WO2011139011A1 - Defrosting device for the natural-convection evaporator of a low-temperature store - Google Patents

Defrosting device for the natural-convection evaporator of a low-temperature store Download PDF

Info

Publication number
WO2011139011A1
WO2011139011A1 PCT/KR2010/008426 KR2010008426W WO2011139011A1 WO 2011139011 A1 WO2011139011 A1 WO 2011139011A1 KR 2010008426 W KR2010008426 W KR 2010008426W WO 2011139011 A1 WO2011139011 A1 WO 2011139011A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
cooling pipe
electrode plate
frost
pipe
Prior art date
Application number
PCT/KR2010/008426
Other languages
French (fr)
Korean (ko)
Inventor
박광균
Original Assignee
주식회사 제일화인테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제일화인테크 filed Critical 주식회사 제일화인테크
Publication of WO2011139011A1 publication Critical patent/WO2011139011A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • F25B2700/111Sensor to detect if defrost is necessary using an emitter and receiver, e.g. sensing by emitting light or other radiation and receiving reflection by a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention is to remove the freezing of the natural convection evaporator for cold storage configured to increase the cooling efficiency in the warehouse by preventing the over-cooling of the evaporator which is exposed to the interior of the warehouse to supply cold air in natural convection in real time
  • the apparatus relates to a device, and more particularly, when frost is accumulated on the surface of the cooling pipe coupled to the evaporator, the received light amount is changed by the energization signal of the electrode sensor energized by the accumulated frost and frost accumulated on the surface of the cooling pipe.
  • the present invention relates to an ice freezing device for a natural convection evaporator for a low temperature warehouse.
  • the applicant of the present invention is a natural convection cooling device for low temperature warehouse supplying cold air in a natural convection type (utility model registration application: 2004-25038, dual patent application: 2005-32448, patent Application No. 2005-74783) has been filed and registered.
  • Figure 1 is a block diagram of a conventional cold storage natural convection type cooling apparatus
  • Figure 2 is a view showing an evaporator extracted from FIG.
  • the air conditioner 200 includes an outdoor unit 200a installed outside the warehouse, a cooling pipe 210 supplied with a refrigerant from the outdoor unit 200a, and It has a support frame 220 for supporting the cooling pipe 210, the evaporator 200b for condensing the refrigerant supplied to the cooling pipe 210 to provide cold air to the warehouse, and the condensate generated from the evaporator (200b) It consists of a water collecting tank (250) for collecting water.
  • the evaporator 200b is a heating pipe 230 for providing a high heat to prevent over-cooling of the cooling pipe 210 and a power supply 240 for supplying power to the heating pipe 230. It includes more.
  • the air conditioner 200 exposes the evaporator 200b to the inside of the warehouse, and circulates in a natural convection type by the temperature difference in the warehouse, thereby cooling the warehouse.
  • the evaporator 200b is defrosted (defrosted) by the heating pipe 230 which generates heat intermittently for a time set by the power supply unit 240.
  • only the operating time of the evaporator 200b is counted for the time set by the power supply 240 intermittently during the time that the evaporator 200b is operated, that is, the idle time when the evaporator 200b is not operated.
  • the frost may be defrosted by the heating pipe 230 that generates heat.
  • the heating pipe 230 is set to be operated for 5 minutes every 4 hours, the evaporator 200b is not operated at all times because the evaporator 200b is operated according to the set temperature inside the warehouse. Therefore, the heating pipe 230 is operated for 5 minutes to perform the defrosting operation when the set time is counted and accumulated only the operating time excluding the rest time by the internal temperature of the warehouse.
  • the heating pipe operating for a certain time cannot remove all of the frost excessively accumulated in the cooling pipe.
  • the present invention has been made in view of the above problems, and the first object of the present invention is to cool the frost on the surface of the cooling pipe of the evaporator so that the cooling efficiency due to overcooling can be prevented from being lowered.
  • the present invention provides a defrosting device for a natural convection evaporator for a low temperature warehouse that can detect and remove frost accumulated on the surface of a pipe in real time.
  • the third object of the present invention when frost is accumulated on the surface of the cooling pipe coupled to the evaporator, detects the amount of light received by the energization signal of the electrode sensor that is energized by the accumulated frost and frost accumulated on the surface of the cooling pipe. By determining whether the heating pipe is operated together with the detection signal of the photosensor, the frost accumulated on the surface of the refrigerant pipe can be completely removed, and the power consumption due to the malfunction of the heating pipe can be minimized.
  • An object of the present invention is to provide a defrosting device for a natural convection evaporator for a low temperature warehouse that can prevent overcooling in real time.
  • the first invention relates to a device for removing ice from a natural convection evaporator for a low temperature warehouse, and supports a cooling pipe and a cooling pipe supplied with a refrigerant from an outdoor unit.
  • the low temperature warehouse natural convection type air conditioner comprising a power supply unit for supplying power to the heating pipe, the first electrode plate and the second electrode plate spaced apart from each other to detect frost accumulated on the cooling pipe of the evaporator
  • An electrode sensor disposed in a short-circuit state with a gap between the cooling pipes and the light emitted from the light emitting unit;
  • a photo sensor which detects the presence or absence of frost by a change in the amount of received light when the surface is reflected and incident to the light receiving portion;
  • a controller configured to remove frost accumulated on the cooling pipe by determining whether the current for the heating pipe is applied when the energization of the electrode sensor and the change in the amount of received light of the photosensor are sensed together.
  • the electrode sensor in the first invention, is characterized in that it further comprises a gap adjusting means to control whether or not the electricity supply according to the amount of frost.
  • the gap adjusting means includes a linear motor including a linear guide and a slider which is moved along the linear guide, and the slider of the linear motor is coupled to the second electrode plate.
  • the second electrode plate is configured to be elevated relative to the first electrode plate.
  • the gap adjusting means is composed of a servo motor and a ball screw coupled to the servo motor, the ball screw is screw-coupled with the second electrode plate to the second electrode plate It is characterized in that the electrode plate is configured to be elevated.
  • the freezing removal device of the natural convection evaporator for low temperature warehouse According to the freezing removal device of the natural convection evaporator for low temperature warehouse according to the present invention, it is possible to adjust the defrosting according to the thickness of the frost accumulated on the cooling pipe has the effect of more efficient defrosting work.
  • FIG. 1 is a configuration diagram of a conventional low-temperature warehouse natural convection type air conditioner
  • FIG. 2 is a block diagram showing an evaporator extracted from FIG.
  • Figure 3 is a block diagram of a device for removing ice in a natural convection evaporator for a cold store according to the present invention
  • FIG. 4 is a configuration diagram showing the installation state of the electrode sensor and the photosensor of the present invention in the evaporator
  • FIG. 5 is a conceptual diagram of installation of an electrode sensor according to another embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing an operating state of the photosensor of the present invention
  • Figure 7 is a flow chart of the ice removal device of the natural convection evaporator for cold storage according to the present invention.
  • the conventional natural convection cooling device 200 to expose the evaporator 200b to the interior of the warehouse to supply cold air in a natural convection type
  • the cooling pipe 210 receives the refrigerant from the outdoor unit (200a) and the support frame for supporting the cooling pipe 210
  • a power supply unit 240 for supplying power to the heating pipe 230.
  • the divergence of the cold air of the evaporator 200b emits cold air through the refrigerant pipe 210 and the cooling fins 211 attached to the refrigerant pipe.
  • the natural convection cooling device 200 is a device for supplying cold air to the interior of the warehouse by the natural convection method by the temperature difference by exposing the evaporator (200b) to the interior of the warehouse.
  • Figure 3 is a block diagram of the ice removal device of the natural convection evaporator for low temperature warehouse according to the present invention
  • Figure 4 is a block diagram showing the installation state of the electrode sensor and the photo sensor of the present invention in the evaporator
  • Figure 5 6 is a conceptual diagram illustrating an installation of an electrode sensor according to another exemplary embodiment of the present invention
  • FIG. 6 is a conceptual diagram illustrating an operating state of a photosensor of the present invention.
  • the present invention has accumulated frost on the surface of the cooling pipe 210 of the evaporator 200b so that the cooling efficiency can be prevented from being lowered due to overcooling.
  • the present invention relates to a defrosting device 100 for a natural convection evaporator for a low temperature warehouse configured to detect frost and remove frost through a heating pipe.
  • the freezing device 100 of the natural convection evaporator for the cold store is largely composed of three parts, which includes an electrode sensor 110, a photo sensor 130, and a controller 140.
  • the electrode sensor 110 is short-circuited with the first electrode plate 111 and the second electrode plate 112 spaced apart from each other to detect frost accumulated on the surface of the cooling pipe 210 by energization. Are placed in a state.
  • frost is filled in the space between the first electrode plate 111 and the second electrode plate 112 to form the first electrode plate 111 and the second electrode plate 112.
  • it will be configured to detect the super-cooled cooling pipe (210).
  • the first electrode plate 111 may be configured to be grounded to the cooling pipe 210, and the second electrode plate 112 may be configured to be connected to a separate power source or a power source 240 to supply power. can do.
  • the electrode sensor 110 may further include a gap adjusting means 120 to control whether or not the current is supplied in accordance with the amount of frost accumulated on the surface of the cooling pipe (210).
  • the interval adjusting means 120 is for arbitrarily adjusting the amount of frost accumulated on the surface of the cooling pipe 210 according to the size of the scale of the evaporator (200b). This is because the diameter of the cooling pipe 210 also varies according to the size of the evaporator (200b), to arbitrarily adjust the operation of the heating pipe 210 according to the appropriate amount to increase the power efficiency.
  • the gap adjusting means 120 may be formed of a linear motor including a linear guide 121a and a slider 121b that is transported along the linear guide 121a to enable precise control.
  • the linear motor combines the slider 121b transferred along the linear guide 121a with the second electrode plate 112 so that the second electrode plate 112 can be lifted with respect to the first electrode plate 111.
  • the linear guide 121a may be fixed to the cooling fin 211 by attaching to the cooling fin 211 in one embodiment, and fixed to the bottom of the sump tank 250 in another embodiment.
  • the distance from the first electrode plate 111 can be adjusted through the second electrode plate 112 that moves up and down the separation space.
  • the heating pipe is operated according to the amount of frost filled in the separation space. It can be adjusted arbitrarily.
  • the electrode sensor 110 may be composed of a single first electrode plate 111 is disposed in a short circuit with the surface of the cooling pipe 210.
  • the first electrode plate 111 may be coupled to the slider 121b of the linear motor to be elevated on the surface of the cooling pipe 210.
  • the interval adjusting means 120 may be composed of a servo motor 122, a ball screw 122a coupled to the servo motor 122, as shown in FIG.
  • the ball screw 122a is configured to be screw-coupled with the second electrode plate 112 so that the second electrode plate 112 can be elevated along the ball screw 122a with respect to the first electrode plate 111.
  • the servo motor 122 may be fixed to the bracket 123 coupled to the cooling fin 211.
  • the above structure is configured to precisely control the rotation RPM along with the forward / reverse rotation of the servomotor 122, and as a result, can automatically adjust the amount of frost.
  • the electrode sensor 110 may be composed of a single first electrode plate 111 is disposed in a short circuit with the surface of the cooling pipe 210.
  • the first electrode plate 111 may be screw-coupled to the ball screw 122a coupled to the servomotor 122 so that the first electrode plate 111 may be elevated on the surface of the cooling pipe 210.
  • the gap adjusting means 120 may be composed of only the ball screw (122a) is coupled to the bearing 124a to the support rod 124 fixed to the cooling fins.
  • the above structure rotates the ball screw 122a with a tool such as a screwdriver so that the second electrode plate 112 screwed to the ball screw 122a is lifted, resulting in the first electrode plate 111 and the second electrode.
  • the spacing of the separation spaces formed between the plates 112 can be adjusted to manually adjust the amount of frost.
  • the first electrode plate 111 may be configured to be screwed to the ball screw 122a to be elevated on the surface of the cooling pipe 210.
  • the photosensor 130 may be fixed by inserting in the space between the cooling fin 211 and the cooling fin 211, the first electrode plate 111 and the second electrode plate 112 of the electrode sensor 110 When the foreign matter is inserted into the separation space is energized, to prevent the misjudgment of the control unit 140, as shown in Figure 6, the light emitted from the light emitting unit 131 is provided with a cooling pipe (evaporator 200b) When reflecting the surface of the 210 is incident to the light receiving unit 130, it detects the presence of frost by the change in the amount of light received.
  • the photosensor 130 may be configured to be electrically connected to the power supply 240 or a separate power or electrode sensor 110.
  • the controller 140 determines whether the current is applied to the heating pipe 230 when the energization of the electrode sensor 110 and the amount of change in the amount of received light of the photosensor 130 are sensed together, and is then stored in the cooling pipe 210. Functions to remove frost.
  • Figure 7 is a flow chart of the ice removal device of the natural convection evaporator for cold storage according to the present invention.
  • the photosensor when frost is accumulated on the surface of the cooling pipe, the photosensor first detects the presence of frost accumulated on the surface of the cooling pipe.
  • the energization signal is output to the controller.
  • control unit receives an energization signal according to the energization of the electrode sensor, and if the change detection signal of the photo sensor is not input, it is determined that the electrode sensor is energized by the foreign matter to determine whether the current to the heating pipe. It will not generate an acceptable output signal.
  • the output signal for approving the application of the current to the heating pipe is determined by determining that the accumulated amount of frost accumulated in the cooling pipe is lower than the reference value. It does not occur.
  • the frost is accumulated on the surface of the cooling pipe above the reference value, that is, overcooled. It is determined that the state is to provide an output signal for approving the application of the heating pipe current.
  • the electrode sensor When the frost is removed as the heating pipe is operated, the electrode sensor is not energized.
  • the controller determines that the frost is not completely removed and continues the output signal for approving the application of current to the heating pipe. To provide.
  • the controller determines that the frost is completely removed from the surface of the cooling pipe and does not generate an output signal for approving the application of the current to the heating pipe.
  • the control unit may stop the operation of the heating pipe only by the energization of the electrode sensor, which is preferable because the remaining frost, that is, the frost is not completely removed. Not.
  • the present invention compares the light receiving amount changed by the frost accumulated on the surface of the cooling pipe, as well as whether the electrode sensor is energized by the frost accumulated on the surface of the cooling pipe, and thereby generates heat generated by heating the cooling pipe.
  • the ice removing device 100 of the natural convection evaporator for a low temperature warehouse may be installed in the water collecting tank 250 to prevent freezing of the water collecting tank 250.

Abstract

The present invention relates to a defrosting device for the natural-convection evaporator of a low-temperature store. To this end, the natural-convection evaporator of a low-temperature store consists of an evaporator which has a cooling pipe for receiving a supply of coolant from external equipment and has a supporting frame for supporting the cooling pipe and which provides cooling air to a low-temperature store by throttling the coolant supplied to the cooling pipe, and consists of a water collecting tank which is coupled to the evaporator and collects condensed water, a heat-emitting pipe which is installed in the evaporator and ensures a high temperature while emitting heat, and a power source unit which supplies the heat-emitting pipe with a power source, and this natural-convection evaporator comprises: an electrode sensor in which a first electrode plate and a second electrode plate are disposed in a short-circuited state with a spacing interval in between so as to be able to detect frost building up on the cooling pipe of the evaporator; a photosensor which detects whether there is any frost by means of changes in the amount of light received when light emitted from a light-emitting unit is reflected on the surface of the cooling pipe provided in the evaporator and falls incident on a light-receiving unit; and a control unit which removes the frost that has built up on the cooling pipe by judging whether to apply a current to the heat-emitting pipe upon detecting both a current in the electrode sensor and a change in the amount of light received in the photosensor.

Description

저온창고용 자연대류식 증발기의 결빙제거장치Defrosting device of natural convection evaporator for low temperature warehouse
본 발명은 창고의 내부에 노출되어 자연대류식으로 냉기를 공급하는 증발기의 과(跨)냉각을 실시간으로 방지하여 창고 내부의 냉방 효율을 증대시킬 수 있도록 구성된 저온창고용 자연대류식 증발기의 결빙제거장치에 관한 것으로, 보다 상세하게는 증발기에 결합된 냉각파이프의 표면에 서리가 적상되면, 적상된 서리에 의해 통전되는 전극센서의 통전신호 및 냉각파이프의 표면에 적상되는 서리에 의해 변화되는 수광량을 감지하는 포토센서의 감지신호와 함께 냉각파이프를 가열하는 발열파이프의 가동 여부를 결정함으로써, 발열파이프의 오작동 방지에 따른 전력소비를 최소화할 수 있는 것은 물론, 증발기의 과(跨)냉각 현상을 실시간으로 방지할 수 있는 구조의 저온창고용 자연대류식 증발기의 결빙제거장치에 관한 것이다.The present invention is to remove the freezing of the natural convection evaporator for cold storage configured to increase the cooling efficiency in the warehouse by preventing the over-cooling of the evaporator which is exposed to the interior of the warehouse to supply cold air in natural convection in real time The apparatus relates to a device, and more particularly, when frost is accumulated on the surface of the cooling pipe coupled to the evaporator, the received light amount is changed by the energization signal of the electrode sensor energized by the accumulated frost and frost accumulated on the surface of the cooling pipe. By determining whether the heating pipe that heats the cooling pipe is operated together with the detection signal of the photosensor to sense, it is possible to minimize the power consumption due to the prevention of the malfunction of the heating pipe and to superheat the evaporator in real time. The present invention relates to an ice freezing device for a natural convection evaporator for a low temperature warehouse.
일반적으로, 본 발명의 출원인은 저온창고에서 자연대류식으로 냉기를 공급하는 저온창고용 자연대류식 냉방장치(실용신안등록출원:제 2004-25038호, 특허이중출원:제 2005-32448호, 특허출원: 제2005-74783호)를 출원하여 등록된 바 있다.In general, the applicant of the present invention is a natural convection cooling device for low temperature warehouse supplying cold air in a natural convection type (utility model registration application: 2004-25038, dual patent application: 2005-32448, patent Application No. 2005-74783) has been filed and registered.
첨부된 도 1은 종래의 저온창고용 자연대류식 냉방장치의 구성도이고, 도 2는 도 1에서 발췌된 증발기를 도시한 도면이다.Attached Figure 1 is a block diagram of a conventional cold storage natural convection type cooling apparatus, Figure 2 is a view showing an evaporator extracted from FIG.
도 1 및 도 2에 도시된 바와 같이, 종래기술에 의한 냉방장치(200)는, 창고의 외부에 설치되는 실외기(200a)와, 상기 실외기(200a)로부터 냉매를 공급받는 냉각파이프(210) 및 이 냉각파이프(210)를 지지하는 지지프레임(220)을 가지며, 냉각파이프(210)에 공급된 냉매를 교축시켜 창고에 냉기를 제공하는 증발기(200b)와, 상기 증발기(200b)에서 발생되는 응축수를 집수하는 집수조(250)로 구성된다.As shown in FIG. 1 and FIG. 2, the air conditioner 200 according to the related art includes an outdoor unit 200a installed outside the warehouse, a cooling pipe 210 supplied with a refrigerant from the outdoor unit 200a, and It has a support frame 220 for supporting the cooling pipe 210, the evaporator 200b for condensing the refrigerant supplied to the cooling pipe 210 to provide cold air to the warehouse, and the condensate generated from the evaporator (200b) It consists of a water collecting tank (250) for collecting water.
이 때 상기 증발기(200b)는 냉각파이프(210)의 과(跨)냉각을 방지하기 위해 고열을 제공하는 발열파이프(230)와, 상기 발열파이프(230)에 전원을 공급하는 전원부(240)를 더 포함한다.At this time, the evaporator 200b is a heating pipe 230 for providing a high heat to prevent over-cooling of the cooling pipe 210 and a power supply 240 for supplying power to the heating pipe 230. It includes more.
이러한 냉방장치(200)는 창고의 내부에 증발기(200b)를 노출시켜 창고 내의 온도차에 의해 자연대류식으로 순환되면서 창고를 냉각시키는 구조이다.The air conditioner 200 exposes the evaporator 200b to the inside of the warehouse, and circulates in a natural convection type by the temperature difference in the warehouse, thereby cooling the warehouse.
여기서 상기 증발기(200b)는 전원부(240)에 의해 설정된 시간 동안 간헐적으로 발열하는 발열파이프(230)에 의해 서리가 제거(제상)된다.Here, the evaporator 200b is defrosted (defrosted) by the heating pipe 230 which generates heat intermittently for a time set by the power supply unit 240.
또한 다른 일례로, 증발기(200b)가 가동되는 시간 즉, 증발기(200b)가 가동되지 않을 때의 휴지시간을 제외한 증발기(200b)의 가동 시간만을 카운터 하여 전원부(240)에 의해 설정된 시간 동안 간헐적으로 발열하는 발열파이프(230)에 의해 서리가 제상될 수 있게 구성될 수 있다.In another example, only the operating time of the evaporator 200b is counted for the time set by the power supply 240 intermittently during the time that the evaporator 200b is operated, that is, the idle time when the evaporator 200b is not operated. The frost may be defrosted by the heating pipe 230 that generates heat.
예를 들어, 4시간 간격마다 5분씩 발열파이프(230)가 가동될 수 있게 설정한 경우, 상기 증발기(200b)는 창고 내부의 설정 온도에 맞춰 가동되기 때문에 항시적으로 가동되지 않게 된다. 따라서 창고 내부 온도에 의해 휴지되는 시간을 제외한 가동시간만을 카운트하고 적산하여 설정된 4시간에 도달되면 상기 발열파이프(230)는 5분 동안 가동되어 제상작업을 실시할 수 있도록 한다.For example, when the heating pipe 230 is set to be operated for 5 minutes every 4 hours, the evaporator 200b is not operated at all times because the evaporator 200b is operated according to the set temperature inside the warehouse. Therefore, the heating pipe 230 is operated for 5 minutes to perform the defrosting operation when the set time is counted and accumulated only the operating time excluding the rest time by the internal temperature of the warehouse.
하지만 상기와 같은 구성들은 증발기(200b)의 과냉각(결빙)상태와 상관없이 설정된 시간에 따라 제상을 실시하므로, 냉각파이프(210)에 서리가 과도하게 적상되어도 이를 제때 제상 시킬 수 없으며, 전력소비도 많이 드는 문제도 있다.However, since the above configurations perform defrosting according to the set time irrespective of the supercooling (freezing) state of the evaporator 200b, even if frost is excessively dropped on the cooling pipe 210, it cannot be defrosted in time, and power consumption is also reduced. There are also a lot of problems.
이렇게 서리를 제때 제상시키지 못할 경우, 일정시간 작동하는 발열파이프는 냉각파이프에 과도하게 적상된 성에를 모두 제거할 수 없다.If the frost is not defrosted in time, the heating pipe operating for a certain time cannot remove all of the frost excessively accumulated in the cooling pipe.
따라서 증발기에는 다량의 서리가 그대로 잔존하게 되어, 냉방장치의 냉방효율을 저하시키는 문제점이 발생되었다.Therefore, a large amount of frost is left in the evaporator as it is, the problem of lowering the cooling efficiency of the air conditioner.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 제 1목적은, 증발기의 냉각파이프 표면에 서리가 적상되어 과(跨)냉각에 의한 냉방효율이 저하되는 것을 방지할 수 있도록 냉각파이프의 표면에 적상되는 서리를 실시간으로 감지하여 이를 제거할 수 있는 저온창고용 자연대류식 증발기의 결빙제거장치를 제공하는데 있다.The present invention has been made in view of the above problems, and the first object of the present invention is to cool the frost on the surface of the cooling pipe of the evaporator so that the cooling efficiency due to overcooling can be prevented from being lowered. The present invention provides a defrosting device for a natural convection evaporator for a low temperature warehouse that can detect and remove frost accumulated on the surface of a pipe in real time.
본 발명의 제 2목적은, 냉각파이프의 표면에 적상되는 서리의 적상량에 따른 제상여부를 조절할 수 있는 저온창고용 자연대류식 증발기의 결빙제거장치를 제공하는데 있다.It is a second object of the present invention to provide a defrosting apparatus for a natural convection evaporator for a low temperature warehouse, which can control whether or not defrosting is performed according to the amount of frost accumulated on the surface of the cooling pipe.
본 발명의 제 3목적은, 증발기에 결합된 냉각파이프의 표면에 서리가 적상되면, 적상된 서리에 의해 통전되는 전극센서의 통전신호 및 냉각파이프의 표면에 적상되는 서리에 의해 변화되는 수광량을 감지하는 포토센서의 감지신호와 함께 발열파이프의 가동 여부를 결정함으로써, 냉매파이프의 표면에 적상된 서리를 완전히 제거하고, 더불어 발열파이프의 오작동 방지에 따른 전력소비를 최소화할 수 있는 것은 물론, 증발기의 과(跨)냉각 현상을 실시간으로 방지할 수 있는 구조의 저온창고용 자연대류식 증발기의 결빙제거장치를 제공하는데 있다.The third object of the present invention, when frost is accumulated on the surface of the cooling pipe coupled to the evaporator, detects the amount of light received by the energization signal of the electrode sensor that is energized by the accumulated frost and frost accumulated on the surface of the cooling pipe. By determining whether the heating pipe is operated together with the detection signal of the photosensor, the frost accumulated on the surface of the refrigerant pipe can be completely removed, and the power consumption due to the malfunction of the heating pipe can be minimized. An object of the present invention is to provide a defrosting device for a natural convection evaporator for a low temperature warehouse that can prevent overcooling in real time.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 제 1발명은, 저온창고용 자연대류식 증발기의 결빙제거장치에 관한 것으로, 실외기로부터 냉매를 공급받는 냉각파이프 및 상기 냉각파이프를 지지하는 지지프레임을 가지며, 냉각파이프에 공급된 냉매를 교축시켜 저온창고에 냉기를 제공하는 증발기와, 증발기에 결합되어 응축수를 집수하는 집수조와, 상기 증발기에 설치되어 발열하면서 고열을 제공하는 발열파이프와, 상기 발열파이프에 전원을 공급하는 전원부로 구성되는 저온창고용 자연대류식 냉방기에 있어서, 상기 증발기의 냉각파이프에 적상되는 서리를 감지할 수 있도록 제 1전극판과, 제 2전극판이 상호 이격공간을 두고 단락된 상태로 배치되는 전극센서;와, 발광부로부터 발진된 광이 증발기에 구비된 냉각파이프의 표면을 반사하여 수광부로 입사될 때, 수광량의 변화에 의해 서리의 유무를 감지하는 포토센서; 및 상기 전극센서의 통전과, 포토센서의 수광량 변화가 함께 감지될 때 발열파이프에 대한 전류의 인가 여부를 판단하여 냉각파이프에 적상된 서리를 제거하는 제어부;를 포함하는 것을 특징으로 한다.According to a feature of the present invention for achieving the above object, the first invention relates to a device for removing ice from a natural convection evaporator for a low temperature warehouse, and supports a cooling pipe and a cooling pipe supplied with a refrigerant from an outdoor unit. An evaporator for condensing the refrigerant supplied to the cooling pipe to provide cold air to a low temperature warehouse, a sump tank coupled to the evaporator to collect condensed water, and an exothermic pipe installed in the evaporator to provide high heat while generating heat. In the low temperature warehouse natural convection type air conditioner comprising a power supply unit for supplying power to the heating pipe, the first electrode plate and the second electrode plate spaced apart from each other to detect frost accumulated on the cooling pipe of the evaporator An electrode sensor disposed in a short-circuit state with a gap between the cooling pipes and the light emitted from the light emitting unit; A photo sensor which detects the presence or absence of frost by a change in the amount of received light when the surface is reflected and incident to the light receiving portion; And a controller configured to remove frost accumulated on the cooling pipe by determining whether the current for the heating pipe is applied when the energization of the electrode sensor and the change in the amount of received light of the photosensor are sensed together.
제 2발명은, 제 1발명에서, 상기 전극센서는 서리의 적상량에 따라 통전 여부를 제어할 수 있도록 간격조절수단을 더 포함하는 것을 특징으로 한다.The second invention, in the first invention, the electrode sensor is characterized in that it further comprises a gap adjusting means to control whether or not the electricity supply according to the amount of frost.
제 3발명은, 제 2발명에서, 상기 간격조절수단은 리니어가이드와, 상기 리니어가이드를 따라 이송되는 슬라이더로 구성되는 리니어모터로 이루어지고, 상기 리니어모터의 슬라이더가 제 2전극판과 결합되어 상기 제 1전극판에 대해 제 2전극판이 승강될 수 있도록 구성되는 것을 특징으로 한다.According to a third aspect of the present invention, in the second invention, the gap adjusting means includes a linear motor including a linear guide and a slider which is moved along the linear guide, and the slider of the linear motor is coupled to the second electrode plate. The second electrode plate is configured to be elevated relative to the first electrode plate.
제 4발명은, 제 2발명에서, 상기 간격조절수단은 서보모터와, 서보모터에 결합된 볼스크류로 구성되고, 상기 볼스크류는 제 2전극판과 스크류 결합되어 제 1전극판에 대해 제 2전극판이 승강될 수 있도록 구성되는 것을 특징으로 한다.The fourth invention, in the second invention, the gap adjusting means is composed of a servo motor and a ball screw coupled to the servo motor, the ball screw is screw-coupled with the second electrode plate to the second electrode plate It is characterized in that the electrode plate is configured to be elevated.
본 발명에 따른 저온창고용 자연대류식 증발기의 결빙제거장치에 따르면, 냉각파이프에 적상되는 서리의 두께에 따른 제상여부를 조절할 수 있어 보다 효율적인 제상작업을 할 수 있는 효과가 있다.According to the freezing removal device of the natural convection evaporator for low temperature warehouse according to the present invention, it is possible to adjust the defrosting according to the thickness of the frost accumulated on the cooling pipe has the effect of more efficient defrosting work.
또한 전극센서에 서리 이외에 이물질이 삽입되어 통전 된다 하더라도, 포토센서의 감지신호와 함께 발열파이프의 가동 여부를 결정함으로써, 냉매파이프의 표면에 적상된 서리를 완전히 제거하고, 더불어 발열파이프의 오작동 방지에 따른 전력소비를 최소화할 수 있는 것은 물론, 증발기의 과(跨)냉각 현상을 실시간으로 방지할 수 있는 특징이 있다.In addition, even if foreign matter is inserted into the electrode sensor and is energized, by determining whether the heating pipe is operated together with the detection signal of the photosensor, the frost accumulated on the surface of the refrigerant pipe is completely removed, and the heating pipe is prevented from malfunctioning. In addition to minimizing the power consumption, there is a feature that can prevent the overcooling of the evaporator in real time.
또한 반대로 포토센서를 통해 냉각파이프의 표면에 서리가 감지된다 하더라도, 전극센서가 통전되지 않으면 서리의 적상량이 기준치 이하임을 판단하여 발열파이프를 가동시키지 않기 때문에 전력소비를 최소화할 수 있는 효과가 있다.On the contrary, even if frost is detected on the surface of the cooling pipe through the photosensor, if the electrode sensor is not energized, it is determined that the amount of frost is less than the reference value, so that the heating pipe is not operated, thereby minimizing power consumption.
도 1은 종래의 저온창고용 자연대류식 냉방기의 구성도,1 is a configuration diagram of a conventional low-temperature warehouse natural convection type air conditioner,
도 2는 도 1에서 발췌된 증발기를 도시한 구성도,2 is a block diagram showing an evaporator extracted from FIG.
도 3은 본 발명에 따른 저온창고용 자연대류식 증발기의 결빙제거장치의 블럭구성도,Figure 3 is a block diagram of a device for removing ice in a natural convection evaporator for a cold store according to the present invention,
도 4는 증발기에서 본 발명의 전극센서와, 포토센서의 설치상태를 나타낸 구성도,4 is a configuration diagram showing the installation state of the electrode sensor and the photosensor of the present invention in the evaporator,
도 5는 본 발명의 다른 실시예에 따른 전극센서의 설치 개념도, 5 is a conceptual diagram of installation of an electrode sensor according to another embodiment of the present invention;
도 6은 본 발명의 포토센서의 작동 상태를 나타낸 개념도,6 is a conceptual diagram showing an operating state of the photosensor of the present invention,
도 7은 본 발명에 따는 저온창고용 자연대류식 증발기의 결빙제거장치의 플로우차트이다.Figure 7 is a flow chart of the ice removal device of the natural convection evaporator for cold storage according to the present invention.
본 발명을 설명하기에 앞서, 도 1 및 도 2에 도시된 바와 같이, 종래의 자연대류식 냉방장치(200)는 창고의 내부에 증발기(200b)를 노출시켜 자연대류식으로 냉기를 공급하는 것으로, 이를 위해 창고의 외부에 설치되는 냉매를 응축 및 압축하여 공급하는 실외기(200a)와, 상기 실외기(200a)로부터 냉매를 공급받는 냉각파이프(210) 및 이 냉각파이프(210)를 지지하는 지지프레임(220)을 가지며, 냉각파이프(210)에 공급된 냉매를 교축시켜 저온창고에 냉기를 제공하는 증발기(200b)와, 상기 증발기(200b)에 설치되어 발열하면서 고열을 제공하는 발열파이프(230)와, 상기 발열파이프(230)에 전원을 공급하는 전원부(240)로 구성된다.Prior to explaining the present invention, as shown in Figures 1 and 2, the conventional natural convection cooling device 200 to expose the evaporator 200b to the interior of the warehouse to supply cold air in a natural convection type To this end, the outdoor unit (200a) for condensing and compressing the refrigerant installed in the outside of the warehouse for supplying, the cooling pipe 210 receives the refrigerant from the outdoor unit (200a) and the support frame for supporting the cooling pipe 210 An evaporator 200b having a 220 and condensing the refrigerant supplied to the cooling pipe 210 to provide cold air to the low temperature warehouse, and an exothermic pipe 230 installed in the evaporator 200b to provide high heat while generating heat. And a power supply unit 240 for supplying power to the heating pipe 230.
여기서 증발기(200b)의 냉기의 발산은 냉매파이프(210) 및 상기 냉매파이프에 부착된 냉각핀(211)을 통해 냉기를 발산한다.Here, the divergence of the cold air of the evaporator 200b emits cold air through the refrigerant pipe 210 and the cooling fins 211 attached to the refrigerant pipe.
이러한 상기 자연대류식 냉방장치(200)는 증발기(200b)를 창고의 내부에 노출시켜 온도차이에 의한 자연대류방식에 의해 창고의 내부에 냉기를 공급하는 장치이다.The natural convection cooling device 200 is a device for supplying cold air to the interior of the warehouse by the natural convection method by the temperature difference by exposing the evaporator (200b) to the interior of the warehouse.
이하에서는 본 발명에 따른 저온창고용 자연대류식 증발기의 결빙제거장치에 관하여 첨부되어진 도면과 함께 더불어 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings with respect to the ice removal device of the natural convection evaporator for low temperature warehouse according to the present invention will be described in detail.
도 3은 본 발명에 따른 저온창고용 자연대류식 증발기의 결빙제거장치의 블럭구성도이고, 도 4는 증발기에서 본 발명의 전극센서와, 포토센서의 설치상태를 나타낸 구성도이고, 도 5는 본 발명의 다른 실시예에 따른 전극센서의 설치 개념도이며, 도 6은 본 발명의 포토센서의 작동 상태를 나타낸 개념도이다.Figure 3 is a block diagram of the ice removal device of the natural convection evaporator for low temperature warehouse according to the present invention, Figure 4 is a block diagram showing the installation state of the electrode sensor and the photo sensor of the present invention in the evaporator, Figure 5 6 is a conceptual diagram illustrating an installation of an electrode sensor according to another exemplary embodiment of the present invention, and FIG. 6 is a conceptual diagram illustrating an operating state of a photosensor of the present invention.
도 3 내지 도 6과 같이, 본 발명은 증발기(200b)의 냉각파이프(210) 표면에 서리가 적상되어 과(跨)냉각에 의해 냉방효율이 저하되는 것을 방지할 수 있도록 냉각파이프의 표면에 적상되는 서리를 감지하여 발열파이프를 통해 서리를 제거(제상)할 수 있도록 구성된 저온창고용 자연대류식 증발기의 결빙제거장치(100)에 관한 것이다.As shown in FIGS. 3 to 6, the present invention has accumulated frost on the surface of the cooling pipe 210 of the evaporator 200b so that the cooling efficiency can be prevented from being lowered due to overcooling. The present invention relates to a defrosting device 100 for a natural convection evaporator for a low temperature warehouse configured to detect frost and remove frost through a heating pipe.
상기 저온창고용 자연대류식 증발기의 결빙제거장치(100)는 크게 3부분으로 구성되는데, 이는 전극센서(110)와, 포토센서(130) 및 제어부(140)를 포함하여 구성된다.The freezing device 100 of the natural convection evaporator for the cold store is largely composed of three parts, which includes an electrode sensor 110, a photo sensor 130, and a controller 140.
여기서 상기 전극센서(110)는 통전에 의해 냉각파이프(210) 표면에 적상되는 서리를 감지할 수 있도록 제 1전극판(111)과, 제 2전극판(112)이 상호 이격공간을 두고 단락된 상태로 배치된다.Here, the electrode sensor 110 is short-circuited with the first electrode plate 111 and the second electrode plate 112 spaced apart from each other to detect frost accumulated on the surface of the cooling pipe 210 by energization. Are placed in a state.
이러한 구조의 전극센서(110)는 제 1전극판(111)과, 제 2전극판(112)의 이격공간에 서리가 충진되어 제 1전극판(111)과, 제 2전극판(112)을 통해 전기가 통전되면, 과(跨)냉각된 냉각파이프(210)를 감지할 수 있도록 구성된 것이다.In the electrode sensor 110 having the above-described structure, frost is filled in the space between the first electrode plate 111 and the second electrode plate 112 to form the first electrode plate 111 and the second electrode plate 112. When electricity is supplied through, it will be configured to detect the super-cooled cooling pipe (210).
이 때 제 1전극판(111)은 냉각파이프(210)에 접지시켜 구성할 수 있으며, 상기 제 2전극판(112)은 별도의 전원 또는 전원부(240)에 연결시켜 전원이 공급될 수 있도록 구성할 수 있다. In this case, the first electrode plate 111 may be configured to be grounded to the cooling pipe 210, and the second electrode plate 112 may be configured to be connected to a separate power source or a power source 240 to supply power. can do.
아울러 상기 전극센서(110)는 냉각파이프(210)의 표면에 적상되는 서리의 적상량에 따라 통전 여부가 제어될 수 있도록 간격조절수단(120)을 더 포함할 수 있다.In addition, the electrode sensor 110 may further include a gap adjusting means 120 to control whether or not the current is supplied in accordance with the amount of frost accumulated on the surface of the cooling pipe (210).
여기서 간격조절수단(120)은 증발기(200b)의 규모의 크기에 따라 냉각파이프(210)의 표면에 적상되는 서리의 적상량을 임의로 조절하기 위한 것이다. 이는 증발기(200b)의 규모의 크기에 따라 냉각파이프(210)의 직경도 달라지는 바, 적상량에 따른 발열파이프(210)의 가동여부를 임의로 조절하여 전력효율을 증대시키기 위한 것이다.Here, the interval adjusting means 120 is for arbitrarily adjusting the amount of frost accumulated on the surface of the cooling pipe 210 according to the size of the scale of the evaporator (200b). This is because the diameter of the cooling pipe 210 also varies according to the size of the evaporator (200b), to arbitrarily adjust the operation of the heating pipe 210 according to the appropriate amount to increase the power efficiency.
이를 위해 상기 간격조절수단(120)은 정밀 제어가 가능하도록 리니어가이드(121a)와, 상기 리니어가이드(121a)를 따라 이송되는 슬라이더(121b)로 구성된 리니어모터(linear motor)로 이루어질 수 있다.To this end, the gap adjusting means 120 may be formed of a linear motor including a linear guide 121a and a slider 121b that is transported along the linear guide 121a to enable precise control.
여기서 리니어모터는 리니어가이드(121a)를 따라 이송되는 슬라이더(121b)를 제 2전극판(112)과 결합시켜 상기 제 1전극판(111)에 대해 제 2전극판(112)이 승강될 수 있도록 한 구성이다. 상기에서 리니어가이드(121a)는 실시예로 냉각핀(211)에 부착시켜 고정시킬 수 있으며, 다른 실시예로 집수조(250)의 바닥에 고정시켜 구성할 있다.In this case, the linear motor combines the slider 121b transferred along the linear guide 121a with the second electrode plate 112 so that the second electrode plate 112 can be lifted with respect to the first electrode plate 111. One configuration. In the above, the linear guide 121a may be fixed to the cooling fin 211 by attaching to the cooling fin 211 in one embodiment, and fixed to the bottom of the sump tank 250 in another embodiment.
이러한 구성은 이격공간을 승강하는 제 2전극판(112)을 통해 제 1전극판(111)과의 간격을 조절할 수 있어 결과적으로 이격공간에 충진되는 서리의 적상량에 따른 발열파이프의 가동여부를 임의로 조절할 수 있는 것이다.In this configuration, the distance from the first electrode plate 111 can be adjusted through the second electrode plate 112 that moves up and down the separation space. As a result, the heating pipe is operated according to the amount of frost filled in the separation space. It can be adjusted arbitrarily.
한편 도 5의 (A)와 같이, 상기 전극센서(110)는 냉각파이프(210)의 표면과 단락된 상태로 배치되는 단일의 제 1전극판(111)으로 구성할 수 있다. 이 경우, 상기 제 1전극판(111)은 리니어모터의 슬라이더(121b)에 결합되어 냉각파이프(210)의 표면에서 승강될 수 있게 구성할 수 있다.On the other hand, as shown in Figure 5 (A), the electrode sensor 110 may be composed of a single first electrode plate 111 is disposed in a short circuit with the surface of the cooling pipe 210. In this case, the first electrode plate 111 may be coupled to the slider 121b of the linear motor to be elevated on the surface of the cooling pipe 210.
아울러 상기 간격조절수단(120)은 도 5의 (B)와 같이, 서보모터(122)와, 서보모터(122)에 결합된 볼스크류(122a)로 구성할 수 있다. 이 때 상기 볼스크류(122a)는 제 2전극판(112)과 스크류 결합되어 제 1전극판(111)에 대해 제 2전극판(112)이 볼스크류(122a)를 따라 승강될 수 있도록 구성되고, 서보모터(122)는 냉각핀(211)에 결합된 브라켓(123)에 고정시켜 구성할 수 있다. 상기의 구조는 서보모터(122)의 정/역회전과 더불어 회전RPM을 정밀하게 제어하여 결과적으로 서리의 적상량을 자동으로 조절할 수 있도록 구성된다.In addition, the interval adjusting means 120 may be composed of a servo motor 122, a ball screw 122a coupled to the servo motor 122, as shown in FIG. At this time, the ball screw 122a is configured to be screw-coupled with the second electrode plate 112 so that the second electrode plate 112 can be elevated along the ball screw 122a with respect to the first electrode plate 111. The servo motor 122 may be fixed to the bracket 123 coupled to the cooling fin 211. The above structure is configured to precisely control the rotation RPM along with the forward / reverse rotation of the servomotor 122, and as a result, can automatically adjust the amount of frost.
한편 도 5의 (C)와 같이, 상기 전극센서(110)는 냉각파이프(210)의 표면과 단락된 상태로 배치되는 단일의 제 1전극판(111)으로 구성할 수 있다. 이 경우, 상기 제 1전극판(111)은 서보모터(122)와 결합된 볼스크류(122a)에 스크류 결합되어 냉각파이프(210)의 표면에서 승강될 수 있게 구성할 수 있다.On the other hand, as shown in Figure 5 (C), the electrode sensor 110 may be composed of a single first electrode plate 111 is disposed in a short circuit with the surface of the cooling pipe 210. In this case, the first electrode plate 111 may be screw-coupled to the ball screw 122a coupled to the servomotor 122 so that the first electrode plate 111 may be elevated on the surface of the cooling pipe 210.
또한 도 5의 (D)와 같이, 상기 간격조절수단(120)은 냉각핀에 고정된 지지봉(124)에 베어링(124a) 결합되는 볼스크류(122a)만으로 구성할 수 있다. 상기의 구조는 볼스크류(122a)를 드라이버와 같은 도구로 회전시켜 볼스크류(122a)에 스크류 결합된 제 2전극판(112)이 승강되도록 하여 결과적으로 제 1전극판(111)과 제 2전극판(112)의 사이에 형성된 이격공간의 간격을 조절할 수 있어 서리의 적상량을 수동으로 조절할 수 있다.In addition, as shown in Figure 5 (D), the gap adjusting means 120 may be composed of only the ball screw (122a) is coupled to the bearing 124a to the support rod 124 fixed to the cooling fins. The above structure rotates the ball screw 122a with a tool such as a screwdriver so that the second electrode plate 112 screwed to the ball screw 122a is lifted, resulting in the first electrode plate 111 and the second electrode. The spacing of the separation spaces formed between the plates 112 can be adjusted to manually adjust the amount of frost.
또한 도 5의 (E)와 같이, 상기 전극센서(110)가 냉각파이프(210)의 표면과 단락된 상태로 배치되는 단일의 제 1전극판(111)으로 구성될 경우, 상기 제 1전극판(111)은 볼스크류(122a)에 스크류 결합되어 냉각파이프(210)의 표면에서 승강될 수 있도록 구성할 수 있다.In addition, as shown in (E) of FIG. 5, when the electrode sensor 110 is composed of a single first electrode plate 111 disposed in a short circuit with the surface of the cooling pipe 210, the first electrode plate 111 may be configured to be screwed to the ball screw 122a to be elevated on the surface of the cooling pipe 210.
한편 포토센서(130)는 냉각핀(211)과 냉각핀(211) 사이 공간에 삽입시켜 고정시킬 수 있으며, 전극센서(110)의 제 1전극판(111)과 제 2전극판(112)의 이격공간 사이에 이물질이 삽입되어 통전될 경우, 제어부(140)의 오판단을 방지하기 위한 것으로, 도 6와 같이, 발광부(131)로부터 발진된 광이 증발기(200b)에 구비된 냉각파이프(210)의 표면을 반사하여 수광부(130)로 입사될 때, 수광량의 변화에 의해 서리의 유무를 감지하는 기능을 한다. 이러한 포토센서(130)는 전원부(240) 또는 별도의 전원 또는 전극센서(110)와 전기적으로 연결시켜 구성할 수 있다.On the other hand, the photosensor 130 may be fixed by inserting in the space between the cooling fin 211 and the cooling fin 211, the first electrode plate 111 and the second electrode plate 112 of the electrode sensor 110 When the foreign matter is inserted into the separation space is energized, to prevent the misjudgment of the control unit 140, as shown in Figure 6, the light emitted from the light emitting unit 131 is provided with a cooling pipe (evaporator 200b) When reflecting the surface of the 210 is incident to the light receiving unit 130, it detects the presence of frost by the change in the amount of light received. The photosensor 130 may be configured to be electrically connected to the power supply 240 or a separate power or electrode sensor 110.
상기 제어부(140)는 상기 전극센서(110)의 통전과, 포토센서(130)의 수광량 변화량이 함께 감지될 때 발열파이프(230)에 대한 전류의 인가 여부를 판단하여 냉각파이프(210)에 적상된 서리를 제거하는 기능을 한다.The controller 140 determines whether the current is applied to the heating pipe 230 when the energization of the electrode sensor 110 and the amount of change in the amount of received light of the photosensor 130 are sensed together, and is then stored in the cooling pipe 210. Functions to remove frost.
이하에서는 본 발명에 따른 저온창고용 자연대류식 증발기의 결빙제거장치의 작동에 관하여 첨부되어진 도면과 함께 간단히 설명하기로 한다.Hereinafter, the operation of the deicing device of the natural convection evaporator for low temperature warehouse according to the present invention will be briefly described with reference to the accompanying drawings.
도 7은 본 발명에 따는 저온창고용 자연대류식 증발기의 결빙제거장치의 플로우차트이다.Figure 7 is a flow chart of the ice removal device of the natural convection evaporator for cold storage according to the present invention.
도 7과 같이, 냉각파이프의 표면에 서리가 적상될 경우, 먼저 포토센서가 냉각파이프의 표면에 적상된 서리를 유무를 먼저 감지하게 된다.(S100)As shown in FIG. 7, when frost is accumulated on the surface of the cooling pipe, the photosensor first detects the presence of frost accumulated on the surface of the cooling pipe.
이 후 전극센서의 제 1전극판과 제 2전극판의 이격공간에 서리가 충진되어 통전되면 통전신호를 제어부에 출력하게 된다.(S200)Thereafter, when the frost is filled and energized in the space between the first electrode plate and the second electrode plate of the electrode sensor, the energization signal is output to the controller.
이 때 상기 제어부는 전극센서의 통전에 따른 통전신호를 입력받고, 포토센서의 수광량의 변화 감지신호가 입력되지 않을 경우에는, 전극센서가 이물질로 인해 통전되는 것으로 판단하여 발열파이프에 대한 전류인가를 승인하는 출력신호를 발생시키지 않게 된다.At this time, the control unit receives an energization signal according to the energization of the electrode sensor, and if the change detection signal of the photo sensor is not input, it is determined that the electrode sensor is energized by the foreign matter to determine whether the current to the heating pipe. It will not generate an acceptable output signal.
반대로 포토센서의 감지신호가 제어부로 입력되고, 전극센서의 통전신호가 입력되지 않을 경우에는, 냉각파이프에 적상된 서리의 적상량이 기준치 이하로 판단하여 발열파이프에 대한 전류인가를 승인하는 출력신호를 발생시키지 않게 된다.On the contrary, when the sensing signal of the photosensor is input to the controller and the energization signal of the electrode sensor is not input, the output signal for approving the application of the current to the heating pipe is determined by determining that the accumulated amount of frost accumulated in the cooling pipe is lower than the reference value. It does not occur.
즉, 상기 제어부는 전극센서의 통전에 따른 통전신호와 더불어 포토센서의 수광량 변화에 따른 감지신호가 함께 입력될 때 냉각파이프의 표면에 서리가 기준치 이상으로 적상된 상태 즉, 과(跨)냉각된 상태라고 판단하여 제어부에서 발열파이프의 전류인가를 승인하는 출력신호가 제공토록 하는 것이다.That is, when the control signal is input together with the energization signal according to the energization of the electrode sensor and the detection signal according to the change in the amount of light received by the photosensor, the frost is accumulated on the surface of the cooling pipe above the reference value, that is, overcooled. It is determined that the state is to provide an output signal for approving the application of the heating pipe current.
이 후 발열파이프가 가동되어 냉각파이프에 적상된 서리를 제거하게 된다.(S300)After that, the heating pipe is operated to remove frost accumulated on the cooling pipe. (S300)
그리고 발열파이프가 가동됨에 따라 서리가 일부가 제거되면 전극센서가 통전되지 않게 된다.(S400)When the frost is removed as the heating pipe is operated, the electrode sensor is not energized.
하지만 포토센서에서는 발열파이프의 표면에 잔존 된 서리에 의해 수광량의 변화가 계속해서 감지신호로 입력되기 때문에 상기 제어부는 서리가 완전히 제거되지 않음을 판단하고 발열파이프에 전류인가를 승인하는 출력신호를 계속해서 제공한다.However, in the photosensor, since the change in the amount of received light continues to be input as a detection signal due to the frost remaining on the surface of the heating pipe, the controller determines that the frost is not completely removed and continues the output signal for approving the application of current to the heating pipe. To provide.
이 후 포토센서의 수광량의 변화에 따른 감지신호가 입력되지 않으면, 상기 제어부는 냉각파이프의 표면에 서리가 완전히 제거된 것으로 판단하고 발열파이프에 대한 전류인가를 승인하는 출력신호를 발생시키지 않게 된다.(S500)After that, if the detection signal according to the change in the amount of light received by the photosensor is not input, the controller determines that the frost is completely removed from the surface of the cooling pipe and does not generate an output signal for approving the application of the current to the heating pipe. (S500)
그러면 상기 발열파이프의 가동은 중지(S600)되어 종료된다. Then the operation of the heating pipe is stopped (S600) and ends.
한편 상기에서 제어부는 냉각파이프에 적상된 서리가 발열파이프의 가동으로 제거될 경우, 전극센서의 통전 여부만으로 발열파이프의 가동을 정지할 수 있으나, 이는 잔존 서리 즉, 서리가 완전히 제거되지 않기 때문에 바람직하지 않다.On the other hand, when the frost accumulated on the cooling pipe is removed by the operation of the heating pipe, the control unit may stop the operation of the heating pipe only by the energization of the electrode sensor, which is preferable because the remaining frost, that is, the frost is not completely removed. Not.
이로써, 본 발명은 냉각파이프의 표면에 적상된 서리에 의해 통전되는 전극센서의 통전 여부와 더불어 냉각파이프의 표면에 적상된 서리에 의해 변화되는 수광량을 비교 판단하고, 이를 통해 냉각파이프를 가열하는 발열파이프의 가동 여부를 결정함으로써, 발열파이프의 오작동에 따른 전력소비를 최소화할 수 있는 것은 물론, 과냉각 현상을 실시간으로 방지할 수 있다.As a result, the present invention compares the light receiving amount changed by the frost accumulated on the surface of the cooling pipe, as well as whether the electrode sensor is energized by the frost accumulated on the surface of the cooling pipe, and thereby generates heat generated by heating the cooling pipe. By determining whether the pipe is operating, power consumption due to malfunction of the heating pipe can be minimized, and supercooling can be prevented in real time.
이상에서와 같이 본 발명에 따른 저온창고용 자연대류식 증발기의 결빙제거장치(100)는 집수조(250)의 결빙을 방지하기 위해 집수조(250)에 설치될 수 있음은 물론이다.As described above, the ice removing device 100 of the natural convection evaporator for a low temperature warehouse according to the present invention may be installed in the water collecting tank 250 to prevent freezing of the water collecting tank 250.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.The rights of the present invention are not limited to the embodiments described above, but are defined by the claims, and those skilled in the art can make various modifications and adaptations within the scope of the claims. It is self-evident.

Claims (4)

  1. 실외기(200a)로부터 냉매를 공급받는 냉각파이프(210) 및 상기 냉각파이프(210)를 지지하는 지지프레임(220)을 가지며, 냉각파이프(210)에 공급된 냉매를 교축시켜 저온창고에 냉기를 제공하는 증발기(200b)와, 증발기(200b)에 결합되어 응축수를 집수하는 집수조(250)와, 상기 증발기(200b)에 설치되어 발열하면서 고열을 제공하는 발열파이프(230)와, 상기 발열파이프(230)에 전원을 공급하는 전원부(240)로 구성되는 저온창고용 자연대류식 증발기에 있어서,It has a cooling pipe 210 to receive the refrigerant from the outdoor unit (200a) and a support frame 220 for supporting the cooling pipe 210, by condensing the refrigerant supplied to the cooling pipe 210 to provide cold air to the cold store An evaporator (200b), a water collecting tank (250) coupled to the evaporator (200b) to collect condensed water, and a heating pipe (230) installed in the evaporator (200b) to provide high heat while generating heat, and the heating pipe (230). In the low temperature warehouse natural convection type evaporator consisting of a power supply 240 for supplying power,
    상기 증발기(200b)의 냉각파이프(210)에 적상되는 서리를 감지할 수 있도록 제 1전극판(111)과, 제 2전극판(112)이 상호 이격공간을 두고 단락된 상태로 배치되는 전극센서(110);An electrode sensor in which the first electrode plate 111 and the second electrode plate 112 are short-circuited to be spaced apart from each other so as to sense frost accumulated on the cooling pipe 210 of the evaporator 200b. 110;
    발광부(131)로부터 발진된 광이 증발기(200b)에 구비된 냉각파이프(210)의 표면을 반사하여 수광부(132)로 입사될 때, 수광량의 변화에 의해 서리의 유무를 감지하는 포토센서(130); 및When the light emitted from the light emitting unit 131 is incident on the light receiving unit 132 by reflecting the surface of the cooling pipe 210 provided in the evaporator (200b), the photosensor for detecting the presence of frost by the change in the amount of received light ( 130); And
    상기 전극센서(110)의 통전과, 포토센서(130)의 수광량 변화가 함께 감지될 때 발열파이프(230)에 대한 전류의 인가 여부를 판단하여 냉각파이프(210)에 적상된 서리를 제거하는 제어부(140);를 포함하는 것을 특징으로 하는 저온창고용 자연대류식 증발기의 결빙제거장치.Control unit for removing the frost accumulated on the cooling pipe 210 by determining whether the current to the heating pipe 230 is applied when the energization of the electrode sensor 110 and the change in the amount of received light of the photosensor 130 is sensed together. Ice removal device of the natural convection evaporator for low-temperature warehouse, comprising: (140).
  2. 제 1항에 있어서,The method of claim 1,
    상기 전극센서(110)는 서리의 적상량에 따라 통전 여부를 제어할 수 있도록 간격조절수단(120)을 더 포함하는 것을 특징으로 하는 저온창고용 자연대류식 증발기의 결빙제거장치.The electrode sensor 110, the freezing device of the natural convection evaporator for cold storage, characterized in that it further comprises a gap adjusting means 120 to control whether or not energization according to the appropriate amount of frost.
  3. 제 2항에 있어서,The method of claim 2,
    상기 간격조절수단(120)은 리니어가이드(121a)와, 상기 리니어가이드(121a)를 따라 이송되는 슬라이더(121b)로 구성되는 리니어모터로 이루어지고,The gap adjusting means 120 is composed of a linear motor consisting of a linear guide 121a and a slider 121b conveyed along the linear guide 121a,
    상기 리니어모터의 슬라이더(121b)가 제 2전극판(112)과 결합되어 상기 제 1전극판(111)에 대해 제 2전극판(112)이 승강될 수 있도록 구성되는 것을 특징으로 하는 저온창고용 자연대류식 증발기의 결빙제거장치.The slider 121b of the linear motor is coupled to the second electrode plate 112 so that the second electrode plate 112 can be lifted with respect to the first electrode plate 111. Freezing device for natural convection evaporator.
  4. 제 2항에 있어서,The method of claim 2,
    상기 간격조절수단(120)은 서보모터(122)와, 서보모터(122)에 결합된 볼스크류(122a)로 구성되고,The gap adjusting means 120 is composed of a servo motor 122, a ball screw 122a coupled to the servo motor 122,
    상기 볼스크류(122a)는 제 2전극판(112)과 스크류 결합되어 제 1전극판(111)에 대해 제 2전극판(112)이 승강될 수 있도록 구성되는 것을 특징으로 하는 저온창고용 자연대류식 증발기의 결빙제거장치.The ball screw 122a is screw-coupled with the second electrode plate 112 so that the second electrode plate 112 can be raised and lowered relative to the first electrode plate 111. Defrosting device of the type evaporator.
PCT/KR2010/008426 2010-05-04 2010-11-26 Defrosting device for the natural-convection evaporator of a low-temperature store WO2011139011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0042016 2010-05-04
KR1020100042016A KR100973070B1 (en) 2010-05-04 2010-05-04 Freezing removal apparatus of natural convention type evaporator for lowtemperature storehouse

Publications (1)

Publication Number Publication Date
WO2011139011A1 true WO2011139011A1 (en) 2011-11-10

Family

ID=42646162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008426 WO2011139011A1 (en) 2010-05-04 2010-11-26 Defrosting device for the natural-convection evaporator of a low-temperature store

Country Status (2)

Country Link
KR (1) KR100973070B1 (en)
WO (1) WO2011139011A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569604A (en) * 2020-05-18 2020-08-25 中国华能集团有限公司 Low-temperature flue gas adsorption desulfurization method
CN111569603A (en) * 2020-05-18 2020-08-25 中国华能集团有限公司 Flue gas integrated desulfurization and denitrification method based on low-temperature adsorption principle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579798B (en) * 2013-08-26 2018-04-17 株式会社 新进Enertec The equipment to be defrosted using infrared light emitting diode sensor to the evaporator of refrigeration system
KR101788095B1 (en) 2016-08-04 2017-11-16 주식회사 신아 Defrosting device of heat-exchanger for a cooler
KR101911729B1 (en) * 2018-08-20 2018-10-25 노봉호 Storage warehouse for tofu
KR102581417B1 (en) * 2021-08-27 2023-09-22 세연기업 주식회사 cooling and heating system with cool storage and heat storage
KR102387389B1 (en) * 2021-09-15 2022-04-15 아브라텍 주식회사 Auto defrosting apparatus for removing frost of refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509837A (en) * 1973-06-04 1975-01-31
KR970011714A (en) * 1995-08-31 1997-03-27 배순훈 Defrost cycle determination device and method of the refrigerator
KR19980023074U (en) * 1996-10-30 1998-07-25 배순훈 Defrosting system for refrigerators using the idea
JP2001264446A (en) * 2000-03-22 2001-09-26 Tdk Corp Capacitance type object detecting device and defrosting device for cooler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886557A (en) * 1994-09-19 1996-04-02 Ishizuka Denshi Kk Frost detector
JPH1163791A (en) 1997-08-12 1999-03-05 Ishizuka Denshi Kk Frost sensor
JPH1194437A (en) 1997-09-19 1999-04-09 Ishizuka Electronics Corp Frosting detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509837A (en) * 1973-06-04 1975-01-31
KR970011714A (en) * 1995-08-31 1997-03-27 배순훈 Defrost cycle determination device and method of the refrigerator
KR19980023074U (en) * 1996-10-30 1998-07-25 배순훈 Defrosting system for refrigerators using the idea
JP2001264446A (en) * 2000-03-22 2001-09-26 Tdk Corp Capacitance type object detecting device and defrosting device for cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569604A (en) * 2020-05-18 2020-08-25 中国华能集团有限公司 Low-temperature flue gas adsorption desulfurization method
CN111569603A (en) * 2020-05-18 2020-08-25 中国华能集团有限公司 Flue gas integrated desulfurization and denitrification method based on low-temperature adsorption principle

Also Published As

Publication number Publication date
KR100973070B1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2011139011A1 (en) Defrosting device for the natural-convection evaporator of a low-temperature store
JP6090715B2 (en) Server cooling system
Xiao et al. An experimental study of the correlation for predicting the frost height in applying the photoelectric technology
WO2016098937A1 (en) Battery temperature control system
CN208258202U (en) A kind of server cabinet convenient to overhaul
CN104428587B (en) Frame carried type lamp
CN104359152A (en) Module multi-connected precise air-conditioning system and heat dissipation method thereof
CN105848446A (en) Closed-type water-cooling cabinet for top-secret machine room, and intelligent water-cooling control system
CN210534109U (en) Gas detection device for environmental engineering
CN112050539A (en) Defrosting control device and method for air cooler and air cooler
CN201444217U (en) Medical image observing lamp box
CN113091027A (en) Real-time power consumption running state detection system and detection method based on intelligent street lamp
CN208242061U (en) A kind of server cabinet of high efficiency and heat radiation
CN213094635U (en) Outdoor multifunctional intelligent integrated cabinet
KR20160074770A (en) Air Condition System for Data Center and Sever Rack Mountable Temperature-Humidity Sensor thereof
CN111031407B (en) 5G base station heat abstractor
JP2003287329A (en) Cooler
CN220710916U (en) But remote control's power distribution cabinet
WO2014129713A1 (en) Apparatus for dehumidifying and cooling air with function for monitoring heat exchange medium
CN220422309U (en) Cabinet and machine room
CN108549468A (en) One kind being used for computer hardware heat dissipation tank
CN220819217U (en) Low-voltage cabinet infrared temperature measurement equipment capable of automatically powering off
JP5317734B2 (en) Image display device
CN219180044U (en) Road inspection equipment based on edge computing terminal
CN219679103U (en) Intelligent electricity consumption alarm control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851099

Country of ref document: EP

Kind code of ref document: A1