WO2011140871A1 - 一种实现业务数据传输的方法和装置 - Google Patents

一种实现业务数据传输的方法和装置 Download PDF

Info

Publication number
WO2011140871A1
WO2011140871A1 PCT/CN2011/072496 CN2011072496W WO2011140871A1 WO 2011140871 A1 WO2011140871 A1 WO 2011140871A1 CN 2011072496 W CN2011072496 W CN 2011072496W WO 2011140871 A1 WO2011140871 A1 WO 2011140871A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbsize
service data
tbs
calculated
level
Prior art date
Application number
PCT/CN2011/072496
Other languages
English (en)
French (fr)
Inventor
刘文豪
王衍文
录显明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011140871A1 publication Critical patent/WO2011140871A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for implementing service data transmission. Background technique
  • LTE Long Term Evolution
  • type 2 The Long Term Evolution (LTE) system's frame structure type 2 (type 2) is suitable for time division duplex (TDD) transmission.
  • TDD time division duplex
  • each special subframe consists of three special time slots: Frequency slot (DwPTS), uplink pilot slot (UpPTS), guard interval (GP).
  • DwPTS Frequency slot
  • UpPTS uplink pilot slot
  • GP guard interval
  • DwPTS is used for downlink transmission
  • UpPTS UpPTS is used for uplink transmission
  • the total length of three special time slots of special subframe is 1 millisecond.
  • the number of symbols used for the downlink may be three, nine, ten, eleven, and twelve, and the special subframe is configured as a special subframe of 0 or 5.
  • the number of OFDM symbols is 3.
  • the number of symbols used by the special subframe for downlink Orthogonal Frequency Division Multiplexing is 3 (when the normal CP is used, the special subframe is configured as 0 and 5; when the behavior is extended CP, the special subframe is configured as 0. Or 4) is not used to transmit the Physical Downlink Shared Channel (PDSCH).
  • the bandwidth (BW) is less than or equal to 10 resource blocks (RBs)
  • the value of the Control Format Indicator (CFI) in the TDD transmission mode can be 1-2; when the BW is greater than 10
  • the value of CFI is fixed to 2 when RB is used.
  • the third OFDM symbol of the special time slot transmits a synchronization signal, and the synchronization signal occupies the frequency domain resources of 6 RBs.
  • the CFI values of the special subframes in the LTE TDD duplex mode in the 3GPP protocol are as follows:
  • Table 1 shows that when the special subframe configuration is 0 or 5, the number of OFDM symbols used by the downlink special subframe to transmit the physical downlink control channel (PDCCH) is up to two, so there must be one or two OFDM. The symbol is idle.
  • the main object of the present invention is to provide a method and apparatus for implementing service data transmission, which can ensure spectrum utilization when a special subframe configuration is 0 or 5, and avoid waste of resources as much as possible.
  • a method for implementing service data transmission comprising:
  • the process of determining the TBsize includes:
  • the number of REs that can be used for transmitting service data is calculated, and TBsize is calculated according to the calculated number of REs and the current I TBS level.
  • the parameters are configured as:
  • Orthogonal Frequency Division Multiplexing used to transmit the physical downlink control channel PDCCH
  • the number of OFDM symbols is 1, the bandwidth is 20 MHz, and the number of transmit antenna ports is 4.
  • the process of determining the TBsize includes:
  • the parameters are configured as:
  • the number of OFDM symbols used to transmit the PDCCH is 1, the bandwidth is 5 MHz, and the number of transmit antenna ports is 2.
  • the process of determining the TBsize includes:
  • Configuration parameters for different conditions of Iras level corresponding to the level calculated for each Iras TBsize; TBsize averaged for all I TBS at each level calculated to give at each level of the I TBS) ⁇ corresponding TBsize.
  • the parameters are configured as:
  • the number of OFDM symbols used to transmit the PDCCH is 2, the bandwidth is 10 MHz, and the number of transmitting antenna ports is 2.
  • Whether the TBsize is available is determined by judgment, and the determining method is:
  • the method further includes: applying a special subframe in the current I TBS level to the user equipment UE to send the service data, and indicating the RB index of the service data on the special subframe;
  • the special subframe exists in the time division duplex TDD duplex mode.
  • An apparatus for implementing service data transmission comprising a TBsize determining unit and an availability decision unit;
  • the TBsize determining unit is configured to determine TBsize according to a number of REs that can be used for transmitting service data and a code rate corresponding to each I TBS level, and notify the determined decision unit of the TBsize;
  • the availability decision unit is configured to determine whether the received TBsize is available at the current I TBS level, and determine a decision to apply the special subframe to deliver the service data when the judgment result is available: Apply the current I TBS level to correspond The TBsize delivers business data.
  • the TBsize determining unit includes a RE number calculating unit and a TBsize calculating unit.
  • the RE number calculating unit is configured to calculate a number of REs that can be used for transmitting service data, and notify the calculated number of REs to the TBsize calculation unit;
  • the TBsize calculation unit is configured to determine TBsize according to a code rate corresponding to the I TBS level and the number of received REs, and then send the determined TBsize to the availability decision unit.
  • the availability decision unit is further configured to notify the communication unit of the determined decision
  • the communication unit is configured to: according to the received decision, apply a special subframe in a current I TBS level to deliver service data, and indicate an RB index where the service data is located;
  • the special subframe exists in the TDD duplex mode.
  • the availability decision unit is further configured to: when it is determined that the TBsize is unavailable, determine that the service data is not sent by using the special subframe.
  • the method and the device of the invention can ensure that the special subframe configuration is increased to 0 or 5 Spectrum utilization, try to avoid waste of resources.
  • FIG. 1 is a schematic diagram of a position of a synchronization signal in an LTE TDD duplex mode
  • FIG. 3 is a flowchart of implementing service data transmission according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a process for implementing service data transmission according to the present invention.
  • FIG. 6 is a diagram of an apparatus for implementing a service data transmission according to an embodiment of the present invention. detailed description
  • the relationship between I TBS and MCS can be determined by Table 7.1.7.1-1 in Protocol 213.
  • the special subframe has only 3 OFDM symbols for downlink, the PDSCH is not transmitted to prevent the correct decoding of the data due to the high code rate.
  • the 213 TBsize table can be redesigned or reused in some way.
  • the number of OFDM symbols used by the special subframe for the PDCCH is 2
  • the number of remaining OFDM symbols is 1
  • the third OFDM symbol has a synchronization signal, and the specific signal position is as shown in FIG. 1.
  • the TBsize corresponding to various I TBS and code rate is as shown in Table 3:
  • the total digital rate of allocated ITBS index bits is TBsize
  • the third column in Table 3 is the code rate specified in the 3GPP protocol. Based on this code rate and the idle RE, the number of bits available for transmitting service data can be derived:
  • the number of unused REs , M is the modulation order, codeRate is the code rate, etc.
  • the " ⁇ " on the left side of the equation is a known amount after the CFI and antenna configuration are determined, and M and can be determined according to the I TBS index.
  • the C?C at the right end of the equation is the check code length attached to the original bit and is assumed to be a fixed value.
  • the total digital rate of allocated ITBS index bits is TBsize
  • FIG. 2 is a flowchart of implementing service data transmission according to Embodiment 1 of the present invention.
  • the CP type is normal CP
  • the number of OFDM symbols used to transmit the PDCCH is 1
  • the bandwidth is 20 MHz
  • the number of transmit antenna ports is 4.
  • the flow shown in Figure 2 includes the following steps:
  • Step 201 The base station calculates, according to the current parameter configuration, the number of REs that can be used to transmit the service data.
  • Step 202 The base station calculates TBsize according to the calculated number of REs and the current I TBS level.
  • Step 203 The base station determines whether the calculated TBsize is available. If yes, go to step 210; otherwise, go to step 220.
  • the specific determination method may be: determining whether the calculated TBsize is a negative number or less than a minimum value in the preset TBsize table, and if the calculated TBsize is a negative number or less than a minimum value in the preset TBsize table, determining the calculated TBsize is not available; otherwise, determine the calculated TBsize Available.
  • Step 210 The base station applies the special subframe in the current I TBS level to the user equipment (UE) to send the service data, and indicates the RB index where the service data is located in the DCI. End this process.
  • UE user equipment
  • Step 220 The base station determines that the service data is not sent by using the special subframe.
  • FIG. 3 is a flowchart of implementing service data transmission according to Embodiment 2 of the present invention.
  • the CP type is normal CP
  • the number of OFDM symbols used to transmit the PDCCH is 1
  • the bandwidth is 5 MHz
  • the number of transmit antenna ports is 2. The flow shown in Figure 3 includes the following steps:
  • Step 301 The base station calculates, according to the maximum cost, the number of REs that can be used to transmit the service data.
  • Step 302 The base station calculates TBsize according to the calculated number of REs and the current I TBS level.
  • Step 303 The base station determines whether the calculated TBsize is available. If yes, go to step 310; otherwise, go to step 320.
  • the specific determination method may be: determining whether the calculated TBsize is a negative number or less than a minimum value in the preset TBsize table, and if the calculated TBsize is a negative number or less than a minimum value in the preset TBsize table, determining the calculated TBsize is not available; otherwise, it is determined that the calculated TBsize is available.
  • Step 310 The base station applies the special subframe in the current I TBS level to deliver the service data to the UE, and indicates the RB index where the service data is located in the DCI. End this process.
  • Step 320 The base station determines that the service data is not sent by using the special subframe.
  • FIG. 4 is a flowchart of implementing service data transmission according to Embodiment 3 of the present invention.
  • the CP type is normal CP
  • the number of OFDM symbols used to transmit the PDCCH is 2
  • the bandwidth is 10 MHz
  • the number of transmit antenna ports is 2. The flow shown in Figure 4 includes the following steps:
  • Step 401 Calculate corresponding TBsizes for different parameter configuration conditions under the I TBS level.
  • the operation process of calculating TBsize for each I TBS level may have a similar principle to the corresponding operations in step 201 and step 202; only the calculated object is a different parameter configuration condition under the I TBS level, not just the current one. Parameter configuration, so it can be obtained under the I TBS level
  • Each TBsize corresponding to the parameter configuration condition may be obtained under the I TBS level.
  • Step 402 Average all TBsizes under each calculated I TBS level to obtain TBsize corresponding to each I TBS level.
  • Step 403 The base station determines whether the calculated TBsize is available. If yes, the process proceeds to step 410; otherwise, the process proceeds to step 420.
  • the specific determination method may be: determining whether the calculated TBsize is a negative number or less than a minimum value in the preset TBsize table, and if the calculated TBsize is a negative number or less than a minimum value in the preset TBsize table, determining the calculated TBsize is not available; otherwise, it is determined that the calculated TBsize is available.
  • Step 410 The base station applies the special subframe in the current I TBS level to deliver the service data to the UE, and indicates the RB index where the service data is located in the DCI. End this process.
  • the base station may select an available TBsize I TBS corresponding level, and the level I TBS I TBS as the current level for communication, then the application specific sub-level current frame I TBS UE delivers Business data.
  • Step 420 The base station determines that the service data is not sent by using the special subframe.
  • FIG. 5 is a schematic flowchart of implementing service data transmission according to the present invention, where the process includes the following steps:
  • Step 510 Determine TBsize according to the number of REs available for transmitting service data and the I TBS level.
  • Step 520 When the determined TBsize is available at the current I TBS level, determine that the TBsize corresponding service data of the current I TBS level is applied.
  • FIG. 6 is a diagram of a service data transmission apparatus according to an embodiment of the present invention, where the apparatus includes a connected TBsize determining unit, an availability decision unit, and a communication unit; wherein, the TBsize determining unit It includes a connected RE number calculation unit and a TBsize calculation unit.
  • the RE number calculation unit can calculate the number of REs that can be used to transmit the service data, and notify the calculated number of REs to the TBsize calculation unit; and the TBsize calculation unit according to the I TBS level and the number of REs received. Determine TBsize and send the determined TBsize to the availability decision unit.
  • the availability decision unit can determine whether the received TBsize is available, and determine the decision to apply the special subframe to deliver the service data according to the judgment result, for example, when the TBsize is available, determine that the special subframe under the current I TBS level is applied to the UE.
  • the service data is sent, and the RB index of the service data is indicated in the DCI.
  • the availability decision unit can further notify the communication unit of the decision to deliver the service data, and the communication unit performs corresponding communication processing according to the received decision, such as: when the TBsize is available, applying the special under the current I TBS level.
  • the sub-frame sends the service data to the UE, and the RB index of the service data is indicated in the DCI. When the TBsize is unavailable, the service data is not sent by using the special subframe.
  • the TBsize determining unit determines the TBsize.
  • the operations that can be implemented by the units shown in FIG. 6 are already in the foregoing process. The detailed description is not repeated here.
  • the technology of the service data transmission of the present invention can ensure the spectrum utilization when the special subframe configuration is 0 or 5, and the resource waste is effectively avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种实现业务数据传输的方法和装置,均可根据可用于传输业务数据的资源元素个数以及不同ITBS等级对应的码率确定传输块大小;当所确定的传输块大小在当前的ITBS等级下可用时,确定应用当前的ITBS等级下对应的传输块大小下发业务数据。本发明方法和装置,能够保证在特殊子帧配置为0或5时提高频谱利用率,尽量避免资源浪费。

Description

一种实现业务数据传输的方法和装置 技术领域
本发明涉及通信领域, 具体涉及一种实现业务数据传输的方法和装置。 背景技术
长期演进( Long Term Evolution , LTE ) 系统的帧结构类型 2 ( type 2 ) 适用于时分双工( TDD )传输。 type2的每个无线帧中会有 1或 2个特殊子 帧 ( special subframe ), 根据 3GPP 211协议第 4.2节关于特殊子帧的描述, 每个特殊子帧由三个特殊时隙组成: 下行导频时隙(DwPTS )、 上行导频时 隙(UpPTS )、 保护间隔(GP )。 其中, DwPTS用于下行传输, UpPTS用于 上行传输, 特殊子帧的三个特殊时隙的总长度为 1毫秒。
在进行普通循环前缀( normal CP, normal Cyclic Prefix )配置时, 用于 下行的符号数可以为 3、 9、 10、 11、 12五种情况, 其中特殊子帧配置为 0 或 5的特殊子帧的 OFDM符号数为 3。
目前, 特殊子帧用于下行的正交频分复用 (OFDM )符号数为 3 (下行 为 normal CP时, 特殊子帧配置为 0和 5; 下行为 extended CP时, 特殊子 帧配置为 0或 4 ) 时不用于传输物理下行共享信道(PDSCH )。 当传输带宽 ( Bandwidth, BW )小于等于 10个资源块( Resource Block, RB )时, TDD 传输模式下控制格式指示器( Control Format Indicator, CFI )的取值可以为 1-2; 当 BW大于 10个 RB时 CFI的取值固定为 2; 当带宽小于等于 10个 RB时, 特殊时隙的第三个 OFDM符号会传输同步信号, 同步信号要占据 6 个 RB的频域资源。
当带宽等于 10个 RB时, 仅浪费了 48个资源元素( Resource Element, RE )。 但当带宽比较大的时候资源的浪费比较严重。 以 20MHz 带宽、 CFI 等于 1、 特殊子帧配置为 0 时为例, 一个特殊子帧中浪费的 RE 个数为 1200*2-72=2328。 另外, LTE-A通过载波聚合可以提供更大的带宽, 如果 其中的闲置资源不加以利用则会导致更大的浪费。
上述的浪费情况可以通过表 1得到明确:
3GPP协议中关于 LTE TDD双工模式下特殊子帧的 CFI取值如下表所
Figure imgf000004_0001
表 1 由此表可知, 特殊子帧配置为 0或 5时, 下行特殊子帧用于传输物理 下行控制信道( PDCCH )的 OFDM符号数最多为 2个, 这样必然会有 1个 或 2个 OFDM符号是闲置的。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现业务数据传输的方法 和装置, 保证在特殊子帧配置为 0或 5时能够提高频谱利用率, 尽量避免 资源浪费。
为达到上述目的, 本发明的技术方案是这样实现的:
一种实现业务数据传输的方法, 该方法包括:
根据可用于传输业务数据的资源元素 RE个数以及不同 ITBS等级对应的 码率确定传输块大小 TBsize;
当所确定的 TBsize在当前的 ITBS等级下可用时, 确定应用当前的 ITBS 等级下对应的 TBsize下发业务数据。 确定所述 TBsize的过程包括:
根据当前的参数配置,计算可用于传输业务数据的 RE个数,根据计算 出的 RE个数以及当前的 ITBS等级计算 TBsize。
所述参数配置为:
用于传输物理下行控制信道 PDCCH的正交频分复用 OFDM符号数为 1, 带宽为 20MHz, 发射天线端口数为 4。
确定所述 TBsize的过程包括:
根据最大开销计算可用于传输业务数据的 RE个数, 根据计算出的 RE 个数以及当前的 ITBS等级计算 TBsize。
所述参数配置为:
用于传输 PDCCH的 OFDM符号数为 1 , 带宽为 5MHz,发射天线端口 数为 2。
确定所述 TBsize的过程包括:
针对 Iras等级下的不同参数配置条件, 计算各 Iras等级对应的 TBsize; 针对计算得到的每个 ITBS等级下的所有 TBsize取平均值, 得到各 ITBS等级 下所) ^应的 TBsize。
所述参数配置为:
用于传输 PDCCH的 OFDM符号数为 2 , 带宽为 10MHz, 发射天线端 口数为 2。
所述 TBsize是否可用, 是通过判断实现的, 该判断方法为:
判断计算出的 TBsize是否为负数或小于预设的 TBsize表中的最小值, 如果计算出的 TBsize为负数或小于预设的 TBsize表中的最小值,确定计算 出的 TBsize不可用; 否则, 确定计算出的 TBsize可用。
进一步包括:应用当前的 ITBS等级下的特殊子帧为用户设备 UE下发业 务数据, 并在此特殊子帧上指示业务数据所在的 RB索引; 在时分双工 TDD双工模式下存在所述特殊子帧。
进一步包括:
判断所述 TBsize不可用, 确定不应用特殊子帧下发业务数据。
一种实现业务数据传输的装置, 该装置包括 TBsize确定单元、 可用性 决策单元; 其中,
所述 TBsize确定单元, 用于根据可用于传输业务数据的 RE个数以及 各 ITBS等级对应的码率确定 TBsize, 并将已确定的 TBsize通知给所述可用 性决策单元;
所述可用性决策单元, 用于判断收到的 TBsize在当前的 ITBS等级下是 否可用, 并在判断结果为可用时确定应用特殊子帧下发业务数据的决策: 应用当前的 ITBS等级下对应的 TBsize下发业务数据。
所述 TBsize确定单元包括 RE个数计算单元、 TBsize计算单元; 其中, 所述 RE个数计算单元, 用于计算可用于传输业务数据的 RE个数, 并 将计算出的 RE个数通知给所述 TBsize计算单元;
所述 TBsize计算单元, 用于根据 ITBS等级对应的码率以及收到的 RE 个数确定 TBsize, 再将已确定的 TBsize发送给所述可用性决策单元。
进一步包括通信单元;
所述可用性决策单元, 进一步用于将已确定的所述决策通知给所述通 信单元;
所述通信单元, 用于根据收到的所述决策, 应用当前的 ITBS等级下的 特殊子帧下发业务数据, 并指示业务数据所在的 RB索引;
在 TDD双工模式下存在所述特殊子帧。
所述可用性决策单元, 进一步用于在判断所述 TBsize不可用时, 确定 不应用特殊子帧下发业务数据。
可见, 本发明方法和装置, 能够保证在特殊子帧配置为 0或 5时提高 频谱利用率, 尽量避免资源浪费。 附图说明
图 1为 LTE TDD双工方式下同步信号的位置示意图;
图 2为本发明实施例一的实现业务数据传输流程图;
图 3为本发明实施例二的实现业务数据传输流程图;
图 4为本发明实施例三的实现业务数据传输流程图;
图 5为本发明实现业务数据传输的流程简图;
图 6为本发明一实施例的实现业务数据传输装置图。 具体实施方式
在实际应用中,可以通过 ITBS等级对应的码率来计算特殊子帧配置为 0 和 5时子帧的 TBsize, 由此可在这些特殊子帧上根据不同的 ITBS所对应的 TBsize进行业务数据的传输, 以充分利用现有下行传输资源。
3GPP 物理层协议 36.213 中给出了调制编码方案 (Modulation Code
Scheme, MCS )等级和 TBsize的对应关系。 由 ITBS和 ^ 即可确定 TBsize; 其中, 对应 TBsize表的列,可通过下式确定: NpRB =max{L -x0-75J' !}; 其中, RB是实际分配的 RB数量。由协议 213中的表 7.1.7.1-1可以确定 ITBS 与 MCS之间的关系。 当特殊子帧仅有 3个 OFDM符号用于下行时则不传 输 PDSCH, 以防止由于码率偏高而影响数据的正确解码。 但是可以重新设 计或通过某种方式重用 213的 TBsize表。
为了便于讨论, 下面以 normal CP、 普通下行子帧、 4天线端口、 CFI=3 为例统计不同 ITBS的码率, 具体如表 2所示: ITBS索引 码率的平均值 ITBS索引 码率的平均值
0 0.1217 14 0.6194
1 0.1595 15 0.6629
2 0.1961 16 0.4691
3 0.2538 17 0.5200
4 0.3111 18 0.5706
5 0.3817 19 0.6203
6 0.4614 20 0.6702
7 0.5296 21 0.7231
8 0.6062 22 0.7769
9 0.6837 23 0.8253
10 0.3802 24 0.8701
11 0.4364 25 0.9143
12 0.4938 26 1.0601
13 0.5564 表 2 天线端口数 =4、 CFI>1 ,并且 ITBS=26时所对应的 TBsize不可用, CFI=1 时码率的平均值为 0.9042。
当特殊子帧用于 PDCCH的 OFDM符号数为 2时,剩余的 OFDM符号 数为 1 , 第三个 OFDM符号上有同步信号, 具体的信号位置如图 1所示。
当资源分配不考虑同步信号所在的 RB 时, 各种 ITBS和码率所对应的 TBsize如表 3所示:
Figure imgf000008_0001
分 配 的 ITBS索引 比特总数 码率 TBsize
RB数
1 9 12*2 0.6837 16.4088-24
1 9 12*4 0.6837 32.8176-24
1 10 12*4 0.3802 18.2496-24
1 15 12*4 0.6629 31.8192-24
1 15 12*6 0.6629 47.7288-24
1 16 12*6 0.4691 33.7752-24
1 17 12*6 0.5200 37.4400-24
1 18 12*6 0.5706 41.0832-24
1 25 12*6 0.9143 65.8296-24
1 26 >0.9200
2 0 12*2*2 0.1217 5.8416-24
2 9 12*2*2 0.6837 32.8176-24
2 10 12*4*2 0.3802 36.4992-24
2 11 12*4*2 0.4364 41.8944-24
2 15 12*4*2 0.6194 59.4624-24
表 3 表 3中第 4列是 3GPP协议中所规定的码率, 根据这个码率和闲置的 RE即可推算出可用于传输业务数据的比特数:
nRErsv * M * codeRate = TBsize + lenCRC
上式中, 为闲置的 RE个数, M为调制阶数, codeRate为码率, 等 式左侧的"^ 在 CFI和天线配置确定以后是已知量, M和 可以根 据 ITBS索引确定, 等式右端的 C ?C是附加在原始比特的校验码长度并假 设为定值。
当特殊子帧用于 PDCCH的 OFDM符号数为 1时,剩余的 OFDM符号 数为 2 , ITBS和码率所对应的 TBsize如表 4所示:
Figure imgf000010_0001
分 配 的 ITBS索引 比特总数 码率 TBsize
RB数
2 25 24*2*6 0.9143 263.3184-24
2 26 24*2*6 0.9042 260.4096-24
3 0 24*3*2 0.1217 17.5248-24
3 3 24*3*2 0.2538 36.5472-24
3 4 24*3*2 0.3111 44.7984-24
3 25 24*3*6 0.9143 394.9776-24 表 4 依据以上的表 3、 表 4 (不局限于以上两表, 带宽、 天线配置可以有多 种取值 ) 可以根据不同策略计算出不同 ITBS所对应的 TBsize。
应用以上所述内容作为技术基础, 可以进行如图 2至图 4所示的操作 以实现业务数据传输。
参见图 2,图 2为本发明实施例一的实现业务数据传输流程图。图 2中, CP类型为 normal CP, 用于传输 PDCCH的 OFDM符号数为 1 , 带宽为 20MHz, 发射天线端口数为 4; 图 2所示流程包括以下步骤:
步骤 201 : 基站根据当前的参数配置计算可用于传输业务数据的 RE个 数。
步骤 202:基站根据计算出的 RE个数以及当前的 ITBS等级计算 TBsize。 步骤 203: 基站判断计算出的 TBsize是否可用, 如果可用, 进入步骤 210; 否则, 进入步骤 220。
具体的判断方法可以为: 判断计算出的 TBsize是否为负数或小于预设 的 TBsize表中的最小值,如果计算出的 TBsize为负数或小于预设的 TBsize 表中的最小值, 确定计算出的 TBsize不可用; 否则, 确定计算出的 TBsize 可用。
步骤 210: 基站应用当前的 ITBS等级下的特殊子帧为用户设备 ( UE ) 下发业务数据, 并在 DCI中指示业务数据所在的 RB索引。 结束本流程。
步骤 220: 基站确定不应用特殊子帧下发业务数据。
参见图 3 ,图 3为本发明实施例二的实现业务数据传输流程图。图 3中, CP类型为 normal CP,用于传输 PDCCH的 OFDM符号数为 1 ,带宽为 5MHz, 发射天线端口数为 2; 图 3所示流程包括以下步骤:
步骤 301 : 基站根据最大开销计算可用于传输业务数据的 RE个数。 步骤 302:基站根据计算出的 RE个数以及当前的 ITBS等级计算 TBsize。 步骤 303: 基站判断计算出的 TBsize是否可用, 如果可用, 进入步骤 310; 否则, 进入步骤 320。
具体的判断方法可以为: 判断计算出的 TBsize是否为负数或小于预设 的 TBsize表中的最小值,如果计算出的 TBsize为负数或小于预设的 TBsize 表中的最小值, 确定计算出的 TBsize不可用; 否则, 确定计算出的 TBsize 可用。
步骤 310:基站应用当前的 ITBS等级下的特殊子帧为 UE下发业务数据, 并在 DCI中指示业务数据所在的 RB索引。 结束本流程。
步骤 320: 基站确定不应用特殊子帧下发业务数据。
参见图 4,图 4为本发明实施例三的实现业务数据传输流程图。图 3中, CP类型为 normal CP, 用于传输 PDCCH的 OFDM符号数为 2, 带宽为 10MHz, 发射天线端口数为 2; 图 4所示流程包括以下步骤:
步骤 401: 针对 ITBS等级下的不同参数配置条件计算对应的各 TBsize。 本步骤中,针对每个 ITBS等级计算 TBsize的操作过程,可以与步骤 201、 步骤 202 中的相应操作具有相似原理; 只是计算的对象是 ITBS等级下的不 同参数配置条件而不只是当前的参数配置, 因此能够得出 ITBS等级下的不 同参数配置条件所对应的各 TBsize。
步骤 402: 针对计算得到的每个 ITBS等级下的所有 TBsize取平均值, 得到各 ITBS等级下所对应的 TBsize。
步骤 403: 基站判断计算出的 TBsize是否可用, 如果可用, 进入步骤 410; 否则, 进入步骤 420。
具体的判断方法可以为: 判断计算出的 TBsize是否为负数或小于预设 的 TBsize表中的最小值,如果计算出的 TBsize为负数或小于预设的 TBsize 表中的最小值, 确定计算出的 TBsize不可用; 否则, 确定计算出的 TBsize 可用。
步骤 410:基站应用当前的 ITBS等级下的特殊子帧为 UE下发业务数据, 并在 DCI中指示业务数据所在的 RB索引。 结束本流程。
具体而言, 基站可以选择一个可用的 TBsize所对应的 ITBS等级, 并将 该 ITBS等级作为当前用于通信的 ITBS等级,再应用当前的 ITBS等级下的特殊 子帧为 UE下发业务数据。
步骤 420: 基站确定不应用特殊子帧下发业务数据。
由以上各实施例可知,本发明实现业务数据传输的技术可以表示如图 5 所示。 参见图 5 , 图 5为本发明实现业务数据传输的流程简图, 该流程包括 以下步骤:
步骤 510: 根据可用于传输业务数据的 RE 个数以及 ITBS等级确定 TBsize。
步骤 520: 当所确定的 TBsize在当前的 ITBS等级下可用时, 确定应用 当前的 ITBS等级下对应的 TBsize下发业务数据。
为了保证上述操作能够顺利实现, 可以进行如图 6所示的设置。 参见 图 6, 图 6为本发明一实施例的实现业务数据传输装置图, 该装置包括相连 的 TBsize确定单元、 可用性决策单元、 通信单元; 其中, TBsize确定单元 包括相连的 RE个数计算单元、 TBsize计算单元。
具体应用时, RE个数计算单元能够计算可用于传输业务数据的 RE个 数, 并将计算出的 RE个数通知给 TBsize计算单元; 由 TBsize计算单元根 据 ITBS等级以及收到的 RE个数确定 TBsize, 再将已确定的 TBsize发送给 可用性决策单元。
可用性决策单元能够判断收到的 TBsize是否可用, 并根据判断结果确 定应用特殊子帧下发业务数据的决策, 如: 当 TBsize可用时, 确定应用当 前的 ITBS等级下的特殊子帧为 UE下发业务数据, 并可在 DCI中指示业务 数据所在的 RB索引; 当 TBsize不可用时, 确定不应用特殊子帧下发业务 数据。 可用性决策单元还能够进一步将下发业务数据的所述决策通知给通 信单元, 由通信单元根据收到的决策执行相应的通信处理,如: 获知 TBsize 可用时, 应用当前的 ITBS等级下的特殊子帧为 UE下发业务数据, 并可在 DCI中指示业务数据所在的 RB索引; 获知 TBsize不可用时, 不应用特殊 子帧下发业务数据。
需要说明的是, TBsize确定单元用以计算 TBsize的方式有多种, 如: 图 2至图 4中所述的相应方式; 并且, 图 6中所示各单元所能实现的操作 已在前述流程中详细描述, 在此不再赘述。
综上所述可见, 无论是方法还是装置, 本发明实现业务数据传输的技 术, 均可保证在特殊子帧配置为 0或 5时能够提高频谱利用率, 有效避免 了资源浪费。
以上所述, 仅为本发明的较佳实施例而已, 实际系统参数的配置有多 种组合, 实施例中列举了其中的一部分, 并非用于限定本发明的保护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现业务数据传输的方法, 其特征在于, 该方法包括: 根据可用于传输业务数据的资源元素 RE个数以及不同 ITBS等级对应的 码率确定传输块大小 TBsize;
当所确定的 TBsize在当前的 ITBS等级下可用时, 确定应用当前的 ITBS 等级下对应的 TBsize下发业务数据。
2、根据权利要求 1所述的方法, 其特征在于, 确定所述 TBsize的过程 包括:
根据当前的参数配置,计算可用于传输业务数据的 RE个数,根据计算 出的 RE个数以及当前的 ITBS等级计算 TBsize。
3、 根据权利要求 2所述的方法, 其特征在于, 所述参数配置为: 用于传输物理下行控制信道 PDCCH的正交频分复用 OFDM符号数为 1 , 带宽为 20MHz, 发射天线端口数为 4。
4、根据权利要求 1所述的方法, 其特征在于, 确定所述 TBsize的过程 包括:
根据最大开销计算可用于传输业务数据的 RE个数, 根据计算出的 RE 个数以及当前的 ITBS等级计算 TBsize。
5、 根据权利要求 4所述的方法, 其特征在于, 所述参数配置为: 用于传输 PDCCH的 OFDM符号数为 1 , 带宽为 5MHz,发射天线端口 数为 2。
6、根据权利要求 1所述的方法, 其特征在于, 确定所述 TBsize的过程 包括:
针对 ITBS等级下的不同参数配置条件, 计算各 ITBS等级对应的 TBsize; 针对计算得到的每个 ITBS等级下的所有 TBsize取平均值, 得到各 ITBS等级 下所对应的 TBsize。
7、 根据权利要求 6所述的方法, 其特征在于, 所述参数配置为: 用于传输 PDCCH的 OFDM符号数为 2 , 带宽为 10MHz, 发射天线端 口数为 2。
8、 根据权利要求 1至 7任一项所述的方法, 其特征在于, 所述 TBsize 是否可用, 是通过判断实现的, 该判断方法为:
判断计算出的 TBsize是否为负数或小于预设的 TBsize表中的最小值, 如果计算出的 TBsize为负数或小于预设的 TBsize表中的最小值,确定计算 出的 TBsize不可用; 否则, 确定计算出的 TBsize可用。
9、 根据权利要求 8所述的方法, 其特征在于, 进一步包括: 应用当前 的 ITBS等级下的特殊子帧为用户设备 UE下发业务数据,并在此特殊子帧上 指示业务数据所在的 RB索引;
在时分双工 TDD双工模式下存在所述特殊子帧。
10、 根据权利要求 1至 7任一项所述的方法, 其特征在于, 进一步包 括:
判断所述 TBsize不可用, 确定不应用特殊子帧下发业务数据。
11、 一种实现业务数据传输的装置, 其特征在于, 该装置包括 TBsize 确定单元、 可用性决策单元; 其中,
所述 TBsize确定单元, 用于根据可用于传输业务数据的 RE个数以及 各 ITBS等级对应的码率确定 TBsize, 并将已确定的 TBsize通知给所述可用 性决策单元;
所述可用性决策单元, 用于判断收到的 TBsize在当前的 ITBS等级下是 否可用, 并在判断结果为可用时确定应用特殊子帧下发业务数据的决策: 应用当前的 ITBS等级下对应的 TBsize下发业务数据。
12、根据权利要求 11所述的装置, 其特征在于, 所述 TBsize确定单元 包括 RE个数计算单元、 TBsize计算单元; 其中, 所述 RE个数计算单元, 用于计算可用于传输业务数据的 RE个数, 并 将计算出的 RE个数通知给所述 TBsize计算单元;
所述 TBsize计算单元, 用于根据 ITBS等级对应的码率以及收到的 RE 个数确定 TBsize, 再将已确定的 TBsize发送给所述可用性决策单元。
13、 根据权利要求 11或 12所述的装置, 其特征在于, 进一步包括通 信单元;
所述可用性决策单元, 进一步用于将已确定的所述决策通知给所述通 信单元;
所述通信单元, 用于根据收到的所述决策, 应用当前的 ITBS等级下的 特殊子帧下发业务数据, 并指示业务数据所在的 RB索引;
在 TDD双工模式下存在所述特殊子帧。
14、根据权利要求 13所述的装置,其特征在于, 所述可用性决策单元, 进一步用于在判断所述 TBsize不可用时, 确定不应用特殊子帧下发业务数 据。
PCT/CN2011/072496 2010-05-12 2011-04-07 一种实现业务数据传输的方法和装置 WO2011140871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010172629.6A CN102244628B (zh) 2010-05-12 2010-05-12 一种实现业务数据传输的方法和装置
CN201010172629.6 2010-05-12

Publications (1)

Publication Number Publication Date
WO2011140871A1 true WO2011140871A1 (zh) 2011-11-17

Family

ID=44913905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072496 WO2011140871A1 (zh) 2010-05-12 2011-04-07 一种实现业务数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN102244628B (zh)
WO (1) WO2011140871A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448122B (zh) * 2011-12-30 2017-07-14 中兴通讯股份有限公司 一种确定子帧中传输块大小的方法和基站
CN105992343B (zh) * 2015-01-30 2020-05-26 电信科学技术研究院 一种信号发送方法、接收方法及装置
CN109152017B (zh) * 2017-06-16 2021-02-05 华为技术有限公司 一种传输块大小的确定方法和装置
WO2021093174A1 (en) * 2020-01-21 2021-05-20 Zte Corporation Method for determining transport block size
EP4179671A4 (en) * 2020-07-13 2024-05-22 Qualcomm Inc FRAME STRUCTURES FOR UPLINK CARRIER AGGREGATION OF TWO TIME DUPLEX CARRIER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060067229A1 (en) * 2004-09-29 2006-03-30 Nokia Corporation Transmitting data in a wireless network
WO2009099295A2 (en) * 2008-02-05 2009-08-13 Lg Electronics Inc. A method of determining a size of a data packet advantageous for transmitting and retransmitting the data packet
CN101651516A (zh) * 2008-08-13 2010-02-17 中兴通讯股份有限公司 编码调制方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060067229A1 (en) * 2004-09-29 2006-03-30 Nokia Corporation Transmitting data in a wireless network
WO2009099295A2 (en) * 2008-02-05 2009-08-13 Lg Electronics Inc. A method of determining a size of a data packet advantageous for transmitting and retransmitting the data packet
CN101651516A (zh) * 2008-08-13 2010-02-17 中兴通讯股份有限公司 编码调制方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETSI: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures", ETSI TS 136 213 V9.1.0: LTE, April 2010 (2010-04-01), pages 19 - 22, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/html-info/36213> [retrieved on 20110624] *

Also Published As

Publication number Publication date
CN102244628B (zh) 2014-11-05
CN102244628A (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
KR102105052B1 (ko) 전송 블록 크기를 결정하는 방법 및 무선 기기
EP3840274B1 (en) Signalling of frequency-domain resource assignment
US10154477B2 (en) Method and apparatus for transport block signaling in a wireless communication system
CN107371227B (zh) 控制上行链路信号传输功率的终端装置及其方法
CN111567006B (zh) 终端装置、基站装置以及通信方法
BR112021002874A2 (pt) método e dispositivos de comunicação v2x, de meio de armazenamento, e de sistema de chip
JP7075805B2 (ja) 端末装置、基地局装置、および、通信方法
WO2017024559A1 (zh) 数据传输的方法、终端设备、基站和通信系统
WO2013044771A1 (zh) 下行控制信息的传输方法和设备
CN112368960B (zh) 终端装置、基站装置以及通信方法
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
CN108540985B (zh) 一种nr系统中pdsch与pdcch资源共享的方法
WO2014146288A1 (zh) 信道质量指示的配置方法、调制编码方案配置方法和装置
WO2012155590A1 (zh) Pdcch自适应调整方法及装置
JP2022526707A (ja) ネットワークノード、ユーザ装置(ue)、及びネットワークノードによるueのスケジューリングのための関連する方法
WO2012044136A2 (ko) 복수의 서빙 셀을 지원하는 무선통신 시스템에서 파워 헤드룸 리포팅
WO2012151971A1 (zh) 具有跳频功能的资源位置分配方法及装置
WO2020031666A1 (ja) 端末装置、基地局装置、および、通信方法
CN111052831A (zh) 终端装置、基站装置、通信方法以及集成电路
WO2014000507A1 (zh) 信道资源指示方法及设备
WO2011140871A1 (zh) 一种实现业务数据传输的方法和装置
WO2017175476A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2016528842A (ja) サービスデータを送信するための方法、端末、および基地局
EP3242517B1 (en) Resource allocation method, base station and user equipment
WO2013029419A1 (zh) 一种配置分片载波后rbg大小和编号的确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780092

Country of ref document: EP

Kind code of ref document: A1