WO2011137630A1 - 信道探测方法和装置 - Google Patents

信道探测方法和装置 Download PDF

Info

Publication number
WO2011137630A1
WO2011137630A1 PCT/CN2010/077653 CN2010077653W WO2011137630A1 WO 2011137630 A1 WO2011137630 A1 WO 2011137630A1 CN 2010077653 W CN2010077653 W CN 2010077653W WO 2011137630 A1 WO2011137630 A1 WO 2011137630A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
sequence
user
base station
cell
Prior art date
Application number
PCT/CN2010/077653
Other languages
English (en)
French (fr)
Inventor
梁波
张玉杰
夏冰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011137630A1 publication Critical patent/WO2011137630A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • a smart antenna is an intelligent form of antenna, and its intelligence is embodied in an adaptive manner.
  • the adaptive antenna array is composed of a plurality of antenna elements. For the smart antenna at the base station, the base station processes the uplink signal received by each antenna to obtain a weight coefficient; when each antenna performs downlink signal transmission, it multiplies the weight coefficient corresponding to the antenna to adjust the transmission signal. Amplitude and phase.
  • the smart antenna can measure the user direction, adaptively adjust the weighted amplitude and phase of each array element signal to change the antenna pattern of the array, realize the beam to move with the user's movement, reduce the signal transmission power, and extend the battery. Lifetime, as well as reducing the size of the user equipment, or greatly reducing the coverage of the base station without reducing the transmission power.
  • the ultimate goal of smart antennas is to implement downlink beamforming (Beam Forming, BF),
  • the angle information of the downlink beamforming can be obtained by analyzing the uplink transmission signal. According to different weight acquisition methods, it can be divided into open loop BF and closed loop BF.
  • the open-loop BF constructs a covariance matrix by performing channel estimation on a user uplink block (Burst) or an FFB subchannel to obtain a weight of each antenna.
  • the closed loop BF also known as BF (Sounding BF)
  • BF Sounding BF
  • the base station obtains a weight by a Sounding sequence.
  • Sounding Sounding
  • Golay Golay sequences used in the signal characteristics, and according to the relevant protocol and Decimation anti Cyclic sequences in thousands of interference defined policy, the need to separately Cyclic Sounding of 1 J and Decimation bad sequence analysis.
  • the uplink sounding signal that is, the channel sounding signal
  • the uplink sounding signal is the reciprocity of the uplink and downlink channels of the TDD system, and is used by the SS (Subscriber Station) to the BS (Base Station).
  • the sounding signal is divided into a Cyclic sequence and a Decimation sequence.
  • the interference suppression between users in the Cyclic mode is implemented by code division, that is, the user sends sound detection on all subcarriers on one symbol. Sequence, the difference of n values ensures the orthogonality between the user's sounding sequences.
  • a primary object of the present invention is to provide a channel detecting method and apparatus to solve at least the above problems.
  • a channel detection method including: setting, by different base stations, different shift values for different cells, so that the sounding signal of any user of the current cell and any user of the neighboring cell The cross-correlation of the sounding signal is lower than the threshold value; the base station determines the Gray sequence corresponding to any user of the current cell according to the shift value of the current cell; the base station notifies the user of the current cell to perform channel sounding using the determined Gray sequence.
  • a channel detecting apparatus including: a shift value setting module, configured to set different shift values for different cells, so that a sound signal of any user of the current cell and phase The cross-correlation of the detection signal of the user in the neighboring cell is lower than the threshold; the sequence determining module is configured to determine, according to the shift value of the current cell, a Gray sequence corresponding to any user of the current cell; A method for notifying a user of the current cell to perform channel sounding using the determined Gray sequence.
  • the cross-correlation operation is performed according to the shift value, thereby determining the Gray sequence used by the user, and the problem of interference between the detection signals is solved, thereby achieving the effect of suppressing the detection signal.
  • FIG. 1 is a flow chart of a channel detecting method according to a first embodiment of the present invention
  • FIG. 2 is a flow chart of a method for selecting an adjacent ' ⁇ interval parameter according to a second embodiment of the present invention
  • FIG. 4 is a schematic diagram of a shift value assigned to an intra-frequency neighboring cell according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic diagram of a shift value according to the fourth embodiment of the present invention
  • Embodiment 1 This embodiment provides a channel detection method. Referring to FIG. 1, the method includes the following steps: Step S102: For different cells, a base station sets different shift values to enable detection by any user in the current cell. The cross-correlation between the signal and the detection signal of any user in the neighboring cell is lower than the threshold, so as to reduce the mutual interference of the detection signals between different users; for example, the base station determines the current cell shift according to the shift value of the neighboring cell.
  • the candidate set of values, the golay sequence corresponding to each value in the selected set and the golay sequence of any user in the neighboring cell are subjected to cross-correlation operation; the operation result of taking out the cross-correlation operation from the candidate set is lower than
  • the value of the threshold value is used as the current candidate set, and a value is selected from the current candidate set as the shift value of the current cell.
  • the candidate set may be a set of values remaining after removing the shift value of the neighboring cell from the set of predetermined shift values (eg, values specified in the relevant protocol).
  • Step S104 The base station determines a golay sequence corresponding to any user of the current cell according to the shift value of the current cell.
  • the base station may determine according to the type of the detection signal, and the detection signal is divided into: a first sequence (ie, Cyclic) The sequence) and the second sequence (ie, the Decimation sequence) are described separately below.
  • determining a golay sequence corresponding to any user in the current cell includes: For each user in the current cell, starting from the first value in the candidate set, each value in the candidate set and the maximum loop The shift index P and the specified cyclic shift index n are combined to obtain a plurality of combinations, and the corresponding Golay sequence is determined according to each combination of the plurality of combinations, and each user in the current cell is determined when determining the Golay sequence.
  • the selected n is different; the determined Golay sequence is cross-correlated with the Golay sequence of all users in the neighboring cell, and the value of the cross-correlation operation from the candidate set is lower than the threshold value. It is indicated that the u, P, and n values corresponding to the value are relatively small in cross-correlation between the current user's u, P, and n values, and the channel detection is performed by the golay sequence corresponding to the value. .
  • the detection signal is a Decimation sequence
  • determining a golay sequence corresponding to any user in the current cell includes: starting, for each user in the current cell, starting from a first value in the candidate set, each value in the candidate set, and the second
  • the value D in the probe instruction corresponding to the sequence is combined with the actual offset g to obtain multiple combinations, and the corresponding Golay sequence is determined according to each combination of the multiple combinations; when the Golay sequence is determined, each user in the current cell
  • the selected g is different; ⁇ !
  • Step S106 Notifying the user of the current cell to perform channel sounding using the determined Gray sequence. After receiving the notification, the user of the current cell will use the golay sequence determined in the notification to perform channel sounding.
  • A is the index of the subcarrier ( 0 ⁇ k ⁇ N used - ⁇ );
  • G(x) is a Golay sequence, as described in section 8.4.6.2.7 of the P80216Rev2_D9 protocol, 464;
  • P is the maximum cyclic shift index, which can be 4 or 8;
  • w is the specified cyclic shift index, which ranges from 0 to P - 1 ;
  • S is a subcarrier/band group allocated according to the Sounding instruction
  • 11 is the shift value defined in the related art PAPR reduction, safety zone and sounding zone IE, and its value can be 0-127; ? Size; specify a time offset, Section 8.4.6.2.7 of the P80216Rev2_D9 protocol, Table 465; Table 465
  • This sequence is sent in such a way that each user sends a cyclic sequence on 432 (5M system) subcarriers. It can be seen from the above formula that the golay sequence used for the sounding signal is determined by the following four factors, and the other 'J is FFT, P, n, u, and is described below in a cyclic manner. In the cyclic mode, the FFT points, P values, and u values in the same cell are equal for each user.
  • the difference between the users is that different n values are used, and the difference of n values ensures that the detection signals of the users are orthogonal to each other. Sex, therefore, in the same cell, different values of n are assigned to users, which can ensure the least interference between users.
  • the number of FFT points and P-values and n-values between adjacent cells may be different for each user, and different u values may be relied upon to determine the detection signals with lower cross-correlation. Assuming that both the FFT point and the P value are fixed, and the n values are equal or unequal, it is necessary to traverse the value of u to search for a sequence combination with less mutuality.
  • Step S202 determining P value
  • step S2108 it is judged whether the combination of nl and n2 is traversed, and if so, the current flow is ended, otherwise, the process returns to step 4 to gather S204.
  • the golay sequence corresponding to the current user is determined by using the values of u, P, and n, and the determined golay sequence and the interference of any user in the neighboring cell are the smallest, and the current user uses the golay sequence to perform channel detection when the interference is better.
  • the base station notifies the terminal to use the Decimated mode
  • the relationship between the sequence used by the terminal and the index is defined as follows: ' 1 M -1
  • A is the index of the subcarrier Q ⁇ k ⁇ N used — ⁇
  • Step S3024 recording the positions of all elements less than the mean in the ul*u2 matrix, where the mean is the stable mean of the ul*u2 matrix elements, and the determination process of the stable mean is The process of step S210 to step S214 in the above method is the same, and is not described in detail here; step S3025, it is judged whether the combination of gl and g2 is traversed, and if yes, step S3026 is performed, otherwise, step 4 is returned to S3022; step S3026, judge Whether the combination of D1 and D2 is traversed, if yes, end, otherwise, return to step 4 to gather S3021; for each cell, D value can be selected as 8, 16 or 32, so the combination is 3*3; step S3031, D The value is fixed, and the combination of the current D1 and D2 is determined; in step S3032, the combination of gl and g2 is determined according to the value of the current D (take
  • the same value as the cell u so if the g values are equal, it is definitely the interference between the cells. Therefore, in order to suppress the interference, the user of the same cell does not need to consider the u value. How to choose, keep the g value different; small interval, g value is different, definitely orthogonal; g value is the same, use u value to distinguish users. The above process is shown in the following table:
  • the golay sequence depends on the difference of u values to ensure the sequence between Orthogonality.
  • G 3 or 8, or other values than 1 and 6, where the g values are not equal, you also need to consider the u value factor; in other cases, the g values are not equal, you can ensure that the corresponding subcarrier position is orthogonal, do not consider u The value.
  • the D values are not equal.
  • the user may occupy the subcarriers in the same position. There are thousands of interferences, small intervals, and D values are not equal. The user may occupy subcarriers in different positions without interference.
  • the golay sequence corresponding to the current user is determined by using the values of u, D, and g, and the determined golay sequence and the interference of any user in the neighboring cell are the smallest, and the current user uses the golay sequence to perform channel detection with less interference. .
  • the U values are the same between users, and different P and n values realize orthogonality between users.
  • the P and n values may be the same
  • by selecting a set of low cross-correlation sequences to reduce the interference between neighboring cells different cells can only rely on different U values to determine the comparison.
  • Low cross-correlation detection signal sequence A set of U values is selected such that the cross-correlation of neighboring cell sounding signals is the highest, thereby reducing the interference between users of neighboring cells.
  • Step 1 According to the characteristics of the system interference, set a threshold for traversing all the one-to-one combinations in which the absolute value of the mutual value of the u value is less than the threshold.
  • Step 2 Start with the first set of ul->u2 mappings and select an ul , u2.
  • Step 3 Starting from a u2 value, select u2->u3, and the u2->u3 optional set must be a subset of the ul->u2 set.
  • Step 4 Starting from a u3 value, select u3->u4, and the set of u3->u4 optional must be a subset of the u2->u3 set.
  • Step 5 Repeat steps three and four above until the optional combination is already an empty set. Referring to FIG.
  • the u values of each cell are 0, 4, 8, 12, 16, 20, 24; respectively, it is impossible to geographically neighbor cells. All use the same frequency networking, in this case, the use range of these u values will be greatly increased.
  • the absolute value of the cross-correlation value between all users in the three cells will reach 200 or more, which is very disadvantageous for detecting signal detection.
  • the u values are: 0, 4, 8, 12, 16, 20, 24, 28, 33, 91, and the absolute value of the cross-correlation value is less than 20.
  • the base station BS in the above embodiment receives the uplink sounding signal, acquires uplink channel response information (or channel state information CSI) according to the user sounding signal, and uses BF (TXAA/MRT/EBF) to utilize the uplink and downlink channel reciprocity of the TDD system.
  • BF TXAA/MRT/EBF
  • SDMA Space Division Multiple Access
  • multi-antenna transmission technology such as CL-MIMO performs downlink data transmission of the user, improving system capacity and signal quality.
  • Embodiment 5 Referring to FIG. 5, this embodiment provides a channel detecting apparatus, which may be disposed on a base station, where the apparatus includes: a shift value setting module 50, configured to set different shift values for different cells.
  • the cross-correlation between the detection signal of any user of the current cell and the detection signal of any user of the neighboring cell is lower than a threshold; the sequence determining module 52 is configured to determine any user of the current cell according to the shift value of the current cell. Corresponding Gray Golay sequence; the channel sounding notification module 54 is configured to notify a user of the current cell to perform channel sounding using the determined golay sequence.
  • the shift value setting module 50 includes: a cross-correlation operation unit, configured to determine, according to a shift value of the neighboring cell, a candidate set of the current cell shift value, and a golay sequence corresponding to each value in the set to be selected Performing a cross-correlation operation with the golay sequence of any user in the neighboring cell; the shift value determining unit is configured to extract, from the candidate set, a value lower than the threshold value in the operation result of the cross-correlation operation as the current candidate set , selecting a value from the current candidate set as the shift value of the current cell.
  • the cross-correlation operation unit includes: a candidate set determining sub-unit, configured to use a value remaining after removing the shift value of the neighboring cell in the predetermined shift value set as the candidate set.
  • the channel detecting apparatus of this embodiment has the functions of the base stations in the first to third embodiments, and the golay sequence obtained by selecting each parameter and the golay sequence used by any user in the adjacent cell have the least interference, and the detection signal interference is suppressed. Effect. As can be seen from the above description, the present invention achieves the following technical effects: By considering the selection of each parameter, the golay sequence of the obtained golay sequence and the golay sequence used by any user in the adjacent cell are minimized, and the suppression detection signal is achieved. The effect of interference.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信道探测方法和装置,属于通信领域。其中,所述方法包括:对于不同的小区,基站设置不同的移位值,以使当前小区任意一个用户的探测信号与相邻小区任意一个用户的探测信号的互相关性低于门限值,达到降低不同用户间探测信号相互干扰的目的;所述基站根据所述当前小区的移位值确定所述当前小区任意用户对应的格雷golay序列;通知所述当前小区的用户使用确定的golay序列进行信道探测。根据本发明,抑制了探测信号间的干扰。

Description

信道探测方法和装置 技术领域 本发明涉及基于 wimax 802.16e协议的通信领域, 具体而言, 涉及一种 信道探测方法和装置。 背景技术 智能天线是一种智能化的天线形式, 其智能化体现在自适应上, 这种自 适应的天线阵列由多个天线单元组成。 对于基站端的智能天线, 基站对每根天线接收到的上行信号进行处理, 得出一个权系数; 每一根天线进行下行信号发射时, 将乘以该天线对应的权 系数, 用于调节发射信号的幅度和相位。 所以说, 智能天线可以测出用户方 向, 自适应地调节各阵元信号的加权幅度和相位来改变阵列的天线方向图, 实现波束随着用户的移动而移动, 减小信号发射功率, 延长电池寿命, 以及 减小用户设备的体积, 或在不降低发射功率的前提下, 大大增加基站的覆盖 率。 智能天线的最终目的是实现下行波束赋形 (Beam Forming , BF ), 在
Wimax TDD ( Time Division Duplex, 时分双工) 系统中, 由于上下行信道的 互易性, 即近似认为上下行信道条件一样, 下行波束赋形的角度信息可以通 过对上行发射信号解析得出。 才艮据权值获取方法不同可以分为开环 BF和闭 环 BF。 开环 BF通过对用户上行数据块 ( Burst ) 或 FFB子信道进行信道估 计,构建协方差矩阵,得到每根天线的权值。 闭环 BF又称探测 BF ( Sounding BF ), 终端在特定的符号特定的子载波上发送探测 ( So皿 ding ) 序列, 用于 进行信道探测, 基站通过解探测 (Sounding ) 序列得到权值。 在同频组网的情况下, 因为上行链路的探测( Sounding )信号的特殊性, 需要考虑消除各小区之间上行链路的探测 (Sounding ) 信号相互千扰, 根据 上行链路的探测 (Sounding ) 信号使用的格雷 Golay序列特点, 以及协议根 据 Cyclic 以及 Decimation 序列特点定义的相关抗千扰策略, 需要分别对 Sounding的 Cyclic 、及 Decimation序歹1 J分析。 上行链路的探测 ( Sounding ) 信号也即上行信道探测信号 (Channel Sounding ), 是利用 TDD 系统的上下行信道的互易性, 由 SS ( Subscriber Station, 用户站) 向 BS ( Base Station, 基站)提供信道响应信息 (或信道状 态信息 CSI ) 的一种手段, 主要应用于 TDD系统。 探测 Sounding信号分为 Cyclic序列和 Decimation序列, 对于同一'〗、区 内, Cyclic方式下用户之间的千扰抑制是通过码分实现的, 即用户在 1个符 号上的所有子载波发送探测 Sounding 序列, n 值的不同保证了用户的探测 Sounding序列之间具有正交性; Decimation方式下用户通过在符号上不同位 置发送探测 Sounding序列以消除用户间的千扰, 即频分方式。 但是, 如果仅 仅按照 802.16e协议上方法, 对每个扇区选任意不同的 U值, 这两种方式抑 制千 4尤的效果均不理想。 发明内容 本发明的主要目的在于提供一种信道探测方法和装置, 以至少解决上述 问题。 才艮据本发明的一个方面, 提供了一种信道探测方法, 包括: 对于不同的 小区, 基站设置不同的移位值, 以使当前小区任意一个用户的探测信号与相 邻小区任意一个用户的探测信号的互相关性低于门限值; 基站根据当前小区 的移位值确定当前小区任意用户对应的格雷序列; 该基站通知当前小区的用 户使用确定的格雷序列进行信道探测。 根据本发明的另一方面, 提供了一种信道探测装置, 包括: 移位值设置 模块, 用于对于不同的小区, 设置不同的移位值, 以使当前小区任意一个用 户的探测信号与相邻小区任意一个用户的探测信号的互相关性低于门限值; 序列确定模块, 用于根据所述当前小区的移位值确定所述当前小区任意用户 对应的格雷序列; 信道探测通知模块, 用于通知所述当前小区的用户使用确 定的格雷序列进行信道探测。 通过本发明, 釆用才艮据移位值进行互相关性运算, 进而确定用户使用的 格雷序列, 解决了探测信号间存在千扰的问题, 进而达到了抑制探测信号千 4尤的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据本发明实施例一的信道探测方法流程图; 图 2是 居本发明实施例二的相邻 '』、区间参数选择的方法流程图; 图 3是 居本发明实施例三的相邻 '』、区间参数选择的方法流程图; 图 4是才艮据本发明实施例四的分配给同频相邻小区的移位值示意图; 以 及 图 5是根据本发明实施例五的信道探测装置结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例中的通信系统包括基站和用户设备, 由基站进行探测信号 使用的 golay序列的确定操作,基站完成 golay序列的确定后会通知给相应小 区的用户, 相应小区的用户根据通知中的 golay序列进行探测信号的发送。 实施例一 本实施例提供了一种信道探测方法, 参见图 1 , 该方法包括以下步骤: 步骤 S 102 , 对于不同的小区, 基站设置不同的移位值, 以使当前小区任 意一个用户的探测信号与相邻小区任意一个用户的探测信号的互相关性低于 门限值, 达到降低不同用户间探测信号相互千扰的目的; 例如, 基站根据相邻小区的移位值确定当前小区移位值的待选集合, 对 待选集合中的每个值对应的 golay序列与相邻小区中任意用户的 golay序列进 行互相关性运算; 从待选集合中取出互相关性运算的运算结果中低于门限值 的值作为当前待选集合, 从当前待选集合中选取一个值作为当前小区的移位 值。 其中, 待选集合可以是将预定的移位值 (例如相关协议里规定的值) 集 合中除去相邻小区的移位值后剩余的值的集合。 步骤 S 104,基站根据当前小区的移位值确定当前小区任意用户对应的格 雷 (golay ) 序列; 确定 golay序列时, 可以根据探测信号的类型进行确定, 探测信号分为: 第一序列 (即 Cyclic序列) 和第二序列 (即 Decimation序列 ), 下面分别进 行描述。 当探测信号为 Cyclic序列, 确定当前小区任意用户对应的 golay序列包 括: 对当前小区中每个用户, 从待选集合中的第一个值开始, 将待选集合中 的每个值与最大循环移位索引 P和指定的循环移位索引 n进行组合, 得到多 种组合, 依次才艮据多种组合中的每一种组合确定对应的 Golay 序列, 确定 Golay序列时, 当前小区中每个用户选择的 n是不同的; 将确定的 Golay序 列与相邻小区中所有用户的 Golay序列进行互相关性运算, 从待选集合中取 出互相关性运算的运算结果中低于门限值的值, 说明以该值对应的 u、 P和 n 值为当前用户的 u、 P和 n值与相邻小区的互相关性比较小, 以该值对应的 的 golay序列进行信道探测的千 4尤较小。 探测信号为 Decimation序列, 确定当前小区任意用户对应的 golay序列 包括: 对当前小区中每个用户, 从待选集合中的第一个值开始, 待选集合中 的每个值与所述第二序列对应的探测指令中的值 D和实际偏移 g进行组合, 得到多种组合, 依次根据多种组合中的每一种组合确定对应的 Golay序列; 确定 Golay序列时, 当前小区中每个用户选择的 g是不同的; ^!夺确定的 Golay 序列与相邻小区中所有用户的 Golay序列进行互相关性运算, 从待选集合中 取出互相关性运算的运算结果中低于门限值的值, 说明以该值对应的 u、 P 和 n值为当前用户的 u、 D和 g值与相邻小区的互相关性比较小, 以该值对 应的的 golay序列进行信道探测的千扰较小。 步骤 S 106 , 通知当前小区的用户使用确定的格雷序列进行信道探测。 当前小区的用户收到通知后, 会使用通知中确定的 golay序列进行信道 探测, 这样的信道探测小区间和小区内的信号千扰将比较小, 达到抑制探测 信号千扰的目的。 实施例二 当基站通知终端使用 Cyclic方式, 终端所用的序列 ¾与索引《的关系定 义如下:
Figure imgf000006_0001
其巾:
A是子载波的索引 ( 0≤k≤Nused - \ );
Nused Sounding序列中有用的子载波;
G(x)是 Golay 序列, 详见 P80216Rev2_D9协议的 8.4.6.2.7节表 464;
P是最大循环移位索引, 其取值可以为 4或 8;
w是指定的循环移位索引, 其范围从 0到 P - 1 ;
S是根据 Sounding指令分配的子载波 /频带组;
11是相关技术 PAPR reduction, safety zone和 sounding zone IE中定义的 移位值, 其取值可以为 0- 127; 是??了大小; 指定一个 时候的偏移, P80216Rev2_D9协议的 8.4.6.2.7 节表 465 ; 表 465
Figure imgf000006_0002
本序列发送方式为每个用户在 432 ( 5M系统) 个子载波上都发送 cyclic 序列。 由以上公式可知, 探测信号使用的 golay序列由以下 4个因素确定, 分 另' J是 FFT、 P、 n、 u, 下面以 cyclic方式进行描述。 cyclic方式, 同小区内的 FFT点数、 P值和 u值对于各个用户而言是相 等的, 用户的区别在于釆用不同的 n值, n值的不同保证了用户的探测信号 之间具有正交性, 因此, 同小区内, 对用户之间分配不同的 n值, 即可保证 用户间的千扰最低。 相邻小区间的 FFT点数和 P值和 n值对于各个用户而言都有可能是不同 的, 只能依靠不同的 u值来确定具有较低的互相关性的探测信号。 假设 FFT点数和 P值都固定, n值相等或者不等的情况下, 都需要遍历 u的取值, 搜索互相性较小的序列组合。 以 FFT=512和 1024, 并且相邻小区 的 P值相等的情况为例, 如 P=4时, 参见图 2 , 为相邻小区间参数选择的方 法流程图, 该方法包括: 步骤 S202 , 确定 P值; 步 4聚 S204 , 才艮据 P值, 确定 nl和 n2的组合; 对于 nl *η2 , 以 P = 4为例: nl*n2 = 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 索引 1为 nl=0、 η2=0 , 索引 2为 nl=l、 η2=0 , 依次类 4舞, 索引 16为 nl=3、 η2=3。 因此对于矩阵 nl*n2的元素遍历, 需要比较所有 Ρ*Ρ种情况; 步骤 S206 , 在每种 nl与 n2的组合条件下, 确定 Ul*u2的矩阵; 对于 ul *u2 , 可以去掉重复比较的部分, 及去掉矩阵下三角部分, 以减 少比较的次数。 ul*u2 = 1 2 3 4 128
129 130 131 132—— 256
128* 127+1 128* 127+2 128* 128 步 4聚 S208, 求 ul*u2矩阵中所有元素的均值 Il i=l ; 步骤 S210, 取出 ul*u2矩阵中小于均值 Ii的所有元素; 步 4聚 S212, i=i+l , 对取出的元素计算下一个均值 Ii; 步骤 S214, 判断均值 是否等于均值 11+1 , 如果是, 执行步骤 S216, 如 果否, 执行步 4聚 S210; 当均值 等于均值 11+1时, 说明均值 11+1为稳定均值; 步骤 S216, 记录 ul*u2矩阵中小于均值 11+1的所有元素的位置; 在遍历 ul*u2矩阵中的元素 (该元素为 bl与 b2互相关的绝对值) 时, 对矩阵内的元素求均值, 对大于均值的元素进行标记, 不参与下一次均值的 计算, 这样经过若千次的迭代, 均值稳定, 取出低于均值的矩阵元素位置, 即为 sounding序列间互相关性较氐的组合。 步骤 S218,判断 nl与 n2的组合是否遍历完毕,如果是,结束当前流程, 否则, 返回步 4聚 S204。 本实施例以 u、 P和 n值确定当前用户对应的 golay序列, 并且确定的 golay序列与相邻小区任意用户的千扰最小, 该当前用户使用该 golay序列进 行信道探测时的千扰较 'J、。 实施例三 当基站通知终端使用 Decimated方式, 终端所用的序列 ¾与索引 "的关 系定义如下: ' 1 M -1
」2·(—- G([k + it + offset D (fft)] mod 2048) k&B,k≠^^ ~ ,kmodD = g
0 其它情况 其巾:
A:是子载波的索引 Q≤k≤Nused—\
G(x)是 Golay 序列, 详见 P80216Rev2_D9协议的 8.4.6.2.7节表 464; fft FFT大小; u是移位值;该移位值可以是 PAPR reduction, safety zone和 sounding zone IE中定义的值; o i¾C^ 指定一个 FFT时候的偏移, 详见上述表 465; B是根据探测指令分配的子载波 /频带组; "是来自于探测指令的 decimation参数; g是实际的 decimation 偏移, k mod D = g。 由以上公式可知, 探测信号使用的 golay序列由以下 4个因素确定, 分 另' J是 FFT、 D、 g、 u, 下面以 Decimation方式进行描述。 参见图 3, 为相邻小区间参数选择的方法流程图, 该方法包括: 步骤 S302, 判断 D值是否固定, 如果不固定, 执行步骤 S3021; 如果固 定, 执行步 4聚 S3031; 步 4聚 S3021, D值不固定时, 可以有不同的取值, 设置 D的取值; 步骤 S3022, 居当前 D的取值, 确定 gl与 g2的组合 (取对角线上的 组合 ); 步骤 S3023 , 进行 ul与 u2的遍历, 取 ul*u2矩阵的上三角矩阵元素; ul*u2 = 1 2 3 4 128
129 130 131 132—— 256
128* 127+1 128* 127+2 128* 128 步骤 S3024, 记录 ul*u2矩阵中小于均值的所有元素的位置, 这里的均 值为 ul*u2矩阵元素的稳定均值, 该稳定均值的确定过程与上述方法中步骤 S210至步骤 S214的过程相同, 这里不再详述; 步骤 S3025,判断 gl与 g2的组合是否遍历完毕,如果是,执行步骤 S3026, 否则, 返回步 4聚 S3022; 步骤 S3026, 判断 D1与 D2的组合是否遍历完毕, 如果是, 结束, 否则, 返回步 4聚 S3021 ; 对于每个小区, D值可以选为 8、 16或 32, 所以组合是 3*3种; 步骤 S3031 , D值固定, 确定当前 D1与 D2的组合; 步骤 S3032, 才艮据当前 D的取值, 确定 gl与 g2的组合 (取对角线上的 组合); 步骤 S3033 , 进行 ul与 u2的遍历, 取 ul*u2矩阵的上三角矩阵元素; 步骤 S3034, 记录 ul*u2中小于均值的所有元素的位置, 这里的均值为 ul*u2矩阵元素的稳定均值, 该稳定均值的确定过程与上述方法中步骤 S210 至步 4聚 S214的过程相同, 这里不再详述; 步骤 S3035 ,判断 gl与 g2的组合是否遍历完毕,如果是,执行步骤 S3036, 否则, 返回步 4聚 S3032; 步骤 S3036, 判断 D1与 D2的组合是否遍历完毕, 如果是, 结束, 否则, 返回步 4聚 S3031。 由上述方法可知, D固定的话, 遍历的次数少, D不固定的话, 遍历的 次数多。 举例说明 ¾口下: D=2,
G = gl*g2 = 2*2 = 1 2 3 4 同小区 u值一样, 因此若 g值相等, 则肯定是小区间的千扰, 因此, 为 了抑制千扰, 同小区的用户不用考虑 u值如何选取, 保持 g值不同即可; 小 区间, g值不同, 肯定正交; g值相同, 用 u值区分用户。 上述过程如下表所示:
Figure imgf000011_0001
小区内, 用户之间占用不同位置的子载波, 将不会形成千扰, 小区间, 用户之间若占用同样位置的子载波, 会引入千扰。 对于 D值不固定时,说明两个用户的探测信号分别选择不同的 D1和 D2, 因此,此情况是相邻小区间的千扰。例: D1 =2, D2 = 4; gl = 0— 1, g2 = 0—3; G = gl*g2 = 2*4= 【1 2 3 4 5 6 7 8】
= 1 2 3 4
5 6 7 8 若 D值不相等, 则肯定是两个小区, 此时, u值可以相同或者不同; G=l或 6表明 g值相等, 即 G=l时, gl= g2=0, G=6时, gl= g2=l , 此 情况下, golay序列靠 u值的不同, 来保证序列之间的正交性。
G=3或 8, 或除 1和 6以外的其它值, 此时 g值不相等, 也需要考虑 u 值因素; 其它情况, g值不相等, 可以保证对应子载波位置正交, 不用考虑 u的 取值。 分析 G=l、 6和 3、 8; 例如, gl = 0, g2 = 0, 这样 k mod D = g; kl = [1 3 5 7 9 11 13 ] k2 = [1 5 9 13 …― ] 这时, 只考虑 kl(i)=k2(j)的元素, 即 k2长度和位置的序列; ,km D = g
Figure imgf000012_0001
针对 FFT=128: golay序歹' J需要模 2048, offset = 859, k 6 (1: 108), 遍历 u ( 0—127 ); ( 1 ) 求出 k2 k2 = [1 5 9 13…― ] , 一共 27个值; ( 2 ) 遍历 u bl = G ( [k2+u+offset] mod 2048 ) b2 = G ( [k2+u+offset] mod 2048 ) ( 3 ) 考察 bl与 b2的互相关性, 找出互相关性较低的 ul与 u2组合。 小区间, D值不相等, 用户有可能占用相同位置的子载波, 有千扰, 小 区间, D值不相等, 用户有可能占用不同位置的子载波, 无千扰。 本实施例以 u、 D和 g值确定当前用户对应的 golay序列, 并且确定的 golay序列与相邻小区任意用户的千扰最小, 该当前用户使用该 golay序列进 行信道探测时的千扰较小。 上述实施例二和三通过 u值, o 和 k=0 , 得到第 0个子载波应该 取 Golay序列的某个 bit。 从这个 bit开始, 连续取出 432个 bit的数据;
Cyclic方式, 即为将这 432个数据填到对应的 0-431个有用子载波的位 置, ^_·& Ρ =4 , 所有可能有 4个用户在这 432个子载波上发送同样的序列, 怎么能区分出那个用户的序列呢? 因 cyclic公式里面在后面乘了一个 e_;, , 对于 P=4来说, n可以取 0-3 , 也就是说, cyclic公式后面乘的^, 可以保 证虽然 4个用户在同一个位置发序列, 但他们的序列是正交的, 即互相不会 有千扰。
Decimation方式, 耳又出了 432bit的 golay序歹1 J , golay序列和子载波 对应, £设 D = 4, 则可以有 4个用户, k mod D =g的意思 ¾口下: 对于第。个子载波, 0 mod 4 = 0 , 即, 第 0个子载波所发的序列为 g=0 的用户发送的, 同理 4 mod 4 = 0 , 即, 第 4个子载波所发的序列为 g=0的用 户发送的; 对于第 1个子载波, 1 mod 4 = 1 , 即, 第 1个子载波所发的序列为 g=l 的用户发送的, 同理 5 mod 4 = 1 , 即, 第 5个子载波所发的序列为 g=l的用 户发送的; 对于第 2个子载波, 2 mod 4 = 2 , 即, 第 2个子载波所发的序列为 g=l 的用户发送的, 同理 6 mod 4 = 2 , 即, 第 6个子载波所发的序列为 g=2的用 户发送的; 对于第 3个子载波, 3 mod 4 = 3 , 即, 第 3个子载波所发的序列为 g=3 的用户发送的, 同理 7 mod 4 = 3 , 即, 第 7个子载波所发的序列为 g=3的用 户发送的; cyclic和 Decimation的区别是, cyclic在所有有用子载波上啫发送 golay 序列, 每个用户在同一个子载波上发送的序列是正交的, 但是 Decimation每 个用户在相隔 P个子载波的位置上发送 golay序列。 实施例四 为了降低探测信号用户之间的千扰, 在相同小区内, 用户间 U值相同, 不同的 P、 n值实现了用户间的正交性。 在相邻小区, P、 n值可能相同的情 况下, 通过选取一组互相关性较低的序列减小相邻小区之间的千扰, 不同小 区只能依靠不同的 U值来确定具有较低的互相关性的探测信号序列。 选取一组 U值, 使得相邻小区探测信号的互相关性最氏, 从而减小相邻 小区的用户间千扰。 第一步: 根据系统千扰特点, 设定一个门限, 用于遍历出所有千扰情况 下, 不同 u值取值之间互相关绝对值小于此门限的一对一组合。 第二步: 从第一组 ul->u2映射开始, 选择出一个 ul , u2。 第三步: 再从一个 u2值出发, 选择 u2->u3 , 且 u2->u3可选的集合必须 是 ul->u2集合的子集。 第四步: 再从一个 u3值出发, 选择 u3->u4 , 且 u3->u4可选的集合必须 是 u2->u3集合的子集。 第五步: 重复上面步骤三和四, 直到可选的 组合已经为空集。 参见图 4, 为分配给同频的相邻小区的移位值示意图, 各个小区的 u值 分别为 0 , 4, 8, 12 , 16 , 20, 24; 事实上不可能地理上相邻的小区都用同 频组网, 这样的话, 这些 u值的使用范围将大大增加。 这样分配 u值的好处是, 序列之间的相关性比较低, 有利于本小区基站 对本小区各个用户探测信号的检测, 并且受到的相邻小区的用户千扰较小。 例如 u = 0, 4, 8的三个小区, 所有用户之间的互相关值绝对值都小于 9。 若 釆用其他的 u值, 例如: u=0, 1 , 2 , 三个小区所有用户之间的互相关值绝 对值将会达到 200以上, 这对于探测信号检测而言是非常不利的。 例如 u值 为: 0 , 4 , 8 , 12 , 16 , 20 , 24, 28 , 33 , 91 , 互相关值绝对值都小于 20。 本实施例通过在规定的 U值集合中逐一确定小区使用的 U值,可以使探 测信号的千扰降到最低。 以上实施例中的基站 BS接收到上行探测信号, 根据该用户探测信号获 取上行信道响应信息 (或信道状态信息 CSI ), 利用 TDD系统上下行信道互 易性,使用 BF ( TXAA/MRT/EBF ), SDMA ( Spatial Division Multiple Access, 空间复用多路接入;), CL-MIMO 等多天线发射技术进行该用户下行数据发 射, 提高系统容量以及信号质量。 实施例五 参见图 5 , 本实施例提供了一种信道探测装置, 该装置可以设置在基站 上, 该装置包括: 移位值设置模块 50 , 用于对于不同的小区, 设置不同的移位值, 以使当 前小区任意一个用户的探测信号与相邻小区任意一个用户的探测信号的互相 关性低于门限值; 序列确定模块 52 ,用于根据当前小区的移位值确定当前小区任意用户对 应的格雷 golay序列; 信道探测通知模块 54 , 用于通知当前小区的用户使用确定的 golay序列 进行信道探测。 优选地, 移位值设置模块 50包括: 互相关性运算单元, 用于根据相邻小区的移位值确定当前小区移位值的 待选集合, 对待选集合中的每个值对应的 golay序列与相邻小区中任意用户 的 golay序列进行互相关性运算; 移位值确定单元, 用于从待选集合中取出 互相关性运算的运算结果中低于门限值的值作为当前待选集合, 从当前待选 集合中选取一个值作为当前小区的移位值。 其中, 互相关性运算单元包括: 待选集合确定子单元, 用于将预定的移位值集合中除去相邻小区的移位 值后剩余的值作为待选集合。 本实施例的信道探测装置具备实施例一至三中的基站的功能, 能够进行 各个参数的选择得到的 golay序列与相邻小区中任意用户使用的 golay序列的 千扰最小, 达到抑制探测信号千扰的效果。 从以上的描述中可以看出, 本发明实现了如下技术效果: 通过考虑各个 参数的选择,使得到的 golay序列与相邻小区中任意用户使用的 golay序列的 千扰最小, 达到了抑制探测信号千扰的效果。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种信道探测方法, 其特征在于, 包括:
对于不同的小区, 基站设置不同的移位值, 以使当前小区任意一个 用户的探测信号与相邻小区任意一个用户的探测信号的互相关性低于门 限值;
所述基站才艮据所述当前小区的移位值确定所述当前小区任意用户对 应的格雷序列;
所述基站通知所述当前小区的用户使用确定的格雷序列进行信道探 测。
2. 根据权利要求 1所述的方法, 其特征在于, 基站设置当前小区的移位值 包括:
基站根据相邻小区的移位值确定当前小区移位值的待选集合, 对所 述待选集合中的每个值对应的格雷序列与所述相邻小区中任意用户的格 雷序列进行互相关性运算;
所述基站从所述待选集合中取出互相关性运算的运算结果中低于门 限值的值作为当前待选集合, 从所述当前待选集合中选取一个值作为当 前小区的移位值。
3. 根据权利要求 2所述的方法, 其特征在于, 所述基站根据相邻小区的移 位值确定当前小区移位值的待选集合包括:
所述基站将预定的移位值集合中除去所述相邻小区的移位值后剩余 的值作为待选集合。
4. 根据权利要求 2所述的方法, 其特征在于, 所述探测信号为第一序列, 所述基站对所述待选集合中的每个值对应的格雷序列与所述相邻小区中 任意用户的格雷序列进行互相关性运算包括:
所述基站对所述当前小区中每个用户, 从所述待选集合中的第一个 值开始, 将所述待选集合中的每个值与最大循环移位索引 P和指定的循 环移位索引 n进行组合, 得到多种组合, 依次根据所述多种组合中的每 一种组合确定对应的格雷序列, 确定所述格雷序列时, 所述当前小区中 每个用户选择的所述 n是不同的;
所述基站将确定的格雷序列与所述相邻小区中所有用户的格雷序列 进行互相关性运算。 根据权利要求 4所述的方法, 其特征在于, 所述基站依次根据所述多种 组合中的每一种组合确定对应的格雷序列包括:
对于所述第一序列, 序列 bk与所述每一种组合的关系为:
Figure imgf000018_0001
其巾:
A是子载波的索引 ( 0≤k≤Nused - \ ); ^是所述探测信号中处于使能状态的子载波;
G(x)是格雷序列;
P是最大循环移位索引;
w是指定的循环移位索引, 其取值从 0到 P - 1 ;
B是根据探测指令分配的子载波 /频带组;
M是当前的移位值; ffi是快速傅里叶变换 FFT大小;
offset D { fft)是所述 FFT对应的偏移。
6. 根据权利要求 2所述的方法, 其特征在于, 所述探测信号为第二序列, 所述基站对所述待选集合中的每个值对应的格雷序列与所述相邻小区中 任意用户的格雷序列进行互相关性运算包括:
所述基站对所述当前小区中每个用户, 从所述待选集合中的第一个 值开始, 所述待选集合中的每个值与所述第二序列对应的探测指令中的 值 D和实际偏移 g进行组合, 得到多种组合, 依次根据所述多种组合中 的每一种组合确定对应的格雷序列; 确定所述格雷序列时, 所述当前小 区中每个用户选择的所述 g是不同的; 所述基站将确定的格雷序列与所述相邻小区中所有用户的格雷序列 进行互相关性运算。 根据权利要求 6所述的方法, 其特征在于, 所述基站依次根据所述多种 组合中的每一种组合确定对应的格雷序列包括:
对于所述第二序列, 序列 bk与所述每一种组合的关系为:
_ J 2 · (- - G({k + u + offset D (fft)] mod 2048) k £ B.k≠ N"sed1 ,kmodD = g
0 其它情况
其巾: 是子载波的索引 ( 0≤k≤Nused - \ );
G(Y)是格雷序列; 是 FFT大小;
M是当前的移位值; e1D、 、是所述 FFT对应的偏移;
B是根据探测指令分配的子载波 /频带组;
"是来自于所述探测指令的所述第二序列参数; g是实际的所述第二序列偏移。 一种信道探测装置, 其特征在于, 包括: 移位值设置模块, 用于对于不同的小区, 设置不同的移位值, 以 使当前小区任意一个用户的探测信号与相邻小区任意一个用户的探测 信号的互相关性低于门限值;
序列确定模块, 用于 居所述当前小区的移位值确定所述当前小 区任意用户对应的格雷序列;
信道探测通知模块, 用于通知所述当前小区的用户使用确定的格 雷序列进行信道 4冢测。
. 根据权利要求 8所述的装置, 其特征在于, 所述移位值设置模块包括: 互相关性运算单元, 用于根据相邻小区的移位值确定当前小区移 位值的待选集合, 对所述待选集合中的每个值对应的格雷序列与所述 相邻小区中任意用户的格雷序列进行互相关性运算;
移位值确定单元, 用于从所述待选集合中取出互相关性运算的运 算结果中低于门限值的值作为当前待选集合, 从所述当前待选集合中 选取一个值作为当前小区的移位值。
10. 根据权利要求 9所述的装置, 其特征在于, 所述互相关性运算单元包括: 待选集合确定子单元, 用于将预定的移位值集合中除去所述相邻 小区的移位值后剩余的值作为待选集合。
PCT/CN2010/077653 2010-05-06 2010-10-11 信道探测方法和装置 WO2011137630A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101734019A CN102238565A (zh) 2010-05-06 2010-05-06 信道探测方法和装置
CN201010173401.9 2010-05-06

Publications (1)

Publication Number Publication Date
WO2011137630A1 true WO2011137630A1 (zh) 2011-11-10

Family

ID=44888664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077653 WO2011137630A1 (zh) 2010-05-06 2010-10-11 信道探测方法和装置

Country Status (2)

Country Link
CN (1) CN102238565A (zh)
WO (1) WO2011137630A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259612B (zh) * 2012-02-17 2017-11-14 中兴通讯股份有限公司 探测信号发送的指示方法和装置
MX350672B (es) * 2013-03-11 2017-09-13 Huawei Tech Co Ltd Estructura piloto aguas arriba en un sistema de comunicación punto a multipunto de multiplexión por división de frecuencia ortogonal.
CN109076515B (zh) * 2016-08-31 2020-08-14 华为技术有限公司 一种信道测量的方法和装置
CN109391434B (zh) * 2017-08-11 2021-11-30 中兴通讯股份有限公司 参考信号的配置方法及装置
CN110535586B (zh) * 2018-08-20 2022-07-15 中兴通讯股份有限公司 Prs的生成方法、相关装置及通信系统
CN111262667B (zh) * 2018-11-30 2022-04-05 华为技术有限公司 信道探测的配置方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299871A (zh) * 2007-04-30 2008-11-05 大唐移动通信设备有限公司 发送上行探测导频的方法及系统、基站和终端
CN101330321A (zh) * 2007-06-19 2008-12-24 日本电气株式会社 用于在移动通信系统中分配参考信号序列的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299871A (zh) * 2007-04-30 2008-11-05 大唐移动通信设备有限公司 发送上行探测导频的方法及系统、基站和终端
CN101330321A (zh) * 2007-06-19 2008-12-24 日本电气株式会社 用于在移动通信系统中分配参考信号序列的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE LAN/MAN STANDARDS COMMITTEE: "IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems", IEEE STD 802.16TM-2009, 29 May 2009 (2009-05-29), pages 960 - 968 *

Also Published As

Publication number Publication date
CN102238565A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
EP3512150A1 (en) Information reporting method and device, and information transmission method and device
JP5557712B2 (ja) アンテナ送信電力制御を行う無線基地局装置
JP5567217B2 (ja) 通信方法、装置及びコンピュータプログラム
US9307462B2 (en) Reference signal power measurement and reporting for improving performance in a network with geographically separated antenna ports
JP2021503824A (ja) 情報送信、受信方法及び装置
US10681674B2 (en) Beam training for a radio transceiver device
JP7064517B2 (ja) ロバストなビーム報告のためのシステムおよび方法
AU2017417130B2 (en) Beam selection for a radio transceiver device
EP4456456A2 (en) Synchronization signal sending and receiving method and apparatus, and transmission system
JP6665101B2 (ja) デュアルストリームビームフォーミング方法及び装置
WO2011137630A1 (zh) 信道探测方法和装置
US10673587B2 (en) Beam management for a radio transceiver device
JP6472739B2 (ja) 無線通信システム、無線通信方法、集中制御局および無線基地局
US11297509B2 (en) Wireless communication system and wireless communication method
CN112333760B (zh) 测量和上报方法、终端及基站
CN109479296A (zh) 信息传输方法、接入网设备和终端设备
KR20150033537A (ko) 무선 통신 시스템에서 망 토폴로지 분석을 위한 장치 및 방법
JP5203308B2 (ja) 送信指向性制御装置及び送信指向性制御方法
JP4040585B2 (ja) 適応アレーアンテナによる通信システムおよび通信方法
KR102146177B1 (ko) 무선-네트워크 노드, 무선 장치 및 이들에서 수행된 방법
CN109196792B (zh) 通道校正方法、装置及通信系统
CN109921835A (zh) 一种用户配对方法和接入点
CN104301898B (zh) 一种资源分配方法及系统
KR20200120463A (ko) 복수의 패널 안테나를 포함하는 전자 장치 및 이의 동작 방법
JP5100776B2 (ja) 無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850999

Country of ref document: EP

Kind code of ref document: A1