WO2011138885A1 - Composé de polymère et élément de conversion photoélectrique organique utilisant celui-ci - Google Patents
Composé de polymère et élément de conversion photoélectrique organique utilisant celui-ci Download PDFInfo
- Publication number
- WO2011138885A1 WO2011138885A1 PCT/JP2011/058478 JP2011058478W WO2011138885A1 WO 2011138885 A1 WO2011138885 A1 WO 2011138885A1 JP 2011058478 W JP2011058478 W JP 2011058478W WO 2011138885 A1 WO2011138885 A1 WO 2011138885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- formula
- polymer compound
- fluorine atom
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 162
- 229920000642 polymer Polymers 0.000 title claims abstract description 104
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 83
- 125000003118 aryl group Chemical group 0.000 claims abstract description 33
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 28
- 125000002837 carbocyclic group Chemical group 0.000 claims abstract description 27
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 25
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 25
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 7
- 239000002346 layers by function Substances 0.000 claims description 21
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 13
- 239000004327 boric acid Substances 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 238000002835 absorbance Methods 0.000 abstract description 12
- 239000000243 solution Substances 0.000 description 59
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- 239000010409 thin film Substances 0.000 description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 238000000034 method Methods 0.000 description 28
- 238000006116 polymerization reaction Methods 0.000 description 27
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- -1 9,9-dioctylfluorene-2,7-diboronic acid ester Chemical class 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 19
- 239000002904 solvent Substances 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 238000005859 coupling reaction Methods 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000000178 monomer Substances 0.000 description 13
- 229940126062 Compound A Drugs 0.000 description 12
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 12
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000012044 organic layer Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 8
- 238000006069 Suzuki reaction reaction Methods 0.000 description 8
- 238000000862 absorption spectrum Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 229910003472 fullerene Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012456 homogeneous solution Substances 0.000 description 4
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229920000547 conjugated polymer Polymers 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000012024 dehydrating agents Substances 0.000 description 3
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 description 3
- 229950004394 ditiocarb Drugs 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 3
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000846 In alloy Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000007806 chemical reaction intermediate Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- HOMQMIYUSVQSHM-UHFFFAOYSA-N cycloocta-1,3-diene;nickel Chemical compound [Ni].C1CCC=CC=CC1.C1CCC=CC=CC1 HOMQMIYUSVQSHM-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- WDQZIRSDNFWMAE-UHFFFAOYSA-L dichloronickel;1-diphenylphosphanylethyl(diphenyl)phosphane Chemical compound Cl[Ni]Cl.C=1C=CC=CC=1P(C=1C=CC=CC=1)C(C)P(C=1C=CC=CC=1)C1=CC=CC=C1 WDQZIRSDNFWMAE-UHFFFAOYSA-L 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- AAXGWYDSLJUQLN-UHFFFAOYSA-N diphenyl(propyl)phosphane Chemical compound C=1C=CC=CC=1P(CCC)C1=CC=CC=C1 AAXGWYDSLJUQLN-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002148 esters Chemical group 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000005956 isoquinolyl group Chemical group 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 2
- 125000002827 triflate group Chemical group FC(S(=O)(=O)O*)(F)F 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- IIOSDXGZLBPOHD-UHFFFAOYSA-N tris(2-methoxyphenyl)phosphane Chemical compound COC1=CC=CC=C1P(C=1C(=CC=CC=1)OC)C1=CC=CC=C1OC IIOSDXGZLBPOHD-UHFFFAOYSA-N 0.000 description 2
- AOPKZPPSDSMWLW-UHFFFAOYSA-N tris(2-methoxyphenyl)phosphane Chemical compound COC1=C(C=CC=C1)P(C1=C(C=CC=C1)OC)C1=C(C=CC=C1)OC.COC1=C(C=CC=C1)P(C1=C(C=CC=C1)OC)C1=C(C=CC=C1)OC AOPKZPPSDSMWLW-UHFFFAOYSA-N 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 1
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical compound CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 description 1
- YZWKKMVJZFACSU-UHFFFAOYSA-N 1-bromopentane Chemical compound CCCCCBr YZWKKMVJZFACSU-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- MLRVZFYXUZQSRU-UHFFFAOYSA-N 1-chlorohexane Chemical compound CCCCCCCl MLRVZFYXUZQSRU-UHFFFAOYSA-N 0.000 description 1
- SQCZQTSHSZLZIQ-UHFFFAOYSA-N 1-chloropentane Chemical compound CCCCCCl SQCZQTSHSZLZIQ-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- VFBJMPNFKOMEEW-UHFFFAOYSA-N 2,3-diphenylbut-2-enedinitrile Chemical group C=1C=CC=CC=1C(C#N)=C(C#N)C1=CC=CC=C1 VFBJMPNFKOMEEW-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical class C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920000292 Polyquinoline Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- ULGYAEQHFNJYML-UHFFFAOYSA-N [AlH3].[Ca] Chemical compound [AlH3].[Ca] ULGYAEQHFNJYML-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- GIXORGPEOVMYKH-UHFFFAOYSA-N [Ni].C1(=CC=CC=C1)P(C1=CC=CC=C1)C(C)(C)P(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound [Ni].C1(=CC=CC=C1)P(C1=CC=CC=C1)C(C)(C)P(C1=CC=CC=C1)C1=CC=CC=C1 GIXORGPEOVMYKH-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000005620 boronic acid group Chemical group 0.000 description 1
- AQNQQHJNRPDOQV-UHFFFAOYSA-N bromocyclohexane Chemical compound BrC1CCCCC1 AQNQQHJNRPDOQV-UHFFFAOYSA-N 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- WVIIMZNLDWSIRH-UHFFFAOYSA-N cyclohexylcyclohexane Chemical group C1CCCCC1C1CCCCC1 WVIIMZNLDWSIRH-UHFFFAOYSA-N 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000006612 decyloxy group Chemical group 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- WMKGGPCROCCUDY-PHEQNACWSA-N dibenzylideneacetone Chemical compound C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 WMKGGPCROCCUDY-PHEQNACWSA-N 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- GROYGRZSTCDMEM-UHFFFAOYSA-L dichloronickel 2-diphenylphosphanylpropan-2-yl(diphenyl)phosphane Chemical compound [Ni](Cl)Cl.C1(=CC=CC=C1)P(C1=CC=CC=C1)C(C)(C)P(C1=CC=CC=C1)C1=CC=CC=C1 GROYGRZSTCDMEM-UHFFFAOYSA-L 0.000 description 1
- YNHIGQDRGKUECZ-UHFFFAOYSA-N dichloropalladium;triphenylphosphanium Chemical compound Cl[Pd]Cl.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005446 heptyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- LHJOPRPDWDXEIY-UHFFFAOYSA-N indium lithium Chemical compound [Li].[In] LHJOPRPDWDXEIY-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 238000006138 lithiation reaction Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- UNFUYWDGSFDHCW-UHFFFAOYSA-N monochlorocyclohexane Chemical compound ClC1CCCCC1 UNFUYWDGSFDHCW-UHFFFAOYSA-N 0.000 description 1
- IUSOXUFUXZORBF-UHFFFAOYSA-N n,n-dioctyloctan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC IUSOXUFUXZORBF-UHFFFAOYSA-N 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 125000006611 nonyloxy group Chemical group 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000005920 sec-butoxy group Chemical group 0.000 description 1
- ZJMWRROPUADPEA-UHFFFAOYSA-N sec-butylbenzene Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- WWGXHTXOZKVJDN-UHFFFAOYSA-M sodium;n,n-diethylcarbamodithioate;trihydrate Chemical compound O.O.O.[Na+].CCN(CC)C([S-])=S WWGXHTXOZKVJDN-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical group CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- CIWZUQUKZAMSIZ-UHFFFAOYSA-N trimethoxy borate Chemical compound COOB(OOC)OOC CIWZUQUKZAMSIZ-UHFFFAOYSA-N 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1412—Saturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/142—Side-chains containing oxygen
- C08G2261/1424—Side-chains containing oxygen containing ether groups, including alkoxy
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3241—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/411—Suzuki reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/91—Photovoltaic applications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a polymer compound and an organic photoelectric conversion element using the same.
- Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements such as organic solar cells and optical sensors.
- the functional layer can be manufactured by an inexpensive coating method.
- organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied.
- WO2005 / 092947 includes 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ′′ ′′-dibromo-3 ′′, 4 ′′ -dihexyl- ⁇ -penta.
- a polymer compound obtained by polymerizing thiophene has been proposed.
- the present invention provides a polymer compound having a large absorbance of light having a long wavelength. That is, the present invention first provides a polymer compound containing a repeating unit represented by the formula (1).
- T represents a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, an alkoxy group which may be substituted with a fluorine atom, or an aromatic carbocyclic group.
- m represents an integer of 2 to 10.
- a plurality of T may be the same or different.
- R represents an alkyl group which may be substituted with a fluorine atom, an alkoxy group which may be substituted with a fluorine atom or an aromatic carbocyclic group.
- Two Rs may be the same or different.
- the present invention provides an organic photoelectric conversion device having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron accepting compound and the polymer compound.
- this invention provides the compound represented by Formula (2).
- R represents the same meaning as described above.
- Q represents a boric acid ester residue. Two Qs may be the same or different.
- FIG. 1 is a graph showing an absorption spectrum of polymer compound A described later.
- FIG. 2 is a graph showing an absorption spectrum of polymer compound B described later.
- FIG. 3 is a graph showing an absorption spectrum of polymer compound C described later.
- FIG. 4 is a figure which shows the absorption spectrum of the high molecular compound D mentioned later.
- the polymer compound of the present invention contains a repeating unit represented by the above formula (1).
- the carbon number of the alkyl group and alkoxy group represented by R is usually 1 to 20, preferably 2 to 18, and more preferably 3 to 12.
- the alkyl group represented by R may be linear or cyclic.
- a hydrogen atom in the alkyl group may be substituted with a fluorine atom.
- alkyl group substituted with a fluorine atom examples include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
- the alkoxy group represented by R may be linear or cyclic.
- examples include a hexyloxy group, a cyclohexyloxy group, a heptyloxy group, an octyloxy group, a 2-ethylhexyloxy group, a nonyloxy group, a decyloxy group, and a 3,7-dimethyloctyloxy group.
- a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
- alkoxy group substituted with a fluorine atom examples include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
- the aromatic carbocyclic group represented by R is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon which may have a substituent, and the carbon number is usually 6 to 60, preferably 6-30.
- the aromatic carbocyclic group include an optionally substituted phenyl group, 1-naphthyl group, and 2-naphthyl group.
- substituents examples include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkyl group, and an alkoxy group.
- the carbon number and specific examples of the alkyl group and alkoxy group are the same as those described above for the alkyl group and alkoxy group represented by R.
- the carbon number and specific examples of the alkyl group, alkoxy group, and aromatic carbocyclic group represented by T are the same as those described above for the alkyl group, alkoxy group, and aromatic carbocyclic group represented by R.
- m represents an integer of 2 to 10.
- m is preferably an integer of 3 to 8, and more preferably an integer of 4 to 6.
- Examples of the repeating unit represented by the formula (1) include the following repeating units.
- One preferable aspect of the repeating unit represented by Formula (1) is a repeating unit represented by Formula (1-1).
- m1 and m2 independently represent an integer of 1 to 3.
- T 1 Represents an alkyl group. 2
- T 1 May be the same or different.
- T 1 As the alkyl group represented by, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, isooctyl group Decyl group, dodecyl group, pentadecyl group and octadecyl group.
- the carbon number of the alkyl group is usually 1-20, preferably 1-10.
- the amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is the total amount in the polymer compound.
- the content is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total number of repeating units.
- the weight average molecular weight in terms of polystyrene of the polymer compound of the present invention is 10 3 ⁇ 10 8
- the polymer compound of the present invention is preferably a conjugated polymer compound.
- the conjugated polymer compound means a compound in which atoms constituting the main chain of the polymer compound are substantially conjugated.
- the polymer compound of the present invention may have a repeating unit other than the repeating unit represented by the formula (1).
- a divalent aromatic carbocyclic group such as a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, a fluorenediyl group, a frangiyl group,
- divalent aromatic heterocyclic groups such as a pyrrole diyl group and a pyridinediyl group.
- the polymer compound of the present invention may be produced by any method. For example, after synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, the monomer is dissolved in an organic solvent, if necessary, , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like.
- the monomer can be synthesized with reference to, for example, a method disclosed in US2008 / 145571 and JP-A-2006-335933.
- Polymerization by the aryl coupling reaction includes, for example, polymerization by Suzuki coupling reaction, polymerization by Yamamoto coupling reaction, polymerization by Kumada-Tamao coupling reaction, FeCl 3 Examples thereof include a polymerization reaction with an oxidant such as an oxidative polymerization by an electrochemical reaction.
- Polymerization by Suzuki coupling reaction uses a palladium complex or nickel complex as a catalyst in the presence of an inorganic base or an organic base, and a ligand is added as necessary to have a boronic acid residue or a boric acid ester residue.
- a monomer and a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a trifluoromethanesulfonate group (-OSO 2 CF 3 ), P-toluenesulfonate group (-OSO 2 C 6 H 4 CH 3 Polymerization in which a monomer having a sulfonate group such as -p) is reacted.
- the inorganic base include sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, and potassium fluoride.
- Examples of the organic base include tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, and tetraethylammonium hydroxide.
- Examples of the palladium complex include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, and bis (triphenylphosphine) palladium dichloride.
- Examples of the nickel complex include bis (cyclooctadiene) nickel.
- Examples of the ligand include triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine. It is done. Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry (Part A: Polymer Chemistry), 2001, Vol. 39, p. 1533-1556.
- Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent to react monomers having halogen atoms, monomers having sulfonate groups such as trifluoromethanesulfonate groups, or monomers having halogen atoms and monomers having sulfonate groups.
- Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel.
- a catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, if necessary.
- the reducing agent include zinc and magnesium.
- Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system. Details of the polymerization by Yamamoto coupling are described in, for example, Macromolecules, 1992, Vol. 25, p. 1214-1223.
- Polymerization by Kumada-Tamao coupling reaction uses a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, a compound having a magnesium halide group and a halogen atom.
- a dehydrated solvent may be used for the reaction, the reaction may be performed in an inert atmosphere, or a dehydrating agent may be added to the reaction system.
- a solvent is usually used.
- the solvent may be selected in consideration of the type of polymerization reaction to be used, the raw material monomer, the solubility of the polymer to be formed, and the like. Specific examples include tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and organic solvents such as a mixed solvent obtained by mixing two or more of these solvents. It is done.
- the polymerization reaction can also be carried out in a two-phase system of an organic solvent phase and an aqueous phase.
- Solvents used for the Suzuki coupling reaction include tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and a mixed solvent in which two or more of these solvents are mixed. Organic solvents are preferred. A reaction in a two-phase system of an organic solvent phase and an aqueous phase is also preferable. The solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
- the solvent used for the Yamamoto coupling reaction is tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and a mixed solvent in which two or more of these solvents are mixed. Organic solvents are preferred.
- the solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
- the polymerization method by the Suzuki coupling reaction and the polymerization method by the Yamamoto coupling reaction are preferable, the polymerization method by the Suzuki coupling reaction and the zero-valent nickel complex.
- the lower limit of the reaction temperature of the aryl coupling reaction is preferably ⁇ 100 ° C., more preferably ⁇ 20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity.
- the upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
- a known method can be used as a method for removing the polymer compound of the present invention from the reaction solution after completion of the reaction.
- the polymer compound of the present invention can be obtained by adding a reaction solution to lower alcohol such as methanol, filtering the deposited precipitate, and drying the filtered product.
- a reaction solution such as methanol
- the purity of the obtained polymer compound is low, it can be purified by recrystallization, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
- the polymer compound of the present invention is used for the production of an organic photoelectric conversion device, if an active group remains in the polymerization reaction at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion device may deteriorate. For this reason, it is preferable to protect the terminal of the polymer compound with a stable group.
- Examples of the stable group for protecting the terminal include an alkyl group optionally substituted with a fluorine atom, an alkoxy group optionally substituted with a fluorine atom, an aromatic carbocyclic group, and an amino substituted with an aromatic carbocyclic group.
- Group, heterocyclic group and the like The number of carbon atoms and specific examples of the alkyl group which may be substituted with a fluorine atom, the alkoxy group which may be substituted with a fluorine atom and the aromatic carbocyclic group are the same as those described above with respect to those represented by R. is there.
- Examples of the amino group substituted with an aromatic carbocyclic group include a phenylamino group and a diphenylamino group.
- heterocyclic group examples include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, isoquinolyl group and the like.
- a group active in the polymerization reaction remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group. From the viewpoint of enhancing hole transportability, a group that imparts electron donating properties such as an amino group substituted with an aromatic carbocyclic group as a stable group for protecting the terminal is preferable.
- the polymer compound is a conjugated polymer compound
- the end of a group having a conjugated bond in which the conjugated structure of the main chain of the polymer compound and the conjugated structure of a stable group protecting the end are continuous is also protected.
- a group for example, an aromatic carbocyclic group and an aromatic heterocyclic group can be mentioned.
- the polymer compound of the present invention can be produced, for example, by polymerizing a compound represented by the formula (2) and a compound represented by the formula (3) when using the Suzuki coupling reaction. .
- R and Q have the same meaning as described above.
- T and m represent the same meaning as described above.
- the boric acid ester residue represented by Q represents a group obtained by removing a hydroxyl group from boric acid diester, and specific examples thereof include groups represented by the following formula.
- Me represents a methyl group
- Et represents an ethyl group.
- the compound represented by the formula (2) can be produced, for example, by dehydrating and condensing the compound represented by the formula (4) and an alcohol or diol in an organic solvent.
- R represents the same meaning as described above. In the dehydration condensation, the slurry-like compound represented by formula (4) disappears and the reaction solution becomes a uniform solution, whereby the production of the compound represented by formula (2) can be confirmed.
- the reaction solution is concentrated using an evaporator, the residue is washed with a hydrocarbon solvent having a relatively low boiling point such as hexane, and then filtered to obtain the compound represented by the formula (2).
- a hydrocarbon solvent having a relatively low boiling point such as hexane
- examples of the alcohol used for dehydration condensation include methanol, ethanol, propanol, 2-propanol, and butanol.
- the diol that can be used for dehydration condensation include pinacol, catechol, ethylene glycol, and 1,3-propanediol.
- a dehydrating agent such as anhydrous magnesium sulfate or anhydrous sodium sulfate may be added.
- Formula (4) the following compounds are mentioned, for example.
- the compound represented by the formula (4) is, for example, lithiated the compound represented by the formula (5) with an organic lithium compound such as butyllithium (n-BuLi), and then the lithiated compound and trimethoxyboric acid.
- a compound represented by the formula (6) is produced by reacting with a boric acid ester such as, and the compound represented by the formula (6) can be produced by acid treatment with an acid such as dilute hydrochloric acid.
- R represents the same meaning as described above.
- the lithiation reaction is usually performed in an anhydrous ether solvent such as anhydrous tetrahydrofuran or anhydrous diethyl ether.
- the reaction temperature is usually ⁇ 80 ° C.
- the organic photoelectric conversion element of the present invention has a pair of electrodes and a functional layer provided between the electrodes, and the functional layer includes an electron-accepting compound and a repeating unit represented by the formula (1).
- an electron-accepting compound As an electron-accepting compound, fullerene and a fullerene derivative are preferable.
- the organic photoelectric conversion element 1. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by the formula (1); 2. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by formula (1); An organic photoelectric conversion element in which the electron-accepting compound is a fullerene derivative; Is mentioned.
- the amount of the electron accepting compound in the functional layer containing the electron accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2.
- the amount of the fullerene derivative in the functional layer containing the fullerene derivative and the polymer compound is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. More preferably, it is ⁇ 500 parts by weight.
- the amount of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight, and preferably 40 to 250 parts by weight with respect to 100 parts by weight of the polymer compound. More preferred is 80 to 120 parts by weight. From the viewpoint of increasing the short-circuit current density, the amount of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight, and preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer compound. More preferred.
- the polymer compound including the electron-accepting compound and the repeating unit represented by the formula (1) can efficiently absorb the spectrum of desired incident light.
- the organic photoelectric conversion element of the present invention includes the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable. In the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the functional layer in the element.
- the additional layer examples include a charge transport layer that transports holes or electrons, and a buffer layer.
- the organic photoelectric conversion element of the present invention is usually formed on a substrate.
- the substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed.
- the material for the substrate include glass, plastic, polymer film, and silicon.
- the opposite electrode that is, the electrode far from the substrate is preferably transparent or translucent.
- a material for the pair of electrodes a metal, a conductive polymer, or the like can be used.
- the material of one of the pair of electrodes is preferably a material having a low work function.
- Examples of the material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, And alloys of two or more of them, or one or more of them and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite or graphite Intercalation compounds are mentioned.
- metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, And alloys of two or more of them, or one or more of them and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt
- the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
- the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
- Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
- organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
- a material used for the charge transport layer as the additional layer that is, the hole transport layer or the electron transport layer
- an electron donating compound and an electron accepting compound described later can be used, respectively.
- As a material used for the buffer layer as an additional layer halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used.
- fine particles of an inorganic semiconductor such as titanium oxide can be used.
- an organic thin film containing the polymer compound of the present invention can be used as the functional layer in the organic photoelectric conversion element of the present invention.
- the organic thin film has a thickness of usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
- the organic thin film may contain the said high molecular compound individually by 1 type, or may contain it in combination of 2 or more types.
- a low molecular compound and / or polymeric compounds other than the said high molecular compound can also be mixed and used as an electron-donating compound in an organic thin film.
- Examples of the electron donating compound that the organic thin film may contain in addition to the polymer compound containing the repeating unit represented by the formula (1) include, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligos. Thiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof Derivatives, polythienylene vinylene and its derivatives.
- Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives.
- Diphenyldicyanoethylene and derivatives thereof diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, C 60 And phenanthroline derivatives such as carbon nanotubes and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline.
- Fullerene and derivatives thereof are particularly preferable.
- the electron-donating compound and the electron-accepting compound are relatively determined from the energy level of the energy level of these compounds.
- Fullerene and its derivatives include C 60 , C 70 , C 84 And derivatives thereof.
- a fullerene derivative represents a compound in which at least a part of fullerene is modified.
- Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
- R a Is a group having an alkyl group, an aromatic carbocyclic group, an aromatic heterocyclic group or an ester structure. Multiple R a May be the same or different.
- R b Represents an alkyl group or an aromatic carbocyclic group. Multiple R b May be the same or different.
- R a And R b The carbon number and specific examples of the alkyl group and aromatic carbocyclic group represented by the above are the same as those described above with respect to the alkyl group and aromatic carbocyclic group represented by R.
- R a In general, the aromatic heterocyclic group represented by the formula has 3 to 60 carbon atoms, and examples thereof include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group.
- R a Examples of the group having an ester structure represented by the formula (V) include a group represented by the formula (V).
- u1 represents an integer of 1 to 6
- u2 represents an integer of 0 to 6
- R c Represents an alkyl group, an aromatic carbocyclic group or an aromatic heterocyclic group.
- R c The carbon number and specific examples of the alkyl group, aromatic carbocyclic group and aromatic heterocyclic group represented by a Are the same as those described above with respect to the alkyl group, aromatic carbocyclic group, and aromatic heterocyclic group.
- C 60 Specific examples of the derivatives include the following.
- C 70 Specific examples of the derivatives include the following.
- the organic thin film may be produced by any method.
- the organic thin film may be produced by a film formation method from a solution containing the polymer compound of the present invention, or an organic thin film may be formed by a vacuum deposition method. Good.
- a method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
- the solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound of the present invention.
- the solvent examples include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, Examples thereof include halogenated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran.
- hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicycl
- the polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
- a coating method such as a printing method, an offset printing method, an inkjet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an inkjet printing method, and a dispenser printing method are preferable.
- the organic photoelectric conversion element By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells. In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
- the polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC). Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 mm Id ⁇ 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: Tetrahydrofuran (THF) Synthesis Example 1 (Synthesis of Compound (2)) In a 500 mL three-necked flask, 6.1 g (20.6 mmol) of compound (1) and 16.4 g (250 mmol) of powdered zinc were added, and then 200 ml of acetic acid was added.
- SEC size exclusion chromatography
- reaction solution was stirred for 15 minutes with a mechanical stirrer, heated and refluxed for 90 minutes, and then allowed to cool to room temperature (25 ° C.). Thereafter, the reaction solution was filtered through Celite, and the filtrate was concentrated with an evaporator. 150 ml of diethyl ether was added to the residue, and the obtained organic layer was washed with a 27 wt% aqueous sodium hydroxide solution, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated with an evaporator to obtain 4.8 g of a reaction intermediate having a diamine structure.
- Example 1 (Synthesis of Compound (E)) A 300 ml three-necked flask was charged with 1.2 g (3.1 mmol) of compound (3), 0.75 g (6.35 mmol) of pinacol, and 50 ml of chloroform at room temperature (25 ° C.). The reaction solution was stirred until it became a homogeneous solution. Thereafter, 1.0 g of anhydrous magnesium sulfate was added to the reaction solution, and the mixture was further stirred for 4 hours. After stirring, the mixture was filtered, and the filtrate was concentrated with an evaporator.
- the organic layer was washed twice with 20 ml of water, twice with 20 mL of a 3% by weight acetic acid aqueous solution and twice with 20 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. I let you.
- the polymer was filtered and dried to obtain 225 mg of polymer.
- the obtained polymer was dissolved in 35 ml of trichlorobenzene and passed through a silica gel / alumina column. The obtained solution was added dropwise to methanol, and the precipitated polymer was filtered and dried to obtain 46 mg of polymer compound A.
- the weight average molecular weight in terms of polystyrene of the polymer compound A was 1.7 ⁇ 10 5 .
- the polymer compound A contains 50 mol% of the repeating units represented by the following formula in the total repeating units.
- Example 3 (Synthesis of Compound (7)) A 100 ml three-necked flask was charged with 0.74 g (1.2 mmol) of compound (6), 0.29 g (2.5 mmol) of pinacol, and 30 ml of chloroform at room temperature (25 ° C.). The reaction solution was stirred while heating under reflux until a homogeneous solution was obtained. Thereafter, 1.0 g of anhydrous magnesium sulfate was added to the reaction solution, and the mixture was further stirred while heating under reflux for 4 hours. After stirring, the mixture was filtered, and the filtrate was concentrated with an evaporator.
- the absorption spectrum of the organic thin film was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). The measured spectrum is shown in FIG.
- the absorbance at 600 nm is shown in Table 1.
- Example 5 Synthesis of polymer compound C
- 150 mg (0.203 mmol) of compound (F) 150 mg (0.203 mmol) of compound (F)
- 158 mg (0.200 mmol) of compound (7), methyl trioctyl ammonium chloride (trade name Aliquat 336 (registered trademark)) Sigma Aldrich Japan Co., Ltd.) was added in 77 mg, dissolved in 15 ml of toluene, and the resulting toluene solution was bubbled with argon for 30 minutes.
- the organic layer was washed twice with 30 ml of water, twice with 30 mL of a 3% by weight acetic acid aqueous solution and further twice with 30 mL of water, and the resulting solution was poured into methanol to precipitate a polymer.
- the polymer was filtered and dried, and the resulting polymer was dissolved in 30 mL of o-dichlorobenzene, passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate the polymer.
- the polymer was filtered and then dried to obtain 75 mg of a purified polymer.
- polymer compound C The weight average molecular weight (Mw) in terms of polystyrene of the polymer compound C measured by GPC was 80000, and the number average molecular weight (Mn) in terms of polystyrene was 13000.
- Synthesis Example 5 Synthesis of Compound (9) A compound synthesized by a method described in Advanced Functional Materials (Adv. Funct. Mater.), 2007, Vol. 17, pp. 3836-3842 in a 100 ml three-necked flask equipped with a Dimroth condenser in a nitrogen atmosphere.
- Example 6 Synthesis of Compound (10)
- 1.24 g (1.8 mmol) of compound (9), 0.44 g (3.7 mmol) of pinacol and 50 ml of chloroform are placed at room temperature, and the reaction solution is changed from a slurry to a homogeneous solution.
- the mixture was stirred while being heated to reflux.
- 1.0 g of anhydrous magnesium sulfate was added, and the mixture was further stirred with heating under reflux for 4 hours. After stirring, the mixture was filtered, and the resulting solution was concentrated with an evaporator.
- the organic layer was washed twice with 20 ml of water, twice with 20 mL of a 3 wt% aqueous acetic acid solution and twice with 20 mL of water, and the resulting solution was poured into methanol to precipitate the polymer. It was.
- the polymer was filtered and dried, and the resulting polymer was dissolved again in 20 mL of o-dichlorobenzene, passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate the polymer.
- the polymer was filtered and then dried to obtain 63 mg of a purified polymer (polymer compound D).
- Example 1 Comparative Example 1 (Measurement of absorbance of organic thin film) An organic thin film was prepared in the same manner as in Example 4 except that the high molecular compound B was used instead of the high molecular compound A, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. The absorbance at 600 nm is shown in Table 1.
- Example 8 Measurement of absorbance of organic thin film An organic thin film was prepared in the same manner as in Example 4 except that the high molecular compound C was used instead of the high molecular compound A, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. The absorbance at 600 nm is shown in Table 1.
- Example 9 Measurement of absorbance of organic thin film
- An organic thin film was prepared in the same manner as in Example 4 except that the high molecular compound D was used instead of the high molecular compound A, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. The absorbance at 600 nm is shown in Table 1.
- Example 10 Production and Evaluation of Organic Thin Film Solar Cell
- a weight ratio of C60PCBM (phenyl C61-butyric acid methyl ester, product name: E100), which is an electron-accepting compound, and polymer compound A, which is an electron-donating compound, is 3: 1. And dissolved in o-dichlorobenzene so that the concentration of the mixture was 2% by weight.
- the obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 ⁇ m to prepare a coating solution 1.
- a glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment.
- the coating solution 1 was applied onto the ITO film by spin coating to obtain a functional layer of an organic thin film solar cell.
- the film thickness of the functional layer was 100 nm.
- lithium fluoride was vapor-deposited with a film thickness of 4 nm by a vacuum vapor deposition machine, and then aluminum was vapor-deposited with a film thickness of 100 nm to produce an organic thin film solar cell.
- the degree of vacuum at the time of vapor deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases.
- the shape of the organic thin film solar cell thus obtained was a square of 2 mm ⁇ 2 mm.
- Jsc (short-circuit current density) of the obtained organic thin-film solar cell was irradiated with a constant light using a solar simulator (trade name OTENTO-SUN II: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.). Measured. Moreover, the electric current and voltage which generate
- Example 11 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was prepared and evaluated in the same manner as in Example 10 except that the polymer compound C was used instead of the polymer compound A. The obtained photoelectric conversion efficiency was 2.28%, and FF was 0.64.
- Example 12 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was prepared and evaluated in the same manner as in Example 10 except that the polymer compound D was used instead of the polymer compound A. The obtained photoelectric conversion efficiency was 1.05%, and FF was 0.62.
- the polymer compound of the present invention has a large absorbance for light having a long wavelength and can be used for an organic photoelectric conversion device.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
La présente invention concerne un composé polymère qui contient des motifs répétés représentés par la formule (1), a une absorbance élevée de lumière à des longueurs d'onde élevées, et peut être utilisé dans un élément de conversion photoélectrique organique. (Dans la formule, T représente un atome d'hydrogène, un atome de fluor, un groupe alkyle facultativement substitué par un atome de fluor, ou un groupe carbocyclique aromatique. m représente un entier de 2 à 10. La pluralité de T peuvent être identiques ou différents. R représente un groupe alkyle facultativement substitué par un atome de fluor, un groupe alcoxy facultativement substitué par un atome de fluor, ou un groupe carbocyclique aromatique. Les deux R peuvent être identiques ou différents.)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-106180 | 2010-05-06 | ||
JP2010106180 | 2010-05-06 | ||
JP2010-132946 | 2010-06-10 | ||
JP2010132946 | 2010-06-10 | ||
JP2010275430 | 2010-12-10 | ||
JP2010-275430 | 2010-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011138885A1 true WO2011138885A1 (fr) | 2011-11-10 |
Family
ID=44903737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/058478 WO2011138885A1 (fr) | 2010-05-06 | 2011-03-28 | Composé de polymère et élément de conversion photoélectrique organique utilisant celui-ci |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012138557A (fr) |
WO (1) | WO2011138885A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013203881A (ja) * | 2012-03-28 | 2013-10-07 | Toshiba Corp | 有機半導体およびそれを用いた太陽電池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102011872B1 (ko) | 2011-01-04 | 2019-08-19 | 삼성전자주식회사 | 낮은 밴드 갭을 갖는 유기 반도체 화합물 및 이를 포함하는 트랜지스터와 전자 소자 |
WO2015016626A1 (fr) * | 2013-07-31 | 2015-02-05 | 주식회사 엘지화학 | Copolymère et cellule solaire organique comprenant ledit copolymère |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0753956A (ja) * | 1993-08-12 | 1995-02-28 | Ryuichi Yamamoto | 有機el素子用化合物および有機el素子 |
JP2005139359A (ja) * | 2003-11-07 | 2005-06-02 | Toppan Printing Co Ltd | 高分子発光材料及び高分子el素子 |
US20080099758A1 (en) * | 2006-10-30 | 2008-05-01 | Samsung Electronics Co., Ltd. | Organic polymer semiconductor, method of preparing the same, and ambipolar organic thin film transistor using the same |
WO2010084865A1 (fr) * | 2009-01-20 | 2010-07-29 | 東レ株式会社 | Matériau pour élément photovoltaïque, et élément photovoltaïque |
-
2011
- 2011-03-28 WO PCT/JP2011/058478 patent/WO2011138885A1/fr active Application Filing
- 2011-04-28 JP JP2011100888A patent/JP2012138557A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0753956A (ja) * | 1993-08-12 | 1995-02-28 | Ryuichi Yamamoto | 有機el素子用化合物および有機el素子 |
JP2005139359A (ja) * | 2003-11-07 | 2005-06-02 | Toppan Printing Co Ltd | 高分子発光材料及び高分子el素子 |
US20080099758A1 (en) * | 2006-10-30 | 2008-05-01 | Samsung Electronics Co., Ltd. | Organic polymer semiconductor, method of preparing the same, and ambipolar organic thin film transistor using the same |
WO2010084865A1 (fr) * | 2009-01-20 | 2010-07-29 | 東レ株式会社 | Matériau pour élément photovoltaïque, et élément photovoltaïque |
Non-Patent Citations (5)
Title |
---|
J. AM. CHEM. SOC., vol. 118, 1996, pages 10389 - 99 * |
J. MATER. CHME., vol. 17, 2007, pages 1353 - 5 * |
JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 47, 2009, pages 3399 - 408 * |
MACROMOL. RAPID COMMUN., vol. 26, 2005, pages 1835 - 40 * |
THIN SOLID FILMS, vol. 518, 17 July 2009 (2009-07-17), pages 2119 - 23 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013203881A (ja) * | 2012-03-28 | 2013-10-07 | Toshiba Corp | 有機半導体およびそれを用いた太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
JP2012138557A (ja) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5369384B2 (ja) | 有機光電変換素子及びその製造に有用な重合体 | |
JP5991324B2 (ja) | 高分子化合物及び有機光電変換素子 | |
JP5810818B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
EP2302700A1 (fr) | Element de conversion photoelectrique organique | |
JP5834819B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
JP5747789B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
WO2012165128A1 (fr) | Composé de masse moléculaire élevée et élément organique de conversion photoélectrique | |
JP6003399B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
JP5834682B2 (ja) | 高分子化合物及びそれを用いた電子素子 | |
WO2011138885A1 (fr) | Composé de polymère et élément de conversion photoélectrique organique utilisant celui-ci | |
JP2014028912A (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
WO2012032949A1 (fr) | Composé polymère et transducteur photoélectrique organique | |
WO2012090971A1 (fr) | Élément de conversion photoélectrique et composition utilisée dans celui-ci | |
WO2012029675A1 (fr) | Procédé de production d'un composé polymère | |
JP5786504B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
JP2014019781A (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
JP5810837B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
JP5884423B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
JP5104074B2 (ja) | 重合体及びそれを用いた有機光電変換素子 | |
WO2013047293A1 (fr) | Elément de conversion photoélectrique | |
JP5874302B2 (ja) | 高分子化合物及びそれを用いた有機光電変換素子 | |
JP2010010438A (ja) | 有機光電変換素子及びその製造に有用な組成物 | |
JP2013004722A (ja) | 光電変換素子 | |
JP2012253212A (ja) | 高分子化合物及びそれを用いた有機光電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11777404 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11777404 Country of ref document: EP Kind code of ref document: A1 |