付けられると共に空気の流入を制限できる断熱室とを備えたことを特徴とするヤシガラ炭の製造装置。
  6.  前記断熱室は搬送機能を備えてなることを特徴とする請求項5記載のヤシガラ炭の製造装置。
  7.  前記断熱室に酸化剤を供給する酸化剤供給装置を備えたことを特徴とする請求項5又は6に記載のヤシガラ炭の製造装置。
PCT/JP2010/057995 2010-05-12 2010-05-12 ヤシガラ炭の製造方法及び装置 WO2011142001A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010518456A JP4567100B1 (ja) 2010-05-12 2010-05-12 ヤシガラ炭の製造方法及び装置
PCT/JP2010/057995 WO2011142001A1 (ja) 2010-05-12 2010-05-12 ヤシガラ炭の製造方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057995 WO2011142001A1 (ja) 2010-05-12 2010-05-12 ヤシガラ炭の製造方法及び装置

Publications (1)

Publication Number Publication Date
WO2011142001A1 true WO2011142001A1 (ja) 2011-11-17

Family

ID=43098830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057995 WO2011142001A1 (ja) 2010-05-12 2010-05-12 ヤシガラ炭の製造方法及び装置

Country Status (2)

Country Link
JP (1) JP4567100B1 (ja)
WO (1) WO2011142001A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234299A (ja) * 2012-05-11 2013-11-21 Nippon Steel & Sumitomo Metal Corp アブラ椰子核殻炭の製造方法
JP2013237717A (ja) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp アブラ椰子核殻の有効活用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136651A (ja) * 2011-12-28 2013-07-11 Jp Steel Plantech Co ヤシガラ炭の製造方法及びシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102065A (ja) * 1996-10-03 1998-04-21 Shin Meiwa Ind Co Ltd 焼成装置
JP2001200266A (ja) * 2000-01-21 2001-07-24 Nkk Design & Engineering Corp 連続式固形廃棄物炭化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102065A (ja) * 1996-10-03 1998-04-21 Shin Meiwa Ind Co Ltd 焼成装置
JP2001200266A (ja) * 2000-01-21 2001-07-24 Nkk Design & Engineering Corp 連続式固形廃棄物炭化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234299A (ja) * 2012-05-11 2013-11-21 Nippon Steel & Sumitomo Metal Corp アブラ椰子核殻炭の製造方法
JP2013237717A (ja) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp アブラ椰子核殻の有効活用方法

Also Published As

Publication number Publication date
JP4567100B1 (ja) 2010-10-20
JPWO2011142001A1 (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
CN102357521B (zh) 连续的持久性有机污染土壤直接热脱附的方法
CN206244626U (zh) 污泥热解装置
CN101900489B (zh) 链箅机-回转窑-环冷机烘炉装置及其烘炉方法
US9879912B2 (en) Heat treatment apparatus
JP4567100B1 (ja) ヤシガラ炭の製造方法及び装置
CN114477136A (zh) 一种负极材料碳化用系统及碳化工艺
CN108559538A (zh) 一种生物质热解炉
CN208500860U (zh) 直立式移动床生物质炭化炉
JP2008013398A (ja) 活性炭製造装置及び活性炭製造方法
CN102746902A (zh) 一种有机废弃物的气化方法及专用气化炉
CN104694138B (zh) 一种混合式加热设备及其应用
JP2010209212A (ja) 焼結用燃料炭材の製造方法
CN105371280B (zh) 一种固废有机物质清洁焚烧的装置与方法
CN105524633A (zh) 一种多层连续炭化炉
US10934490B2 (en) Process for producing biocoal and plant therefor
KR101212347B1 (ko) 수직 원통형 탄화장치
CN106016284B (zh) 废弃物处理装置及方法
TWM566805U (zh) Carbonization furnace construction
CN114479890A (zh) 废橡胶热裂解回转窑系统
JP3957526B2 (ja) 固形燃料や有機物のガス化装置
RU2553116C1 (ru) Способ получения металлургического кокса
CN201811580U (zh) 链箅机-回转窑-环冷机烘炉装置
JP5148884B2 (ja) 固体燃料の製造方法及び装置
WO2023063312A1 (ja) 連続炭化装置
CN106838935A (zh) 一种油漆渣无害化处理设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010518456

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851384

Country of ref document: EP

Kind code of ref document: A1