WO2011136082A1 - 無線通信システム、無線基地局、無線端末、及び無線通信方法 - Google Patents

無線通信システム、無線基地局、無線端末、及び無線通信方法 Download PDF

Info

Publication number
WO2011136082A1
WO2011136082A1 PCT/JP2011/059611 JP2011059611W WO2011136082A1 WO 2011136082 A1 WO2011136082 A1 WO 2011136082A1 JP 2011059611 W JP2011059611 W JP 2011059611W WO 2011136082 A1 WO2011136082 A1 WO 2011136082A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
base station
radio
information
allocation information
Prior art date
Application number
PCT/JP2011/059611
Other languages
English (en)
French (fr)
Inventor
健太 沖野
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP11774865A priority Critical patent/EP2566268A1/en
Priority to US13/643,936 priority patent/US20130201930A1/en
Priority to CN201180021105XA priority patent/CN102860106A/zh
Priority to JP2012512788A priority patent/JP5647676B2/ja
Priority to KR1020127030109A priority patent/KR20130018887A/ko
Publication of WO2011136082A1 publication Critical patent/WO2011136082A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the present invention relates to a radio communication system, a radio base station, a radio terminal, and a radio communication method for transmitting allocation information via a downlink control channel.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • LTE Advanced which is an advanced version of LTE.
  • a radio base station transmits allocation information indicating radio resources allocated to radio terminals via a downlink control channel (PDCCH: “Physical” Downlink ”Control” CHannel).
  • PDCCH Physical Downlink Control channel
  • heterogeneous network in which high power base stations (so-called macro cell base stations) and low power base stations (so-called pico cell base stations or femto cell base stations, etc.) are being studied is being considered.
  • the heterogeneous network can distribute the load of the high power base station to the low power base stations.
  • a radio terminal Since a radio terminal is generally connected to a radio base station having the highest received power of a radio signal among a plurality of radio base stations, there are few opportunities for the radio terminal to connect to a low power base station in a heterogeneous network. There is a possibility. In view of such circumstances, by controlling the wireless terminal to connect to the low power base station even when the received power from the low power base station is not the highest, the coverage of the low power base station (that is, , A communication area range) has been proposed (for example, see Non-Patent Document 1).
  • the downlink control channel used by one radio base station is used by the other radio base station. Due to interference from the downlink control channel, there is a possibility that the allocation information cannot be normally received via the downlink control channel of the one radio base station. If the wireless terminal cannot normally receive the allocation information from the wireless base station, the wireless terminal cannot identify the wireless resource assigned to itself and cannot continue wireless communication with the wireless base station.
  • the downlink control channel used by the low power base station may receive a large interference from the downlink control channel used by the high power base station. Due to the high cost, the above problem becomes more serious.
  • an object of the present invention is to provide a radio communication system, a radio base station, a radio terminal, and a radio communication method that can reduce interference between base stations in a downlink control channel.
  • the present invention has the following features.
  • a feature of the radio communication system is that radio communication between a radio base station (for example, macro cell base station MeNB) and a radio terminal (for example, radio terminal MUE) using a communication frame configuration in which subframes are arranged in the time direction.
  • a radio base station for example, macro cell base station MeNB
  • a radio terminal for example, radio terminal MUE
  • the radio base station performs allocation information indicating radio resources (for example, resource blocks) allocated to the radio terminal in a first subframe (for example, subframe SF # A), and Subframe information indicating a second subframe (for example, subframe SF # B) to which the allocation according to the allocation information is applied after the first subframe, and the downlink control channel Base station side transmission processing unit (for example, wireless communication unit 210, allocation information generation unit 223, sub Frame information generator 224), and the radio terminal can receive the allocation information and the subframe information from the radio base station via the downlink control channel in the first subframe.
  • radio resources for example, resource blocks allocated to the radio terminal in a first subframe (for example, subframe SF # A)
  • Subframe information indicating a second subframe for example, subframe SF # B
  • the radio terminal can receive the allocation information and the subframe information from the radio base station via the downlink control channel in the first subframe.
  • the terminal-side reception processing unit for example, wireless communication unit 310, information decoding unit 321) and the allocation information and the sub-frame information received by the terminal-side reception processing unit, the first subframe and the second subframe
  • a resource specifying unit for example, resource specifying unit 322 that specifies radio resources allocated for each of the subframes, and the terminal-side reception processing unit receives the subframe information when receiving the subframe information, The gist is to omit the allocation information reception process in the second subframe.
  • one allocation information can be applied to a plurality of subframes, and transmission / reception of allocation information between the radio base station and the radio terminal is omitted in the second subframe. Interference received by the neighboring base stations of the radio base station from the downlink control channel of the radio base station in the second subframe is reduced. Accordingly, it is possible to reduce interference between base stations in the downlink control channel.
  • Another feature of the wireless communication system according to the present invention is that, in the wireless communication system according to the above feature, the base station side transmission processing unit omits the assignment information transmission processing in the second subframe. Is the gist.
  • the second subframe includes a subframe subsequent to the first subframe.
  • a peripheral base station for example, a picocell base station PeNB
  • the neighboring base station transmits designation information for designating the second subframe to the radio base station by inter-base station communication (for example, designation information generation unit 123, X2 interface communication). 140)
  • the radio base station further includes a designation information receiving unit (for example, X2 interface communication unit 140) that receives the designation information through inter-base station communication
  • the base station side transmission processing unit includes: The gist of transmitting the subframe information indicating the second subframe designated by the designation information received by the designation information receiving unit. .
  • the neighboring base station is the radio base among radio terminals (for example, radio terminals PUE) connected to the neighboring base station.
  • a detecting unit for example, a deteriorated terminal detecting unit 122 that detects a deteriorated wireless terminal whose wireless state has deteriorated due to interference received from a station;
  • the gist is to further include a peripheral side transmission processing unit (for example, the wireless communication unit 110) that transmits information via a downlink control channel.
  • the designated information transmitting unit bases the designated information when the deteriorated wireless terminal is detected by the detecting unit.
  • the gist is to transmit to the radio base station by inter-station communication.
  • the peripheral transmission processing unit transmits the peripheral assignment information in the second subframe.
  • Peripheral side subframe information indicating a third subframe (for example, subframe SF # C) to which allocation according to the peripheral side allocation information is applied is transmitted after the second subframe. This is the gist.
  • Another feature of the wireless communication system according to the present invention is that, in the wireless communication system according to the above feature, when a carrier aggregation technique using a plurality of component carriers having different frequency bands is used, the subframe information Is used to designate a component carrier.
  • a feature of the radio base station according to the present invention is a radio base station (for example, macro cell base station MeNB) that performs radio communication with a radio terminal (for example, radio terminal MUE) using a communication frame configuration in which subframes are arranged in the time direction.
  • a radio base station for example, macro cell base station MeNB
  • a radio terminal for example, radio terminal MUE
  • a base station side transmission processing unit for example, a wireless communication unit 210, an allocation information generation unit 223, and a subframe information generation unit 224) that transmits subframe information indicating the second subframe via a downlink control channel.
  • the gist is to do.
  • a feature of the radio terminal according to the present invention is a radio terminal (eg, radio terminal MUE) that performs radio communication with a radio base station (eg, macro cell base station MeNB) using a communication frame configuration in which subframes are arranged in the time direction.
  • a radio base station eg, macro cell base station MeNB
  • a terminal-side reception processing unit (for example, a wireless communication unit 310 and an information decoding unit 321) capable of receiving the subframe information indicating the second subframe via the downlink control channel.
  • the reception processing unit receives the subframe information
  • the reception processing unit receives the allocation information in the second subframe. And gist of omitting.
  • a feature of the radio base station according to the present invention is a radio base station (for example, a picocell base station PeNB) that performs radio communication with a radio terminal (for example, a radio terminal PUE) using a communication frame configuration in which subframes are arranged in the time direction. And designation information for designating a second subframe that is a subframe after the first subframe and to which the assignment according to the assignment information corresponding to the first subframe is applied.
  • the gist of the invention is that it includes a designation information transmission unit (for example, designation information generation unit 123, X2 interface communication unit 140) that transmits to another radio base station by inter-base station communication.
  • a feature of the wireless communication method is a wireless communication method for performing wireless communication between a wireless base station and a wireless terminal using a communication frame configuration in which subframes are arranged in a time direction
  • the wireless base station includes: In the first subframe, allocation information indicating radio resources allocated to the radio terminal, and a finite number of subframes after the first subframe to which allocation according to the allocation information is applied
  • Subframe information indicating a second subframe is transmitted via a downlink control channel, and the radio terminal transmits the radio base station via the downlink control channel in the first subframe.
  • a radio communication system a radio base station, a radio terminal, and a radio communication method that can reduce interference between base stations in a downlink control channel.
  • FIG. 1 is a diagram for explaining an overview of an LTE system according to a first embodiment to a third embodiment.
  • FIG. FIG. 2A is a frame configuration diagram showing a communication frame configuration when the FDD scheme is used
  • FIG. 2B is a diagram showing a subframe configuration in the downlink.
  • It is a schematic block diagram of the radio
  • It is a block diagram which shows the structure of the picocell base station which concerns on 1st Embodiment.
  • FIG. 5 is an operation sequence diagram illustrating an operation example of the wireless communication system according to the first embodiment. It is a block diagram which shows the structure of the picocell base station which concerns on 2nd Embodiment. It is a block diagram which shows the structure of the radio
  • FIG. 1 is a diagram for explaining the outline of the LTE system.
  • a plurality of radio base stations eNB constitutes E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network).
  • Each of the plurality of radio base stations eNB forms a cell that is an area for providing a communication service to the radio terminal UE.
  • the radio terminal UE is a radio communication device possessed by a user and is also referred to as a user device.
  • the radio terminal UE connects to the radio signal having the highest received power (RSRP: “Reference” Signal “Received” Power) of the radio base stations eNB.
  • RSRP Reference
  • Signal Receiveived
  • SNR Signal to Noise ratio
  • the radio base stations eNB can communicate with each other via an X2 interface that is a logical communication path that provides inter-base station communication.
  • Each of the plurality of radio base stations eNB can communicate with EPC (Evolved Packet Core), specifically, MME (Mobility Management Entity) / S-GW (Serving Gateway) via the S1 interface.
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the OFDMA Orthogonal Frequency Division Multiple Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Multiple Access
  • Each method is applied.
  • an FDD (Frequency Division Duplex) method or a TDD (Time Division Duplex) method is applied as a duplex method.
  • FIG. 2A is a frame configuration diagram showing a communication frame configuration when the FDD method is used.
  • the 10 subframes arranged in the time direction constitute one radio frame, and each subframe is composed of 2 slots.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each slot includes seven OFDM symbols in the time direction (time domain), and includes a plurality of resource blocks (RB) in the frequency direction (frequency domain).
  • FIG. 2 (b) is a diagram showing a configuration of a subframe in the downlink.
  • the subframe includes two consecutive slots.
  • a section of a maximum of 3 OFDM symbols from the beginning of the first slot in the subframe is a control region constituting a radio resource used as a PDCCH for transmitting control information.
  • the control information is uplink and downlink allocation information (so-called scheduling information) or the like.
  • the control area may include PCFICH (Physical, Control, Format, Indicator, Channel), PHICH (Physical, Hybrid, Automatic, Repeat, Request, Indicator, and Channel).
  • the remaining OFDM symbol section of the subframe is a data area constituting a radio resource used as a PDSCH (Physical Downlink Shared Channel) for transmitting user data.
  • the PDSCH is composed of at least one resource block.
  • the radio terminal UE decodes control information including allocation information by blind decoding.
  • the radio terminal UE can identify the resource block allocated as the PDSCH and the resource block allocated as the PUSCH by decoding the allocation information transmitted via the PDCCH.
  • FIG. 3 is a schematic configuration diagram of a radio communication system 1A according to the first embodiment.
  • a heterogeneous network is applied to the wireless communication system 1A according to the first embodiment.
  • the radio communication system 1A is installed in a macro cell base station MeNB, a radio terminal MUE connected to the macro cell base station MeNB, and a macro cell MC formed by the macro cell base station MeNB. It has an adjacent picocell base station PeNB and a radio terminal PUE connected to the picocell base station PeNB within the picocell PC formed by the picocell base station PeNB.
  • a radio terminal MUE and one radio terminal PUE are illustrated, but in actuality, there are a plurality of radio terminals MUE and radio terminals PUE.
  • the picocell base station PeNB is a low power base station having a transmission output smaller than that of the macrocell base station MeNB. For this reason, in the heterogeneous network, when the selection criterion for selecting the radio base station eNB having the highest RSRP and connecting the radio terminal UE is adopted, the coverage of the picocell base station PeNB (the range in which the radio terminal UE can be accommodated) is increased. There is a possibility of narrowing. In particular, under the situation where the pico cell base station PeNB is close to the macro cell base station MeNB, the coverage of the pico cell base station PeNB becomes very narrow, and the pico cell base station PeNB cannot be effectively used.
  • the following two methods can be mainly used as a method capable of expanding the coverage of the picocell base station PeNB without increasing the transmission output of the picocell base station PeNB.
  • the radio base station eNB that transmits the radio signal having the largest RSRP is not selected as the connection destination of the radio terminal UE, but the radio base station having the smallest propagation loss (path loss) with the radio terminal UE.
  • the radio terminal UE can receive radio signals from each of the macro cell base station MeNB and the pico cell base station PeNB
  • the RSRP corresponding to the pico cell base station PeNB is compared with the RSRP corresponding to the macro cell base station MeNB.
  • Adding a bias value to the RSRP corresponding to the picocell base station PeNB increases the possibility that the RSRP after the offset will exceed the RSRP corresponding to the macrocell base station MeNB. Therefore, since the picocell base station PeNB is preferentially selected as a connection destination, the coverage of the picocell base station PeNB can be expanded.
  • the coverage of the picocell base station PeNB is expanded by the second method.
  • the macro cell base station MeNB transmits allocation information indicating the resource block allocated to the radio terminal MUE via the PDCCH configured using the control region.
  • the picocell base station PeNB transmits allocation information indicating resource blocks allocated to the radio terminal PUE via the PDCCH configured using the control region. Since these control regions have overlapping frequency bands, the PDCCHs of the macro cell base station MeNB and the pico cell base station PeNB interfere with each other.
  • the radio terminal PUE connected to the picocell base station PeNB has higher received power from the macrocell base station MeNB than received power from the picocell base station PeNB. There is. In this case, the PDCCH used by the picocell base station PeNB receives large interference from the PDCCH used by the macrocell base station MeNB, and the radio terminal PUE cannot receive (decode) the allocation information.
  • FIG. 4 is a block diagram illustrating a configuration of the picocell base station PeNB according to the first embodiment.
  • the picocell base station PeNB includes an antenna unit 101, a radio communication unit 110, a control unit 120, a storage unit 130, and an X2 interface communication unit 140.
  • the radio communication unit 110 is configured by using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives radio signals to and from the radio terminal PUE.
  • the wireless communication unit 110 also modulates the transmission signal and demodulates the reception signal.
  • the control unit 120 is configured using, for example, a CPU, and controls various functions provided in the picocell base station PeNB.
  • storage part 130 is comprised using memory, for example, and memorize
  • the X2 interface communication unit 140 performs inter-base station communication with other radio base stations using the X2 interface.
  • the control unit 120 includes a connection destination selection unit 121, a deteriorated terminal detection unit 122, a designation information generation unit 123, a resource allocation unit 124, and an allocation information generation unit 125.
  • the connection destination selection unit 121 selects the next connection destination of the radio terminal PUE based on the measurement result report (measurement report) received by the radio communication unit 110 from the radio terminal PUE.
  • the measurement result report includes RSRP corresponding to the macro cell base station MeNB and RSRP corresponding to the pico cell base station PeNB.
  • the connection destination selection unit 121 adds a bias value to the RSRP corresponding to the picocell base station PeNB before comparing the RSRP corresponding to the macrocell base station MeNB with the RSRP corresponding to the picocell base station PeNB.
  • the connection destination selection unit 221 performs handover control so as to switch the connection destination of the radio terminal PUE to the macro cell base station MeNB.
  • Degradation terminal detection unit 122 receives interference from macro cell base station MeNB among a plurality of radio terminals PUE based on measurement result reports (measurement reports) received from each of a plurality of radio terminals PUE connected to pico cell base station PeNB. To detect a deteriorated radio terminal PUE having a deteriorated radio state.
  • the degraded radio terminal PUE is a radio terminal that is highly likely to be unable to normally receive allocation information transmitted from the picocell base station PeNB via the PDCCH.
  • the degraded terminal detection unit 122 detects a radio terminal PUE whose RSRP corresponding to the macro cell base station MeNB exceeds a threshold as a degraded radio terminal PUE.
  • the designation information generation unit 123 generates designation information for designating a subframe in which PDCCH interference should be reduced when the degradation wireless terminal PUE is detected by the degradation terminal detection unit 122.
  • the subframe number can be designated information.
  • the number of subframes that should reduce PDCCH interference may be one or a predetermined number. That is, the number of subframes that should reduce PDCCH interference is finite.
  • the X2 interface communication unit 140 transmits a PDCCH restriction message including the designation information generated by the designation information generation unit 123 to the macro cell base station MeNB.
  • the designation information generation unit 123 and the X2 interface communication unit 140 constitute a designation information transmission unit.
  • the resource allocation unit 124 determines a resource block to be allocated to the radio terminal PUE as a data channel (PDSCH, PUSCH) for each subframe. For example, the resource allocation unit 124 determines a resource block to be allocated to the radio terminal PUE using a scheduling algorithm such as proportional fairness based on CQI (Channel Q Quality Information) fed back from the radio terminal PUE. After transmitting the PDCCH restriction message to the macro cell base station MeNB, the resource allocation unit 124 determines a resource block to be allocated to the degraded radio terminal PUE for the subframe specified by the specification information.
  • a scheduling algorithm such as proportional fairness based on CQI (Channel Q Quality Information) fed back from the radio terminal PUE.
  • CQI Channel Q Quality Information
  • the allocation information generation unit 125 generates allocation information indicating the resource block determined by the resource allocation unit 124.
  • the radio communication unit 110 transmits the allocation information generated by the allocation information generation unit 125 to the radio terminal PUE via the PDCCH.
  • the radio communication unit 110 transmits allocation information (peripheral side allocation information) indicating a resource block allocated to the degraded radio terminal PUE in the subframe specified by the specification information via the PDCCH.
  • the allocation information generation unit 125 and the wireless communication unit 110 constitute a peripheral side transmission processing unit.
  • FIG. 5 is a block diagram showing a configuration of the macro cell base station MeNB.
  • the macro cell base station MeNB includes an antenna unit 201, a radio communication unit 210, a control unit 220, a storage unit 230, and an X2 interface communication unit 240.
  • the radio communication unit 110 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives radio signals to and from the radio terminal MUE.
  • the wireless communication unit 210 also modulates the transmission signal and demodulates the reception signal.
  • the control unit 220 is configured using a CPU, for example, and controls various functions provided in the macro cell base station MeNB.
  • the storage unit 230 is configured using, for example, a memory, and stores various types of information used for controlling the macro cell base station MeNB.
  • the X2 interface communication unit 240 performs inter-base station communication with other radio base stations using the X2 interface.
  • the X2 interface communication unit 240 corresponds to a designation information reception unit that receives a PDCCH restriction message including designation information.
  • the control unit 220 includes a connection destination selection unit 221, a resource allocation unit 222, an allocation information generation unit 223, and a subframe information generation unit 224.
  • the connection destination selection unit 221 selects the next connection destination of the radio terminal MUE based on the measurement result report (measurement report) received by the radio communication unit 210 from the radio terminal MUE.
  • the measurement result report includes RSRP corresponding to the macro cell base station MeNB and RSRP corresponding to the pico cell base station PeNB.
  • the connection destination selection unit 221 adds a bias value to the RSRP corresponding to the picocell base station PeNB before comparing the RSRP corresponding to the macrocell base station MeNB with the RSRP corresponding to the picocell base station PeNB.
  • the connection destination selection unit 221 performs handover control so as to switch the connection destination of the radio terminal MUE to the pico cell base station PeNB.
  • the resource allocation unit 222 determines a resource block to be allocated to the radio terminal MUE as a data channel (PDSCH, PUSCH) for each subframe. For example, the resource allocation unit 222 determines a resource block to be allocated to the radio terminal MUE using a scheduling algorithm such as proportional fairness based on the CQI fed back from the radio terminal MUE.
  • a scheduling algorithm such as proportional fairness based on the CQI fed back from the radio terminal MUE.
  • the allocation information generation unit 223 generates allocation information indicating the resource block determined by the resource allocation unit 222.
  • the radio communication unit 210 transmits the allocation information generated by the allocation information generation unit 223 to the radio terminal MUE via the PDCCH.
  • the subframe information generation unit 224 when receiving a PDCCH restriction message from the picocell base station PeNB, a subframe indicating a finite number (one or more) of subframes designated by the designation information included in the PDCCH restriction message Generate information.
  • the radio communication unit 210 transmits the allocation information generated by the allocation information generation unit 223 and the subframe information generated by the subframe information generation unit 224 via the PDCCH.
  • the allocation information generation unit 223, the subframe information generation unit 224, and the radio communication unit 210 constitute a base station side transmission processing unit.
  • the subframe indicated by the subframe information is a subframe after the subframe in which the allocation information is transmitted, and allocation according to the allocation information is applied.
  • FIG. 6 is a block diagram illustrating a configuration of the radio terminal MUE.
  • the radio terminal MUE includes an antenna unit 301, a radio communication unit 310, a control unit 320, and a storage unit 330.
  • the radio communication unit 310 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives radio signals to and from the macro cell base station MeNB.
  • the wireless communication unit 310 modulates a transmission signal and demodulates a reception signal.
  • the control unit 320 is configured using, for example, a CPU, and controls various functions provided in the wireless terminal MUE.
  • the storage unit 330 is configured using, for example, a memory, and stores various types of information used for controlling the radio terminal MUE.
  • the control unit 320 includes an information decoding unit 321 and a resource specifying unit 322.
  • the information decoding unit 321 decodes the allocation information and subframe information received by the wireless communication unit 310 from the macro cell base station MeNB.
  • the wireless communication unit 310 and the information decoding unit 321 constitute a terminal side reception processing unit.
  • the resource specifying unit 322 specifies the allocated resource block based on the allocation information and subframe information decoded by the information decoding unit 321, and a finite number of subframes to which the allocation according to the allocation information is applied Is identified.
  • FIG. 7 is a diagram for explaining a specific example of PDCCH interference management according to the first embodiment.
  • FIG. 7 (a) is a diagram showing a case where PDCCH interference management is not applied.
  • the frequency band overlaps between the control region used by the macro cell base station MeNB as the PDCCH and the control region used by the pico cell base station PeNB as the PDCCH.
  • the PDCCH of the picocell base station PeNB receives interference from the PDCCH of the macrocell base station MeNB.
  • FIG. 7 (b) is a diagram showing a case where PDCCH interference management is applied.
  • the radio communication unit 210 of the macro cell base station MeNB in subframe SF # A (first subframe), assigns information indicating resource blocks assigned to the radio terminal MUE, Sub-frame information indicating a sub-frame SF # B (second sub-frame) to which the allocation according to the allocation information is applied after the frame SF # A is transmitted via the PDCCH. .
  • the radio communication unit 310 of the radio terminal MUE receives allocation information and subframe information from the macro cell base station MeNB via the PDCCH in the subframe SF # A.
  • the information decoding unit 321 of the radio terminal MUE decodes the allocation information and subframe information received by the radio communication unit 310.
  • the resource identification unit 322 of the radio terminal MUE identifies the resource blocks allocated for each of the subframes SF # A and SF # B. Specifically, the resource specifying unit 322 determines that a resource block having the same frequency as the resource block assigned in the subframe SF # A is assigned to the subframe SF # B indicated by the subframe information.
  • one allocation information can be applied to a plurality of subframes, and transmission / reception of allocation information via the PDCCH between the macro cell base station MeNB and the radio terminal MUE in the subframe SF # B.
  • the picocell base station PeNB in the vicinity of the macrocell base station MeNB reduces the interference received from the PDCCH of the macrocell base station MeNB in the subframe SF # B.
  • the radio communication unit 110 of the picocell base station PeNB transmits allocation information indicating a resource block allocated to the degraded radio terminal PUE via the PDCCH in the subframe SF # B.
  • the degraded radio terminal PUE can normally receive the allocation information, and radio communication between the picocell base station PeNB and the degraded radio terminal PUE can be continued.
  • the macro cell base station MeNB may permit the use of only a part of the control region, and the PDCCH usage rate (that is, the rate at which the PDCCH is used in the control region) may be reduced. For example, by permitting use corresponding to one OFDM symbol in the control area, the usage rate of PDCCH can be reduced.
  • the picocell base station PeNB is in a control region part not used by the macrocell base station MeNB or a subframe in which the macrocell base station MeNB is reducing the PDCCH usage rate. It is preferable to allocate the corresponding PDCCH resource to the degraded radio terminal PUE.
  • the macro cell base station MeNB and the radio terminal MUE may transmit and receive user data corresponding to different HARQ (Hybrid Automatic Repeat Request) processes in each of the subframe SF # A and the subframe SF # B.
  • the macro cell base station MeNB transmits control information related to different HARQ used in each of the subframe SF # A and the subframe SF # B to the radio terminal MUE via the PDCCH in the subframe SF # A.
  • the macro cell base station MeNB and the radio terminal MUE may transmit and receive user data corresponding to the same HARQ process in each of the subframe SF # A and the subframe SF # B.
  • the macro cell base station MeNB transmits control information related to the same HARQ used in each of the subframe SF # A and the subframe SF # B to the radio terminal MUE via the PDCCH in the subframe SF # A. .
  • FIG. 8 is an operation sequence diagram illustrating an operation example of the radio communication system 1A according to the first embodiment.
  • the wireless communication system 1A performs the PDCCH interference management shown in FIG.
  • step S101 the radio terminal PUE measures RSRP for each of the pico cell base station PeNB and the macro cell base station MeNB.
  • step S102 the radio terminal PUE transmits a measurement result report indicating the RSRP measured in step S101 to the picocell base station PeNB.
  • the radio communication unit 110 of the picocell base station PeNB receives the measurement result report.
  • step S103 the degraded terminal detection unit 122 of the picocell base station PeNB detects the degraded radio terminal PUE based on the measurement result report received by the radio communication unit 110.
  • step S104 the designation information generation unit 123 of the picocell base station PeNB generates designation information that designates the subframe SF # B. Then, the X2 interface communication unit 140 of the picocell base station PeNB transmits a PDCCH restriction message including the designation information generated by the designation information generation unit 123 to the macro cell base station MeNB. The X2 interface communication unit 240 of the macro cell base station MeNB receives the PDCCH restriction message including the designation information.
  • step S105 the resource allocation unit 222 of the macro cell base station MeNB determines a resource block to be allocated to the radio terminal MUE for the subframe SF # A (and subframe SF # B).
  • the allocation information generation unit 223 of the macro cell base station MeNB generates allocation information indicating the resource block determined by the resource allocation unit 222.
  • the subframe information generation unit 224 of the macro cell base station MeNB generates subframe information indicating the subframe SF # B based on the designation information.
  • step S106 the radio communication unit 210 of the macro cell base station MeNB transmits assignment information and subframe information to the radio terminal MUE via the PDCCH in the subframe SF # A.
  • Radio communication section 310 of radio terminal MUE receives allocation information and subframe information via PDCCH in subframe SF # A.
  • the information decoding unit 321 of the radio terminal MUE decodes the allocation information and subframe information received by the radio communication unit 310.
  • step S107 the resource identifying unit 322 of the radio terminal MUE allocates resources for each of the subframe SF # A and the subframe SF # B based on the allocation information and subframe information decoded by the information decoding unit 321. Identify the block.
  • step S108 the radio communication unit 210 of the macro cell base station MeNB and the radio communication unit 310 of the radio terminal MUE transmit and receive user data using the allocated resource block for the subframe SF # A.
  • transmission / reception of user data may be performed not only in the downlink but also in the uplink.
  • step S109 the resource allocation unit 124 of the picocell base station PeNB determines a resource block to be allocated to the degraded radio terminal PUE for the subframe SF # B.
  • the allocation information generation unit 125 of the picocell base station PeNB generates allocation information indicating the resource block determined by the resource allocation unit 124.
  • step S110 the allocation information generation unit 223 and the radio communication unit 210 of the macro cell base station MeNB omit the allocation information transmission process for the radio terminal MUE in the subframe SF # B.
  • step S111 the radio communication unit 310 and the information decoding unit 321 of the picocell base station PeNB omit the allocation information reception process in the subframe SF # B.
  • step S112 the radio communication unit 110 of the picocell base station PeNB transmits allocation information to the degraded radio terminal PUE via the PDCCH in the subframe SF # B.
  • Degraded radio terminal PUE receives the allocation information via PDCCH in subframe SF # B and decodes the received allocation information.
  • step S113 the degraded radio terminal PUE specifies the resource block allocated for the subframe SF # B based on the decoded allocation information.
  • step S114 the pico cell base station PeNB and the degraded radio terminal PUE transmit / receive user data using the allocated resource block for the subframe SF # B.
  • transmission / reception of user data may be performed not only in the downlink but also in the uplink.
  • step S115 the macro cell base station MeNB and the radio terminal MUE transmit and receive user data using the allocated resource block for the subframe SF # B.
  • transmission / reception of user data may be performed not only in the downlink but also in the uplink.
  • one allocation information can be applied to a plurality of subframes, and the macrocell base station MeNB and the radio are transmitted in the subframe SF # B. Since the transmission / reception process of the allocation information with the terminal MUE can be omitted, the interference received from the PDCCH of the macro cell base station MeNB in the pico cell base station PeNB is reduced in the subframe SF # B. Therefore, interference between base stations of PDCCH can be reduced.
  • the subframe indicated by the subframe information transmitted in the subframe SF # A is the subframe SF # B next to the subframe SF # A.
  • the allocation information transmitted in the subframe SF # A indicates a resource block having a good radio state in the subframe SF # A, but the radio state changes with time. For this reason, if the time interval between the subframe SF # A and the subframe indicated by the subframe information transmitted in the subframe SF # A is greatly separated, the resource block in the subframe indicated by the subframe information The wireless state of the mobile phone may be degraded.
  • the radio terminal MUE by specifying at least the subframe SF # B subsequent to the subframe SF # A by the subframe information, it is possible for the radio terminal MUE to use a resource block with a good radio state in the subframe SF # B. Can increase the sex.
  • the pico cell base station PeNB transmits designation information for designating the subframe SF # B to the macro cell base station MeNB by inter-base station communication.
  • the macro cell base station MeNB transmits subframe information indicating the subframe SF # B designated by the designation information.
  • the pico cell base station PeNB designates the subframe SF # B, so that the interference received from the PDCCH of the macro cell base station MeNB in the subframe SF # B can be reduced by the picocell base station PeNB.
  • the pico cell base station PeNB transmits the peripheral side allocation information indicating the resource block allocated to the degraded radio terminal PUE via the PDCCH in the subframe SF # B.
  • the pico cell base station PeNB transmits allocation information indicating the resource block allocated to the degraded radio terminal PUE, so that the degraded radio is transmitted.
  • the terminal PUE can normally receive the allocation information, and radio communication between the picocell base station PeNB and the degraded radio terminal PUE can be continued.
  • the pico cell base station PeNB transmits the designation information to the macro cell base station MeNB by inter-base station communication when the deteriorated radio terminal PUE is detected. In this way, by transmitting the designation information to the macro cell base station MeNB only when the degraded radio terminal PUE is detected, the macro cell base station MeNB can freely use the PDCCH when the degraded radio terminal PUE is not detected.
  • the macro cell base station MeNB and the radio terminal MUE transmit and receive data corresponding to different HARQ (Hybrid Automatic Repeat Request) processes in each of the subframe SF # A and the subframe SF # B. Thereby, a plurality of HARQ processes can be executed in parallel.
  • HARQ Hybrid Automatic Repeat Request
  • the macro cell base station MeNB and the radio terminal MUE transmit and receive data corresponding to the same HARQ process in each of the subframe SF # A and the subframe SF # B. Thereby, it can respond with one Ack / Nack.
  • the macro cell base station MeNB and the radio terminal MUE transmit / receive data corresponding to different redundancy versions in the same HARQ process in each of the subframe SF # A and the subframe SF # B. Also good.
  • the received power (RSRP) from the macrocell base station MeNB is higher than the received power (RSRP) from the picocell base station PeNB. Even when a degraded radio terminal PUE that is higher is generated, the degraded radio terminal PUE can normally receive allocation information from the picocell base station PeNB.
  • inter-base station interference of data channels (PDSCH and PUSCH) is not particularly described, but the data channel is dealt with by existing techniques such as adaptive modulation control, HARQ, inter-cell interference control (ICIC), etc. Is possible.
  • the picocell base station PeNB also transmits subframe information, and user data can be transmitted and received in subframes other than the subframe specified by the specification information.
  • the macro cell base station MeNB and the radio terminal MUE are configured in the same manner as in the first embodiment, description of the configurations of the macro cell base station MeNB and the radio terminal MUE is omitted.
  • FIG. 9 is a block diagram illustrating a configuration of the pico cell base station PeNB according to the second embodiment.
  • the picocell base station PeNB is different from the first embodiment in that the control unit 120 includes a subframe information generation unit 126.
  • the subframe information generation unit 126 generates subframe information (peripheral side subframe information).
  • the radio communication unit 110 is a subframe later than the subframe and includes the allocation information.
  • Subframe information indicating a finite number of subframes (third subframes) to which the allocation according to this is applied is transmitted.
  • FIG. 10 is a block diagram illustrating a configuration of the radio terminal PUE.
  • the radio terminal PUE includes an antenna unit 401, a radio communication unit 410, a control unit 420, and a storage unit 430.
  • the radio communication unit 410 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives radio signals to and from the picocell base station PeNB. Radio communication section 410 also modulates the transmission signal and demodulates the reception signal.
  • RF radio frequency
  • BB baseband
  • the control unit 420 is configured using a CPU, for example, and controls various functions provided in the wireless terminal PUE.
  • the storage unit 430 is configured using a memory, for example, and stores various types of information used for controlling the radio terminal PUE and the like.
  • the control unit 420 includes an information decoding unit 421 and a resource specifying unit 422.
  • the information decoding unit 421 decodes the allocation information and subframe information received by the wireless communication unit 410 from the picocell base station PeNB.
  • the wireless communication unit 410 and the information decoding unit 421 constitute a terminal side reception processing unit.
  • the resource identification unit 422 identifies the allocated resource block based on the allocation information and subframe information decoded by the information decoding unit 421, and a finite number of subframes to which allocation according to the allocation information is applied Is identified.
  • FIG. 11 is a diagram for explaining a specific example of PDCCH interference management according to the second embodiment. Here, differences from the first embodiment will be mainly described.
  • the radio communication unit 210 of the macro cell base station MeNB in subframe SF # A (first subframe), assigns information indicating resource blocks assigned to the radio terminal MUE, and subframe SF # Sub-frame information indicating a sub-frame SF # B (second sub-frame) to which the assignment according to the assignment information is applied, which is a sub-frame after A, is transmitted via the PDCCH.
  • the radio communication unit 110 of the radio terminal MUE receives allocation information and subframe information from the macro cell base station MeNB via the PDCCH in the subframe SF # A.
  • the information decoding unit 321 of the radio terminal MUE decodes the allocation information and subframe information received by the radio communication unit 110.
  • the resource identification unit 322 of the radio terminal MUE identifies the resource blocks allocated for each of the subframes SF # A and SF # B.
  • the radio communication unit 110 of the picocell base station PeNB includes allocation information indicating resource blocks allocated to the degraded radio terminal PUE in the subframe SF # B, and a subframe after the subframe SF # B.
  • Subframe information indicating subframe SF # C (third subframe) to which allocation according to the allocation information is applied is transmitted via PDCCH.
  • the radio communication unit 410 of the degraded radio terminal PUE receives the allocation information and the subframe information from the picocell base station PeNB via the PDCCH in the subframe SF # B.
  • the information decoding unit 421 of the degraded wireless terminal PUE decodes the allocation information and subframe information received by the wireless communication unit 410.
  • the resource identifying unit 422 of the degraded wireless terminal PUE identifies the resource block allocated for each of the subframes SF # B and SF # C based on the allocation information and the subframe information decoded by the information decoding unit 421. .
  • the picocell base station PeNB may transmit the subframe information.
  • FIG. 12 is an operation sequence diagram illustrating an operation example of the radio communication system 1A according to the second embodiment.
  • the radio communication system 1A according to the second embodiment performs PDCCH interference management illustrated in FIG. 11 will be described.
  • steps S201 to S208 are the same as the processes of steps S201 to S208 described in the first embodiment, the processes after step S209 will be described.
  • step S209 the resource allocation unit 124 of the picocell base station PeNB determines a resource block to be allocated to the degraded radio terminal PUE for the subframe SF # B (and subframe SF # C).
  • the allocation information generation unit 125 of the picocell base station PeNB generates allocation information indicating the resource block determined by the resource allocation unit 124.
  • the subframe information generation unit 126 of the picocell base station PeNB generates subframe information indicating the subframe SF # C.
  • step S210 the allocation information generation unit 223 and the radio communication unit 210 of the macro cell base station MeNB omit the allocation information transmission process for the radio terminal MUE in the subframe SF # B.
  • step S211 the radio communication unit 310 and the information decoding unit 321 of the pico cell base station PeNB omit the allocation information reception process in the subframe SF # B.
  • step S212 the radio communication unit 110 of the picocell base station PeNB transmits allocation information and subframe information to the degraded radio terminal PUE via the PDCCH in the subframe SF # B.
  • Radio communication section 410 of degraded radio terminal PUE receives allocation information and subframe information via PDCCH in subframe SF # B.
  • the information decoding unit 421 of the degraded wireless terminal PUE decodes the allocation information and subframe information received by the wireless communication unit 410.
  • step S213 the resource specifying unit 422 of the degraded radio terminal PUE is allocated for each of the subframe SF # B and the subframe SF # C based on the allocation information and subframe information decoded by the information decoding unit 421. Identify resource blocks.
  • step S214 the pico cell base station PeNB and the degraded radio terminal PUE transmit and receive user data using the allocated resource block for the subframe SF # B.
  • transmission / reception of user data may be performed not only in the downlink but also in the uplink.
  • step S215 the macro cell base station MeNB and the radio terminal MUE transmit and receive user data using the allocated resource block for the subframe SF # B.
  • transmission / reception of user data may be performed not only in the downlink but also in the uplink.
  • step S216 the resource allocation unit 222 of the macro cell base station MeNB determines a resource block to be allocated to the radio terminal MUE for the subframe SF # C.
  • the allocation information generation unit 223 of the macro cell base station MeNB generates allocation information indicating the resource block determined by the resource allocation unit 222.
  • step S217 the allocation information generation unit 125 and the radio communication unit 110 of the picocell base station PeNB omit the transmission process of allocation information for the degraded radio terminal PUE in the subframe SF # C.
  • step S2108 the radio communication unit 410 and the information decoding unit 421 of the degraded radio terminal PUE omit the allocation information reception process in the subframe SF # C.
  • step S219 the radio communication unit 210 of the macro cell base station MeNB transmits allocation information to the radio terminal MUE via the PDCCH in the subframe SF # C.
  • Radio communication section 310 of radio terminal MUE receives allocation information via PDCCH in subframe SF # C.
  • the information decoding unit 321 of the radio terminal MUE decodes the allocation information received by the radio communication unit 310.
  • step S220 the resource identification unit 322 of the radio terminal MUE identifies the resource block allocated for the subframe SF # C based on the allocation information decoded by the information decoding unit 321.
  • step S221 the radio communication unit 210 of the macro cell base station MeNB and the radio communication unit 310 of the radio terminal MUE transmit and receive user data using the allocated resource block for the subframe SF # C.
  • transmission / reception of user data may be performed not only in the downlink but also in the uplink.
  • step S222 the pico cell base station PeNB and the degraded radio terminal PUE transmit and receive user data using the allocated resource block for the subframe SF # C.
  • transmission / reception of user data may be performed not only in the downlink but also in the uplink.
  • the third embodiment is an embodiment that performs PDCCH interference management between macrocell base stations.
  • 3rd Embodiment a different point from 1st Embodiment and 2nd Embodiment is demonstrated, and the overlapping description is abbreviate
  • FIG. 13 is a schematic configuration diagram of a wireless communication system 1B according to the third embodiment.
  • the radio communication system 1B includes a macro cell base station MeNB1, a radio terminal MUE1 connected to the macro cell base station MeNB1, a macro cell base station MeNB2 adjacent to the macro cell base station MeNB1, and a macro cell base station MeNB2. And a radio terminal MUE2 connected to the macro cell base station MeNB2 in the cell to be operated.
  • the radio terminal MUE1 connected to the macro cell base station MeNB1 When the radio terminal MUE1 connected to the macro cell base station MeNB1 is located near the cell edge, the radio terminal MUE1 is affected by interference from the PDCCH used by the macro cell base station MeNB2 adjacent to the macro cell base station MeNB1, and the macro cell base station There is a case where the allocation information transmitted from the MeNB 1 via the PDCCH cannot be normally received.
  • the PDCCH interference management described in the first embodiment and the second embodiment is effective. That is, in the third embodiment, the macro cell base station MeNB1 is configured similarly to the block configuration of the pico cell base station PeNB described in the first embodiment and the second embodiment, and the macro cell base station MeNB2 is configured in the first and second embodiments. What is necessary is just to comprise similarly to the block structure of the macrocell base station MeNB demonstrated in embodiment.
  • the case where the carrier aggregation technology that uses a plurality of component carriers with different frequency bands in a bundle is not used has been described.
  • the information field related to the subframe information described above may be used as information for designating the component carrier.
  • information that the allocation information transmitted via the PDCCH is applied not only to the component carrier 1 but also to the component carrier 2 may be included in the information field related to the subframe information.
  • the present invention is not limited to the combination of these base stations, and can be applied to the reduction of interference between PDCCH base stations between arbitrary adjacent base stations.
  • the adoption of a relay node that is a radio base station that configures the backhaul by radio is planned, and the X2 interface is also planned to be adopted for the relay node.
  • a radio base station may be used.
  • the present invention may be applied to other wireless communication systems such as a wireless communication system based on WiMAX (IEEE 802.16).
  • the radio communication system, the radio base station, the radio terminal, and the radio communication method according to the present invention can reduce interference between base stations in the downlink control channel, and thus are useful in radio communication such as mobile communication. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 マクロセル基地局MeNBは、第1のサブフレームにおいて、無線端末MUEに割り当てた無線リソースを示す割り当て情報と、第1のサブフレームよりも後のサブフレームであって割り当て情報に従った割り当てが適用される第2のサブフレームを示すサブフレーム情報とを、PDCCHを介して送信する。無線端末MUEは、第1のサブフレームにおいて、PDCCHを介してマクロセル基地局MeNBから上記割り当て情報及びサブフレーム情報を受信する。マクロセル基地局MeNBは、第2のサブフレームにおいて、上記割り当て情報の送信処理を省略し、端末側受信処理部は、第2のサブフレームにおいて、上記割り当て情報の受信処理を省略する。

Description

無線通信システム、無線基地局、無線端末、及び無線通信方法
 本発明は、下りリンク制御チャネルを介して割り当て情報を伝送する無線通信システム、無線基地局、無線端末、及び無線通信方法に関する。
 現在運用されている第3世代及び第3.5世代セルラ通信システムよりも高速・大容量の通信を実現する次世代システムとして、標準化団体である3GPPで標準化されているLTE(Long Term Evolution)、及びLTEを高度化したLTE Advancedがある。LTEシステム(LTE Advancedを含む)では、無線基地局は、下りリンク制御チャネル(PDCCH: Physical Downlink Control CHannel)を介して、無線端末に割り当てた無線リソースを示す割り当て情報を送信する。
 LTE Advancedにおいては、高電力基地局(いわゆる、マクロセル基地局)と低電力基地局(いわゆる、ピコセル基地局又はフェムトセル基地局等)とが混合するヘテロジーニアスネットワークの提供が検討されている。ヘテロジーニアスネットワークは、高電力基地局の負荷を低電力基地局に分散させることが可能である。
 無線端末は複数の無線基地局のうち無線信号の受信電力が最も高いものに接続することが一般的であることから、ヘテロジーニアスネットワークにおいては、低電力基地局に無線端末が接続する機会が少なくなる可能性がある。このような事情に鑑みて、低電力基地局からの受信電力が最も高い状態でなくても無線端末を当該低電力基地局に接続するように制御することで、低電力基地局のカバレッジ(すなわち、通信エリア範囲)を拡大する手法が提案されている(例えば、非特許文献1参照)。
 下りリンク制御チャネルは無線基地局間で周波数帯域が重複するため、互いに隣接する2つの無線基地局においては、一方の無線基地局が使用する下りリンク制御チャネルが、他方の無線基地局が使用する下りリンク制御チャネルからの干渉を受け、当該一方の無線基地局の下りリンク制御チャネルを介して割り当て情報を正常に受信できなくなる可能性がある。無線端末は、無線基地局からの割り当て情報を正常に受信できないと、自端末に割り当てられた無線リソースを特定できず、当該無線基地局との無線通信を継続できない。
 特に、ヘテロジーニアスネットワークにおいて低電力基地局のカバレッジを拡大する手法では、低電力基地局が使用する下りリンク制御チャネルが、高電力基地局が使用する下りリンク制御チャネルから大きな干渉を受ける可能性が高いため、上記の問題がより一層深刻になる。
 そこで、本発明は、下りリンク制御チャネルの基地局間干渉を低減できる無線通信システム、無線基地局、無線端末、及び無線通信方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。
 まず、本発明に係る無線通信システムの特徴は、時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線基地局(例えばマクロセル基地局MeNB)と無線端末(例えば無線端末MUE)との無線通信を行う無線通信システムであって、前記無線基地局は、第1のサブフレーム(例えばサブフレームSF#A)において、前記無線端末に割り当てた無線リソース(例えばリソースブロック)を示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される第2のサブフレーム(例えばサブフレームSF#B)を示すサブフレーム情報とを、下りリンク制御チャネルを介して送信する基地局側送信処理部(例えば無線通信部210、割り当て情報生成部223、サブフレーム情報生成部224)を具備し、前記無線端末は、前記第1のサブフレームにおいて、前記下りリンク制御チャネルを介して前記無線基地局から前記割り当て情報及び前記サブフレーム情報を受信することができる端末側受信処理部(例えば無線通信部310、情報復号部321)と、前記端末側受信処理部が受信した前記割り当て情報及び前記サブフレーム情報に基づいて、前記第1のサブフレーム及び前記第2のサブフレームのそれぞれについて割り当てられた無線リソースを特定するリソース特定部(例えばリソース特定部322)とを具備し、前記端末側受信処理部は、前記サブフレーム情報を受信を受信した場合に、前記第2のサブフレームにおいて、前記割り当て情報の受信処理を省略することを要旨とする。
 このような特徴によれば、1つの割り当て情報を複数のサブフレームに適用可能になり、第2のサブフレームにおいて無線基地局と無線端末との間での割り当て情報の送受信が省略されるため、当該無線基地局の周辺基地局は、第2のサブフレームにおいて当該無線基地局の下りリンク制御チャネルから受ける干渉が軽減される。したがって、下りリンク制御チャネルの基地局間干渉を低減できる。
 本発明に係る無線通信システムの他の特徴は、上記の特徴に係る無線通信システムにおいて、前記基地局側送信処理部は、前記第2のサブフレームにおいて、前記割り当て情報の送信処理を省略することを要旨とする。
 本発明に係る無線通信システムの他の特徴は、上記の特徴に係る無線通信システムにおいて、前記第2のサブフレームは、前記第1のサブフレームの次のサブフレームを含むことを要旨とする。
 本発明に係る無線通信システムの他の特徴は、上記の特徴に係る無線通信システムにおいて、前記無線基地局の周辺にある他の無線基地局である周辺基地局(例えばピコセル基地局PeNB)をさらに有し、前記周辺基地局は、前記第2のサブフレームを指定するための指定情報を基地局間通信により前記無線基地局に送信する指定情報送信部(例えば指定情報生成部123、X2インタフェース通信部140)を具備し、前記無線基地局は、前記指定情報を基地局間通信により受信する指定情報受信部(例えばX2インタフェース通信部140)をさらに具備し、前記基地局側送信処理部は、前記指定情報受信部が受信した前記指定情報によって指定された前記第2のサブフレームを示す前記サブフレーム情報を送信することを要旨とする。
 本発明に係る無線通信システムの他の特徴は、上記の特徴に係る無線通信システムにおいて、前記周辺基地局は、前記周辺基地局に接続する無線端末(例えば無線端末PUE)のうち、前記無線基地局から受ける干渉によって無線状態の劣化した劣化無線端末を検出する検出部(例えば劣化端末検出部122)と、前記第2のサブフレームにおいて、前記劣化無線端末に割り当てた無線リソースを示す周辺側割り当て情報を下りリンク制御チャネルを介して送信する周辺側送信処理部(例えば無線通信部110)とをさらに具備することを要旨とする。
 本発明に係る無線通信システムの他の特徴は、上記の特徴に係る無線通信システムにおいて、前記指定情報送信部は、前記検出部によって前記劣化無線端末が検出された場合に、前記指定情報を基地局間通信により前記無線基地局に送信することを要旨とする。
 本発明に係る無線通信システムの他の特徴は、上記の特徴に係る無線通信システムにおいて、前記周辺側送信処理部は、前記第2のサブフレームにおいて前記周辺側割り当て情報を送信する際に、前記第2のサブフレームよりも後のサブフレームであって前記周辺側割り当て情報に従った割り当てが適用される第3のサブフレーム(例えばサブフレームSF#C)を示す周辺側サブフレーム情報を送信することを要旨とする。
 本発明に係る無線通信システムの他の特徴は、上記の特徴に係る無線通信システムにおいて、それぞれ周波数帯の異なる複数のコンポーネントキャリアを束ねて使用するキャリアアグリゲーション技術が利用される場合、前記サブフレーム情報は、コンポーネントキャリアの指定に用いられることを要旨とする。
 本発明に係る無線基地局の特徴は、時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線端末(例えば無線端末MUE)との無線通信を行う無線基地局(例えばマクロセル基地局MeNB)であって、第1のサブフレームにおいて、前記無線端末に割り当てた無線リソースを示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される第2のサブフレームを示すサブフレーム情報とを、下りリンク制御チャネルを介して送信する基地局側送信処理部(例えば無線通信部210、割り当て情報生成部223、サブフレーム情報生成部224)を具備することを要旨とする。
 本発明に係る無線端末の特徴は、時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線基地局(例えばマクロセル基地局MeNB)との無線通信を行う無線端末(例えば無線端末MUE)であって、第1のサブフレームにおいて、前記無線基地局によって割り当てられた無線リソースを示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される第2のサブフレームを示すサブフレーム情報とを、下りリンク制御チャネルを介して受信することができる端末側受信処理部(例えば無線通信部310、情報復号部321)を具備し、前記端末側受信処理部は、前記サブフレーム情報を受信した場合に、前記第2のサブフレームにおいて前記割り当て情報の受信処理を省略することを要旨とする。
 本発明に係る無線基地局の特徴は、時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線端末(例えば無線端末PUE)との無線通信を行う無線基地局(例えばピコセル基地局PeNB)であって、第1のサブフレームよりも後のサブフレームであって前記第1のサブフレームと対応する割り当て情報に従った割り当てが適用される第2のサブフレームを指定するための指定情報を、基地局間通信により他の無線基地局に送信する指定情報送信部(例えば指定情報生成部123、X2インタフェース通信部140)を具備することを要旨とする。
 本発明に係る無線通信方法の特徴は、時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線基地局と無線端末との無線通信を行う無線通信方法であって、前記無線基地局が、第1のサブフレームにおいて、前記無線端末に割り当てた無線リソースを示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される有限個の第2のサブフレームを示すサブフレーム情報とを、下りリンク制御チャネルを介して送信するステップと、前記無線端末が、前記第1のサブフレームにおいて、前記下りリンク制御チャネルを介して前記無線基地局から前記割り当て情報及び前記サブフレーム情報を受信するステップと、前記無線基地局が、前記第2のサブフレームにおいて、前記割り当て情報の送信処理を省略するステップと、前記無線端末が、受信した前記サブフレーム情報に基づいて、前記第2のサブフレームにおいて、前記割り当て情報の受信処理を省略するステップとを有することを要旨とする。
 本発明によれば、下りリンク制御チャネルの基地局間干渉を低減できる無線通信システム、無線基地局、無線端末、及び無線通信方法を提供できる。
第1実施形態~第3実施形態に係るLTEシステムの概要を説明するための図である。 図2(a)は、FDD方式が使用される場合の通信フレーム構成を示すフレーム構成図であり、図2(b)は、下りリンクにおけるサブフレームの構成を示す図である。 第1実施形態及び第2実施形態に係る無線通信システムの概略構成図である。 第1実施形態に係るピコセル基地局の構成を示すブロック図である。 第1実施形態及び第2実施形態に係るマクロセル基地局の構成を示すブロック図である。 第1実施形態及び第2実施形態に係る無線端末の構成を示すブロック図である。 第1実施形態に係るPDCCH干渉管理の具体例を説明するための図である。 第1実施形態に係る無線通信システムの動作例を示す動作シーケンス図である。 第2実施形態に係るピコセル基地局の構成を示すブロック図である。 第2実施形態に係る無線端末の構成を示すブロック図である。 第2実施形態に係るPDCCH干渉管理の具体例を説明するための図である。 第2実施形態に係る無線通信システムの動作例を示す動作シーケンス図である。 第3実施形態に係る無線通信システムの概略構成図である。 その他の実施形態に係るキャリアアグリゲーション技術が使用されるケースを説明するための図である。
 図面を参照して、本発明の第1実施形態~第3実施形態、及びその他の実施形態を説明する。以下の各実施形態における図面において、同一又は類似の部分には同一又は類似の符号を付す。
 [LTEシステムの概要]
 第1実施形態~第3実施形態の説明の前に、LTEシステムの概要について、第1実施形態~第3実施形態に関連する内容を説明する。
 図1は、LTEシステムの概要を説明するための図である。図1に示すように、複数の無線基地局eNBはE-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)を構成する。複数の無線基地局eNBそれぞれは、無線端末UEに通信サービスを提供するエリアであるセルを形成する。
 無線端末UEは、ユーザが所持する無線通信装置であり、ユーザ装置とも称される。無線端末UEは、複数の無線基地局eNBのうち無線信号の受信電力(RSRP: Reference Signal Received Power)が最も高いものに接続する。ただし、RSRPに限らず、SNR(Signal to Noise ratio)等の他の受信品質指標を使用してもよい。
 各無線基地局eNBは、基地局間通信を提供する論理的な通信路であるX2インターフェースを介して互いに通信可能である。複数の無線基地局eNBそれぞれは、S1インターフェースを介して、EPC(Evolved Packet Core)、具体的には、MME(Mobility Management Entity)/S-GW(Serving Gateway)と通信可能である。
 無線基地局eNBと無線端末UEとの無線通信においては、下りリンクの多重方式としてOFDMA(Orthogonal Frequency Division Multiple Access)方式が、上りリンクの多重方式としてSC-FDMA(Single-Carrier Frequency Division Multiple Access)方式がそれぞれ適用される。また、複信方式としてFDD(Frequency Division Duplex)方式又はTDD(Time Division Duplex)方式が適用される。
 図2(a)は、FDD方式が使用される場合の通信フレーム構成を示すフレーム構成図である。
 図2(a)に示すように、時間方向に並ぶ10個のサブフレームは1つの無線フレームを構成し、各サブフレームは2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。また、各スロットは、時間方向(time domain)に7個のOFDMシンボルを含み、周波数方向(frequency domain)に複数のリソースブロック(RB)を含む。
 図2(b)は、下りリンクにおけるサブフレームの構成を示す図である。
 図2(b)に示すように、サブフレームは2個の連続的なスロットを含む。サブフレーム内の一番目のスロットの先頭から最大3OFDMシンボルの区間は、制御情報を伝送するPDCCHとして使用される無線リソースを構成する制御領域である。制御情報とは、上りリンク及び下りリンクの割り当て情報(いわゆる、スケジューリング情報)等である。なお、制御領域は、PDCCH以外に、PCFICH(Physical Control Format Indicator Channel)やPHICH(Physical Hybrid Automatic Repeat Request Indicator Channel)などを含んでもよい。
 サブフレームの残りのOFDMシンボル区間は、ユーザデータを伝送するPDSCH(Physical Downlink Shared Channel)として使用される無線リソースを構成するデータ領域である。PDSCHは、少なくとも1つのリソースブロックにより構成される。
 無線端末UEは、ブラインドデコーディングにより、割り当て情報を含む制御情報を復号する。無線端末UEは、PDCCHを介して伝送される割り当て情報を復号することで、PDSCHとして割り当てられたリソースブロック、及びPUSCHとして割り当てられたリソースブロックを特定できる。
 [第1実施形態]
 次に、本発明の第1実施形態を説明する。第1実施形態においては、(1)無線通信システムの構成、(2)無線通信システムの詳細構成、(3)PDCCH干渉管理の具体例、(4)無線通信システムの動作、(5)第1実施形態の効果の順に説明する。
 (1)無線通信システムの構成
 図3は、第1実施形態に係る無線通信システム1Aの概略構成図である。第1実施形態に係る無線通信システム1Aは、ヘテロジーニアスネットワークが適用される。
 図3に示すように、無線通信システム1Aは、マクロセル基地局MeNBと、マクロセル基地局MeNBに接続する無線端末MUEと、マクロセル基地局MeNBが形成するマクロセルMC内に設置され、マクロセル基地局MeNBに隣接するピコセル基地局PeNBと、ピコセル基地局PeNBが形成するピコセルPC内でピコセル基地局PeNBに接続する無線端末PUEとを有する。なお、図3では、無線端末MUE及び無線端末PUEのそれぞれを1つのみ図示しているが、実際には無線端末MUE及び無線端末PUEのそれぞれは複数であるものとする。
 ピコセル基地局PeNBは、マクロセル基地局MeNBよりも送信出力が小さい低電力基地局である。このため、ヘテロジーニアスネットワークにおいては、RSRPが最も高い無線基地局eNBを選択して無線端末UEが接続する選択基準を採用すると、ピコセル基地局PeNBのカバレッジ(無線端末UEを収容可能な範囲)が狭くなる可能性がある。特に、ピコセル基地局PeNBがマクロセル基地局MeNBに近い状況下では、ピコセル基地局PeNBのカバレッジが非常に狭くなり、ピコセル基地局PeNBを有効活用できない。
 ピコセル基地局PeNBの送信出力を上昇させずにピコセル基地局PeNBのカバレッジを拡大可能な方法としては、主に以下の2つの方法が使用できる。
 第1に、RSRPが最も大きい無線信号を送信する無線基地局eNBを当該無線端末UEの接続先として選択するのではなく、無線端末UEとの間の伝搬損失(パスロス)が最も小さい無線基地局eNBを無線端末UEの接続先として選択する方法がある。これにより、例えば無線端末UEに最も近いような無線基地局eNBが接続先として選択されるため、ピコセル基地局PeNBのカバレッジを拡大できる。
 第2に、無線端末UEがマクロセル基地局MeNB及びピコセル基地局PeNBのそれぞれから無線信号を受信可能な場合において、ピコセル基地局PeNBに対応するRSRPとマクロセル基地局MeNBに対応するRSRPとを比較する際に、ピコセル基地局PeNBに対応するRSRPにバイアス値を加える方法がある。ピコセル基地局PeNBに対応するRSRPにバイアス値を加えることで、オフセット後の当該RSRPが、マクロセル基地局MeNBに対応するRSRPを上回る可能性が高まる。よって、ピコセル基地局PeNBが優先的に接続先として選択されるため、ピコセル基地局PeNBのカバレッジを拡大できる。
 第1実施形態では、上記第2の方法によって、ピコセル基地局PeNBのカバレッジが拡大された状態であるものとする。
 マクロセル基地局MeNBは、制御領域を用いて構成されるPDCCHを介して、無線端末MUEに割り当てたリソースブロックを示す割り当て情報を送信する。ピコセル基地局PeNBは、制御領域を用いて構成されるPDCCHを介して、無線端末PUEに割り当てたリソースブロックを示す割り当て情報を送信する。これらの制御領域は周波数帯域が重複するため、マクロセル基地局MeNB及びピコセル基地局PeNBのそれぞれのPDCCHが互いに干渉を与え合う。
 ピコセル基地局PeNBのカバレッジが拡大された状態においては、ピコセル基地局PeNBに接続する無線端末PUEは、ピコセル基地局PeNBからの受信電力よりも、マクロセル基地局MeNBからの受信電力の方が高いことがある。この場合、ピコセル基地局PeNBが使用するPDCCHは、マクロセル基地局MeNBが使用するPDCCHから大きな干渉を受け、無線端末PUEが割り当て情報を受信(復号)不可能になる。
 以下においては、マクロセル基地局MeNB及びピコセル基地局PeNB間でのPDCCHの干渉管理を主として説明する。
 (2)無線通信システムの詳細構成
 次に、第1実施形態に係る無線通信システム1Aの詳細構成について、(2.1)ピコセル基地局PeNBの構成、(2.2)マクロセル基地局MeNBの構成、(2.3)無線端末MUEの構成の順に説明する。
 (2.1)ピコセル基地局PeNBの構成
 次に、第1実施形態に係るピコセル基地局PeNBの構成を説明する。図4は、第1実施形態に係るピコセル基地局PeNBの構成を示すブロック図である。
 図4に示すように、ピコセル基地局PeNBは、アンテナ部101、無線通信部110、制御部120、記憶部130、及びX2インタフェース通信部140を有する。
 無線通信部110は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、無線端末PUEと無線信号の送受信を行う。また、無線通信部110は、送信信号の変調と受信信号の復調とを行う。
 制御部120は、例えばCPUを用いて構成され、ピコセル基地局PeNBが備える各種の機能を制御する。記憶部130は、例えばメモリを用いて構成され、ピコセル基地局PeNBの制御等に用いられる各種の情報を記憶する。X2インタフェース通信部140は、X2インタフェースを使用して他の無線基地局との基地局間通信を行う。
 制御部120は、接続先選択部121、劣化端末検出部122、指定情報生成部123、リソース割り当て部124、及び割り当て情報生成部125を有する。
 接続先選択部121は、無線通信部110が無線端末PUEから受信する測定結果報告(メジャメントレポート)に基づいて、無線端末PUEの次の接続先を選択する。無線端末PUEがマクロセル基地局MeNB及びピコセル基地局PeNBそれぞれの参照信号を受信する場合、測定結果報告は、マクロセル基地局MeNBに対応するRSRPとピコセル基地局PeNBに対応するRSRPとを含む。接続先選択部121は、マクロセル基地局MeNBに対応するRSRPとピコセル基地局PeNBに対応するRSRPとを比較する前に、ピコセル基地局PeNBに対応するRSRPにバイアス値を加える。バイアス後のRSRPが、マクロセル基地局MeNBに対応するRSRPよりも低い場合、接続先選択部221は、無線端末PUEの接続先をマクロセル基地局MeNBに切り替えるようにハンドオーバ制御を行う。
 劣化端末検出部122は、ピコセル基地局PeNBに接続する複数の無線端末PUEのそれぞれから受信する測定結果報告(メジャメントレポート)に基づいて、複数の無線端末PUEのうち、マクロセル基地局MeNBから受ける干渉によって無線状態の劣化した劣化無線端末PUEを検出する。劣化無線端末PUEは、ピコセル基地局PeNBからPDCCHを介して送信される割り当て情報を正常に受信できない可能性の高い無線端末である。例えば、劣化端末検出部122は、マクロセル基地局MeNBに対応するRSRPが閾値を超える無線端末PUEを劣化無線端末PUEとして検出する。
 指定情報生成部123は、劣化端末検出部122によって劣化無線端末PUEが検出された場合に、PDCCHの干渉を低減させるべきサブフレームを指定するための指定情報を生成する。例えば、サブフレーム番号を指定情報とすることができる。PDCCHの干渉を低減させるべきサブフレームの数は、1つであってもよく、所定数であってもよい。つまり、PDCCHの干渉を低減させるべきサブフレームの数は、有限である。X2インタフェース通信部140は、指定情報生成部123によって生成された指定情報を含むPDCCH規制メッセージをマクロセル基地局MeNBに送信する。第1実施形態において、指定情報生成部123及びX2インタフェース通信部140は、指定情報送信部を構成する。
 リソース割り当て部124は、サブフレーム毎に、データチャネル(PDSCH、PUSCH)として無線端末PUEに割り当てるリソースブロックを決定する。例えば、リソース割り当て部124は、無線端末PUEからフィードバックされるCQI(Channel Quality Information)に基づき、プロポーショナルフェアネス等のスケジューリングアルゴリズムを用いて、無線端末PUEに割り当てるリソースブロックを決定する。PDCCH規制メッセージをマクロセル基地局MeNBに送信した後においては、リソース割り当て部124は、指定情報によって指定したサブフレームについて、劣化無線端末PUEに割り当てるリソースブロックを決定する。
 割り当て情報生成部125は、リソース割り当て部124によって決定されたリソースブロックを示す割り当て情報を生成する。無線通信部110は、割り当て情報生成部125によって生成された割り当て情報をPDCCHを介して無線端末PUEに送信する。無線通信部110は、指定情報によって指定したサブフレームにおいて、劣化無線端末PUEに割り当てたリソースブロックを示す割り当て情報(周辺側割り当て情報)をPDCCHを介して送信する。第1実施形態において、割り当て情報生成部125及び無線通信部110は、周辺側送信処理部を構成する。
 (2.2)マクロセル基地局MeNBの構成
 次に、マクロセル基地局MeNBの構成を説明する。図5は、マクロセル基地局MeNBの構成を示すブロック図である。
 図5に示すように、マクロセル基地局MeNBは、アンテナ部201、無線通信部210、制御部220、記憶部230、及びX2インタフェース通信部240を有する。
 無線通信部110は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、無線端末MUEと無線信号の送受信を行う。また、無線通信部210は、送信信号の変調と受信信号の復調とを行う。
 制御部220は、例えばCPUを用いて構成され、マクロセル基地局MeNBが備える各種の機能を制御する。記憶部230は、例えばメモリを用いて構成され、マクロセル基地局MeNBの制御等に用いられる各種の情報を記憶する。
 X2インタフェース通信部240は、X2インタフェースを使用して他の無線基地局との基地局間通信を行う。第1実施形態において、X2インタフェース通信部240は、指定情報を含むPDCCH規制メッセージを受信する指定情報受信部に相当する。
 制御部220は、接続先選択部221、リソース割り当て部222、割り当て情報生成部223、及びサブフレーム情報生成部224を有する。
 接続先選択部221は、無線通信部210が無線端末MUEから受信する測定結果報告(メジャメントレポート)に基づいて、無線端末MUEの次の接続先を選択する。無線端末MUEがマクロセル基地局MeNB及びピコセル基地局PeNBそれぞれの参照信号を受信する場合、測定結果報告は、マクロセル基地局MeNBに対応するRSRPとピコセル基地局PeNBに対応するRSRPとを含む。接続先選択部221は、マクロセル基地局MeNBに対応するRSRPとピコセル基地局PeNBに対応するRSRPとを比較する前に、ピコセル基地局PeNBに対応するRSRPにバイアス値を加える。バイアス後のRSRPが、マクロセル基地局MeNBに対応するRSRPよりも高い場合、接続先選択部221は、無線端末MUEの接続先をピコセル基地局PeNBに切り替えるようにハンドオーバ制御を行う。
 リソース割り当て部222は、サブフレーム毎に、データチャネル(PDSCH、PUSCH)として無線端末MUEに割り当てるリソースブロックを決定する。例えば、リソース割り当て部222は、無線端末MUEからフィードバックされるCQIに基づき、プロポーショナルフェアネス等のスケジューリングアルゴリズムを用いて、無線端末MUEに割り当てるリソースブロックを決定する。
 割り当て情報生成部223は、リソース割り当て部222によって決定されたリソースブロックを示す割り当て情報を生成する。無線通信部210は、割り当て情報生成部223によって生成された割り当て情報をPDCCHを介して無線端末MUEに送信する。
 サブフレーム情報生成部224は、PDCCH規制メッセージをピコセル基地局PeNBから受信した場合に、PDCCH規制メッセージに含まれる指定情報によって指定された有限個(1個又は複数個)のサブフレームを示すサブフレーム情報を生成する。この場合、無線通信部210は、割り当て情報生成部223によって生成された割り当て情報と、サブフレーム情報生成部224によって生成されたサブフレーム情報とを、PDCCHを介して送信する。第1実施形態において、割り当て情報生成部223、サブフレーム情報生成部224、及び無線通信部210は、基地局側送信処理部を構成する。
 サブフレーム情報が示すサブフレームは、割り当て情報が送信されるサブフレームよりも後のサブフレームであり、且つ、当該割り当て情報に従った割り当てが適用される。
 (2.3)無線端末MUEの構成
 次に、無線端末MUEの構成を説明する。図6は、無線端末MUEの構成を示すブロック図である。
 図6に示すように、無線端末MUEは、アンテナ部301、無線通信部310、制御部320、及び記憶部330を有する。
 無線通信部310は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、マクロセル基地局MeNBと無線信号の送受信を行う。また、無線通信部310は、送信信号の変調と受信信号の復調とを行う。
 制御部320は、例えばCPUを用いて構成され、無線端末MUEが備える各種の機能を制御する。記憶部330は、例えばメモリを用いて構成され、無線端末MUEの制御等に用いられる各種の情報を記憶する。
 制御部320は、情報復号部321及びリソース特定部322を有する。情報復号部321は、無線通信部310がマクロセル基地局MeNBから受信した割り当て情報及びサブフレーム情報を復号する。第1実施形態において、無線通信部310及び情報復号部321は、端末側受信処理部を構成する。
 リソース特定部322は、情報復号部321によって復号された割り当て情報及びサブフレーム情報に基づいて、割り当てられたリソースブロックを特定するとともに、当該割り当て情報に従った割り当てが適用される有限個のサブフレームを特定する。
 (3)PDCCH干渉管理の具体例
 次に、第1実施形態に係るPDCCH干渉管理の具体例を説明する。図7は、第1実施形態に係るPDCCH干渉管理の具体例を説明するための図である。
 図7(a)は、PDCCH干渉管理が適用さないケースを示す図である。
 図7(a)に示すように、マクロセル基地局MeNBがPDCCHとして使用する制御領域と、ピコセル基地局PeNBがPDCCHとして使用する制御領域とは、周波数帯域が重複する。ピコセル基地局PeNBのPDCCHは、マクロセル基地局MeNBのPDCCHから干渉を受ける。
 図7(b)は、PDCCH干渉管理が適用されるケースを示す図である。
 図7(b)に示すように、マクロセル基地局MeNBの無線通信部210は、サブフレームSF#A(第1のサブフレーム)において、無線端末MUEに割り当てたリソースブロックを示す割り当て情報と、サブフレームSF#Aよりも後のサブフレームであって当該割り当て情報に従った割り当てが適用されるサブフレームSF#B(第2のサブフレーム)を示すサブフレーム情報とを、PDCCHを介して送信する。
 無線端末MUEの無線通信部310は、サブフレームSF#Aにおいて、PDCCHを介してマクロセル基地局MeNBから割り当て情報及びサブフレーム情報を受信する。無線端末MUEの情報復号部321は、無線通信部310が受信した割り当て情報及びサブフレーム情報を復号する。無線端末MUEのリソース特定部322は、情報復号部321によって復号された割り当て情報及びサブフレーム情報に基づいて、サブフレームSF#A及び及びSF#Bのそれぞれについて割り当てられたリソースブロックを特定する。具体的には、リソース特定部322は、サブフレーム情報が示すサブフレームSF#Bについては、サブフレームSF#Aで割り当てられたリソースブロックと同一周波数のリソースブロックが割り当てられたと判断する。
 このような方法によれば、1つの割り当て情報を複数のサブフレームに適用可能になり、サブフレームSF#Bにおいてマクロセル基地局MeNBと無線端末MUEとの間でのPDCCHを介した割り当て情報の送受信が省略されるため、当該マクロセル基地局MeNBの周辺にあるピコセル基地局PeNBは、サブフレームSF#Bにおいてマクロセル基地局MeNBのPDCCHから受ける干渉が軽減される。
 一方、ピコセル基地局PeNBの無線通信部110は、サブフレームSF#Bにおいて、劣化無線端末PUEに割り当てたリソースブロックを示す割り当て情報をPDCCHを介して送信する。これにより、劣化無線端末PUEが割り当て情報を正常に受信することができ、ピコセル基地局PeNBと劣化無線端末PUEとの無線通信を継続可能になる。
 上記の例では、サブフレームSF#Bにおいて、マクロセル基地局MeNBがPDCCHを一切使用せずに制御領域をブランクにすることを想定している。ただし、サブフレームSF#Bにおいて、マクロセル基地局MeNBが制御領域の一部のみの使用を許可し、PDCCHの使用率(つまり、制御領域においてPDCCHが使用される割合)を低下させる方法でもよい。例えば、制御領域の1OFDMシンボル分相当の使用を許可することで、PDCCHの使用率を低下させることができる。このような方法でPDCCHの使用率を低下させる場合には、ピコセル基地局PeNBは、マクロセル基地局MeNBが使用しない制御領域部分又はマクロセル基地局MeNBがPDCCHの使用率を低下させているサブフレームに対応するPDCCHリソースを劣化無線端末PUEに割り当てることが好ましい。
 なお、マクロセル基地局MeNB及び無線端末MUEは、サブフレームSF#A及びサブフレームSF#Bのそれぞれにおいて、異なるHARQ(Hybrid Automatic Repeat Request)プロセスに対応するユーザデータを送受信してもよい。この場合、マクロセル基地局MeNBは、サブフレームSF#A及びサブフレームSF#Bのそれぞれにおいて使用される異なるHARQに係る制御情報をサブフレームSF#AにおけるPDCCHを介して無線端末MUEに送信する。
 また、マクロセル基地局MeNB及び無線端末MUEは、サブフレームSF#A及びサブフレームSF#Bのそれぞれにおいて、同じHARQプロセスに対応するユーザデータを送受信してもよい。この場合、マクロセル基地局MeNBは、サブフレームSF#A及びサブフレームSF#Bのそれぞれにおいて使用される同じHARQに係る制御情報を、サブフレームSF#AにおけるPDCCHを介して無線端末MUEに送信する。
 (4)無線通信システムの動作
 図8は、第1実施形態に係る無線通信システム1Aの動作例を示す動作シーケンス図である。ここでは、無線通信システム1Aが図7(b)に示すPDCCH干渉管理を行うケースを説明する。
 ステップS101において、無線端末PUEは、ピコセル基地局PeNB及びマクロセル基地局MeNBのそれぞれについてRSRPを測定する。
 ステップS102において、無線端末PUEは、ステップS101で測定したRSRPを示す測定結果報告をピコセル基地局PeNBに送信する。ピコセル基地局PeNBの無線通信部110は、測定結果報告を受信する。
 ステップS103において、ピコセル基地局PeNBの劣化端末検出部122は、無線通信部110が受信した測定結果報告に基づいて劣化無線端末PUEを検出する。
 ステップS104において、ピコセル基地局PeNBの指定情報生成部123は、サブフレームSF#Bを指定する指定情報を生成する。そして、ピコセル基地局PeNBのX2インタフェース通信部140は、指定情報生成部123によって生成された指定情報を含むPDCCH規制メッセージをマクロセル基地局MeNBに送信する。マクロセル基地局MeNBのX2インタフェース通信部240は、指定情報を含むPDCCH規制メッセージを受信する。
 ステップS105において、マクロセル基地局MeNBのリソース割り当て部222は、サブフレームSF#A(及びサブフレームSF#B)について無線端末MUEに割り当てるリソースブロックを決定する。マクロセル基地局MeNBの割り当て情報生成部223は、リソース割り当て部222が決定したリソースブロックを示す割り当て情報を生成する。マクロセル基地局MeNBのサブフレーム情報生成部224は、指定情報に基づいて、サブフレームSF#Bを示すサブフレーム情報を生成する。
 ステップS106において、マクロセル基地局MeNBの無線通信部210は、サブフレームSF#AにおけるPDCCHを介して割り当て情報及びサブフレーム情報を無線端末MUEに送信する。無線端末MUEの無線通信部310は、サブフレームSF#AにおけるPDCCHを介して割り当て情報及びサブフレーム情報を受信する。無線端末MUEの情報復号部321は、無線通信部310が受信した割り当て情報及びサブフレーム情報を復号する。
 ステップS107において、無線端末MUEのリソース特定部322は、情報復号部321によって復号された割り当て情報及びサブフレーム情報に基づいて、サブフレームSF#A及びサブフレームSF#Bのそれぞれについて割り当てられたリソースブロックを特定する。
 ステップS108において、マクロセル基地局MeNBの無線通信部210、及び無線端末MUEの無線通信部310は、サブフレームSF#Aについての割り当てリソースブロックを使用してユーザデータを送受信する。ここで、ユーザデータの送受信は、下りリンクだけでなく、上りリンクも行われてよい。
 ステップS109において、ピコセル基地局PeNBのリソース割り当て部124は、サブフレームSF#Bについて劣化無線端末PUEに割り当てるリソースブロックを決定する。ピコセル基地局PeNBの割り当て情報生成部125は、リソース割り当て部124が決定したリソースブロックを示す割り当て情報を生成する。
 ステップS110において、マクロセル基地局MeNBの割り当て情報生成部223及び無線通信部210は、サブフレームSF#Bにおける無線端末MUEに対する割り当て情報の送信処理を省略する。また、ステップS111において、ピコセル基地局PeNBの無線通信部310及び情報復号部321は、サブフレームSF#Bにおける割り当て情報の受信処理を省略する。
 ステップS112において、ピコセル基地局PeNBの無線通信部110は、サブフレームSF#BにおけるPDCCHを介して割り当て情報を劣化無線端末PUEに送信する。劣化無線端末PUEは、サブフレームSF#BにおけるPDCCHを介して割り当て情報を受信し、受信した割り当て情報を復号する。
 ステップS113において、劣化無線端末PUEは、復号された割り当て情報に基づいて、サブフレームSF#Bについて割り当てられたリソースブロックを特定する。
 ステップS114において、ピコセル基地局PeNB及び劣化無線端末PUEは、サブフレームSF#Bについての割り当てリソースブロックを使用してユーザデータを送受信する。ここで、ユーザデータの送受信は、下りリンクだけでなく、上りリンクも行われてよい。
 ステップS115において、マクロセル基地局MeNB及び無線端末MUEは、サブフレームSF#Bについての割り当てリソースブロックを使用してユーザデータを送受信する。ここで、ユーザデータの送受信は、下りリンクだけでなく、上りリンクも行われてよい。
 (5)第1実施形態の効果
 以上説明したように、第1実施形態によれば、1つの割り当て情報を複数のサブフレームに適用可能になり、サブフレームSF#Bにおいてマクロセル基地局MeNBと無線端末MUEとの間での割り当て情報の送受信処理を省略できるため、ピコセル基地局PeNBは、サブフレームSF#Bにおいて当該マクロセル基地局MeNBのPDCCHから受ける干渉が軽減される。したがって、PDCCHの基地局間干渉を低減できる。
 第1実施形態では、サブフレームSF#Aにおいて送信されるサブフレーム情報が示すサブフレームは、サブフレームSF#Aの次のサブフレームSF#Bである。サブフレームSF#Aにおいて送信される割り当て情報は、サブフレームSF#Aにおいて無線状態の良好なリソースブロックを示すことが一般的であるが、無線状態は時間の経過と共に変化する。このため、サブフレームSF#Aと、サブフレームSF#Aにおいて送信されるサブフレーム情報が示すサブフレームとの間の時間間隔が大きく離れていると、サブフレーム情報が示すサブフレームにおいて当該リソースブロックの無線状態が劣化していることがある。したがって、少なくともサブフレームSF#Aの次のサブフレームSF#Bをサブフレーム情報により指定するようにすることで、サブフレームSF#Bにおいて無線端末MUEが無線状態の良好なリソースブロックを使用できる可能性を高めることができる。
 第1実施形態では、ピコセル基地局PeNBは、サブフレームSF#Bを指定するための指定情報を基地局間通信によりマクロセル基地局MeNBに送信する。マクロセル基地局MeNBは、当該指定情報によって指定されたサブフレームSF#Bを示すサブフレーム情報を送信する。このように、ピコセル基地局PeNBがサブフレームSF#Bを指定することによって、ピコセル基地局PeNB主導で、サブフレームSF#Bにおいてマクロセル基地局MeNBのPDCCHから受ける干渉を軽減させることができる。
 第1実施形態では、ピコセル基地局PeNBは、サブフレームSF#Bにおいて、劣化無線端末PUEに割り当てたリソースブロックを示す周辺側割り当て情報をPDCCHを介して送信する。このように、マクロセル基地局MeNBのPDCCHから受ける干渉が軽減されるサブフレームSF#Bにおいて、劣化無線端末PUEに割り当てたリソースブロックを示す割り当て情報をピコセル基地局PeNBが送信することによって、劣化無線端末PUEが当該割り当て情報を正常に受信することができ、ピコセル基地局PeNBと劣化無線端末PUEとの無線通信を継続可能になる。
 第1実施形態では、ピコセル基地局PeNBは、劣化無線端末PUEが検出された場合に、指定情報を基地局間通信によりマクロセル基地局MeNBに送信する。このように、劣化無線端末PUEが検出された場合に限り指定情報をマクロセル基地局MeNBに送信することで、劣化無線端末PUEが検出されない場合にはマクロセル基地局MeNBが自由にPDCCHを使用できる。
 第1実施形態では、マクロセル基地局MeNB及び無線端末MUEは、サブフレームSF#A及びサブフレームSF#Bのそれぞれにおいて、異なるHARQ(Hybrid Automatic Repeat Request)プロセスに対応するデータを送受信する。これにより、複数のHARQプロセスを並行して実行することができる。
 また、第1実施形態では、マクロセル基地局MeNB及び無線端末MUEは、サブフレームSF#A及びサブフレームSF#Bのそれぞれにおいて、同じHARQプロセスに対応するデータを送受信する。これにより、1つのAck/Nackで対応できる。なお、第1実施形態において、マクロセル基地局MeNB及び無線端末MUEは、サブフレームSF#A及びサブフレームSF#Bのそれぞれにおいて、同じHARQプロセスで、且つ異なるRedundancy versionに対応するデータを送受信してもよい。
 以上のように、第1実施形態によれば、ピコセル基地局PeNBのカバレッジが拡大された結果、ピコセル基地局PeNBからの受信電力(RSRP)よりもマクロセル基地局MeNBからの受信電力(RSRP)の方が高いような劣化無線端末PUEが生じる場合であっても、劣化無線端末PUEがピコセル基地局PeNBからの割り当て情報を正常に受信できるようになる。
 なお、上記においては、データチャネル(PDSCH及びPUSCH)の基地局間干渉について特に説明していないが、データチャネルについては、適応変調制御やHARQ、セル間干渉制御(ICIC)等の既存技術により対処可能である。
 [第2実施形態]
 上述した第1実施形態では、劣化無線端末PUEは、指定情報によって指定されたサブフレーム(すなわち、サブフレーム情報が示すサブフレーム)以外のサブフレームにおいてユーザデータの送受信を行うことが難しい。第2実施形態では、ピコセル基地局PeNBもサブフレーム情報を送信するようにし、指定情報によって指定されたサブフレーム以外のサブフレームにおいてもユーザデータの送受信を可能とする。
 なお、第2実施形態では、マクロセル基地局MeNB及び無線端末MUEは第1実施形態と同様に構成されるため、マクロセル基地局MeNB及び無線端末MUEの構成の説明は省略する。
 (1)ピコセル基地局PeNBの構成
 図9は、第2実施形態に係るピコセル基地局PeNBの構成を示すブロック図である。
 図9に示すように、第2実施形態に係るピコセル基地局PeNBは、制御部120がサブフレーム情報生成部126を有している点で第1実施形態とは異なる。サブフレーム情報生成部126は、サブフレーム情報(周辺側サブフレーム情報)を生成する。無線通信部110は、指定情報によって指定したサブフレーム(第2のサブフレーム)において、割り当て情報を無線端末PUEに送信する際に、当該サブフレームよりも後のサブフレームであって当該割り当て情報に従った割り当てが適用される有限個のサブフレーム(第3のサブフレーム)を示すサブフレーム情報を送信する。
 (2)無線端末PUEの構成
 次に、無線端末PUEの構成を説明する。図10は、無線端末PUEの構成を示すブロック図である。
 図10に示すように、無線端末PUEは、アンテナ部401、無線通信部410、制御部420、及び記憶部430を有する。
 無線通信部410は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、ピコセル基地局PeNBと無線信号の送受信を行う。また、無線通信部410は、送信信号の変調と受信信号の復調とを行う。
 制御部420は、例えばCPUを用いて構成され、無線端末PUEが備える各種の機能を制御する。記憶部430は、例えばメモリを用いて構成され、無線端末PUEの制御等に用いられる各種の情報を記憶する。
 制御部420は、情報復号部421及びリソース特定部422を有する。情報復号部421は、無線通信部410がピコセル基地局PeNBから受信した割り当て情報及びサブフレーム情報を復号する。第2実施形態において、無線通信部410及び情報復号部421は、端末側受信処理部を構成する。
 リソース特定部422は、情報復号部421によって復号された割り当て情報及びサブフレーム情報に基づいて、割り当てられたリソースブロックを特定するとともに、当該割り当て情報に従った割り当てが適用される有限個のサブフレームを特定する。
 (3)PDCCH干渉管理の具体例
 次に、第2実施形態に係るPDCCH干渉管理の具体例を説明する。図11は、第2実施形態に係るPDCCH干渉管理の具体例を説明するための図である。ここでは、第1実施形態と異なる点を主として説明する。
 図11に示すように、マクロセル基地局MeNBの無線通信部210は、サブフレームSF#A(第1のサブフレーム)において、無線端末MUEに割り当てたリソースブロックを示す割り当て情報と、サブフレームSF#Aよりも後のサブフレームであって当該割り当て情報に従った割り当てが適用されるサブフレームSF#B(第2のサブフレーム)を示すサブフレーム情報とを、PDCCHを介して送信する。
 無線端末MUEの無線通信部110は、サブフレームSF#Aにおいて、PDCCHを介してマクロセル基地局MeNBから割り当て情報及びサブフレーム情報を受信する。無線端末MUEの情報復号部321は、無線通信部110が受信した割り当て情報及びサブフレーム情報を復号する。無線端末MUEのリソース特定部322は、情報復号部321によって復号された割り当て情報及びサブフレーム情報に基づいて、サブフレームSF#A及び及びSF#Bのそれぞれについて割り当てられたリソースブロックを特定する。
 一方、ピコセル基地局PeNBの無線通信部110は、サブフレームSF#Bにおいて、劣化無線端末PUEに割り当てたリソースブロックを示す割り当て情報と、サブフレームSF#Bよりも後のサブフレームであって当該割り当て情報に従った割り当てが適用されるサブフレームSF#C(第3のサブフレーム)を示すサブフレーム情報とを、PDCCHを介して送信する。
 劣化無線端末PUEの無線通信部410は、サブフレームSF#Bにおいて、PDCCHを介してピコセル基地局PeNBから割り当て情報及びサブフレーム情報を受信する。劣化無線端末PUEの情報復号部421は、無線通信部410が受信した割り当て情報及びサブフレーム情報を復号する。劣化無線端末PUEのリソース特定部422は、情報復号部421によって復号された割り当て情報及びサブフレーム情報に基づいて、サブフレームSF#B及び及びSF#Cのそれぞれについて割り当てられたリソースブロックを特定する。
 なお、ここでは第2のサブフレーム(サブフレームSF#B)が1つであるケースを例示しているが、第2のサブフレームが複数である場合には、複数の第2のサブフレームのうち最後のサブフレームにおいて、ピコセル基地局PeNBがサブフレーム情報を送信すればよい。
 (4)無線通信システムの動作
 図12は、第2実施形態に係る無線通信システム1Aの動作例を示す動作シーケンス図である。ここでは、第2実施形態に係る無線通信システム1Aが図11に示すPDCCH干渉管理を行うケースを説明する。ただし、ステップS201~S208の各処理は、第1実施形態で説明したステップS201~S208の各処理と同様であるため、ステップS209以降の処理を説明する。
 ステップS209において、ピコセル基地局PeNBのリソース割り当て部124は、サブフレームSF#B(及びサブフレームSF#C)について劣化無線端末PUEに割り当てるリソースブロックを決定する。ピコセル基地局PeNBの割り当て情報生成部125は、リソース割り当て部124が決定したリソースブロックを示す割り当て情報を生成する。ピコセル基地局PeNBのサブフレーム情報生成部126は、サブフレームSF#Cを示すサブフレーム情報を生成する。
 ステップS210において、マクロセル基地局MeNBの割り当て情報生成部223及び無線通信部210は、サブフレームSF#Bにおける無線端末MUEに対する割り当て情報の送信処理を省略する。また、ステップS211において、ピコセル基地局PeNBの無線通信部310及び情報復号部321は、サブフレームSF#Bにおける割り当て情報の受信処理を省略する。
 ステップS212において、ピコセル基地局PeNBの無線通信部110は、サブフレームSF#BにおけるPDCCHを介して割り当て情報及びサブフレーム情報を劣化無線端末PUEに送信する。劣化無線端末PUEの無線通信部410は、サブフレームSF#BにおけるPDCCHを介して割り当て情報及びサブフレーム情報を受信する。劣化無線端末PUEの情報復号部421は、無線通信部410が受信した割り当て情報及びサブフレーム情報を復号する。
 ステップS213において、劣化無線端末PUEのリソース特定部422は、情報復号部421によって復号された割り当て情報及びサブフレーム情報に基づいて、サブフレームSF#B及びサブフレームSF#Cのそれぞれについて割り当てられたリソースブロックを特定する。
 ステップS214において、ピコセル基地局PeNB及び劣化無線端末PUEは、サブフレームSF#Bについての割り当てリソースブロックを使用してユーザデータを送受信する。ここで、ユーザデータの送受信は、下りリンクだけでなく、上りリンクも行われてよい。
 ステップS215において、マクロセル基地局MeNB及び無線端末MUEは、サブフレームSF#Bについての割り当てリソースブロックを使用してユーザデータを送受信する。ここで、ユーザデータの送受信は、下りリンクだけでなく、上りリンクも行われてよい。
 ステップS216において、マクロセル基地局MeNBのリソース割り当て部222は、サブフレームSF#Cについて無線端末MUEに割り当てるリソースブロックを決定する。マクロセル基地局MeNBの割り当て情報生成部223は、リソース割り当て部222が決定したリソースブロックを示す割り当て情報を生成する。
 ステップS217において、ピコセル基地局PeNBの割り当て情報生成部125及び無線通信部110は、サブフレームSF#Cにおける劣化無線端末PUEに対する割り当て情報の送信処理を省略する。また、ステップS218において、劣化無線端末PUEの無線通信部410及び情報復号部421は、サブフレームSF#Cにおける割り当て情報の受信処理を省略する。
 ステップS219において、マクロセル基地局MeNBの無線通信部210は、サブフレームSF#CにおけるPDCCHを介して割り当て情報を無線端末MUEに送信する。無線端末MUEの無線通信部310は、サブフレームSF#CにおけるPDCCHを介して割り当て情報を受信する。無線端末MUEの情報復号部321は、無線通信部310が受信した割り当て情報を復号する。
 ステップS220において、無線端末MUEのリソース特定部322は、情報復号部321によって復号された割り当て情報に基づいて、サブフレームSF#Cについて割り当てられたリソースブロックを特定する。
 ステップS221において、マクロセル基地局MeNBの無線通信部210、及び無線端末MUEの無線通信部310は、サブフレームSF#Cについての割り当てリソースブロックを使用してユーザデータを送受信する。ここで、ユーザデータの送受信は、下りリンクだけでなく、上りリンクも行われてよい。
 ステップS222において、ピコセル基地局PeNB及び劣化無線端末PUEは、サブフレームSF#Cについての割り当てリソースブロックを使用してユーザデータを送受信する。ここで、ユーザデータの送受信は、下りリンクだけでなく、上りリンクも行われてよい。
 (5)第2実施形態の効果
 以上説明したように、第2実施形態によれば、ピコセル基地局PeNBは、サブフレームSF#Bにおいて割り当て情報を送信する際に、当該割り当て情報に従った割り当てが適用されるサブフレームSF#Cを示すサブフレーム情報を送信する。これにより、サブフレームSF#Bだけでなく、サブフレームSF#Cにおいてもピコセル基地局PeNBと劣化無線端末PUEとの間でユーザデータの送受信を行うことができるため、劣化無線端末PUEのスループットを改善できる。
 [第3実施形態]
 第3実施形態は、マクロセル基地局間でのPDCCH干渉管理を行う実施形態である。第3実施形態においては、第1実施形態及び第2実施形態と異なる点を説明し、重複する説明を省略する。
 図13は、第3実施形態に係る無線通信システム1Bの概略構成図である。
 図13に示すように、無線通信システム1Bは、マクロセル基地局MeNB1と、マクロセル基地局MeNB1に接続する無線端末MUE1と、マクロセル基地局MeNB1に隣接するマクロセル基地局MeNB2と、マクロセル基地局MeNB2が形成するセル内でマクロセル基地局MeNB2に接続する無線端末MUE2とを有する。
 マクロセル基地局MeNB1に接続する無線端末MUE1がセルエッジ付近に位置するような場合、無線端末MUE1は、マクロセル基地局MeNB1に隣接するマクロセル基地局MeNB2が使用するPDCCHから干渉の影響を受け、マクロセル基地局MeNB1がPDCCHを介して送信する割り当て情報を正常に受信できないことがある。
 このようなケースにおいては、第1実施形態及び第2実施形態で説明したPDCCH干渉管理が有効である。すなわち、第3実施形態において、マクロセル基地局MeNB1を第1実施形態及び第2実施形態で説明したピコセル基地局PeNBのブロック構成と同様に構成し、マクロセル基地局MeNB2を第1実施形態及び第2実施形態で説明したマクロセル基地局MeNBのブロック構成と同様に構成すればよい。
 [その他の実施形態]
 上記のように、本発明は各実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した各実施形態では、それぞれ周波数帯の異なる複数のコンポーネントキャリアを束ねて使用するキャリアアグリゲーション技術が使用されないケースについて説明した。しかしながら、図14に示すように、キャリアアグリゲーション技術が使用される場合には、上述したサブフレーム情報に係る情報フィールドを、コンポーネントキャリアを指定する情報として用いてもよい。図14の例では、PDCCHを介して送信される割り当て情報が、コンポーネントキャリア1だけでなく、コンポーネントキャリア2についても適用される旨の情報を、サブフレーム情報に係る情報フィールドに含めればよい。このような方法により、サブフレーム情報に係る情報フィールドを有効活用することができる。
 第1実施形態及び第2実施形態においてはマクロセル基地局及びピコセル基地局間でのPDCCHの基地局間干渉低減技術を説明し、第3実施形態においてはマクロセル基地局間でのPDCCHの基地局間干渉低減技術を説明したが、本発明は、これらの基地局の組み合わせに限らず、任意の隣接基地局間でのPDCCHの基地局間干渉の低減に適用することができる。
 また、LTE Advancedにおいては、バックホールを無線により構成する無線基地局であるリレーノードの採用が予定され、且つリレーノードにもX2インタフェースが採用される予定であるため、当該リレーノードを本発明に係る無線基地局としてもよい。
 さらに、上述した実施形態では、LTEシステムについて説明したが、WiMAX(IEEE 802.16)に基づく無線通信システム等、他の無線通信システムに対して本発明を適用してもよい。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2010-103645号(2010年4月28日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線通信システム、無線基地局、無線端末、及び無線通信方法は、下りリンク制御チャネルの基地局間干渉を低減できるため、移動体通信などの無線通信において有用である。

Claims (12)

  1.  時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線基地局と無線端末との無線通信を行う無線通信システムであって、
     前記無線基地局は、第1のサブフレームにおいて、前記無線端末に割り当てた無線リソースを示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される第2のサブフレームを示すサブフレーム情報とを、下りリンク制御チャネルを介して送信する基地局側送信処理部を具備し、
     前記無線端末は、
     前記第1のサブフレームにおいて、前記下りリンク制御チャネルを介して前記無線基地局から前記割り当て情報及び前記サブフレーム情報を受信することができる端末側受信処理部と、
     前記端末側受信処理部が受信した前記割り当て情報及び前記サブフレーム情報に基づいて、前記第1のサブフレーム及び前記第2のサブフレームのそれぞれについて割り当てられた無線リソースを特定するリソース特定部と、
    を具備し、
     前記端末側受信処理部は、前記サブフレーム情報を受信を受信した場合に、前記第2のサブフレームにおいて、前記割り当て情報の受信処理を省略する無線通信システム。
  2.  前記基地局側送信処理部は、前記第2のサブフレームにおいて、前記割り当て情報の送信処理を省略する請求項1に記載の無線通信システム。
  3.  前記第2のサブフレームは、前記第1のサブフレームの次のサブフレームを含む請求項1に記載の無線通信システム。
  4.  前記無線基地局の周辺にある他の無線基地局である周辺基地局をさらに有し、
     前記周辺基地局は、前記第2のサブフレームを指定するための指定情報を基地局間通信により前記無線基地局に送信する指定情報送信部を具備し、
     前記無線基地局は、前記指定情報を基地局間通信により受信する指定情報受信部をさらに具備し、
     前記基地局側送信処理部は、前記指定情報受信部が受信した前記指定情報によって指定された前記第2のサブフレームを示す前記サブフレーム情報を送信する請求項1に記載の無線通信システム。
  5.  前記周辺基地局は、
     前記周辺基地局に接続する無線端末のうち、前記無線基地局から受ける干渉によって無線状態の劣化した劣化無線端末を検出する検出部と、
     前記第2のサブフレームにおいて、前記劣化無線端末に割り当てた無線リソースを示す周辺側割り当て情報を下りリンク制御チャネルを介して送信する周辺側送信処理部と、
    をさらに具備する請求項4に記載の無線通信システム。
  6.  前記指定情報送信部は、前記検出部によって前記劣化無線端末が検出された場合に、前記指定情報を基地局間通信により前記無線基地局に送信する請求項5に記載の無線通信システム。
  7.  前記周辺側送信処理部は、前記第2のサブフレームにおいて前記周辺側割り当て情報を送信する際に、前記第2のサブフレームよりも後のサブフレームであって前記周辺側割り当て情報に従った割り当てが適用される第3のサブフレームを示す周辺側サブフレーム情報を送信する請求項6に記載の無線通信システム。
  8.  それぞれ周波数帯の異なる複数のコンポーネントキャリアを束ねて使用するキャリアアグリゲーション技術が利用される場合、前記サブフレーム情報は、コンポーネントキャリアの指定に用いられる請求項1に記載の無線通信システム。
  9.  時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線端末との無線通信を行う無線基地局であって、
     第1のサブフレームにおいて、前記無線端末に割り当てた無線リソースを示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される第2のサブフレームを示すサブフレーム情報とを、下りリンク制御チャネルを介して送信する基地局側送信処理部を具備する無線基地局。
  10.  時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線基地局との無線通信を行う無線端末であって、
     第1のサブフレームにおいて、前記無線基地局によって割り当てられた無線リソースを示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される第2のサブフレームを示すサブフレーム情報とを、下りリンク制御チャネルを介して受信することができる端末側受信処理部を具備し、
     前記端末側受信処理部は、前記サブフレーム情報を受信した場合に、前記第2のサブフレームにおいて前記割り当て情報の受信処理を省略する無線端末。
  11.  時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線端末との無線通信を行う無線基地局であって、
     第1のサブフレームよりも後のサブフレームであって前記第1のサブフレームと対応する割り当て情報に従った割り当てが適用される第2のサブフレームを指定するための指定情報を、基地局間通信により他の無線基地局に送信する指定情報送信部を具備する無線基地局。
  12.  時間方向にサブフレームが並ぶ通信フレーム構成を使用して無線基地局と無線端末との無線通信を行う無線通信方法であって、
     前記無線基地局が、第1のサブフレームにおいて、前記無線端末に割り当てた無線リソースを示す割り当て情報と、前記第1のサブフレームよりも後のサブフレームであって前記割り当て情報に従った割り当てが適用される第2のサブフレームを示すサブフレーム情報とを、下りリンク制御チャネルを介して送信するステップと、
     前記無線端末が、前記第1のサブフレームにおいて、前記下りリンク制御チャネルを介して前記無線基地局から前記割り当て情報及び前記サブフレーム情報を受信するステップと、
     前記無線端末が、受信した前記サブフレーム情報に基づいて、前記第2のサブフレームにおいて、前記割り当て情報の受信処理を省略するステップと、
    を有する無線通信方法。
PCT/JP2011/059611 2010-04-28 2011-04-19 無線通信システム、無線基地局、無線端末、及び無線通信方法 WO2011136082A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11774865A EP2566268A1 (en) 2010-04-28 2011-04-19 Wireless communication system, radio base station, radio terminal, and wireless communication method
US13/643,936 US20130201930A1 (en) 2010-04-28 2011-04-19 Radio communication system, radio base station, radio terminal, and radio communication method
CN201180021105XA CN102860106A (zh) 2010-04-28 2011-04-19 无线通信系统、无线基站、无线终端以及无线通信方法
JP2012512788A JP5647676B2 (ja) 2010-04-28 2011-04-19 無線通信システム、高電力基地局、無線端末、低電力基地局、及び無線通信方法
KR1020127030109A KR20130018887A (ko) 2010-04-28 2011-04-19 무선통신 시스템, 무선 기지국, 무선 단말 및 무선통신 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-103645 2010-04-28
JP2010103645 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011136082A1 true WO2011136082A1 (ja) 2011-11-03

Family

ID=44861389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059611 WO2011136082A1 (ja) 2010-04-28 2011-04-19 無線通信システム、無線基地局、無線端末、及び無線通信方法

Country Status (6)

Country Link
US (1) US20130201930A1 (ja)
EP (1) EP2566268A1 (ja)
JP (1) JP5647676B2 (ja)
KR (1) KR20130018887A (ja)
CN (1) CN102860106A (ja)
WO (1) WO2011136082A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502275A (en) * 2012-05-21 2013-11-27 Sony Corp A control region of a first subframe indicates a physical resource allocation for a terminal in a user-plane region of a second subframe
JP2016059062A (ja) * 2011-11-04 2016-04-21 インテル コーポレイション 下りリンクのリソースのスケジューリング
GB2502274B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
JPWO2016186002A1 (ja) * 2015-05-15 2018-02-08 京セラ株式会社 ユーザ端末、基地局、及び無線通信方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718599A (zh) * 2011-07-29 2014-04-09 株式会社Ntt都科摩 无线通信系统、无线通信方法、无线基站装置以及用户终端
JP5893897B2 (ja) 2011-11-11 2016-03-23 株式会社Nttドコモ ユーザ装置、基地局装置及び無線通信方法
EP2870805B1 (en) 2012-07-04 2018-09-05 Telefonaktiebolaget LM Ericsson (publ) Interference control in hetnets
US9072021B2 (en) * 2012-12-19 2015-06-30 Blackberry Limited Method and apparatus for hybrid automatic repeat request operation in a heterogeneous network architecture
US9271324B2 (en) 2012-12-19 2016-02-23 Blackberry Limited Method and apparatus for assisted serving cell configuration in a heterogeneous network architecture
US9036578B2 (en) 2012-12-19 2015-05-19 Blackberry Limited Method and apparatus for control channel configuration in a heterogeneous network architecture
US9832717B2 (en) 2012-12-19 2017-11-28 Blackberry Limited Method and apparatus for layer 3 configuration in a heterogeneous network
KR102208668B1 (ko) * 2014-06-30 2021-01-28 한국전자통신연구원 무선 통신 시스템 간의 충돌을 회피하기 위한 통신 장치 및 방법
JP2016116110A (ja) * 2014-12-16 2016-06-23 富士通株式会社 通信装置
CN107005953B (zh) * 2015-03-13 2020-04-21 华为技术有限公司 一种数据传输方法、设备及系统
EP3258727B1 (en) * 2015-03-16 2019-12-04 Huawei Technologies Co., Ltd. Control information transmission method and user equipment
CN107852704A (zh) * 2015-07-17 2018-03-27 华为技术有限公司 配置信息获取的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101617559A (zh) * 2007-01-09 2009-12-30 株式会社Ntt都科摩 基站、通信终端、发送方法及接收方法
JPWO2008105162A1 (ja) * 2007-02-26 2010-06-03 パナソニック株式会社 通信端末装置、基地局装置及び無線リソース割当方法
GB2453527A (en) * 2007-09-28 2009-04-15 Fujitsu Ltd Signalling method in a frame-based wireless communication system
US9277566B2 (en) * 2009-09-14 2016-03-01 Qualcomm Incorporated Cross-subframe control channel design

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Importance of Serving Cell Selection in Heterogeneous Networks", 3GPP RL-093433, February 2010 (2010-02-01)
ERICSSON ET AL.: "On PCFICH for carrier aggregation R1-100840", 3GPP, 26 February 2010 (2010-02-26), XP050418455 *
MOTOROLA: "PCFICH in Carrier Aggregation R1-101111", 3GPP, 26 February 2010 (2010-02-26), XP050418979 *
MOTOROLA: "PCFICH in Carrier Aggregation R1-102125", 3GPP, 16 April 2010 (2010-04-16), XP050419681 *
NEC GROUP: "Cross-carrier CFI signalling R1-102258", 3GPP, 16 April 2010 (2010-04-16), XP050419518 *
ZTE: "PCFICH detection error handling R1-102470", 3GPP, 16 April 2010 (2010-04-16), XP050419769 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059062A (ja) * 2011-11-04 2016-04-21 インテル コーポレイション 下りリンクのリソースのスケジューリング
US10582488B2 (en) 2012-05-21 2020-03-03 Sony Corporation Method and terminal device for allocating resources in a plurality of subframes
GB2502274B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
GB2502275B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
US9723604B2 (en) 2012-05-21 2017-08-01 Sony Corporation Method and terminal device for allocating resources in a plurality of subframes
US9730201B2 (en) 2012-05-21 2017-08-08 Sony Corporation System, method and base station for allocating resources in a plurality of subframes
GB2502275A (en) * 2012-05-21 2013-11-27 Sony Corp A control region of a first subframe indicates a physical resource allocation for a terminal in a user-plane region of a second subframe
US10123320B2 (en) 2012-05-21 2018-11-06 Sony Corporation System, method and base station for allocating resources in a plurality of subframes
US10129865B2 (en) 2012-05-21 2018-11-13 Sony Corporation Method and terminal device for allocating resources in a plurality of subframes
US11102772B2 (en) 2012-05-21 2021-08-24 Sony Corporation Method and terminal device for allocating resources in a plurality of subframes
JPWO2016186002A1 (ja) * 2015-05-15 2018-02-08 京セラ株式会社 ユーザ端末、基地局、及び無線通信方法
US10616870B2 (en) 2015-05-15 2020-04-07 Kyocera Corporation User terminal and base station
JP2019033525A (ja) * 2015-05-15 2019-02-28 京セラ株式会社 ユーザ端末、基地局、方法、及び移動通信システム

Also Published As

Publication number Publication date
US20130201930A1 (en) 2013-08-08
JP5647676B2 (ja) 2015-01-07
JPWO2011136082A1 (ja) 2013-07-18
KR20130018887A (ko) 2013-02-25
EP2566268A1 (en) 2013-03-06
CN102860106A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5647676B2 (ja) 無線通信システム、高電力基地局、無線端末、低電力基地局、及び無線通信方法
US10080221B2 (en) Radio communication system, radio base station, and communication control method that can reduce an inter-base station interference between downlink control channels
US10375713B2 (en) Multi-technology coexistence in the unlicensed intelligent transportation service spectrum
JP5636132B1 (ja) 基地局、無線端末、及び方法
WO2019138531A1 (ja) ユーザ端末及び無線通信方法
WO2019138500A1 (ja) ユーザ端末及び無線通信方法
US9844048B2 (en) Resource allocation system and control method
WO2019049369A1 (ja) ユーザ端末及び無線通信方法
JPWO2017130992A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP5767738B2 (ja) 通信制御方法、基地局、及び無線端末
EP2768266B1 (en) Interference coordination in HetNet
TW201246994A (en) Apparatus, method and computer programs for determining and receiving measurement information

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021105.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512788

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13643936

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030109

Country of ref document: KR

Kind code of ref document: A