WO2011140923A1 - 一种建立标签交换路径的方法和装置 - Google Patents

一种建立标签交换路径的方法和装置 Download PDF

Info

Publication number
WO2011140923A1
WO2011140923A1 PCT/CN2011/073423 CN2011073423W WO2011140923A1 WO 2011140923 A1 WO2011140923 A1 WO 2011140923A1 CN 2011073423 W CN2011073423 W CN 2011073423W WO 2011140923 A1 WO2011140923 A1 WO 2011140923A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
label
lsp
label switching
relationship
Prior art date
Application number
PCT/CN2011/073423
Other languages
English (en)
French (fr)
Inventor
黄勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011140923A1 publication Critical patent/WO2011140923A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for establishing a label switching path. Background technique
  • the ring-shaped physical topology exists in the network in large numbers, along with the network-to-packet-based internet protocol.
  • MPLS Internet Protocol, IP
  • MPLS Multi-Protocol Label Switching
  • the MPLS-based ring protection technology is currently divided into two categories, namely steering steering mode and wraparound wrapping mode.
  • the following takes the wraparound wrapping as an example for introduction.
  • a MPLS node consists of A, B, C, D, E, and F.
  • a ring switch is required to establish a Label Switch Path (LSP) from point A and point D.
  • LSP Label Switch Path
  • In the wrapping mode if the link between the F-Es is to be protected, an F-A-B-C-D-E direction protection path LSP is established.
  • the LSP service arrives at the exit D from the ingress A along the A-F-A-B-C-D-E-D sequence.
  • node E fails, the traffic flow cannot continue to perform MPLS LSP forwarding even if it bypasses the protection path LSP to the next node D of the failed node.
  • the prior art is processed by establishing an LSP across the node and a wraparound protection LSP of the LSP.
  • the link fails, the link solves the problem that when the link fails or the node fails on the LSP path, the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • the node at one end selects the link protection of the link to wrap around the LSP; when the node fails, the node at the failed node of the node selects the node protection of the failed node to wrap around the LSP.
  • node F will use the cross-node E protection LSP rewind path F-A-B-C-D from F to D to send the message to node 0 at the same time.
  • the inventors of the present invention found that: when a node fails, neither node F nor node D can determine whether the link is invalid or the node is invalid, so whether the link is invalid or the node In case of failure, the packets are copied, and the link protection is used to wrap around the LSP and The node protects the two rewound paths of the LSP and sends the packets to the downstream two nodes at the same time. This method will occupy at least four times the bandwidth of the source data stream on the ring. When the traffic is large, the ring cannot provide sufficient bandwidth. , resulting in packet loss. Summary of the invention
  • the embodiment of the invention provides a method and a device for establishing a label switching path LSP, which solves the problem that the ring cannot provide sufficient bandwidth when the traffic is large, which causes packet loss and saves network resources.
  • the embodiment of the present invention further provides a method for establishing a label switched path LSP, including: at least three network nodes: a node A, a node B, and a node C, where the node A is located upstream of the node B, and the node is C is located downstream of the node B;
  • the node C allocates an LSP label to the node B;
  • the node C receives the label switching information of the node B, and the label switching information of the node B includes at least: an inbound label of the node B and an outgoing label of the node B; wherein the ingress label of the node B is The node B is an LSP label allocated by the node A, and the outbound label of the node B is an LSP label allocated by the node C to the node B;
  • the node C generates a first label switching relationship of the node C according to the label switching information of the node B.
  • the first label switching relationship of the node C includes at least: an inbound label and a location of the node B.
  • the embodiment of the present invention further provides another method for establishing a label switched path LSP, including: a node G is connected to a node F, a node E is located upstream of the node F, and a node H is located downstream of the node F, and the node G Is a backup node of the node F;
  • the node G receives the label switching information of the node F, and the label switching information of the node F includes at least: an inbound label of the node F and an outgoing label of the node F; wherein the ingress label of the node F is The node F is an LSP label allocated by the node E, and the outbound label of the node F is an LSP label allocated by the node H to the node F.
  • the node G generates a first label switching relationship of the node G according to the label switching information of the node F, where the first label switching relationship of the node G at least includes: an inbound label and a location of the node F The outgoing label of node F.
  • An embodiment of the present invention further provides an apparatus for establishing a label switching path LSP, where the apparatus is located Downstream of the Node B, the Node B is connected to the Node A, and the Node A is located upstream of the Node B.
  • the device includes:
  • An LSP label allocation unit configured to allocate an LSP label to the node B
  • a first receiving unit configured to receive label switching information of the Node B, where the label switching information of the Node B includes: an inbound label of the Node B and an outgoing label of the Node B; where the Node B The ingress label is an LSP label assigned by the node B to the node A, and the outbound label of the node B is an LSP label allocated by the device to the node B;
  • a first generating unit configured to generate, according to the label switching information of the Node B, a first label switching relationship of the device, where the first label switching relationship of the device includes: at least: an inbound label of the node B The outgoing label of the node C, where the outgoing label of the node C is an LSP label allocated by the downstream node of the node C to the node C.
  • An embodiment of the present invention further provides another apparatus for establishing a label switched path LSP, where the apparatus is connected to a node F, a node E is located upstream of the node F, and a node H is located downstream of the node F, the apparatus Is a backup node of the node F, the device includes:
  • a second receiving unit configured to receive label switching information of the node F, where the label switching information of the node F includes: an inbound label of the node F and an outgoing label of the node F; wherein the node F
  • the ingress label is an LSP label that the node F allocates for the node E
  • the egress label of the node F is an LSP label that the node H allocates for the node F;
  • a second generating unit configured to generate a first label switching relationship of the device according to the label switching information of the node F, where the first label switching relationship of the device includes: at least: an ingress label of the node F The outgoing label of the node F.
  • the node C receives the label switching information of the node B, and generates the first label switching relationship of the node C.
  • the node C can input the label of the node B according to the first label switching relationship.
  • the outgoing label of the node C identifies the unprocessed >3 ⁇ 4 text of the node B, so that the message can continue to be forwarded. Therefore, Node A does not need to establish two rewind paths for link protection wraparound LSP and node protection wraparound LSP. It solves the problem that when the link fails on the LSP path or the node fails, the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • FIG. 1 is a schematic diagram of failure of an MPLS ring node provided by the prior art
  • FIG. 2 is a flowchart of a method for establishing an LSP according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for establishing an LSP according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a specific control process of a method for establishing an LSP according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an MPLS forwarding process after a specific node fails in a method for establishing an LSP according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a format of a Label mapping info TLV according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an apparatus for establishing an LSP according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another apparatus for establishing an LSP according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a method for establishing a label switched path LSP.
  • Embodiments of the present invention also provide corresponding apparatus. The details are described below separately.
  • FIG. 2 is a flowchart of a method for establishing a label switching path LSP according to an embodiment of the present invention.
  • a method for establishing a label switched path LSP includes: Node C is connected to Node B, Node A is located upstream of Node B, and Node C is located downstream of Node B.
  • Node C allocates an LSP label to the Node B.
  • the nodes A, B, and C are on the label switched path LSP to be established.
  • the upstream and downstream relationships between nodes depend on their relationship on the label switched path LSP that needs to be established.
  • the node C receives the label switching information of the node B, and the label switching information of the node B includes at least: an inbound label of the node B and an out label of the node B.
  • the ingress label of the node B is the node B assigning to the node A.
  • the LSP label, the outbound label of the Node B is an LSP label assigned by the Node C to the Node B.
  • the node C generates a first label switching relationship of the node C according to the label switching information of the node B.
  • the first label switching relationship of the node C includes at least: the labeling of the node B.
  • the outgoing label of the node C is signed, and the outgoing label of the node C is an LSP label allocated by the downstream node of the node C to the node C.
  • the step S206 specifically includes:
  • the downstream node of node C allocates an LSP label to node C;
  • the node C generates a second label switching relationship of the node C according to the LSP label allocated by the node C for the node B and the LSP label allocated by the downstream node for the node C.
  • the second label switching relationship of the node C includes at least: an inbound label of the node C and an outgoing label of the node C, where the ingress label of the node C is an LSP label allocated by the node C for the node B; and the out label of the node C is the node C.
  • the downstream node is the LSP label assigned to node C.
  • the second label switching relationship of the node C further includes: an ingress port identifier of the node C and an egress port identifier of the node C.
  • the node C After receiving the label switching information of the node B, the node C combines the label switching information of the node B with the second label relationship of the node C to generate a first label switching relationship of the node C.
  • the first label switching relationship of the node C includes: an inbound label of the node B and an outgoing label of the node C, that is, an LSP label allocated by the node B to the node A, where the outgoing label of the node C is The downstream node of node C is the LSP label assigned to node C.
  • the node C can continue to forward the packet according to the inbound label of the node B in the first label switching relationship of the generated node C according to the label combination, so as to avoid the loss of the data packet due to the failure of the node B.
  • first label switching relationship of the node C mentioned above and the second label switching relationship of the node C are different, and are not mutually replaceable, and the first label switching relationship and the second label switching relationship are generated. After that, it is stored on node C at the same time.
  • the label switching information of the node B received by the node C may further include: a ring identifier of the port of the node B.
  • the ring identifier of the port is used to identify the node port.
  • the node A and the node B are on the two rings at the same time, and the label relationship can be determined by the ring identifier of the port, so that the data packet between the node A and the node B is transmitted through the label switching relationship.
  • the node may allocate the same LSP label to the LSPs on different rings, thereby allowing the ports of different rings to perform label reuse, so that the node has more flexible label space.
  • the node B fails or the link between the nodes A and B fails, the node A can use the wraparound mode to send the message through the protection LSP.
  • the node B receives the packet sent by the protection LSP and forwards the packet according to its own ingress label.
  • the node C receives the packet sent by the protection LSP. Because the node B has the ingress label of the node B, the packet can be identified and forwarded according to the first label switching relationship of the node C.
  • the node C receives the label switching information of the node B, and generates the first label switching relationship of the node C.
  • the node C can input the label of the node B according to the first label switching relationship.
  • the outgoing label of the node C identifies the unprocessed >3 ⁇ 4 text of the node B, so that the message can continue to be forwarded. Therefore, Node A does not need to establish two rewind paths for link protection wraparound LSP and node protection wraparound LSP. It solves the problem that when the link fails on the LSP path or the node fails, the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • FIG. 3 is a flowchart of a method for establishing a label switching path LSP according to another embodiment of the present invention.
  • a method for establishing a label switched path LSP comprising: a node E, F, H on a label switched path LSP, and a node E is located upstream of the node F, a node H is located downstream of the node F, and the node G is a node F Backup node.
  • the node G and the node F are on the MPLS ring.
  • the node G receives the label switching information of the node F, and the label switching information of the node F includes at least: an inbound label of the node F and an outgoing label of the node F.
  • the ingress label of the node F is the node F allocated for the node E.
  • the LSP label, the outbound label of the node F is the LSP label assigned by the node H to the node F.
  • the node G generates a first label switching relationship of the node G according to the label switching information of the node F, where the first label switching relationship of the node G includes at least: an inbound label of the node F and an outgoing label of the node F. .
  • the node G mentioned here generates a first label exchange relationship of the node G according to the label exchange information of the node F.
  • the inbound label of the node F is the inbound label
  • the outgoing label of the node F is the outgoing label.
  • the second label switching relationship of the node G further includes: an ingress port identifier of the node G and an outbound port identifier of the node C.
  • the node G forwards the message to the node H.
  • the label switching information of the node F received by the node G further includes:
  • the port association identifier is used to identify two ports belonging to two different nodes, and the relationship between the two different nodes is an active/standby relationship, for example, the port F to the node H on the node F H, the port interface G to H, which is connected to the node H on the node G, is associated with a common port backup association identifier.
  • the port backup association identifier may be represented by an integer value, such as a value of 1200.
  • the node G determines whether the node F is a lower ring node according to whether the port backup association identifier is carried in the label switching information. If the label exchange information carries the port backup association identifier, the node F is a lower ring node, and the node G no longer performs a label merge operation.
  • the node E can use the wraparound mode to send packets through the protection LSP.
  • the node F receives the packet sent through the protection LSP and forwards the packet according to its own ingress label.
  • the node G receives the packet sent by the protection LSP. Because the node G has the ingress label of the node F, the packet can be identified and forwarded according to the first label switching relationship of the node G.
  • the node G receives the label switching information of the node F, and generates the first label switching relationship of the node G.
  • the node G serves as a backup node of the node F, and the node G is based on the first label.
  • the packet is forwarded to the node H, which solves the problem that when the link failure occurs on the LSP path or the node fails, the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • FIG. 4 is a schematic diagram of a specific control process of a method for establishing a label switching path LSP according to another embodiment of the present invention.
  • Figure 6 shows six nodes on a physical ring: node 1 to node 6, node 1, node 2 is connected to source node S, node 5, node 6 is connected to sink node D, respectively, where "Label req” is represented in Figure 4 Label request message; "Label mapping” means label distribution; “Label mapping info” means label exchange information; “physical link” means physical link; “Protect lsp ring” means LSP protection ring.
  • adjacent nodes in FIG. 4 may be physically adjacent or logically adjacent.
  • node 1 to node 5 are on the LSP path
  • node 6 is the backup node of node 5 on the MPLS ring, but not on the LSP path.
  • the following method is applicable to the process of establishing an LSP from S to D. Regardless of the case where the node 6 is used as the backup node, the steps of the process of establishing the LSP are described as follows:
  • the node S sends a label request message to the node 1 on the ring, and the node 1 sends the label request message label request (hereinafter referred to as "label req") to the node 2, along the working path of the ring, that is, clockwise direction, node 2
  • label req the label request message label request
  • the tag request message is sent in sequence until the node 5 receives the tag request message and sends the message to the node D.
  • the node D After receiving the label request message, the node D sequentially allocates the LSP label for the LSP along the original path, that is, the node D allocates the LSP label to the node 5, the node 5 assigns the LSP label to the node 4, and so on.
  • the sink node D allocates an LSP label to the node 5, for example, the LSP label value is 35 (indicated by "label(35),)), and the node 5 assigns an LSP label to the node 4, for example, the label value is 20, (indicated by "label(20),,).
  • the node 5 generates a second label switching relationship of the node 5;
  • the second label switching relationship includes at least: an inbound label of the node 5 and an outgoing label of the node 5, where the ingress label of the node 5 is the node 5 is the node 4
  • the assigned LSP label Label (20); the outgoing label of the node 5 is the LSP label Label (35) assigned by the node D to the node 5.
  • the second label switching relationship further includes: an ingress port identifier of the node 5 and an egress port identifier of the node 5, which are respectively represented by "in-if" and "out-if", and are mainly used to identify the egress port of the node 5 and In port.
  • the specific label switching relationship of the node 5 may be expressed as follows: "in port identifier in-if, in port label value inlabel, out port label out-if, out port label value outlabel", corresponding to FIG. 4, node
  • the second label switching relationship of 5 can be specifically expressed as: "interface 5 to 4, 20, interface 5 to D, 35", where "interface 5 to 4" indicates that the node on node 5 is connected to the ring on node 5 , is just one of the schematic ways, there can be other representations, which can actually be the identification number of the port inside the device.
  • the node 4 receives the LSP label assigned by the node 5 to the node 4. After the LSP label value is 20, the node 4 assigns the LSP label of the label value 99 (label(99)) to the upstream node 3, and the node 4 generates the local label switching.
  • the relationship, that is, the second label switching relationship of the node 4, the local label switching relationship of the node 4 can be expressed as: (interface 4 to 3, 99, interface 4 to 5, 20).
  • the node 4 is a node located on the ring, the protection ring node 4 itself is invalid, the node 4 sends the label exchange information of the node 4 to the node 5, and the label exchange information of the node 4 includes at least: the inbound label of the node 4 (label The value is 99) and the outgoing label of the node 4 (the label value is 20); the label switching information of the node 4 may further include: a ring identifier of the ingress port and a ring identifier of the egress port.
  • the ring identifier is the identifier of the RING in Figure 4. On different ring nodes, the port for the ring is identified by the common ring identifier.
  • the thinner is the direction of the ring, which can be used for all the same ring.
  • the node loop-in and loop-out ports set two different identifiers. Therefore, the ring ID of the inbound port and the ring ID of the egress port are located.
  • the node can allocate the same LSP label to the LSPs on different rings, thereby allowing the ports of different rings to perform label reuse, so that the node has more flexible label space.
  • the node 5 After receiving the label switching information sent by the node 4, the node 5 determines whether the node 4 is a lower ring node for a specific LSP according to whether the label switching information carries the port backup association identifier (for LSP, MPLS).
  • the ingress node of the ring is node 1 in Figure 4, and the egress node is node 5, then node 5 is the lower ring node for the LSP;
  • the node 5 further finds a second label switching relationship existing by the node 5 according to the label exchange information sent by the node 4, for example, "99 20", for example, "20 35" (node 5 has The inbound label is equal to the outbound label in the label switching information received by the node 4, and the label switching information sent by the node 4 is merged with the existing second label switching relationship of the node 5, and merged to generate a new label switching relationship.
  • the complete label switching relationship of the node 5 can be described as: (interface 5 to 4, 99, interface 5 to D, 35), that is, the entrance Use the LSP upstream node direction interface 5 to 4, and the exit uses the same exit as the original exchange relationship 20 35 .
  • This process is called a label relationship merge operation.
  • the label exchange information of the node 5 may further include: a ring identifier of the ingress port and a ring identifier of the egress port.
  • the node 3 receives the LSP label allocated by the node 4, for example, after the label with the label value of label (99), the node 3 performs a similar process of the node 4, for example: assigning the LSP label value to the upstream node 2 as "label( lOO)" LSP label, the label switching relationship of the local generation node 3, for example, the label switching relationship of the node 3 can be expressed as: (interface 3 to 2, 100, interface 3 to 4, 99), and the The label switching information of the node 3 reaches the node 4, and the label switching information of the node 3 may include: a ring identifier of the ingress port, an ingress label 100 of the node 3, a ring identifier of the egress port, and an egress label 99 of the node 3.
  • the node 4 generates a new label switching relationship of the node 4 according to the label switching information of the node 3, that is, the first label switching relationship of the node 4, for example: ( interface 4 to 3 , 100, interface 4 to 5, 20) (wherein the "first label switching relationship of the node 4" is mainly described in order to distinguish "the second label switching relationship of the node 4", which is based on the node 5
  • the LSP label assigned to node 4 and node 4 are generated for the LSP label assigned by node 3, as explained in step S408).
  • the same node 2, 3 performs a similar process S414 - the same process.
  • the port backup association identifier determines that the upstream node of the node connected to the node is a lower ring node.
  • the label switching relationship of the local backup is generated according to the label switching information, that is, the first label switching relationship described in the above step, and the label relationship combining operation is not performed, which will be described in detail in another method for establishing an LSP.
  • the ring can be an MPLS ring
  • all LSP labels received by each node from the downstream node cannot be duplicated with the LSP label assigned by the node to the upstream node, thus avoiding When a label relationship is merged, there is a problem that one entry label corresponds to two out labels.
  • the LSP control process is completed.
  • An LSP path that traverses the ring is established successfully.
  • the method for establishing an LSP path is as follows: The previous steps are the same as the steps of steps S402-S416, when the node 6 determines that the node 5 is a lower ring node and acts as a node 5
  • the method continues to include:
  • the node 5 is pre-configured with the information of the backup node 6 (requires the node 6 to be adjacent to the node 5), and the node 5 transmits the second label exchange information generated by the node 5 to the node 6.
  • the second label exchange information of the node 5 may include: a ring identifier of the ingress port, an ingress label 20, an out label 35, and an outbound port backup association identifier backup id.
  • the port backup association identifier is an identifier that is configured on the node 5 and the node 6 to be associated with the active and standby ports. The two ports on the two different nodes can be identified at the same time. relationship. E.g The value of the pre-configured port backup association identifier is 1002. At node 5, the port backup association identifier 1002 is associated with interface 5 to D. At node 6, the port backup association identifier 1002 is associated with interface 6 to D.
  • the node 6 After receiving the label switching information sent by the node 5, the node 6 determines whether the node is a lower link according to whether the port backup association identifier is carried in the label exchange information. If the node 6 knows that the node 5 is a lower ring node according to the judgment result, and does not need to perform label relationship merging (the node 5 on the ring is an LSP ring node;), the label switching relationship of the generating node 6 can be expressed as: (interface 6 To 5 , 20, interface 6 to D , 35 ).
  • the method further includes:
  • the node 1 is an LSP upper ring node, and the node 1 receives the LSP label allocated by the node 2, for example, after the LSP label value is label (lll), the node 1 assigns the label label (52) to the source node S, because the node 1 and the node 2 is physically connected to the source node S, and the ports of the two connections S are configured with a port backup association identifier.
  • the node 1 additionally sends label switching information to the node 2, and the label
  • the exchange information may include: an ingress port backup association identifier (for example, the ingress port backup association identifier is 1001), an inbound label (for example, an inbound label value of 52), an outbound port identifier, and an outbound label (for example, an outbound label value of 111).
  • the node 2 needs to perform label relationship merging according to the criterion (the node 1 on the ring is not a lower ring node), and generates a first label switching relationship of the node 2, for example (interface 2 to S, 52, interface 2 to 3, 100).
  • the LSP control process is completed.
  • An LSP that traverses the ring is established successfully, and the LSP protects all related nodes on the ring.
  • Node 3 is on the LSP path, and on the MPLS ring, node 2 is not the lower ring node. When node 3 fails, the packet forwarding process is combined with the LSP control process.
  • FIG. 5 is a schematic diagram of an MPLS forwarding process when a node 3 fails after establishing a label switched path LSP according to an embodiment of the present invention.
  • FIG. 5 a closed LSP path that is opposite to the working direction (counterclockwise) is established on the ring, as shown by the protect lsp ring in the figure, where the protection path label assigned by node 2 to node 3 is P2.
  • the protection path label assigned by node 1 to node 2 is pi, which is reversed in the counterclockwise direction, and node 3 is given to the node.
  • the protection path label assigned by point 4 is P3.
  • the node 2 When the node 2 finds that the port connecting the node 3 is invalid, the node 2 performs a rewind operation.
  • the label P2 assigned by the node 2 On the outer layer of the label (100) of the MPLS packet, the label P2 assigned by the node 2 is encapsulated, and the node 2 is in the protection direction, and the P2 is exchanged. For P1, it is sent to node 1.
  • the data packet is sent along the protection path on the MPLS ring.
  • the node 4 receives the packet, the packet is encapsulated into the protection label P3 allocated by the node 3, and sent to the node 3. If the port is faulty, the loop is re-wound, the protection label P3 is ejected, and the working path is re-entered.
  • the node 4 sees that the label is 100.
  • the node 4 has a first label switching relationship of the node 4 after the merge operation, which can be expressed as: (interface 4 to 3, 100, interface 4 to 5, 20), then the node 4 will be 100.
  • the label is exchanged to 20, and is sent from the port of the connecting node 5 to the node 5, which is consistent with the label that the node 5 originally assigned to the node 4 for the LSP, so that the packet can be forwarded normally, and the link occurs on the LSP path.
  • the failure or the node fails the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • node 4 encapsulates the MPLS packet with the working label of 20 sent to node 5 into the reverse protection path label, and sends it to node 6 along the protection path.
  • Node 6 finds that the node 5 port is invalid, and then pops up.
  • the protection label p5 obtains the packet with the working label of 20.
  • the node 6 establishes a label switching relationship when establishing the LSP, which can be expressed as: (interface 6 to 5, 20, interface 6 to D, 35) Node 6 swaps tag 20 to 35 and sends it out from the port that is connected to D. The message arrived at D correctly.
  • the first label switching relationship generated by the backup node 6 is used as a backup node of the failed node when the upstream node 5 connected to the backup node 6 fails, and the backup node exchanges according to the generated first label.
  • the relationship is forwarded, and the problem is that when the link fails or the node fails on the LSP path, the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • FIG. 6 is a schematic diagram of a format of a label mapping information Label mapping info TLV according to an embodiment of the present invention.
  • the label mapping information Label mapping info TLV is used to carry the label switching mentioned in the foregoing embodiment. information.
  • Label mapping info TLV provided in FIG. 6 can be implemented by extending a protocol of the label distribution protocol LDP. Specifically through the label distribution protocol The LDP notification is extended, and the label information is carried in the notification message label mapping info TLV for carrying label exchange information.
  • the TLV carries the label switching information mentioned in the foregoing implementation, and the format of the Label mapping info TLV is defined as follows:
  • the first 16 bits represent the TLV type, TLV type, which is used to define a value indicating the label mapping info TLV type; where T is a type indicating type, L is length for length, and V is value for value.
  • Label mapping info indicates the type identifier assigned to the TLV
  • Length indicates the length of the TLV
  • Resv indicates that the area is temporarily reserved
  • IMT Ingress Mapping type: indicates the inbound mapping type
  • EMT Egress Mapping Type
  • the egress ring/backup id field is the ring ID of the egress ring/backup id field. If the EMT is 1, the egress ring/backup id field is the outbound port backup association ID.
  • the domain stores the ring ID of the inbound port or the ingress port backup association identifier.
  • Inlabel stores the tag value
  • Egress ring/backup id Indicates the ring ID or the outbound port association ID of the egress port.
  • Outlabel indicates that the tag value is stored
  • the format of the label mapping information provided by the label mapping TLV is extended based on the LDP protocol, and can also be extended by other protocols, for example, based on the RS VP-TE protocol.
  • FIG. 7 is a schematic structural diagram of an apparatus for establishing a label switching path LSP according to an embodiment of the present invention.
  • An apparatus for establishing a label switching path LSP is located downstream of the node B, the node B is connected to the node A, and the node A is located upstream of the node B, and the device includes: An LSP label assigning unit 702, configured to allocate an LSP label to the Node B;
  • the first receiving unit 704 is configured to receive label switching information of the Node B, where the label switching information of the Node B includes: at least an inbound label of the Node B and an outgoing label of the Node B; where the Node B The ingress label is an LSP label assigned by the node B to the node A, and the outbound label of the node B is the LSP label allocated by the device to the node B;
  • the first generating unit 706 is configured to generate, according to the label switching information of the Node B, a first label switching relationship of the device, where the first label switching relationship of the device includes: at least: an inbound label of the node B And an outgoing label of the node C, where the outgoing label of the node C is an LSP label allocated by the downstream node of the node C to the node C.
  • the first generating unit is specifically configured to: generate, by the device, a second label switching relationship, where the second label relationship of the device includes: at least an inbound label of the device and an outgoing label of the device, where the device
  • the ingress label is an LSP label allocated by the device to the node B
  • the egress label of the device is an LSP label allocated by the downstream node of the device to the device;
  • the device generates a first label switching relationship of the device according to label switching information of the Node B and a second label switching relationship of the device.
  • the label switching information of the node B received by the device further includes: a ring identifier of the port where the node B is located.
  • the node can allocate the same LSP label to the LSPs on different rings, thereby allowing the ports of different rings to perform label reuse, so that the node has more flexible label space.
  • the first receiving unit of the device receives the label switching information of the node B, and generates a first label switching relationship of the device.
  • the device can exchange according to the first label.
  • the inbound label of the device in the relationship and the outgoing label of the device identify the unprocessed message of the Node B, so that the message can continue to be forwarded. Therefore, the node A does not need to establish two rewind paths of the link protection wraparound LSP and the node protection wraparound LSP. It solves the problem that when the link fails or the node fails on the LSP path, the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • FIG. 8 is a schematic structural diagram of another apparatus for establishing a label switching path LSP according to an embodiment of the present invention.
  • the device is connected to the node F, the node E is located upstream of the node F, the node H is located downstream of the node F, and the device is a backup node of the node F, and the device includes:
  • the second receiving unit 802 is configured to receive label switching information of the node F, where the label switching information of the node F includes: at least an inbound label of the node F and an outgoing label of the node F; wherein the node F
  • the ingress label is an LSP label that the node F allocates for the node E
  • the outbound label of the node F is an LSP label that the node H allocates for the node F;
  • the second generating unit 804 is configured to generate a first label switching relationship of the device according to the label switching information of the node F, where the first label switching relationship of the device includes: at least: an inbound label of the node F And the outgoing label of the node F.
  • the label exchange information of the node F received by the device further includes: a port backup association identifier.
  • the node G receives the label switching information of the node F, and generates the first label switching relationship of the node G.
  • the node G serves as a backup node of the node F, and the node G is based on the first label.
  • the packet is forwarded to the node H, which solves the problem that when the link failure occurs on the LSP path or the node fails, the ring cannot provide sufficient bandwidth, which causes packet loss and saves network resources.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can include: ROM, RAM, disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种建立标签交换路径LSP的方法。本发明实施例还提供相应的网络装置。本发明技术方案由节点C为所述节点B分配LSP标签;所述节点C接收所述节点B的标签交换信息,并根据所述节点B的标签交换信息,生成所述节点C的第一标签交换关系;其中,所述节点C的第一标签交换关系至少包括:所述节点B的入标签和所述节点C的出标签。所述网络装置采用上述方法解决了当LSP路径上出现链路失效或者节点失效时,环上不能提供足够的带宽,导致丢包的问题,节省了网络资源。

Description

一种建立标签交换路径的方法和装置 技术领域
本发明涉及通信技术领域, 具体涉及一种建立标签交换路径的方法和装 置。 背景技术
环状的物理拓朴在网络中大量存在, 随着网络向基于分组的互连网协议
(Internet Protocol, IP)和多协议标签交换 (Multi Protocol Label Switching, MPLS) 技术演进, 将 MPLS技术应用到环上, 并利用环的特殊性实现 MPLS环保护 成为一个热点技术。
基于 MPLS 的环保护技术目前分为两类, 即转向 steering 方式和回绕 wrapping方式。 下面以回绕 wrapping方式为例 , 进行介绍。
如图 1所示, 由 A, B, C, D, E, F 6个 MPLS节点构成一个环, 需要 建立一条从 A点入, 从 D点出的标签交换路径 (Label Switch Path, LSP)。 在 wrapping方式下, 如果要保护 F-E之间的链路, 则建立一条 F-A-B-C-D-E方 向的保护路径 LSP, 当 F-E之间的链路失效时, LSP 业务从入口 A 沿着 A-F-A-B-C-D-E-D的顺序到达出口 D。
然而当节点 E失效时, 业务流即使沿着保护路径 LSP回绕到失效节点的 下一节点 D, 也无法继续进行 MPLS LSP转发。
针对节点失效问题, 现有技术是通过建立跨节点的 LSP及此 LSP的回绕 保护 LSP来进行处理。 当链路失效时, 链路解决了当 LSP路径上出现链路失 效或者节点失效时, 环上不能提供足够的带宽, 导致丟包的问题, 节省了网 络资源。 一端的节点选择该链路的链路保护回绕 LSP; 当节点失效时, 节点 失效一端的节点选择该失效节点的节点保护回绕 LSP。 例如图 1 中的节点 E 失效时, 节点 F将利用从 F到 D的跨节点 E保护 LSP回绕路径 F-A-B-C-D , 将报文同时发送给节点0。
在对现有技术的研究和实践过程中, 本发明的发明人发现: 当出现节点 失效时, 由于节点 F和节点 D都无法判断是链路失效还是节点失效, 因此无 论是链路失效还是节点失效, 都将报文进行复制, 利用链路保护回绕 LSP和 节点保护回绕 LSP两条回绕路径, 将报文同时发送给下游两个节点, 这种方 式处理会在环上占用至少四倍源数据流带宽, 业务量较大时, 环上不能提供 足够的带宽, 导致丟包。 发明内容
本发明实施例提供一种建立标签交换路径 LSP的方法和装置, 解决了业 务量较大时, 环上不能提供足够的带宽, 导致丟包的问题, 节省了网络资源。
本发明实施例还提供了一种建立标签交换路径 LSP的方法, 包括: 至少 三个网络节点: 节点 A, 节点 B和节点 C, 其中所述节点 A位于所述节点 B 的上游, 所述节点 C位于所述节点 B的下游;
所述节点 C为所述节点 B分配 LSP标签;
所述节点 C接收所述节点 B的标签交换信息, 所述节点 B的标签交换信息 至少包括: 所述节点 B的入标签和所述节点 B的出标签; 其中所述节点 B的入 标签是所述节点 B为所述节点 A分配的 LSP标签,所述节点 B的出标签是所述节 点 C为所述节点 B分配的 LSP标签;
所述节点 C根据所述节点 B的标签交换信息,生成所述节点 C的第一标签交 换关系; 其中, 所述节点 C的第一标签交换关系至少包括: 所述节点 B的入标 签和所述节点 C的出标签, 其中所述节点 C的出标签是节点 C的下游节点为节 点 C分配的 LSP标签。
本发明实施例还提供了另一种建立标签交换路径 LSP的方法, 包括: 节点 G与节点 F相连接, 节点 E位于所述节点 F的上游, 节点 H位于所述节点 F 的下游, 节点 G是所述节点 F的备份节点;
所述节点 G接收所述节点 F的标签交换信息,所述节点 F的标签交换信息至 少包括: 所述节点 F的入标签和所述节点 F的出标签; 其中所述节点 F的入标签 是所述节点 F为所述节点 E分配的 LSP标签, 所述节点 F的出标签是所述节点 H 为所述节点 F分配的 LSP标签;
所述节点 G根据所述节点 F的标签交换信息,生成所述节点 G的第一标签交 换关系, 其中, 所述节点 G的第一标签交换关系至少包括: 所述节点 F的入标 签和所述节点 F的出标签。
本发明实施例还提供了一种建立标签交换路径 LSP的装置,所述装置位于 所述节点 B的下游, 所述节点 B与节点 A相连, 所述节点 A位于所述节点 B的上 游, 所述装置包括:
LSP标签分配单元, 用于为所述节点 B分配 LSP标签;
第一接收单元, 用于接收所述节点 B的标签交换信息, 所述节点 B的标签 交换信息至少包括: 所述节点 B的入标签和所述节点 B的出标签; 其中所述节 点 B的入标签是所述节点 B为所述节点 A分配的 LSP标签, 所述节点 B的出标签 是所述装置为节点 B分配的 LSP标签;
第一生成单元, 用于根据所述节点 B的标签交换信息, 生成所述装置的第 一标签交换关系; 其中, 所述装置的第一标签交换关系至少包括: 所述节点 B 的入标签和所述节点 C的出标签, 其中所述节点 C的出标签是节点 C的下游节 点为节点 C分配的 LSP标签。
本发明实施例还提供了另一种建立标签交换路径 LSP的装置,所述装置与 节点 F相连接, 节点 E位于所述节点 F的上游, 节点 H位于所述节点 F的下游, 所述装置是所述节点 F的备份节点, 所述装置包括:
第二接收单元, 用于接收所述节点 F的标签交换信息, 所述节点 F的标签 交换信息至少包括: 所述节点 F的入标签和所述节点 F的出标签; 其中所述节 点 F的入标签是所述节点 F为所述节点 E分配的 LSP标签, 所述节点 F的出标签 是所述节点 H为所述节点 F分配的 LSP标签;
第二生成单元, 用于根据所述节点 F的标签交换信息, 生成所述装置的第 一标签交换关系, 其中, 所述装置的第一标签交换关系至少包括: 所述节点 F 的入标签和所述节点 F的出标签。
本发明实施例中通过节点 C接收节点 B的标签交换信息, 生成节点 C的 第一标签交换关系, 当节点 B失效时, 节点 C能够根据所述第一标签交换关 系中的节点 B的入标签和所述节点 C的出标签,识别出节点 B未处理的>¾文, 使得报文能够继续转发。 因此, 节点 A不需要建立链路保护回绕 LSP和节点 保护回绕 LSP两条回绕路径。 解决了当 LSP路径上出现链路失效或者节点失 效时, 环上不能提供足够的带宽, 导致丟包的问题, 节省了网络资源。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术提供的 MPLS环节点失效示意图;
图 2是本发明实施例提供的一种建立 LSP的方法流程图;
图 3是本发明实施例提供的另一种建立 LSP的方法流程图;
图 4是本发明一实施例提供的一种建立 LSP的方法的具体控制过程示意 图;
图 5是本发明一实施例提供的一种建立 LSP的方法的具体节点失效后的 MPLS转发过程示意图;
图 6是本发明实施例提供的一种 Label mapping info TLV的格式示意图; 图 7是本发明实施例提供的一种建立 LSP的装置结构示意图;
图 8是本发明实施例提供的另一种建立 LSP的装置结构示意图。 具体实施方式
本发明实施例提供了一种建立标签交换路径 LSP的方法。本发明实施例还 提供相应的装置。 以下分别进行详细说明。
如图 2所示,图 2为本发明实施例提供的一种建立标签交换路径 LSP的方法 流程图。
一种建立标签交换路径 LSP的方法包括: 节点 C与节点 B相连接, 节点 A 位于节点 B的上游, 节点 C位于节点 B的下游。
S202、 节点 C为节点 B分配 LSP标签。
其中, 节点 A, B, C在需要建立的标签交换路径 LSP上。 节点间的上游、 下游关系取决于它们在该需要建立的标签交换路径 LSP上的关系。
S204、 节点 C接收节点 B的标签交换信息, 所述节点 B的标签交换信息至 少包括: 节点 B的入标签和节点 B的出标签; 其中所述节点 B的入标签是节点 B 为节点 A分配的 LSP标签, 所述节点 B的出标签是节点 C为节点 B分配的 LSP标 签。
S206、 节点 C根据所述节点 B的标签交换信息, 生成节点 C的第一标签交 换关系; 其中, 所述节点 C的第一标签交换关系至少包括: 所述节点 B的入标 签和所述节点 C的出标签, 其中所述节点 C的出标签是节点 C的下游节点为节 点 C分配的 LSP标签。
其中, 所述步骤 S206具体包括:
节点 C的下游节点为节点 C分配 LSP标签;
节点 C根据所述节点 C为节点 B分配的 LSP标签和下游节点为节点 C分配的 LSP标签, 生成节点 C的第二标签交换关系。 所述节点 C的第二标签交换关系 至少包括: 节点 C的入标签和节点 C的出标签, 其中节点 C的入标签是节点 C为 节点 B分配的 LSP标签; 节点 C的出标签是节点 C的下游节点为节点 C分配的 LSP标签。 所述节点 C的第二标签交换关系还包括: 节点 C的入端口标识和节 点 C的出端口标识。
节点 C接收到节点 B的标签交换信息后, 将节点 B的标签交换信息和上述 节点 C的第二标签关系进行合并操作, 生成节点 C的第一标签交换关系。 所述 节点 C的第一标签交换关系至少包括: 所述节点 B的入标签和所述节点 C的出 标签, 即, 节点 B为节点 A分配的 LSP标签, 其中所述节点 C的出标签是节点 C 的下游节点为节点 C分配的 LSP标签。 这样, 当节点 B出现失效时, 节点 C可以 根据标签合并后, 生成的节点 C的第一标签交换关系中的节点 B的入标签继续 转发报文, 避免因节点 B失效导致丟失数据包。
其中需要说明的是, 上述提到的节点 C的第一标签交换关系和节点 C的第 二标签交换关系是不同的, 不可互相替代, 且所述第一标签交换关系和第二 标签交换关系生成之后, 同时存储在节点 C上。
当所述节点 B在多协议标签交换 MPLS环上时, 所述节点 C接收的节点 B的 标签交换信息还可以包括: 节点 B的端口所在环标识。
其中所述端口所在环标识, 用于标识节点端口。 例如: 节点 A和节点 B同 时在两个环上, 可以通过端口所在环标识确定所述标签关系, 从而通过所述 标签交换关系传递节点 A和节点 B之间的数据报文。
当所述标签交换信息中还包括所述环标识时,节点可以为不同环上的 LSP 分配相同的 LSP标签, 从而允许不同环的端口进行标签重用, 使得节点具有 更灵活的标签空间。 无论节点 B失效或者节点 A、 B之间的链路失效时, 节 点 A都可以釆用回绕方式, 通过保护 LSP发送 4艮文。 当节点 A、 B之间的链 路失效时, 节点 B接收到通过保护 LSP发送的报文, 根据自身的入标签, 转 发该报文。 当节点 B失效时, 节点 C接收到通过保护 LSP发送的报文, 因为 节点 C上有节点 B的入标签, 能够识别出该报文, 并根据节点 C的第一标签 交换关系进行转发。
本发明实施例中通过节点 C接收节点 B的标签交换信息, 生成节点 C的 第一标签交换关系, 当节点 B失效时, 节点 C能够根据所述第一标签交换关 系中的节点 B的入标签和所述节点 C的出标签,识别出节点 B未处理的>¾文, 使得报文能够继续转发。 因此, 节点 A不需要建立链路保护回绕 LSP和节点 保护回绕 LSP两条回绕路径。 解决了当 LSP路径上出现链路失效或者节点失 效时, 环上不能提供足够的带宽, 导致丟包的问题, 节省了网络资源。
如图 3所示, 图 3为本发明另一实施例提供的一种建立标签交换路径 LSP 的方法流程图。
一种建立标签交换路径 LSP的方法, 所述方法包括: 节点 E, F, H在标签 交换路径 LSP上, 且节点 E位于节点 F的上游, 节点 H位于节点 F的下游, 节点 G 是节点 F的备份节点。
其中, 所述节点 G和节点 F在 MPLS环上。
S302、节点 G接收所述节点 F的标签交换信息,所述节点 F的标签交换信息 至少包括: 节点 F的入标签和节点 F的出标签; 其中节点 F的入标签是节点 F为 节点 E分配的 LSP标签, 节点 F的出标签是节点 H为节点 F分配的 LSP标签。
S304、 节点 G根据所述节点 F的标签交换信息, 生成节点 G的第一标签交 换关系, 其中, 所述节点 G的第一标签交换关系至少包括: 节点 F的入标签和 节点 F的出标签。
这里提到的节点 G根据所述节点 F的标签交换信息, 生成节点 G的第一标 签交换关系。 节点 G的第一标签交换关系中, 将节点 F的入标签为入标签, 将 节点 F的出标签为出标签。
所述节点 G的第二标签交换关系还包括: 节点 G的入端口标识和节点 C的 出端口标 i只。
当节点 F失效时, 通过节点 G转发报文给所述节点 H。
进一步地, 所述节点 G接收的所述节点 F的标签交换信息还包括: 端口备 份关联标识, 所述端口备份关联标识用于标识属于两个不同节点上两个端口, 且所述两个不同节点的关系为主备关系, 例如: 节点 F上连接节点 H的端口 interface F to H, 与节点 G上连接节点 H的端口 interface G to H, 釆用一个共同 的端口备份关联标识来关联, 端口备份关联标识可由一个整数值来表示, 如 值 1200。
进一步地,节点 G根据所述标签交换信息中是否携带有所述端口备份关联 标识, 来判断节点 F是下环节点。 若所述标签交换信息中携带有所述端口备份 关联标识, 则所述节点 F是下环节点, 节点 G不再进行标签合并操作。
无论节点 F失效或者节点 E、 F之间的链路失效时, 节点 E都可以釆用回 绕方式, 通过保护 LSP发送报文。 当节点 E、 F之间的链路失效时, 节点 F 接收到通过保护 LSP发送的报文, 根据自身的入标签, 转发该报文。 当节点 F失效时, 节点 G接收到通过保护 LSP发送的报文, 因为节点 G上有节点 F 的入标签, 能够识别出该报文, 并根据节点 G的第一标签交换关系进行转发。
本发明实施例中通过节点 G接收节点 F的标签交换信息, 生成节点 G的第 一标签交换关系, 当节点 F出现失效时, 节点 G作为节点 F的备份节点, 节点 G 根据所述第一标签交换关系, 将所述报文转发给所述节点 H, 解决了当 LSP路 径上出现链路失效或者节点失效时, 环上不能提供足够的带宽, 导致丟包的 问题, 节省了网络资源。
如图 4所示,图 4为本发明的又一实施例提供的一种建立标签交换路径 LSP 的方法的具体控制过程示意图。
图 4所示一个物理环上的六个节点: 节点 1到节点 6, 节点 1 , 节点 2分别连 接源节点 S, 节点 5, 节点 6分别连接宿节点 D, 其中图 4中 "Label req" 表示标 签请求消息; "Label mapping" 表示标签分发; "Label mapping info" 表示标 签交换信息; "physical link" 表示物理链路; "Protect lsp ring" 表示 LSP保护 环。
其中, 图 4中相邻的节点 (例如节点 3和节点 4是相邻的节点; 节点 4和节 点 5是相邻的节点)可以是物理相邻, 也可以是逻辑相邻。
图 4中节点 1到节点 5在 LSP路径上, 节点 6作为节点 5的备份节点在 MPLS 环上, 但是不在 LSP路径上, 下面的方法适用于从 S到 D建立一条 LSP的过程。 不考虑节点 6作为备份节点的情况, 所述建立 LSP过程的步骤描述如下:
S402、 节点 S向环上节点 1发送标签请求消息, 节点 1将所述标签请求消息 label request (下面简称 "label req" )发送到节点 2 , 沿环工作路径方向, 即顺 时针方向, 节点 2依次发送标签请求消息, 直到节点 5收到标签请求消息后, 将该消息发送到节点 D。
S404、节点 D收到标签请求消息后,依次沿原路径反向分配用于 LSP的 LSP 标签, 即节点 D向节点 5分配 LSP标签,节点 5向节点 4分配 LSP标签,依次类推。
例如图 4中, 宿节点 D分配 LSP标签给节点 5 , 例如, 所述 LSP标签值为 35 (以 "label(35),, 表示), 节点 5向节点 4分配 LSP标签, 例如, 标签值为 20 , (以 "label(20),, 表示)。
S406、 节点 5生成节点 5的第二标签交换关系; 所述第二标签交换关系至 少包括: 节点 5的入标签和节点 5的出标签, 其中所述节点 5的入标签是节点 5 为节点 4分配的 LSP标签 Label(20);所述节点 5的出标签是节点 D为节点 5分配的 LSP标签 Label(35)。 所述第二标签交换关系还包括: 节点 5的入端口标识和节 点 5的出端口标识, 分别用 "in-if" 和 "out-if" 表示, 主要分别用来标识节点 5的出端口和入端口。 具体的所述节点 5的第二标签交换关系可以表示为: "入 端口标识 in-if,入端口标签值 inlabel,出端口标识 out-if,出端口标签值 outlabel" , 对应于图 4 ,节点 5的第二标签交换关系可以具体表示为: "interface 5 to 4, 20, interface 5 to D, 35" , 其中, 这里 "interface 5 to 4" 表示在节点 5上, 连接节 点 4的环上端口, 只是其中的一个示意方式, 还可以有其它表示方式, 实际可 以是一个设备内部对端口的标识号。
S408、 节点 4收到节点 5为节点 4分配的 LSP标签, LSP标签值为 20后, 节 点 4向上游节点 3分配标签值 99 ( label(99) ) 的 LSP标签, 同时节点 4生成本地 标签交换关系, 即节点 4的第二标签交换关系, 所述节点 4的本地标签交换关 系可以表示为: ( interface 4 to 3 , 99, interface 4 to 5 , 20 )。
S410、 节点 4是位于环上的节点, 为保护环节点 4本身失效, 节点 4向节点 5发送节点 4的标签交换信息, 所述节点 4的标签交换信息至少包括: 节点 4的 入标签(标签值为 99 )和节点 4的出标签(标签值为 20 ); 所述节点 4的标签交 换信息还可以包括: 入端口所在环标识和出端口所在环标识。 环标识是图 4中 RING的标识, 在不同的环节点上, 通过共同的环标识可 以识别出组环用的端口, 更细的, 为标识环的方向, 可针对所在同一个环上 的所有节点环入和环出端口设定两个不同的标识。 所以有上述入端口所在环 标识和出端口所在环标识。
当所述标签交换信息中还包括所述环标识时,节点可以为不同环上的 LSP 分配相同的 LSP标签, 从而允许不同环的端口进行标签重用, 使得节点具有更 灵活的标签空间。
S412、 节点 5收到节点 4发送的标签交换信息后, 会根据所述标签交换信 息中是否携带有端口备份关联标识, 判断针对一个特定的 LSP, 节点 4是否是 下环节点(针对 LSP, MPLS环的入节点为图 4中节点 1 , 出节点为节点 5 , 则针 对该 LSP来说, 节点 5是下环节点);
S414、 若节点 4不是下环节点, 则节点 5进一步根据节点 4发送的标签交换 信息, 例如 " 99 20" , 找到节点 5已有的第二标签交换关系, 例如 "20 35" (节点 5已有的入标签与接收到节点 4的标签交换信息中的出标签相等 ), 将节 点 4发送的标签交换信息与节点 5已有的第二标签交换关系进行合并, 合并后 生成一个新标签交换关系, 即节点 5的第一标签交换关系: "99 35" , 完整的 所述节点 5的第一标签交换关系可以描述为: (interface 5 to 4 , 99, interface 5 to D, 35), 即入口釆用 LSP上游节点方向 interface 5 to 4, 出口釆用与原交换关 系 20 35 相同的出口。 这个过程称为标签关系合并操作。
其中所述节点 5的标签交换信息还可以包括: 入端口所在环标识和出端口 所在环标识。
S416、 节点 3收到节点 4分配的 LSP标签, 例如所述标签值为 label(99)的标 签后, 节点 3执行节点 4的类似过程, 例如: 向上游节点 2分配 LSP标签值为 "label(lOO)" 的 LSP标签, 本地生成节点 3的标签交换关系, 例如, 所述节点 3 的标签交换关系可以表示为: ( interface 3 to 2, 100, interface 3 to 4, 99 ),并传递 所述节点 3的标签交换信息到达节点 4 , 所述节点 3的标签交换信息可以包括: 入端口所在环标识, 节点 3的入标签 100 , 出端口所在环标识, 节点 3的出标签 99。 节点 4根据所述节点 3的标签交换信息, 生成一个节点 4的新的标签交换关 系,即节点 4的第一标签交换关系,例如: ( interface 4 to 3 , 100, interface 4 to 5, 20 ) (其中, 所述 "节点 4的第一标签交换关系" 主要是为了区分 "节点 4的第 二标签交换关系" 而描述的, 所述 "节点 4的第二标签关系" 是根据节点 5为 节点 4分配的 LSP标签和节点 4为节点 3分配的 LSP标签生成的, 在步骤 S408说 明)。
同理节点 2、 3执行类似步骤 S414—样的处理过程。
上述过程中, 需要注意的有两点: 其一, 这里有一个判断准则, 所述判 断准则是指所述节点判断所述标签交换信息中是否携带有所述端口备份关联 标识; 若携带有所述端口备份关联标识, 则确定与该节点连接的该节点的上 游节点是下环节点。
当标签交换信息来自 MPLS环上的上游节点, 且上游节点不是下环节点 时, 则按照步骤 S414中描述的那样在本地找对应的标签交换关系, 并进行标 签关系合并操作。 否则, 根据标签交换信息, 生成本地备份用标签交换关系, 即上述步骤中说明的第一标签交换关系, 不进行标签关系合并操作, 这一点 将在另一种建立 LSP的方法中进行详细介绍。
其二, 由于一个环上有多条 LSP建立 (所述环可以为 MPLS环) , 每个节 点从下游节点收到的所有 LSP标签不能与本节点分配给上游节点的 LSP标签 重复, 这样避免在进行标签关系合并时, 出现一个入标签对应两个出标签的 问题。 避免此问题, 可以根据在环上的节点釆用适当的标签空间规划完成, 例如利用标签奇偶性、 不同的标签值段等。
通过上述步骤, LSP控制过程完成。 一条穿越环的 LSP路径建立成功。 考虑到所述节点 6为节点 5的备份节点时, 所述建立 LSP路径的方法如下: 前面的步骤与步骤 S402 - S416的步骤相同, 当节点 6判断节点 5为下环节 点, 且作为节点 5的备份节点时, 所述方法继续包括:
S418、 节点 5预先配置有备份节点 6的信息(要求节点 6与节点 5相邻), 节 点 5将节点 5生成的第二标签交换信息发送到节点 6。
具体地, 节点 5的第二标签交换信息可以包括: 入端口所在环标识, 入标 签 20, 出标签 35 , 及出端口备份关联标识 backup id。 端口备份关联标识是指 预先在节点 5和节点 6配置的一个用于关联主备端口的标识, 可以同时标识属 于两个不同节点上两个端口, 且所述两个不同节点的关系为主备关系。 例如 预先配置端口备份关联标识的值为 1002 , 则在节点 5 , 端口备份关联标识 1002 与 interface 5 to D关联; 在节点 6 , 端口备份关联标识 1002与 interface 6 to D关 联。
S420、 节点 6收到节点 5发送的标签交换信息后, 所述节点 6根据所述标签 交换信息中是否携带有所述端口备份关联标识, 来判断该节点是否是下环节 点。 若节点 6根据判断结果, 获知节点 5是下环节点, 则不需要进行标签关系 合并(环上节点 5是 LSP下环节点;), 则生成节点 6的标签交换关系可以表示为: ( interface 6 to 5 , 20, interface 6 to D , 35 )。
当如图 4所示, 节点 1和节点 2都与源节点 S有物理链接时, 两个连接 S的端 口配置有端口备份关联标识时, 所述方法进一步包括:
S422、 节点 1为 LSP上环节点, 节点 1收到节点 2分配的 LSP标签, 例如 LSP 标签值为 label(lll)后, 节点 1向源节点 S分配标签 label(52), 由于节点 1与节点 2 都与源节点 S有物理连接, 并且两个连接 S的端口配置有端口备份关联标识, 例如所述端口备份关联表示值为 1001 , 则节点 1另外发送标签交换信息到节点 2, 所述标签交换信息可以包括: 入端口备份关联标识(例如入端口备份关联 标识为 1001 ), 入标签(例如入标签值为 52 ), 出端口所在环标识, 出标签(例 如, 出标签值为 111 )。节点 2收到所述标签交换信息后,按照所述判断准则(环 上节点 1不是下环节点), 需要进行标签关系合并, 生成节点 2的第一标签交换 关系, 例如 ( interface 2 to S, 52 , interface 2 to 3 , 100 )。
通过上述进一步执行的步骤, LSP控制过程完成。 一条穿越环的 LSP路径 建立成功, 并且该 LSP在环上对所有相关节点保护恢复功能。
下面分别介绍节点 3和节点 5分别失效时, 报文如何进行转发的。
节点 3在 LSP路径上, 且在 MPLS环上, 节点 2不是下环节点, 当节点 3失效 时, 报文的转发过程结合 LSP的控制过程, 描述如下:
如图 5所示, 图 5为本发明实施例中建立标签交换路径 LSP后, 节点 3失效 时的 MPLS转发过程示意图。
在图 5中,预先在环上建立有一个闭合的与工作方向反向(逆时针)的 LSP 路径, 如图中 protect lsp ring所示, 其中节点 2给节点 3分配的保护路径标签为 P2, 节点 1给节点 2分配的保护路径标签为 pi , 依次延逆时针方向, 节点 3给节 点 4分配的保护路径标签为 P3。
当节点 2发现连接节点 3的端口失效, 则节点 2进行回绕操作, 在所述 MPLS报文的标签( 100 )的外层, 封装节点 2分配的标签 P2, 节点 2在保护 方向, 将 P2交换为 P1 , 发向节点 1 , 数据报文如此在 MPLS环上进行沿保护 路径传送报文, 当节点 4收到报文时,报文封装成节点 3分配的保护标签 P3 , 发向节点 3 的对应环端口时, 发现端口出现失效, 则进行回绕, 弹出保护标 签 P3 , 并重新进入工作路径转发, 此时节点 4看到标签是 100。 基于上述控 制过程步骤 S416, 即, 节点 4存在合并操作之后的节点 4的第一标签交换关 系, 可以表示为: (interface 4 to 3 , 100, interface 4 to 5, 20 ), 则节点 4将 100 标签交换为 20, 并从连接节点 5的端口发送给节点 5 , 这与节点 5原先为此 LSP分配给节点 4的标签一致, 从而能够继续正常转发报文, 解决了当 LSP 路径上出现链路失效或者节点失效时, 环上不能提供足够的带宽, 导致丟包 的问题, 节省了网络资源。
如果节点 5失效, 节点 4将要发送给节点 5的工作标签为 20的 MPLS报文封 装到反向保护路径标签中, 沿保护路径, 发送到节点 6, 节点 6发现到节点 5端 口失效,则弹出保护标签 p5,得到工作标签为 20的报文,基于上述控制步骤 3 , 节点 6在建立 LSP时建立有标签交换关系, 可以表示为: (interface 6 to 5, 20, interface 6 to D, 35 ), 节点 6将标签 20交换成 35 , 并从连接 D的端口发出。 报 文正确到达 D。
本发明实施例中通过备份节点 6生成的第一标签交换关系, 当备份节点 6 连接的上游节点 5出现失效时, 作为失效节点的备份节点, 所述备份节点根据 所述生成的第一标签交换关系, 将所述 文继续转发, 解决了当 LSP路径上出 现链路失效或者节点失效时, 环上不能提供足够的带宽, 导致丟包的问题, 节省了网络资源。
如图 6所示, 图 6为本发明实施例提供的一种标签映射信息 Label mapping info TLV的格式示意图,所述一种标签映射信息 Label mapping info TLV用于承 载上述实施例提到的标签交换信息。
图 6中提供的一种标签映射信息 Label mapping info TLV的格式示意图, 可 以通过对标签分发协议 LDP的协议扩展实现。具体可以通过对标签分发协议通 知消息 LDP notification进行扩展, 在所述通知消息中携带一个标签映射信息 label mapping info TLV用来 载标签交换信息。
所述 TLV承载上述实施中提到的标签交换信息, Label mapping info TLV 的格式定义如下:
前 16bit表示 TLV类型, TLV type,用于定义一个值,该值表示 label mapping info TLV类型; 其中, 所述 T为 type表示类型, L为 length表示长度, V为 value 表示值。
Label mapping info: 表示为该 TLV分配的类型识别码;
Length: 表示 TLV长度;
Resv: 表示该区域暂时保留;
IMT ( Ingress Mapping type ): 表示入端口映射类型;
IMT 为 0时: 表示 ingress ring/backup id域存放的是入端口所在环标识; IMT 为 1时: 表示 ingress ring/backup id域存放的是入端口备份关联标识; EMT ( Egress Mapping Type ): 表示出端口映射类型
EMT为 0时: 表示 egress ring/backup id域填写的是出端口所在环标识; EMT为 1时: 表示 egress ring/backup id域填写的是出端口备份关联标识; Ingress ring/backup id域: 表示该域存放入端口所在环标识或入端口备份 关联标识;
Inlabel: 存放入标签值;
egress ring/backup id: 表示该域存放出端口所在环标识或出端口备份关联 标识;
Outlabel: 表示存放出标签值;
另外, 上述提供的一种标签映射信息 Label mapping TLV的格式示意图是 基于 LDP协议进行扩展实现的, 也可以通过其它协议进行扩展实现, 例如: 基 于 RS VP-TE协议进行扩展实现。
图 7是本发明实施例提供的一种建立标签交换路径 LSP的装置结构示意 图。
一种建立标签交换路径 LSP的装置位于节点 B的下游,所述节点 B与节点 A 相连, 所述节点 A位于所述节点 B的上游, 所述装置包括: LSP标签分配单元 702, 用于为所述节点 B分配 LSP标签;
第一接收单元 704, 用于接收所述节点 B的标签交换信息, 所述节点 B的标 签交换信息至少包括: 所述节点 B的入标签和所述节点 B的出标签; 其中所述 节点 B的入标签是所述节点 B为所述节点 A分配的 LSP标签, 所述节点 B的出标 签是所述装置为节点 B分配的所述 LSP标签;
第一生成单元 706, 用于根据所述节点 B的标签交换信息, 生成所述装置 的第一标签交换关系; 其中, 所述装置的第一标签交换关系至少包括: 所述 节点 B的入标签和所述节点 C的出标签,其中所述节点 C的出标签是节点 C的下 游节点为节点 C分配的 LSP标签。
第一生成单元具体用于, 所述装置生成所述装置的第二标签交换关系, 所述装置的第二标签关系至少包括: 所述装置的入标签和所述装置的出标签, 所述装置的入标签是所述装置为所述节点 B分配的 LSP标签, 所述装置的出标 签是所述装置的下游节点为所述装置分配的 LSP标签;
所述装置根据所述节点 B的标签交换信息和所述装置的第二标签交换关 系, 生成所述装置的第一标签交换关系。
所述第一生成单元生成所述装置的第一标签交换关系的具体过程请参见 方法实施例二以及实施例四的描述, 这里就不再赘述。
所述节点 B在多协议标签交换 MPLS环上时, 所述装置接收的所述节点 B 的标签交换信息还包括: 所述节点 B的端口所在环标识。
当所述标签交换信息中还包括所述环标识时,节点可以为不同环上的 LSP 分配相同的 LSP标签, 从而允许不同环的端口进行标签重用, 使得节点具有更 灵活的标签空间。
本发明实施例中通过所述装置的第一接收单元接收节点 B的标签交换信 息, 生成所述装置的第一标签交换关系, 当节点 B失效时, 所述装置能够根 据所述第一标签交换关系中的所述装置的入标签和所述装置的出标签, 识别 出节点 B未处理的报文, 使得报文能够继续转发。 因此, 节点 A不需要建立 链路保护回绕 LSP和节点保护回绕 LSP两条回绕路径。解决了当 LSP路径上 出现链路失效或者节点失效时, 环上不能提供足够的带宽, 导致丟包的问题, 节省了网络资源。 图 8是本发明实施例提供的另一种建立标签交换路径 LSP的装置结构示意 图。
所述装置与节点 F相连接, 节点 E位于所述节点 F的上游, 节点 H位于所述 节点 F的下游, 所述装置是所述节点 F的备份节点, 所述装置包括:
第二接收单元 802, 用于接收所述节点 F的标签交换信息, 所述节点 F的标 签交换信息至少包括: 所述节点 F的入标签和所述节点 F的出标签; 其中所述 节点 F的入标签是所述节点 F为所述节点 E分配的 LSP标签, 所述节点 F的出标 签是所述节点 H为所述节点 F分配的 LSP标签;
第二生成单元 804,用于根据所述节点 F的标签交换信息,生成所述装置的 第一标签交换关系, 其中, 所述装置的第一标签交换关系至少包括: 所 述节点 F的入标签和所述节点 F的出标签。
所述装置接收的所述节点 F的标签交换信息还包括: 端口备份关联标识。 本发明实施例中通过节点 G接收节点 F的标签交换信息, 生成节点 G的第 一标签交换关系, 当节点 F出现故障时, 节点 G作为节点 F的备份节点, 节点 G 根据所述第一标签交换关系, 将所述报文转发给所述节点 H, 解决了当 LSP路 径上出现链路失效或者节点失效时, 环上不能提供足够的带宽, 导致丟包的 问题, 节省了网络资源。 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可 读存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。
以上对本发明实施例所提供的一种建立标签交换路径 LSP的方法和装置 阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应 用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的 限制。

Claims

权利要求
1、 一种建立标签交换路径 LSP的方法, 其特征在于, 所述方法包括: 节 点 C与节点 B相连接, 节点 A位于所述节点 B的上游, 所述节点 C位于所述节点 B的下游;
所述节点 C为所述节点 B分配 LSP标签;
所述节点 C接收所述节点 B的标签交换信息, 所述节点 B的标签交换信息 包括: 所述节点 B的入标签和所述节点 B的出标签; 其中所述节点 B的入标签 是所述节点 B为所述节点 A分配的 LSP标签, 所述节点 B的出标签是所述节点 C 为所述节点 B分配的所述 LSP标签;
所述节点 C根据所述节点 B的标签交换信息,生成所述节点 C的第一标签交 换关系; 其中, 所述节点 C的第一标签交换关系包括: 所述节点 B的入标签和 所述节点 C的出标签,其中所述节点 C的出标签是节点 C的下游节点为节点 C分 配的 LSP标签。
2、 根据权利要求 1所述的方法, 其特征在于, 所述节点 C根据所述节点 B 的标签交换信息, 生成所述节点 C的第一标签交换关系具体包括:
所述节点 C生成所述节点 C的第二标签交换关系, 所述节点 C的第二标签 关系包括: 所述节点 C的入标签和所述节点 C的出标签, 所述节点 C的入标签 是所述节点 C为所述节点 B分配的 LSP标签, 所述节点 C的出标签是所述节点 C 的下游节点为所述节点 C分配的 LSP标签;
所述节点 C根据所述节点 B的标签交换信息和所述节点 C的第二标签交换 关系, 生成所述节点 C的第一标签交换关系。
3、 根据权利要求 1所述的方法, 其特征在于, 所述节点 B在多协议标签交 换 MPLS环上, 所述节点 C接收的所述节点 B的标签交换信息还包括: 所述节 点 B的端口所在环标识。
4、 一种建立标签交换路径 LSP的方法, 其特征在于, 所述方法包括: 节 点 G与节点 F相连接, 节点 E位于所述节点 F的上游, 节点 H位于所述节点 F的下 游, 节点 G是所述节点 F的备份节点;
所述节点 G接收所述节点 F的标签交换信息,所述节点 F的标签交换信息包 括: 所述节点 F的入标签和所述节点 F的出标签; 其中所述节点 F的入标签是所 述节点 F为所述节点 E分配的 LSP标签, 所述节点 F的出标签是所述节点 H为所 述节点 F分配的 LSP标签;
所述节点 G根据所述节点 F的标签交换信息,生成所述节点 G的第一标签交 换关系, 其中, 所述节点 G的第一标签交换关系包括: 所述节点 F的入标签和 所述节点 F的出标签。
5、 根据权利要求 4所述的建立方法, 其特征在于, 所述节点 G接收的所述 节点 F的标签交换信息还包括: 端口备份关联标识。
6、 一种建立标签交换路径 LSP的装置, 所述装置与节点 B相连, 所述装 置位于所述节点 B的下游, 所述节点 B与节点 A相连, 所述节点 A位于所述节点 B的上游, 其特征在于, 所述装置包括:
LSP标签分配单元, 用于为所述节点 B分配 LSP标签;
第一接收单元, 用于接收所述节点 B的标签交换信息, 所述节点 B的标签 交换信息至少包括: 所述节点 B的入标签和所述节点 B的出标签; 其中所述节 点 B的入标签是所述节点 B为所述节点 A分配的 LSP标签, 所述节点 B的出标签 是所述装置为节点 B分配的所述 LSP标签;
第一生成单元, 用于根据所述节点 B的标签交换信息, 生成所述装置的第 一标签交换关系; 其中, 所述装置的第一标签交换关系至少包括: 所述节点 B 的入标签和所述节点 C的出标签, 其中所述节点 C的出标签是节点 C的下游节 点为节点 C分配的 LSP标签。
7、 根据权利要求 6所述的装置, 其特征在于, 第一生成单元具体用于, 所述装置生成所述装置的第二标签交换关系, 所述装置的第二标签关系至少 包括: 所述装置的入标签和所述装置的出标签, 所述装置的入标签是所述装 置为所述节点 B分配的 LSP标签, 所述装置的出标签是所述装置的下游节点为 所述装置分配的 LSP标签;
所述装置根据所述节点 B的标签交换信息和所述装置的第二标签交换关 系, 生成所述装置的第一标签交换关系。
8、 根据权利要求 6所述的装置, 其特征在于, 所述装置接收的所述节点 B 的标签交换信息还包括: 所述节点 B的端口所在环标识。
9、 一种建立标签交换路径 LSP的装置, 其特征在于, 所述装置与节点 F 相连接, 节点 E位于所述节点 F的上游, 节点 H位于所述节点 F的下游, 所述装 置是所述节点 F的备份节点, 所述装置包括:
第二接收单元, 用于接收所述节点 F的标签交换信息, 所述节点 F的标签 交换信息至少包括: 所述节点 F的入标签和所述节点 F的出标签; 其中所述节 点 F的入标签是所述节点 F为所述节点 E分配的 LSP标签, 所述节点 F的出标签 是所述节点 H为所述节点 F分配的 LSP标签;
第二生成单元, 用于根据所述节点 F的标签交换信息, 生成所述装置的第 一标签交换关系, 其中, 所述装置的第一标签交换关系至少包括: 所述节点 F 的入标签和所述节点 F的出标签。
10、 根据权利要求 9所述的建立装置, 其特征在于, 所述装置接收的所述 节点 F的标签交换信息还包括: 端口备份关联标识。
PCT/CN2011/073423 2010-07-14 2011-04-28 一种建立标签交换路径的方法和装置 WO2011140923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010231838.3A CN102143043B (zh) 2010-07-14 2010-07-14 一种建立标签交换路径的方法和装置
CN201010231838.3 2010-07-14

Publications (1)

Publication Number Publication Date
WO2011140923A1 true WO2011140923A1 (zh) 2011-11-17

Family

ID=44410282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073423 WO2011140923A1 (zh) 2010-07-14 2011-04-28 一种建立标签交换路径的方法和装置

Country Status (2)

Country Link
CN (1) CN102143043B (zh)
WO (1) WO2011140923A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209088B (zh) * 2012-01-17 2016-12-28 华为技术有限公司 环网标签交换路径创建方法及相关设备和通信系统
WO2013189041A1 (zh) * 2012-06-20 2013-12-27 华为技术有限公司 一种恢复路径建立的方法、系统和节点设备
CN103795601B (zh) * 2012-11-04 2018-04-10 中国移动通信集团公司 一种实现环网Steering保护的方法及装置
CN103841017B (zh) * 2012-11-22 2017-07-14 华为技术有限公司 环网保护中标签自动分配的方法及设备
CN103916300B (zh) * 2012-12-31 2017-07-14 新华三技术有限公司 一种mpls环网保护方法和装置
CN104579952B (zh) * 2013-10-25 2017-12-15 新华三技术有限公司 一种抵御主隧道多点故障的保护隧道创建方法及设备
CN103595641B (zh) * 2013-11-06 2017-06-06 新华三技术有限公司 一种标签分发协议与内部网关协议同步的装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812367A (zh) * 2005-01-29 2006-08-02 华为技术有限公司 一种多协议标签交换网络的数据传输方法及系统
CN101552715A (zh) * 2008-03-31 2009-10-07 华为技术有限公司 一种建立备份标签交换路径的方法及节点和系统
CN101610214A (zh) * 2009-07-17 2009-12-23 杭州华三通信技术有限公司 在多协议标签交换网络中实现可靠传输的方法及路由器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812367A (zh) * 2005-01-29 2006-08-02 华为技术有限公司 一种多协议标签交换网络的数据传输方法及系统
CN101552715A (zh) * 2008-03-31 2009-10-07 华为技术有限公司 一种建立备份标签交换路径的方法及节点和系统
CN101610214A (zh) * 2009-07-17 2009-12-23 杭州华三通信技术有限公司 在多协议标签交换网络中实现可靠传输的方法及路由器

Also Published As

Publication number Publication date
CN102143043A (zh) 2011-08-03
CN102143043B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN105245452B (zh) 多协议标签交换流量工程隧道建立方法及设备
ES2363410T3 (es) Método, dispositivo y sistema para la conmutación de tráfico en ingeniería de tráfico de conmutación multiprotocolo por etiqueta.
JP4729119B2 (ja) ラベルスイッチングネットワークにおける通信装置
JP5209116B2 (ja) パケット交換網における擬似ワイヤの確立
CN101710877B (zh) 基于伪线的业务流量处理方法、设备和系统
WO2019120042A1 (zh) 一种网络中传输报文的方法和节点
US8259564B1 (en) Egress protection for label switched paths
WO2011140923A1 (zh) 一种建立标签交换路径的方法和装置
CN106487675A (zh) 用于evpn中具有链路故障时的bum流量的出口保护
US9246838B1 (en) Label switched path setup using fast reroute bypass tunnel
WO2006007769A1 (fr) Reflecteur d'etiquette de pseudo-circuit, appareil de peripherie, reseau prive virtuel a deux couches, et procede de fourniture d'un service de pseudo-circuit
WO2012028029A1 (zh) 一种切换方法及系统
WO2012079375A1 (zh) 虚拟专用网络的链路保护方法和系统
EP2186270A1 (en) Forwarding data in a data communications network
WO2011076029A1 (zh) 一种实现快速重路由的方法及装置
WO2011060667A1 (zh) 一种虚拟专用局域网络中链路保护的方法及设备
WO2006079292A1 (fr) Procede pour la creation d'un trajet pour l'etiquette retour dans un systeme de commutation d'etiquettes multiprotocole
WO2012130034A1 (zh) 一种vpls快速重路由方法和设备
JP6027688B2 (ja) リングネットワークプロテクションにおけるラベル自動割当てのための方法及び装置
WO2012016458A1 (zh) 用于二层虚拟专用网络的数据传输方法和装置
CA2762924A1 (en) Method, apparatus and system for two-node cluster hot backup
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
CN111740907A (zh) 一种报文传输方法、装置、设备及机器可读存储介质
WO2012142888A1 (zh) 基于多协议标签交换网络的隧道组保护实现方法及装置
WO2013040930A1 (zh) 一种组播标签交换路径的中间节点保护方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780144

Country of ref document: EP

Kind code of ref document: A1