WO2011135846A1 - Asphalt finisher - Google Patents

Asphalt finisher Download PDF

Info

Publication number
WO2011135846A1
WO2011135846A1 PCT/JP2011/002443 JP2011002443W WO2011135846A1 WO 2011135846 A1 WO2011135846 A1 WO 2011135846A1 JP 2011002443 W JP2011002443 W JP 2011002443W WO 2011135846 A1 WO2011135846 A1 WO 2011135846A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
voltage
engine
power
rotation state
Prior art date
Application number
PCT/JP2011/002443
Other languages
French (fr)
Japanese (ja)
Inventor
哲男 前田
Original Assignee
範多機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 範多機械株式会社 filed Critical 範多機械株式会社
Priority to JP2011554342A priority Critical patent/JP5066664B2/en
Publication of WO2011135846A1 publication Critical patent/WO2011135846A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K2025/005Auxiliary drives driven by electric motors forming part of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/414Pavers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a road paving machine for paving an asphalt road such as an asphalt finisher, a re-paver, a remixer, and more particularly to a road paving machine for electrically driving an actuator using a generator.
  • FIG. 17 is a diagram showing a configuration of a conventional asphalt finisher.
  • the asphalt finisher 101 is mainly composed of a vehicle body 102 and a screed 111, and the vehicle body 102 and the screed 111 are connected by a leveling arm 108.
  • a hopper 103, traveling wheels (front wheels 104 and rear wheels 105), a conveyor 106, and screws 107 are attached to the vehicle body 102.
  • an LPG cylinder 109 is mounted on the vehicle body 102.
  • the screed 111 includes a vibrator 113 and an LPG burner 112.
  • the energy transmission system in the conventional asphalt finisher is a hydraulic system using a diesel engine as a power source. That is, the main actuators such as the traveling wheels 104 and 105, the conveyor 106, and the screw 107 and the vibrator 113 are driven by a hydraulic motor that is driven by a hydraulic pump that uses a diesel engine as a power source.
  • the screed 111 is heated by LP gas combustion. That is, the LPG burner 112 receives the supply of LP gas from the LPG cylinder 109 and burns and heats the screed 11 (more specifically, the ground contact surface (screed plate) of the screed 111).
  • Patent Literature 1 describes that a power generator and a battery are mounted on an excavator, and an actuator is driven by power from a battery that stores power generated by the power generator or regenerative power.
  • the heating method of a screed plate performing electrical heating with respect to a screed plate is also considered (for example, refer patent document 2).
  • the conventional asphalt finisher has the problem that the energy efficiency is poor due to the hydraulic system, and the carbon dioxide emission increases accordingly.
  • the conventional asphalt finisher has a problem that maintenance costs are required for maintenance and replacement of hydraulic equipment such as a hydraulic pump and a hydraulic motor and hydraulic oil.
  • an object of the present invention is to improve energy efficiency and reduce carbon dioxide emissions in road paving machines such as asphalt finishers.
  • the present invention employs the following configurations (1) to (19) in order to solve the above problems.
  • the present invention is a road paving machine having a traveling mechanism, a conveyor, a screw, and a screed mechanism and paving an asphalt road.
  • the road paving machine includes an engine, a generator, a plurality of motors, an adjustment unit, and a plurality of inverters.
  • the generator generates electricity by driving the engine.
  • Each motor drives each mechanism with electric power from a generator.
  • the adjustment unit is configured to adjust the output voltage of the generator in both the case where the engine is in the first rotation state where the engine speed is relatively low and the case where the engine is in the second rotation state where the engine speed is relatively high.
  • the output voltage of the generator is adjusted so that the voltage is within a predetermined range.
  • Each inverter converts the output of the generator whose voltage has been adjusted by the adjustment unit into a desired frequency and supplies it to each motor.
  • the “adjusting unit” may adjust the output voltage by changing the power generation characteristics of the generator, as in the embodiments and the fourth modification described later. As in the seventh modification, the output voltage may be adjusted by processing the output of the generator.
  • the road paving machine can electrically drive each mechanism such as a traveling mechanism, a conveyor, and a screw. According to this, compared with the conventional system which drives each mechanism with oil_pressure
  • the adjustment unit may be connected to the output side of the generator and may convert the input voltage into a voltage within a predetermined range and output the voltage.
  • the output voltage of the generator is converted into a voltage within a predetermined range by the adjustment unit and input to each inverter. Therefore, in both the case where the engine is in the first rotation state and the case where the engine is in the second rotation state, a voltage within a predetermined range is input to each inverter, so that each inverter can be appropriately operated. .
  • the road pavement machine may further include a rectifying unit that converts AC electricity output from the generator into DC electricity.
  • the adjustment unit includes a constant voltage device that converts the voltage of DC electricity into a voltage within a predetermined range.
  • the output voltage of the generator can be easily adjusted by the constant voltage device.
  • the output voltage of the generator can be boosted and stepped down by a constant voltage device, so that it is possible to cope with the case where the engine speed fluctuates for some reason, and a voltage within a predetermined range is input to each inverter. can do.
  • the DC voltage is converted by the constant voltage device, the voltage can be adjusted with higher accuracy than when the AC voltage is converted (for example, sixth and seventh modifications described later).
  • the adjustment unit may adjust the output voltage of the generator by changing the power generation characteristics of the generator between when the engine is in the first rotation state and when the engine is in the second rotation state.
  • the adjustment unit may change the power generation characteristics by changing the number of turns of the generator coil as in the embodiment described later, or may flow through the field coil as in the fourth modification.
  • the power generation characteristics may be changed by changing the current.
  • the output voltage of the generator can be adjusted by changing the power generation characteristics of the generator by the adjustment unit, and an appropriate voltage can be input to each inverter. it can.
  • the road paving machine may further include a switching unit.
  • the switching unit is configured such that when the engine is in the first rotation state, the output of the generator is input to each inverter via the adjustment unit, and when the engine is in the second rotation state, the output of the generator is The power transmission path from the generator to each inverter is switched so that it is input to each inverter without going through. At this time, the generator outputs a voltage within a predetermined range when the engine is in the second rotation state.
  • the adjustment unit converts the output voltage of the generator when the engine is in the second rotation state into a voltage within a predetermined range.
  • the output voltage of the generator is adjusted by the adjustment unit when the engine is in the first rotation state, an appropriate voltage can be input to each inverter.
  • the generator since the generator outputs a voltage within a predetermined range when the engine is in the second rotation state, an appropriate voltage is input to each inverter by inputting the output voltage of the generator as it is to each inverter. be able to. That is, in the case of both the case where the engine is in the first rotation state and the case where the engine is in the second rotation state, the inverter of each inverter in the case of the configuration of the above (5) as well as the configurations of (1) to (4). An appropriate voltage can be input. Further, according to the configuration of (5) above, the adjustment unit does not have to correspond to the output voltage when the engine is in a high rotation state, so that the adjustment unit can be configured more simply.
  • the switching unit switches the power transmission path of DC electricity,
  • the output voltage of the generator is boosted by the booster and input to each inverter, so that an appropriate voltage can be input to each inverter.
  • the adjustment unit can be made simpler than the configuration of (3) above. Further, similarly to the configuration of (3) above, voltage adjustment can be performed with higher accuracy than in the case of converting an AC voltage.
  • the adjustment unit may include a transformer that transforms AC electricity output from the generator.
  • the output voltage of the generator can be easily adjusted by the transformer.
  • the road paving machine may further include an automatic voltage regulator that controls the field current of the generator based on the output voltage of the generator.
  • the output voltage of the generator is adjusted not only by the transformer but also by an automatic voltage regulator. Therefore, the output voltage can be adjusted with higher accuracy than when only the transformer is used.
  • the road paving machine may further include a heating device and a control device.
  • the heating device heats the screed by the electric power generated by the generator.
  • the control device controls the operation of each inverter and heating device.
  • the generator can be switched between a first mode and a second mode having different power generation characteristics.
  • the first mode is a mode in which the generated power when the engine is at the first rotation speed is larger than that in the second mode.
  • the second mode is a mode in which the generated power is larger than that in the first mode when the engine has a second rotation speed lower than the first rotation speed.
  • the generator can output predetermined first power when the engine is at the first rotation speed, and can output second power when the engine is at a second rotation speed lower than the first rotation speed. It may be possible to switch between the first mode and the second mode in which the third power larger than the second power can be output when the engine is at the second rotation speed.
  • the “first mode” and the “second mode” specify the property (characteristic) of the generator, and do not specify the actual operation of the generator. That is, when the generator is set to the first mode, it is only necessary that the generator can output the second electric power at the second rotational speed, and actually the second electric power at the second rotational speed is the second. It may operate so that power is not output. In other words, the generator is controlled so as not to output the second power in the first mode as a result of being always set to the second mode at the second rotational speed as in the embodiment described later. May be.
  • the value of the second power in the first mode may be zero. That is, in the first mode, it is not necessary to generate power when the rotation speed is the second.
  • the generator is capable of generating power at the first power generation characteristic capable of generating power at the first rotational speed at the time of high-speed rotation of the engine, and at the second rotational speed at the time of low-speed rotation of the engine, and It may be possible to switch between the second power generation characteristic in which the generated power at the rotation speed of 2 is larger than the first power generation characteristic.
  • the generator can switch between two modes that are adapted to different rotational speeds. Therefore, by changing the mode according to the rotational speed of the engine, the power generation efficiency can be improved. It is possible to improve the energy saving.
  • the generator may include a generator configured such that the number of coil turns is relatively small in the first mode and the number of coil turns is relatively large in the second mode.
  • the power generation characteristics (mode) of the generator can be easily switched by changing the number of turns of the coil.
  • the generator may output at least power necessary for the operation of the heating device as the third power.
  • the heating device can be operated even when the engine is in a low rotation state.
  • a usage mode in which the heating device is operated at the time of preparation for pavement construction can be considered.
  • the engine can be kept in a low rotation state when used in such a usage mode. That is, at the time of preparation for pavement construction, it is possible to save energy by setting the engine to a low rotation state, and it is possible to reduce noise during preparation for pavement construction.
  • the road paving machine may further include a detection unit that detects the rotational speed of the engine. At this time, the control device switches between the first mode and the second mode according to the detection result of the detection unit.
  • the generator mode is automatically switched according to whether the engine is in a high rotation state or a low rotation state. According to this, it is not necessary for the user (operator) to manually operate the mode of the generator, the operation can be facilitated, and power generation can be performed in an optimal mode according to the engine speed. .
  • the control device may control the operation of each motor and the heating device so that the total power consumption of each motor and the heating device does not exceed the generated power of the generator.
  • each motor and heating device is controlled so as not to exceed the amount of power generated by the generator. Therefore, it is possible to prevent an excessive load from being applied to the generator, and it is possible to stably operate each actuator.
  • control device may start the motors and the heating devices with different start timings.
  • the power consumption of a plurality of actuators can be dispersed in time even if the power consumption temporarily increases at the time of actuator activation by shifting the timing of starting activation. . Therefore, it is possible to easily prevent the total power consumption from exceeding the power of the generator.
  • the control device may temporarily stop or reduce the power supply to the heating device when starting at least one of the motors.
  • heating by the heating device is temporarily stopped while the motor is started. According to this, when starting a motor, it can prevent more reliably that total power consumption exceeds the electric power of a generator.
  • the control device calculates the total power consumption of each motor and heating device, and when the total power consumption is equal to or greater than a predetermined value, the power supplied to at least one of each motor and heating device may be stopped or reduced. Good.
  • the road pavement machine may further include a vibrator for vibrating the screed and a vibrator motor that drives the vibrator with electric power from a generator.
  • the vibrator since the vibrator is electrically driven, the energy efficiency can be further improved as compared with the case of hydraulic driving. Further, since the vibrator is electrically controlled, the vibration frequency of the vibrator can be controlled with higher accuracy. Furthermore, since the hydraulic piping to the vibrator becomes unnecessary, the screed mechanism can be simplified.
  • the road paving machine may further include a power supply terminal for obtaining external power.
  • the control device can switch between power from the generator and power from the power supply terminal.
  • each actuator and heating device can be driven by external power.
  • an external power source compared with the case where power is generated by a generator by an engine (generally), electric conversion efficiency is good and carbon dioxide emissions can be reduced. Therefore, in a situation where it can be connected to an external power source (for example, when the road paving machine is stopped), it is possible to save energy and to discharge carbon dioxide by using the power supplied from the external power source. Can be further reduced.
  • the present invention may be a road paving machine having a traveling mechanism, a conveyor, a screw, and a screed mechanism and paving an asphalt road.
  • the road paving machine includes an engine, a generator, a plurality of motors, a heating device, and a control device.
  • the generator generates electricity by driving the engine.
  • Each motor drives each mechanism with electric power from a generator.
  • the heating device heats the screed by the electric power generated by the generator.
  • the control device controls the operation of each inverter and heating device.
  • the control device controls the operation of each motor and heating device so that the total power consumption of each motor and heating device does not exceed the power generated by the generator.
  • the road paving machine can electrically drive each mechanism such as a traveling mechanism, a conveyor, and a screw, as in the configuration of (1) above. Therefore, energy saving can be achieved and the amount of carbon dioxide emission can be reduced as compared with the conventional method in which each mechanism is driven by hydraulic pressure. Furthermore, according to the configuration of (19), the operation of each motor and heating device is controlled so as not to exceed the amount of power generated by the generator. Therefore, it is possible to prevent an excessive load from being applied to the generator, and it is possible to stably operate each actuator.
  • the main actuator and the heating device are electrically driven to save energy and to reduce carbon dioxide emission. Further, according to the present invention, by using a generator capable of switching between two modes adapted to different rotational speeds, the power generation efficiency can be improved, and further energy saving can be achieved.
  • the figure which shows the electric constitution of the asphalt finisher which concerns on a 4th modification The figure which shows the electric constitution of the asphalt finisher which concerns on a 5th modification
  • the figure which shows the electric constitution of the asphalt finisher which concerns on a 6th modification The figure which shows the electric constitution of the asphalt finisher which concerns on a 7th modification Diagram showing the structure of a conventional asphalt finisher
  • FIG. 1 is an equipment configuration diagram of an asphalt finisher according to the present embodiment.
  • the asphalt finisher 1 according to the present embodiment reduces energy consumption and safety by electrically driving main actuators (traveling mechanism, conveyor, screw) and electrically heating the screed. It can be raised.
  • main actuators traveling mechanism, conveyor, screw
  • the asphalt finisher 1 includes a vehicle body 2 and a screed 11.
  • the vehicle body 2 includes a hopper 3, a front wheel 4, a rear wheel 5, a conveyor 6, and a screw 7.
  • the front wheels 4 and the rear wheels 5 are traveling mechanisms of the asphalt finisher 1, the front wheels 4 are steering wheels, and the rear wheels 5 are drive wheels.
  • the hopper 3 is provided in the front part (left side in FIG. 1) of the vehicle body 2 and receives asphalt mixture from the supply side (dump truck or the like).
  • the conveyor 6 is provided from the lower side of the hopper 3 to the rear part of the vehicle body 2 and conveys the asphalt mixture received by the hopper 3 to the rear.
  • the screw 7 diffuses the asphalt mixture conveyed by the conveyor 6 to the road surface while widening in the left-right direction.
  • These members 3 to 7 may be the same as the conventional asphalt finisher.
  • the screed 11 is connected to the vehicle body 2 by a leveling arm 8 so as to be movable up and down.
  • the screed 11 has a heating device 12 and a vibrator 13.
  • the heating device 12 heats the lower surface (screed plate) of the screed 11.
  • the heating device 12 is typically an electric heater, which is a heating unit that heats with electric power.
  • the vibrator 13 vibrates the screed 11.
  • the asphalt finisher 1 diffuses the asphalt mixture supplied to the hopper 3 from the rear screw 7 to the road surface via the conveyor 6, and rolls the diffused asphalt mixture uniformly and flatly by the screed 11. Paving.
  • the configuration shown in FIG. 1 is an example, and the present invention can be applied to any road paving machine including a main mechanism and a heating device including a traveling mechanism, a conveyor, and a screw.
  • the traveling mechanism may be a crawler type instead of a wheel type, and may include an actuator other than the main actuator.
  • FIG. 2 is a diagram illustrating an electrical configuration of the asphalt finisher according to the present embodiment.
  • the asphalt finisher 1 includes an engine 21, a generator 22, an operation panel 23, a control box 24, motors 30 to 32 b, and a differential gear 33.
  • the engine 21 as a power source is mechanically connected to the generator 22 and rotates the generator 22.
  • the engine 21 is typically a diesel engine.
  • the engine 21 is driven in a high rotation state or a low rotation state by an engine control device (not shown).
  • the high rotation state is a state in which the engine 21 is driven at a rotation speed in the vicinity of the rotation speed from the rated rotation speed to the rotation speed at high idle (maximum fuel supply amount is set and no load is applied). It is.
  • the low rotation state is a state in which the engine 21 is driven at a rotation speed near the rotation speed at the time of low idle (the minimum rotation speed at which the engine 21 can be stably driven).
  • the rotation speed (per unit time) of the engine 21 in the high rotation state is referred to as a first rotation speed
  • the rotation speed of the engine 21 in the low rotation state is referred to as a second rotation speed.
  • the generator 22 generates power by driving the engine 21.
  • the generator 22 is a three-phase AC synchronous generator will be described as an example, but the type of the generator 22 may be any type.
  • the generator 22 is connected to the control box 24, and the three-phase AC electrical output from the generator 22 is input to the control box 24.
  • the generator 22 has a power generation characteristic of a first mode adapted when the engine 21 is in a high rotation state and a second mode adapted when the engine 21 is in a low rotation state. Can generate power in two different modes. A specific configuration for the generator 22 to switch between the two modes will be described later (see FIG. 4). In addition, switching between the two modes is performed based on a command from the control box 24.
  • the operation panel 23 is an input means for a user (operator), and on / off of driving of each control target device (actuators 5 to 7 and heating device 12) and a driving state of each control target device (for example, the conveyor 6). And the like, and the like, and the like. In the present embodiment, the operation panel 23 can input at least the next operation instruction.
  • Switching instruction An instruction to switch between a high rotation state and a low rotation state of the engine. Individual start instruction: an instruction to start each actuator individually. Heating instruction: an instruction to start heating by the heating device 12.
  • Multiple activation instruction An instruction to activate a plurality of control target devices at once. It is provided for the purpose of reducing the effort of the user (operator) operation.
  • Change instruction An instruction to change the driving state of each control target device.
  • the operation panel 23 is connected to the control box 24, and a signal representing an operation instruction input to the operation panel 23 is input to the control box 24.
  • the control box 24 is connected to the motors 30 to 32b and the heating device 12, and controls the operations of the motors 30 to 32b and the heating device 12.
  • the control box 24 includes a controller 25, a traveling inverter (in FIG. 2, the inverter (AC Drive) is abbreviated as “AC-D”, the same shall apply hereinafter) 26, a right conveyor inverter 27a, It has a left conveyor inverter 27 b, a right screw inverter 28 a, a left screw inverter 28 b, and a power regulator 29.
  • the controller 25 is connected to the operation panel 23, the inverters 26 to 28b, and the power regulator 29.
  • the controller 25 controls each of the inverters 26 to 28b and the power regulator 29 based on an operation instruction from the operation panel 23 or the like.
  • the controller 25 is connected to the generator 22 and outputs a mode switching instruction to the generator 22.
  • the controller 25 is typically a sequencer including information processing means such as a CPU and storage means such as a memory, and operates according to a program. However, the controller 25 may be realized by a dedicated circuit using a relay circuit or the like.
  • the inverters 26 to 28b are connected to the generator 22, and drive the motors 30 to 32b by converting the three-phase AC power supplied from the generator 22 into a desired frequency and outputting the same.
  • the frequency (or power) of AC electricity output from each of the inverters 26 to 28b is adjusted according to the control instruction of the controller 25. That is, each of the inverters 26 to 28b drives each of the motors 30 to 32b in accordance with a control instruction from the controller 25.
  • the traveling inverter 26 is connected to the traveling motor 30 and drives the traveling motor 30.
  • the traveling motor 30 drives the right rear wheel 5 a and the rear wheel 5 b via the differential gear 33.
  • the right conveyor inverter 27a is connected to the right conveyor motor 31a and drives the right conveyor motor 31a.
  • the right conveyor motor 31 a drives the right conveyor 6 a of the conveyors 6.
  • the left conveyor inverter 27b is connected to the left conveyor motor 31b and drives the left conveyor motor 31b.
  • the left conveyor motor 31 b drives the left conveyor 6 b of the conveyor 6.
  • the right screw inverter 28a is connected to the right screw motor 32a and drives the right screw motor 32a.
  • the right screw motor 32 a drives the right screw 7 a of the screws 7.
  • the left screw inverter 28b is connected to the left screw motor 32b and drives the left screw motor 32b.
  • the left screw motor 32 b drives the left screw 7 b of the screws 7.
  • FIG. 3 is a diagram for explaining the difference in current when the motor is started when the inverter is used and when it is not used.
  • the vertical axis of the graph shown in FIG. 3 represents the ratio of the current that actually flows relative to the rated current, and the horizontal axis represents time.
  • an inrush current of about 5 times the rated current is generated at the time of motor start-up (a period during acceleration until the inverter output frequency and the motor rotation speed match). Flowing.
  • the current at startup can be suppressed to about twice the rated current by control by a switching element or the like in the inverter.
  • the power regulator 29 is connected to the generator 22 and controls the operation of the heating device 12 by adjusting and outputting the three-phase AC power supplied from the generator 22.
  • the power regulator 29 can continuously change the power supplied to the heating device 12 between 0% and 100% of the maximum output.
  • the power (frequency) of AC electricity output from the power regulator 29 is adjusted according to the control instruction of the controller 25. That is, the power regulator 29 controls the operation of the heating device 12 according to the control instruction of the controller 25.
  • the heating device 12 generates heat by the power supply from the power regulator 29, and the screed 11 (screed plate) is heated.
  • FIG. 4 is a diagram showing the internal electrical wiring of the generator shown in FIG.
  • the generator 22 includes a three-phase coil 41 and first to third switches 42a to 42c.
  • One ends of the three coils constituting the three-phase coil 41 are connected to each other (Y-connected), and three-phase lines extending from the other end (output end) are controlled via the first switch 42a.
  • Each is connected to a box 24.
  • the first switch 42 a connects / disconnects between the output ends of the three coils and the control box 24.
  • the output ends of the three coils are connected to each other via the second switch 42b between the output end and the first switch 42a.
  • the second switch 42b connects / disconnects the output ends of the three coils.
  • the central portions of the three coils are connected to the control box 24 via the third switch 42c.
  • the third switch 42c connects / disconnects between the central portion of the three coils and the control box 24.
  • Each of the switches 42a to 42c is connected to the controller 25 and switches connection / disconnection in accordance with a switching instruction from the controller 25.
  • the generator 22 can change the number of turns of the three-phase coil 41 by switching the switches 42a to 42c, and the first mode and the second mode described above can be changed. The mode can be switched.
  • the internal wiring of the generator 22 shown in FIG. 4 is an example, and in other embodiments, the generator 22 has any configuration as long as the number of turns of the three-phase coil can be changed. There may be.
  • the power generation characteristics of the generator 22 are switched by changing the number of turns of the coil of the generator 22, but the method of switching the power generation characteristics is not limited to this.
  • the power generation characteristics can be switched by changing the number of coils or changing the number of magnets and magnetic flux of the generator (when using an electromagnet). In view of downsizing the configuration of the generator, it is preferable to switch the power generation characteristics by switching the electrical wiring as in the present embodiment.
  • FIG. 5 is a flowchart showing the flow of processing in the controller 25 shown in FIG.
  • the controller 25 performs the operation shown in FIG. 5 by executing a predetermined program.
  • the controller 25 is realized by a dedicated circuit that executes the process shown in FIG. May be.
  • the controller 25 repeatedly executes a series of processes in steps S1 to S11 shown in FIG. 5 while the asphalt finisher is operating (while the engine 21 is being driven).
  • step S1 the controller 25 determines whether or not the rotation speed (high rotation state / low rotation state) of the engine 21 has been switched.
  • the determination in step S ⁇ b> 1 is made based on whether or not the above-described switching instruction (instruction to switch the engine 21 between the high rotation state and the low rotation state) has been performed by the user.
  • the controller 25 inputs an operation instruction signal from the operation panel 23 and determines whether or not a switching instruction has been performed.
  • the operation panel 23 is provided with a switching lever, and a switching instruction is performed using this switching lever. If the determination result of step S1 is affirmative, the process of step S2 is executed. On the other hand, if the determination result of step S1 is negative, the process of step S2 is skipped and the process of step S3 is executed.
  • an engine control device switches between a high rotation state and a low rotation state of the engine 21. That is, when the switching lever is switched to the side representing the high rotation state, the engine control device controls the engine 21 so as to achieve the first rotation speed. Further, when the switching lever is switched to the side representing the low rotation state, the engine control device controls the engine 21 so as to be the second rotation speed (slower than the first rotation speed). . Therefore, it can be said that the process of step S1 for determining whether or not a switching instruction is performed is a process for detecting whether the engine 21 is in a high rotation state or a low rotation state. In other embodiments, switching between the high rotation state and the low rotation state of the engine 21 is performed according to a predetermined condition (for example, when the total power consumption of each control target device exceeds a predetermined value). It may be done automatically.
  • step S1 in order to detect whether the engine 21 is in a high rotation state or a low rotation state, the controller 25 determines whether or not the switching instruction has been performed.
  • the method for detecting whether the engine 21 is in a high rotation state or a low rotation state may be another method.
  • the controller 25 detects the rotation speed of the engine 21 or the generator 22 and determines whether the engine 21 is in a high rotation state or a low rotation state based on the detected rotation speed. May be.
  • step S2 the controller 25 switches the mode of the generator 22. That is, the controller 25 controls the switches 42 a to 42 c in the generator 22 to change the number of turns of the three-phase coil 41. Specifically, when the engine 21 is switched to a high rotation state, the first switch 42a is disconnected, the second switch 42b is connected, and the third switch 42c is connected. Accordingly, in the three-phase coil 41, three coils are divided at the center, and the two divided coils are connected in parallel. That is, the number of turns of the three-phase coil 41 is substantially halved. On the other hand, when the engine 21 is switched to the low rotation state, the first switch 42a is connected, the second switch 42b is disconnected, and the third switch 42c is disconnected.
  • the number of turns of the three-phase coil 41 is doubled (compared to the low rotation state).
  • the number of turns of the coil is halved in the high rotation state, but the amount of change in the number of turns of the coil between the high rotation state and the low rotation state is not limited to this.
  • the number of turns in each state of the high rotation state and the low rotation state is appropriately set in consideration of the rotation speed of the engine 21 in each state, the amount of electric power assumed to be necessary in each state, and the like.
  • the generator 22 changes the number of turns of the three-phase coil 41 in two modes.
  • the second mode in which the number of turns of the three-phase coil 41 is relatively large is set so that the engine 21 can cope with the low speed rotation (second rotation speed). That is, by increasing the number of turns, the number of revolutions of the generator 22 for obtaining a desired output power can be reduced, and power generation can be started at a low number of revolutions.
  • the power output in the second mode is larger than the power output in the first mode in the same case.
  • the mode of the generator 22 is automatically switched according to the detection result.
  • the generator 22 can be driven in an optimal mode that matches the rotational speed of the engine 21 without the user manually operating the mode of the generator 22.
  • the user may be able to manually operate the mode of the generator 22 (independent of the switching instruction for the engine 21).
  • the screed 11 is heated in advance by driving the heating device 12 in the preparation stage for pavement construction. Therefore, it is preferable that the engine 21 be in a low rotation state in the preparatory stage for pavement construction, and the heating device 12 can operate even in a low rotation state. Therefore, in the present embodiment, the output power in the second mode in the low rotation state is designed to be larger than the power required for the operation of the heating device 12. That is, the power generation characteristics in the second mode of the generator 22 are set so that the heating device 12 can be operated at least in the low rotation state. Furthermore, in this embodiment, the power generation characteristics in the second mode of the generator 22 are such that, in addition to the heating device 12 in the low rotation state, other actuators are operated with low power (compared to the high rotation state). Is set to be able to.
  • step S3 the controller 25 determines whether any one of the actuators is activated individually. The determination in step S3 is performed depending on whether the above-described individual activation instruction (instruction for individually activating each actuator) has been performed by the user. Specifically, the controller 25 inputs an operation instruction signal from the operation panel 23 and determines whether or not the individual activation instruction has been performed. In the present embodiment, the operation panel 23 is provided with a switch for activating an actuator for each actuator, and the individual activation instruction is an instruction for one of the switches. If the determination result of step S3 is affirmative, the process of step S4 is executed. On the other hand, if the determination result of step S3 is negative, the process of step S4 is skipped and the process of step S5 is executed.
  • step S4 an individual activation process for activating one of the actuators is executed.
  • the motors 30 to 32b and the heating device 12 are controlled such that their total power consumption does not exceed the power generation amount of the generator 22.
  • FIG. 6 is a sub-flowchart showing detailed processing of step S4 shown in FIG.
  • the controller 25 determines whether or not the heating by the heating device 12 is being performed. If the determination result of step S21 is affirmative, the process of step S22 is executed. On the other hand, when the determination result of step S21 is negative, the process of step S22 is skipped and the process of step S23 is executed.
  • step S22 the controller 25 stops heating in the heating device 12. Specifically, a control instruction for stopping power supply to the heating device 12 is given to the power regulator 29. Thereby, the power regulator 29 stops the output of the electric power to the heating apparatus 12, and the heating by the heating apparatus 12 is stopped.
  • the stop of the heating in step S22 is a temporary stop, and when the heating is stopped in step S22, the heating is resumed in step S27 described later.
  • the process of step S23 is executed.
  • step S23 the controller 25 determines whether or not the generator 22 is in the first mode. If the determination result of step S23 is affirmative, the process of step S24 is executed. On the other hand, when the determination result of step S23 is negative, the process of step S25 is executed.
  • step S24 the controller 25 starts activation of the actuator related to the individual activation instruction (sometimes referred to as “normal activation” in the sense of being distinguished from activation in step S25). That is, the controller 25 instructs the inverter corresponding to the actuator related to the individual activation instruction to start power supply to the actuator. As a result, the inverter starts power output to each motor, and driving of the actuator is started by the motor.
  • step S26 the process of step S26 is executed.
  • step S25 the controller 25 starts activation of the actuator according to the individual activation instruction with lower power than the normal activation in step S24. That is, the controller 25 instructs the inverter corresponding to the actuator related to the individual activation instruction to start power supply to the actuator with lower power than the normal activation. As a result, the inverter starts power output to the motor with lower power than normal startup, and driving of the actuator is started by the motor. Therefore, in step S25, the actuator is driven at a lower output (lower speed) than in the case of normal activation. After step S25, the process of step S26 is executed.
  • step S25 when the engine 21 is in the low rotation state and the generator 22 is in the second mode, the process of step S25 is executed, and the power is lower than in the case of normal startup (step S24).
  • the actuator is activated. That is, in the low rotation state, the actuator is activated with lower power than in the high rotation state.
  • the output power of the generator 22 in the low rotation state is smaller than that in the high rotation state, if the actuator is started in the same manner as in the high rotation state, the actuator can be driven without the power of the generator 22 being sufficient. There is a possibility of disappearing.
  • each actuator can be driven more reliably (although it has a low output) even in a low rotation state.
  • each actuator may not be activated in a low rotation state. That is, when the determination result of step S23 is negative, the controller 25 may skip the process of step S25 and execute the process of step S26 described later. In other embodiments, only specific actuators (for example, the conveyor 6 and the screw 7) are activated at low power according to the process of step S25, and other actuators are not activated (or normally activated). Also good.
  • step S26 the controller 25 determines whether or not the activation of the actuator started in step S24 or S25 is completed.
  • “actuator activation is completed” means that the power consumption has settled below a predetermined value after the actuator is activated.
  • the determination in step S26 is performed based on whether or not the elapsed time since the start of the actuator has exceeded a predetermined time.
  • the predetermined time is set in advance, and may be set for each actuator, or the same time may be set for each actuator. In other embodiments, the determination in step S26 may be performed based on whether or not the power required for driving the actuator is equal to or less than a predetermined value.
  • step S26 If it is determined in step S26 that the actuator has been activated (elapsed time has exceeded a predetermined time), the process of step S27 is executed. On the other hand, when it is determined in step S26 that the actuator has not been started, the process of step S26 is executed again. That is, the controller 25 waits for the process while the actuator is activated, and starts the process of step S27 when the activation of the actuator is completed.
  • step S27 the controller 25 restarts heating by the heating device 12. Specifically, a control instruction to start power supply to the heating device 12 is given to the power regulator 29. As a result, the power regulator 29 starts outputting power to the heating device 12 and heating by the heating device 12 is started. In addition, when the heating by the heating device 12 is not stopped in the above-described step S22 (the heating device 12 is not originally operating), the process of step S27 is not executed. After step S27, the controller 25 ends the individual activation process.
  • the controller 25 waits until the activation of a certain actuator is completed (step S26), so that no other actuator is activated while the actuator is activated.
  • the power consumption temporarily increases when the motor is started, if a plurality of actuators are simultaneously started, the total power consumption for driving the actuators may exceed the power generated by the generator 22. (See FIG. 9). In this case, it is conceivable that an overload is applied to the generator 22, leading to problems such as engine stop.
  • the controller 25 since a plurality of actuators are not activated simultaneously, the total power consumption does not exceed the generated power of the generator 22, and each actuator can be driven reliably.
  • the controller 25 temporarily stops the heating of the heating device 12 while activating an actuator (step S22). It can prevent exceeding electric power.
  • step S ⁇ b> 5 it is determined whether or not a plurality of predetermined control target devices are activated at a time.
  • the determination in step S5 is performed based on whether the above-described multiple activation instruction (instruction for activating a plurality of control target devices at once) has been performed by the user.
  • the controller 25 inputs an operation instruction signal from the operation panel 23 and determines whether or not the multiple activation instruction has been performed.
  • the operation panel 23 is provided with a switch for activating a predetermined plurality of control target devices at once, and the multiple activation instruction is an instruction for this switch. If the determination result of step S5 is affirmative, the process of step S6 is executed. On the other hand, when the determination result of step S5 is negative, the process of step S6 is skipped and the process of step S7 is executed.
  • step S6 a plurality of activation processes for activating a plurality of predetermined control target devices at once are executed. Also in the multiple activation process, as in the individual activation process, each of the motors 30 to 32b and the heating device 12 has the total power consumption of the power generation amount (in the first mode) when the engine 21 is in a high rotation state. It is controlled not to exceed. Details of the multiple activation process will be described below with reference to FIG. In the following, a case where three of the conveyor 6, the screw 7, and the heating device 12 are activated at a time as the “predetermined plural control target devices” will be described as an example.
  • FIG. 7 is a sub-flowchart showing detailed processing of step S6 shown in FIG.
  • the controller 25 determines whether or not the generator 22 is in the first mode. If the determination result of step S30 is affirmative, the process of step S31 is executed. On the other hand, when the determination result of step S30 is negative, the controller 25 ends the multiple activation process.
  • step S31 the controller 25 designates the predetermined plurality of control target devices in order (one by one).
  • the controller 25 designates the conveyor 6, the screw 7, and the heating device 12 one by one every time step S ⁇ b> 31 arrives.
  • the order of designation may be any order, but it is preferable to designate the heating apparatus 12 last (when one or more actuators and the heating apparatus are activated simultaneously).
  • the power consumption when starting the heating device 12 is (a) (unlike starting the motor) that the power consumption is not temporarily increased at the time of starting, and (b) the response of the heating device 12 is the motor In view of the fact that there is no significant difference in the start timing of the heating device 12, it is less necessary to start the heating device 12 first.
  • the process of step S32 is executed.
  • step S32 the controller 25 activates the control target device specified in step S31.
  • Specific processing in step S32 is the same as that in step S24 or S27 described above.
  • step S32 if the control target device specified in step S31 is already driven (that is, if the control target device has already been started when a plurality of start instructions are issued), step S32 is executed. This process is not executed. Following step S32, the process of step S33 is executed.
  • step S33 the controller 25 determines whether or not the activation of the control target device started in step S32 is completed.
  • the process in step S33 is the same as that in step S26 described above.
  • the heating device 12 does not drive a motor, so power consumption does not increase temporarily immediately after startup (see graph G shown in FIG. 9). Therefore, when the device to be controlled is the heating device 12, the predetermined time in step S26 may be set to “0”.
  • the process of step S34 is executed.
  • the process of step S33 is executed again. That is, the controller 25 waits for the process while the control target device is activated, and executes the process of step S34 when the control target device is activated.
  • step S34 the controller 25 determines whether or not all of the predetermined plurality of control target devices have been activated. If the determination result of step S34 is negative, the process of step S31 is executed again. On the other hand, when the determination result of step S34 is affirmative, the controller 25 ends the multiple activation process.
  • the control target device when the generator 22 is in the second mode (when the engine 21 is in a low rotation state), the control target device is not activated and the multiple activation instruction is not accepted. It becomes. This is because the necessity of activating a plurality of control target devices in a low rotation state is considered low.
  • each control target device when the generator 22 is in the second mode, is activated with lower power (than in the case of the first mode) as in step S25 described above. You may make it do.
  • the user can activate a plurality of control target devices at once by a multiple activation instruction. As a result, it is possible to save the user's operation and simplify the operation. Further, according to the multiple activation process, the controller 25 activates each of the plurality of control target devices while shifting the activation start timing. As a result, the total power consumption of each control target device can be prevented from exceeding the maximum power generation amount of the generator 22 in the high rotation state.
  • FIG. 9 is a diagram showing power consumption when a plurality of control target devices are activated.
  • the vertical axis of each graph A to H represents power consumption
  • the horizontal axis represents time.
  • the left graphs A to D show a case where a plurality of control target devices are started simultaneously
  • the right graphs E to H show a case where a plurality of control target devices are started at different timings.
  • the total power consumption at the time of activation is determined as the generator as shown in the graph D in FIG. There is a risk of exceeding the generated power of 22.
  • the controller 25 controls the motors and the heating devices so that the total power consumption of the motors and the heating devices does not exceed the power generation amount generated by the first mode in the high rotation state. Control the behavior.
  • the control method for preventing the total power consumption from exceeding the power generation amount of the generator 22 is not limited to the above.
  • the controller 25 drives each control target device so that the power at the time of startup is lower than that of the individual startup processing and gradually increases the power in the multiple startup processing. You may make it start each control object apparatus simultaneously. This also makes it possible to control so that the total power consumption does not exceed the power generation amount of the generator 22.
  • step S ⁇ b> 7 the controller 25 determines whether or not heating by the heating device 12 is started.
  • the determination in step S7 is performed depending on whether the above-described heating instruction (instruction to start heating by the heating device 12) has been performed by the user.
  • the controller 25 receives an input of an operation instruction signal from the operation panel 23 and determines whether or not the heating instruction has been performed.
  • the operation panel 23 is provided with a switch for operating the heating device 12, and the heating instruction is an instruction to this switch. If the determination result of step S7 is affirmative, the process of step S8 is executed. On the other hand, if the determination result of step S7 is negative, the process of step S8 is skipped and the process of step S9 is executed.
  • step S8 the controller 25 operates the heating device 12.
  • the process of step S8 is the same as the process of step S27 described above.
  • step S9 the process of step S9 is executed.
  • step S9 it is determined whether or not to change the drive state of each control target device.
  • the determination in step S9 is performed based on whether or not the above change instruction (instruction to change the driving state of each control target device) has been performed by the user.
  • the controller 25 receives an input of an operation instruction signal from the operation panel 23 and determines whether or not the change instruction has been performed.
  • the operation panel 23 is provided with a dial for designating the driving state of each control target device (for example, the conveyance speed for the conveyor 6 and the heating temperature for the heating device 12).
  • the change instruction is an instruction to this dial.
  • the change instruction includes an instruction to stop driving the control target device, and the change instruction may be an instruction to turn off a switch for starting the actuator (see step S3 above). If the determination result of step S9 is affirmative, the process of step S10 is executed. On the other hand, if the determination result of step S9 is negative, the process of step S10 is skipped and the process of step S1 is executed again. Thereafter, the processes of steps S1 to S10 are repeatedly executed.
  • step S10 the controller 25 controls the device to be controlled according to the change instruction. Specifically, the controller 25 controls the output frequency so that the inverter (or the power regulator 29) corresponding to the control target device related to the change instruction is in the drive state specified by the change instruction. Give instructions. In addition, when the change instruction is an instruction to stop driving of the control target device, a control instruction to stop power feeding is performed. As a result, the device to be controlled is controlled according to the change instruction. After step S10, the process of step S11 is executed.
  • step S11 power adjustment processing is executed.
  • the individual activation process and the multiple activation process are processes for controlling the total power consumption so as not to exceed the generated power of the generator 22 when the control target device is activated.
  • this is a process for controlling the total power consumption so as not to exceed the generated power of the generator 22 during the driving of a plurality of control target devices.
  • FIG. 8 is a sub-flowchart showing detailed processing of step S11 shown in FIG.
  • the controller 25 calculates the total power consumption of each control target device. That is, the controller 25 detects the power consumption of each control target device and adds the detected power consumption.
  • the detection method of each power consumption may be any method, for example, the power supplied to each motor 30 to 32b may be detected.
  • the process of step S42 is executed.
  • step S42 the controller 25 determines whether or not the total power consumption is equal to or greater than a predetermined value.
  • This predetermined value is set in advance to the maximum power of the generator 22 or a value slightly lower than the maximum power.
  • the process of step S43 is executed.
  • the controller 25 ends the power adjustment process.
  • step S43 the controller 25 adjusts the power supplied to the device to be controlled so that the total power consumption is smaller than the predetermined value.
  • the specific method of adjustment in step S43 may be any method, for example, the following method can be considered. That is, the controller 25 selects one or a plurality of control target devices that are currently being driven, and restricts (stops or reduces) power supply to the selected control target devices.
  • the controller 25 selects one or a plurality of control target devices that are currently being driven, and restricts (stops or reduces) power supply to the selected control target devices.
  • the controller 25 may reduce the power supplied to each control target device currently driven. After the step S43, the controller 25 ends the power adjustment process.
  • step S43 it is possible to control so that the total power consumption of the device to be controlled does not exceed the power generated by the generator 22. Further, since the process of step S43 is always (repeatedly) performed during the operation of the asphalt finisher, it is possible to always prevent the total power consumption from exceeding the generated power of the generator 22 during the operation of the asphalt finisher. .
  • the controller 25 performs three types of processes of step S4, step S6, and step S11. Was executed.
  • the controller 25 may execute only one or two of these three types of processes.
  • step S11 After the power adjustment process in step S11, the process in step S1 is executed again. Thereafter, the processes of steps S1 to S11 are repeatedly executed. Above, description of operation
  • the asphalt finisher 1 may further include a temperature detection unit that detects the temperature of the screed plate, and the drive of the heating device 12 may be controlled based on the detection result of the temperature detection unit. Specifically, when the temperature detected by the temperature detection means reaches a predetermined target temperature (between the time when the user gives a heating instruction and the time when the change instruction to stop heating is given), the controller 25 If the driving of the heating device 12 is stopped and the detected temperature falls below a predetermined target temperature, the heating device 12 may be driven. In this case, the determination in step S21 may be performed in the same manner as described above. On the other hand, if the heating instruction by the user has already been performed, the process of step S32 is performed so as not to drive the heating device 12 (even if the detected temperature has not reached the target temperature). Good.
  • the asphalt finisher 1 can electrically drive the main actuator and screed heating. As a result, energy can be saved and the amount of carbon dioxide emission can be reduced as compared with the case of driving with a hydraulic system. In addition, since it is not necessary to perform maintenance on the hydraulic system, it is possible to reduce maintenance costs and facilitate maintenance. Furthermore, by performing electrical control on each control target device (especially when an inverter is used as in the above embodiment), the controllability for each control target device can be improved.
  • the conventional method can be improved in terms of heat uniformity, combustion efficiency, and safety of the screed plate by electrically driving the heating of the screed 11. That is, in the conventional method in which the screed plate is heated with gas, the screed plate has a long and thin shape, and thus it has been difficult to uniformly heat the screed plate with a gas burner. Further, since the gas burner employs a downward combustion structure (because it is necessary to heat the screed plate from above), the combustion gas flows upward, resulting in poor combustion efficiency. On the other hand, according to the said embodiment, the soaking
  • the engine 21 can be driven at two types of rotation speeds (low rotation state and high rotation state), and the generator 22 can switch the power generation characteristics according to the rotation speed of the engine 21. Is possible.
  • noise can be reduced by enabling driving in a low rotation state.
  • the generator 22 since the generator 22 generates power with characteristics adapted to the low rotation state, it is possible to improve the power generation efficiency and further save energy.
  • the power to perform screed heating is ensured even in a low rotation state, so that the asphalt finisher 1 can be set in a low rotation state when preparing for paving work even in consideration of actual use. it can. Therefore, it is possible to reduce noise and exhaust carbon dioxide during preparation.
  • the generator 22 can adjust the voltage input to each inverter to an appropriate magnitude by switching the power generation characteristics.
  • the first to third switches 42a to 42c correspond to the adjusting unit described in the claims.
  • the output voltage varies greatly between when the engine 21 is in a low rotation state and when it is in a high rotation state. In either case, the output voltage satisfies the input allowable voltage of the inverter. There is a risk of disappearing.
  • the generator 22 switches the two modes so that the output voltage is the same both when the engine 21 is in the low rotation state and in the high rotation state. It can be a value of the degree. That is, in any case, since the output voltage of the generator 22 satisfies the input allowable voltage of the inverter, a voltage having an appropriate magnitude is input to the inverter.
  • FIG. 10 is a diagram showing an electrical configuration of the asphalt finisher according to the first modification.
  • the asphalt finisher includes a right main vibrator motor 52a, a left main vibrator motor 52b, a right telescopic vibrator motor 52c, and a left telescopic vibrator motor 52d in addition to the configuration shown in FIG. I have.
  • the control box 24 includes a vibrator inverter 51 in addition to the configuration shown in FIG.
  • the vibrator inverter 51 is connected to the generator 22, and converts the three-phase AC power supplied from the generator 22 into a desired frequency (after being once rectified to DC) and outputs it, Each motor 52a to 52d is driven.
  • the frequency of AC electricity output from the vibrator inverter 51 is adjusted according to the control instruction of the controller 25. That is, the vibrator inverter 51 drives each of the motors 52a to 52d in accordance with a control instruction from the controller 25.
  • the right main vibrator motor 52 a drives the right main vibrator 13 a that vibrates the right main screed of the screed 11.
  • the left main vibrator motor 52 b drives the left main vibrator 13 b that vibrates the left main screed of the screed 11.
  • the right extension vibrator motor 52 c drives the right extension vibrator 13 c that vibrates the right extension screed of the screed 11.
  • the left telescopic vibrator motor 52 d drives the left telescopic vibrator 13 d that vibrates the left telescoping screed of the screed 11.
  • the vibrator 13 when the asphalt finisher is used is the same as that of each actuator in the above embodiment. That is, the vibrator 13 may be activated in accordance with an individual activation instruction or a plurality of activation instructions by the user, or the driving state may be changed or stopped according to a change instruction by the user.
  • any actuator that is not particularly described in the above embodiment and the first modification may be driven by any hydraulic drive. Or may be electrically driven.
  • each control target device is electrically driven by electric power from the generator 22 using the engine 21 as a drive source.
  • the asphalt finisher can receive power supply from an external power source, and each control target device may be driven by power from the external power source.
  • an example in which each control target device is driven by power from an external power source will be described as a second modification.
  • FIG. 11 is a diagram showing an electrical configuration of the asphalt finisher according to the second modification. Note that FIG. 11 mainly shows parts different from FIG. 2, and a part of the same configuration as FIG. 2 is omitted.
  • the asphalt finisher includes a power plug 61 and a changeover switch 62 in addition to the configuration shown in FIG. 2 (or FIG. 10).
  • a power plug 61 which is an example of a power supply terminal for obtaining external power, is detachably connected to the external power supply and receives power supply from the external power supply.
  • the changeover switch 62 is provided between the generator 22 and the control box 24 and between the power plug 61 and the control box 24, and connects either the generator 22 or the power plug 61 and the control box 24. To do. With the above configuration, the control box 24 can switch between the power from the generator 22 and the power from the power plug 61.
  • the changeover switch 62 is connected to the controller 25, and the changeover of the changeover switch 62 may be performed in accordance with a change instruction from the controller 25.
  • the controller 25 may switch the changeover switch 62 in accordance with a user's instruction, and when it is provided with detection means for detecting that the power plug 61 is connected to an external power source, if this is detected. Switching may be performed so that the power plug 61 and the control box 24 are automatically connected.
  • the asphalt finisher is configured to be able to receive power supply from an external power source.
  • the heating device 12 can be driven by power supplied from an external power source, and the engine 21 can be stopped. Therefore, according to the second modification, it is possible to further save energy and to further reduce carbon dioxide emissions.
  • the generator output in the two states is adjusted by changing the power generation characteristics (specifically, the number of turns of the coil) of the generator between the high rotation state and the low rotation state.
  • the voltage input to each inverter is approximately the same in the two states, so that a voltage within a predetermined allowable input voltage range of each inverter can be input.
  • the adjustment of the output voltage of the generator in the above two states may be realized by the configuration of each modification shown below.
  • modified examples for adjusting the output of the generator will be described as third to seventh modified examples.
  • FIG. 12 is a diagram illustrating an electrical configuration of an asphalt finisher according to a third modification.
  • the asphalt finisher includes a rectifier 71 and a constant voltage device 72 in addition to the configuration shown in FIG.
  • the asphalt finisher includes a generator 70 instead of the above-described generator 22.
  • the asphalt finisher includes the inverters 26 to 28b as in the above embodiment.
  • the controller 25 is connected to each of the inverters 26 to 28b and the power regulator 29, and the inverters 26 to 28b and the power regulator 29 are controlled by the controller 25, as in the above embodiment. Is done.
  • the generator 70 is mechanically connected to the engine 21 and generates power by driving the engine 21.
  • the generator 70 is not limited to the generator having the two generation characteristics like the generator 22 in the above-described embodiment, and may be any type of generator, for example, conventional power generation It may be a machine. Therefore, in the third modified example, it is possible to use a small and high-efficiency motor using a permanent magnet such as an IPM motor, for example, so that power generation is performed as compared with the above-described embodiment and a fourth modified example described later. The efficiency can be improved and the apparatus can be miniaturized.
  • the rectifier 71 is connected to the generator 70 and converts (rectifies) AC electricity (here, three-phase AC electricity) output from the generator 70 into DC electricity. Any type of rectifier 71 may be used as long as it has a function of converting AC electricity into DC.
  • the constant voltage device 72 is connected to the rectifier 71 and adjusts (boosts or steps down) the voltage of DC electricity output from the rectifier 71 to a voltage within a predetermined range. That is, in the third modified example, the constant voltage device 72 corresponds to the adjusting unit described in the claims.
  • the predetermined range is a range of allowable input voltage of each of the inverters 26 to 28b.
  • the constant voltage device 72 may have any configuration as long as it has a function of adjusting the voltage of DC electricity, such as a configuration including a general booster circuit.
  • the constant voltage device 72 preferably has a function of stepping up and stepping down the input voltage, but it is sufficient that it has at least a function of stepping up the input voltage. For example, when it is not assumed that a voltage higher than the predetermined range is input (that is, when the output voltage of the generator 70 is not expected to exceed the predetermined range), the constant voltage device 72 has a step-down function. May not be included.
  • each of the inverters 26 to 28b inputs a DC voltage having a magnitude within a predetermined range output from the constant voltage device 72.
  • the inverters 26 to 28b drive the motors 30 to 32b according to the control instructions of the controller 25, respectively.
  • each of the inverters 26 to 28b inputs DC electricity and outputs AC electricity (three-phase AC electricity) having a desired frequency.
  • a general inverter that receives alternating current electricity inputs the alternating current electricity once into internal direct current, and then outputs alternating current electricity.
  • there is no need to convert AC electricity into DC electricity inside the inverter so that the configuration of each of the inverters 26 to 28b can be simplified. Also,
  • a power regulator 29 that inputs and outputs DC electricity is used. Similar to the above embodiment, the power regulator 29 controls the operation of the heating device 12 in accordance with the control instruction of the controller 25.
  • the generator 70 when the engine 21 is driven in a low rotation state, the generator 70 outputs a relatively low voltage.
  • the output voltage of the generator 70 is a voltage lower than the predetermined range.
  • the constant voltage device 72 boosts and outputs the DC voltage output from the rectifier 71 to a voltage within the predetermined range.
  • a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
  • the constant voltage device 72 adjusts and outputs the DC voltage output from the rectifier 71 to a voltage within the predetermined range. That is, the constant voltage device 72 performs boosting when the output voltage of the generator 22 is lower than the voltage within the predetermined range, and when the output voltage of the generator 22 is higher than the voltage within the predetermined range. Step down.
  • the constant voltage device 72 does not have to substantially adjust the voltage.
  • a voltage within the input allowable voltage range is input to each of the inverters 26 to 28b.
  • the constant voltage device 72 is connected to the output side of the generator 70, and the constant voltage device 72 converts the input voltage into a voltage within a predetermined range. Output.
  • the voltage input to each of the inverters 26 to 28b can be made constant and within the range of the input allowable voltage. Can be input to each of the inverters 26 to 28b. Therefore, according to the third modification, each of the inverters 26 to 28b can be operated normally, and each mechanism can be accurately controlled.
  • the output voltage of the generator 70 is appropriately boosted or stepped down by the constant voltage device 72. Can also cope with. Further, according to the third modification, since the DC voltage is converted by the constant voltage device 72, the voltage is more accurately compared with the case of converting the AC voltage (sixth and seventh modifications described later). Adjustments can be made.
  • FIG. 13 is a diagram illustrating an electrical configuration of an asphalt finisher according to a fourth modification.
  • the asphalt finisher has an automatic voltage regulator (abbreviated as “AVR (Automatic Voltage Regulator)” in FIG. 13) in addition to the configuration shown in FIG. 2.
  • a detection transformer 79 is provided.
  • the asphalt finisher includes a generator 80 instead of the above-described generator 22.
  • the generator 80 has a generator body 74 and an excitation device 77. Although only a part of the asphalt finisher is shown in FIG.
  • the asphalt finisher includes the inverters 26 to 28b and the power regulator 29 as in the above embodiment.
  • a controller 25 is connected to each of the inverters 26 to 28b and the power regulator 29 as in the above embodiment, and each of the inverters 26 to 28b and the power regulator 29 is controlled by the controller 25. Is done.
  • the generator 80 is mechanically connected to the engine 21 and generates power by driving the engine 21.
  • the generator body 74 and the excitation device 77 are mechanically connected to the engine 21 and driven by the engine 21.
  • the excitation device 77 controls the magnetic field in the generator main body 74 by controlling the current of the field coil 75 of the generator main body 74.
  • the automatic voltage regulator 73 adjusts the output voltage of the generator 80 so that a voltage within a predetermined range is output.
  • the automatic voltage regulator 73 controls the field current of the generator 80 based on the output voltage of the generator 80.
  • the automatic voltage regulator 73 adjusts the output voltage of the generator by changing the power generation characteristics of the generator 80 when the engine 21 is in the first rotation state and when the engine 21 is in the second rotation state. To do. That is, in the fourth modified example, the automatic voltage regulator 73 corresponds to the adjustment unit described in the claims.
  • the automatic voltage regulator 73 controls the current supplied to the coil 78 of the excitation device 77 based on the output voltage of the generator 80 detected by the detection transformer 79.
  • the excitation device 77 supplies a current corresponding to the current of the coil 78 to the field coil 75 of the generator main body 74 via the rotary rectifier 76.
  • the automatic voltage regulator 73 controls the current of the field coil 75 so that the output voltage of the generator 80 becomes a set desired voltage value. As described above, the output voltage of the generator 80 is controlled to the value set by the automatic voltage regulator 73.
  • the output voltage of the generator 80 is adjusted by the automatic voltage regulator 73 regardless of whether the engine 21 is driven in a low rotation state or in a high rotation state. It becomes the value in. As a result, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
  • the voltage input to the inverter can be adjusted without switching the wiring depending on whether the engine 21 is in a low rotation state or a high rotation state. Therefore, in the third and fourth modified examples, the output voltage of the generator can be adjusted without providing means for detecting whether the engine 21 is in a high rotation state or a low rotation state. .
  • FIG. 14 is a diagram illustrating an electrical configuration of an asphalt finisher according to a fifth modification.
  • the asphalt finisher in the fifth modified example is different from the configuration shown in FIG. 12 in that it includes a booster 82 instead of the constant voltage device 72, and includes a switching unit 81 and a diode 83. This is the same as the third modification.
  • the fifth modification will be described with a focus on differences from the third modification.
  • the rectifier 71 has the same configuration as that of the third modified example.
  • the switching unit 81 is connected to the output side of the rectifier 71.
  • the switching unit 81 can switch between a path for inputting the output of the rectifier 71 to the inverters 26 to 28b as it is and a path for inputting the output of the rectifier 71 to the inverters 26 to 28b via the booster 82.
  • the path on the output side of the rectifier 71 is bifurcated, and one path is connected to each of the inverters 26 to 28b via the diode 83.
  • the other path is connected to each of the inverters 26 to 28b via a switch 81a included in the switching unit 81 and a booster 82.
  • the output terminal of the rectifier 71 is connected to the anode terminal of the diode 83, and the cathode terminal of the diode 83 is connected to each of the inverters 26 to 28b.
  • the output terminal of the rectifier 71 is connected to the input terminal of the booster 82 via the switch 81a, and the output terminal of the booster 82 is connected to each of the inverters 26 to 28b.
  • the switching unit 81 is connected to the controller 25, and the path switching in the switching unit 81 is controlled by the controller 25. That is, the connection / disconnection of the switch 81a is controlled by the controller 25.
  • the booster 82 is connected to the rectifier 71 and boosts the DC electric voltage output from the rectifier 71 to a voltage within a predetermined range. That is, in the fifth modified example, the booster 82 corresponds to the adjustment unit described in the claims.
  • the booster 82 may have any configuration as long as it has at least a function of boosting the input voltage, and may be configured by a general booster circuit or the like. Although details will be described later, in the fifth modified example, the booster 82 operates only when the generator 70 outputs a voltage lower than the predetermined range. Therefore, unlike the third modification, the booster 82 need not have a step-down function. Therefore, in the fifth modification, the configuration for adjusting the output voltage of the generator 70 can be further simplified.
  • the generator 70 when the engine 21 is driven in a low rotation state, the generator 70 outputs a relatively low voltage.
  • the output voltage of the generator 70 is a voltage lower than the predetermined range.
  • the controller 25 controls the switching unit 81 so that the output of the generator 70 is input to the booster 82. That is, the controller 25 controls to connect the switch 81a. Therefore, the booster 82 boosts and outputs the DC voltage output from the rectifier 71 to a voltage within the predetermined range. As a result, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
  • the diode 83 is provided in order to prevent a reverse current flow when the booster 82 operates.
  • the generator 70 outputs a relatively high voltage.
  • the voltage output from the generator 70 in this case is a value within the input allowable voltage range of the inverters 26 to 28b.
  • the controller 25 controls the switching unit 81 so that the output of the generator 70 is not input to the booster 82. That is, the controller 25 controls the switch 81a to be disconnected. Therefore, the output from the rectifier 71 is directly input to the inverters 26 to 28b.
  • a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
  • the fifth modification when the engine 21 is in the low rotation state, the output of the generator 70 is input to the inverters 26 to 28b via the booster 82, and the engine 21 is In the rotating state, the power transmission path from the generator 70 to each of the inverters 26 to 28b is switched to the switching unit 81 so that the output of the generator 70 is input to each of the inverters 26 to 28b without passing through the booster 82. It is switched by.
  • an appropriate voltage can be input to each of the inverters 26 to 28b in any state.
  • the DC voltage is converted by the booster 82, the voltage adjustment is performed with higher accuracy than in the case of converting the AC voltage (sixth and seventh modified examples described later). It can be performed.
  • FIG. 15 is a diagram illustrating an electrical configuration of an asphalt finisher according to a sixth modification.
  • the asphalt finisher includes a switching unit 84 and a transformer 85 in addition to the configuration shown in FIG.
  • the asphalt finisher includes a generator 70 similar to that in the third modification, instead of the above-described generator 22.
  • the asphalt finisher includes inverters 26 to 28b and a power regulator 29 as in the above embodiment.
  • the controller 25 is connected to each of the inverters 26 to 28b and the power regulator 29 as in the above embodiment, and each of the inverters 26 to 28b and the power regulator 29 is controlled by the controller 25. Is done.
  • the switching unit 84 is connected to the generator 70.
  • the switching unit 84 can switch between a path for inputting the output of the generator 70 as it is to each of the inverters 26 to 28 b and a path for inputting the output of the generator 70 to each of the inverters 26 to 28 b via the transformer 85. It is.
  • the output side path of the generator 70 is bifurcated, and one path is connected to each of the inverters 26 to 28b via a switch 81a and a transformer 85 included in the switching unit 84.
  • the other path is connected to each of the inverters 26 to 28b and the power regulator 29 via a switch 81b included in the switching unit 84.
  • the switching unit 84 is connected to the controller 25, and path switching in the switching unit 84 is controlled by the controller 25. That is, connection / disconnection of the switches 83a and 83b is controlled by the controller 25.
  • the transformer 85 converts an input AC voltage (here, a three-phase AC voltage) into a voltage within the predetermined range and outputs the voltage. That is, in the sixth modification (and a seventh modification described later), the transformer 85 corresponds to the adjustment unit described in the claims.
  • the type and specific configuration of the transformer 85 may be anything.
  • the controller 25 controls the switching unit 84 so that the output of the generator 70 is input to the transformer 85. That is, the controller 25 controls to connect the switch 83a and disconnect the switch 83b. Therefore, the transformer 85 boosts and outputs the three-phase AC voltage output from the generator 70 to a voltage within the predetermined range. As a result, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
  • the generator 70 when the engine 21 is driven in a high rotation state, the generator 70 outputs a relatively high voltage.
  • the voltage output from the generator 70 in this case is a value within the range of the input allowable voltage of the inverters 26 to 28b.
  • the controller 25 controls the switching unit 84 so that the output of the generator 70 is not input to the transformer 85. That is, the controller 25 controls to disconnect the switch 83a and connect the switch 83b. Therefore, the three-phase AC electricity output from the generator 70 is input to the inverters 26 to 28b as they are.
  • a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
  • the output of the generator 70 is input to each of the inverters 26 to 28b via the transformer 85, and the engine 21 is In the rotating state, the power transmission path from the generator 70 to each of the inverters 26 to 28b is switched to the switching unit 84 so that the output of the generator 70 is input to each of the inverters 26 to 28b without passing through the transformer 85. It is switched by.
  • an appropriate voltage can be input to each of the inverters 26 to 28b in any state.
  • FIG. 16 is a diagram illustrating an electrical configuration of an asphalt finisher according to a seventh modification.
  • the asphalt finisher in the seventh modified example is different from the configuration of the sixth modified example shown in FIG. 15 in that an automatic voltage regulator 73 and a detection transformer 79 are provided.
  • the asphalt finisher includes a generator 80 similar to that in the fourth modification, instead of the generator 70 in the sixth modification.
  • the fifth modification will be described with a focus on differences from the sixth modification.
  • the generator 80 and the automatic voltage regulator 73 have the same configuration as that of the fourth modified example.
  • the detection transformer 79 is connected to the output side of the transformer 85.
  • the automatic voltage regulator 73 adjusts the output voltage of the generator 80 so that the voltage at the output terminal of the transformer 85 (and the switch 84b) becomes a voltage within a predetermined range. That is, the automatic voltage regulator 73 controls the current of the field coil 75 so that the voltage at the output terminal of the transformer 85 (and the switch 84b) becomes a set desired voltage value.
  • the controller 25 and the switching unit 84 operate in the same manner as in the sixth modification. Therefore, the output voltage of the generator 80 is adjusted within the predetermined range whether the engine 21 is in a low rotation state or a high rotation state.
  • voltage conversion by the transformer 85 that converts AC voltage is generally difficult to perform detailed voltage adjustment compared to voltage conversion by the constant voltage device 72 (boost device 82) that converts DC voltage.
  • the voltage at the output terminal of the transformer 85 (and the switch 84b) is also adjusted by the automatic voltage regulator 73, so that the voltage adjustment is performed in more detail (with high accuracy). )It can be carried out.
  • the output voltage of the generator 70 is adjusted by the automatic voltage regulator 73, so that the input voltage to each of the inverters 26 to 28b is adjusted. It can be made more stable.
  • the switching unit 81 or 84 has the output of the generator adjusted when the engine 21 is in a low rotation state (the booster 82 or the transformer 85).
  • the generator outputs each of the inverters 26 to 28b so that the output of the generator is not input to the inverters 26 to 28b.
  • the power transmission path to the inverters 26 to 28b is switched. Therefore, since the output voltage of the generator is adjusted by the adjustment unit in the low rotation state, an appropriate voltage can be input to each of the inverters 26 to 28b.
  • the adjustment unit does not need to correspond to the output voltage when the engine 21 is in the high rotation state, and therefore the adjustment unit can be configured more simply.
  • any method may be used for detecting whether the engine 21 is in a low rotation state or a high rotation state, as in the above embodiment.
  • the controller 25 may detect whether the engine is in a low rotation state or a high rotation state based on an instruction from the user or the rotational speed of the engine 21 or the generator 22.
  • the present invention is applied to a road paving machine for paving asphalt roads such as asphalt finishers, repavers, and remixers for the purpose of improving energy efficiency and reducing carbon dioxide emissions. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Abstract

An asphalt finisher is provided with: an engine comprising a travel mechanism, a conveyor, a screw, and various screed mechanisms; a generator; a plurality of motors; an adjustment part; and a plurality of inverters. The generator generates electricity through the driving of the engine. Each motor drives a respective mechanism using power from the generator. The adjustment part adjusts the output voltage of the generator in such a manner that the output voltage of the generator attains a voltage within a prescribed range, even when a first rotational state exists in which the engine is at a relatively low engine speed, or when a second rotational state exists in which the engine speed is at a relatively high engine speed. Each inverter converts the output from the generator, the voltage of which has been adjusted by the adjustment part, to the desired frequency and supplies the output to each motor.

Description

道路舗装機械Road paving machine
 本発明は、アスファルトフィニッシャ、リペーバ、リミキサ等のアスファルト道路を舗装する道路舗装機械に関し、より特定的には、発電機を用いてアクチュエータを電気的に駆動する道路舗装機械に関する。 The present invention relates to a road paving machine for paving an asphalt road such as an asphalt finisher, a re-paver, a remixer, and more particularly to a road paving machine for electrically driving an actuator using a generator.
 従来、アスファルトフィニッシャにおいては、走行輪、コンベヤ、スクリュー等の各アクチュエータ(各機構)は油圧により駆動される。図17は、従来のアスファルトフィニッシャの構成を示す図である。図17に示すように、アスファルトフィニッシャ101は、大きくは車体102およびスクリード111から構成され、車体102とスクリード111とはレベリングアーム108にて連結される。車体102には、ホッパ103、走行輪(前輪104および後輪105)、コンベヤ106、ならびにスクリュー107が取り付けられる。また、車体102にはLPGボンベ109が搭載される。スクリード111は、バイブレータ113およびLPGバーナ112を含む。 Conventionally, in an asphalt finisher, each actuator (each mechanism) such as a traveling wheel, a conveyor, and a screw is driven by hydraulic pressure. FIG. 17 is a diagram showing a configuration of a conventional asphalt finisher. As shown in FIG. 17, the asphalt finisher 101 is mainly composed of a vehicle body 102 and a screed 111, and the vehicle body 102 and the screed 111 are connected by a leveling arm 108. A hopper 103, traveling wheels (front wheels 104 and rear wheels 105), a conveyor 106, and screws 107 are attached to the vehicle body 102. Further, an LPG cylinder 109 is mounted on the vehicle body 102. The screed 111 includes a vibrator 113 and an LPG burner 112.
 従来のアスファルトフィニッシャにおけるエネルギー伝達システムは、ディーゼルエンジンを動力源とした油圧システムである。すなわち、走行輪104および105、コンベヤ106、ならびにスクリュー107といった主要アクチュエータやバイブレータ113は、ディーゼルエンジンを動力源とする油圧ポンプにより駆動される油圧モータによって駆動される。また、スクリード111における加熱はLPガス燃焼によって行われる。すなわち、LPGバーナ112は、LPGボンベ109からLPガスの供給を受け、スクリード11(より具体的には、スクリード111の接地面(スクリードプレート))を燃焼加熱している。 The energy transmission system in the conventional asphalt finisher is a hydraulic system using a diesel engine as a power source. That is, the main actuators such as the traveling wheels 104 and 105, the conveyor 106, and the screw 107 and the vibrator 113 are driven by a hydraulic motor that is driven by a hydraulic pump that uses a diesel engine as a power source. The screed 111 is heated by LP gas combustion. That is, the LPG burner 112 receives the supply of LP gas from the LPG cylinder 109 and burns and heats the screed 11 (more specifically, the ground contact surface (screed plate) of the screed 111).
 なお、道路舗装機械ではない建設機械においては、アクチュエータを電気的に駆動することが提案されている。例えば、特許文献1には、ショベルに発電機とバッテリーを搭載し、発電機による電力、または、回生電力を蓄えるバッテリーから電力によってアクチュエータを駆動することが記載されている。なお、スクリードプレートの加熱方法に関しては、スクリードプレートに対して電気加熱を行うことも考えられている(例えば、特許文献2参照)。 Note that it is proposed that the actuator is electrically driven in a construction machine that is not a road paving machine. For example, Patent Literature 1 describes that a power generator and a battery are mounted on an excavator, and an actuator is driven by power from a battery that stores power generated by the power generator or regenerative power. In addition, regarding the heating method of a screed plate, performing electrical heating with respect to a screed plate is also considered (for example, refer patent document 2).
特開2001-16891号公報JP 2001-16891 A 特表2003-519733号公報Special table 2003-519733 gazette
 従来のアスファルトフィニッシャでは、上記のように主要アクチュエータは油圧により駆動されていたため、油圧制御回路において動力伝達効率の低下が生じていた。具体的には、油圧ポンプの摺動抵抗、圧油の流体抵抗、配管や制御弁における圧油の通過抵抗等による効率低下、さらには、油圧モータにおける効率低下によって動力損失が生じ、エネルギー効率の悪化を招いていた。さらに、この動力損失による作動油の発熱を冷却するためにエネルギーを要することも、エネルギー効率の悪化の原因となっていた。 In the conventional asphalt finisher, since the main actuator is driven by hydraulic pressure as described above, the power transmission efficiency is reduced in the hydraulic control circuit. Specifically, efficiency loss due to sliding resistance of hydraulic pump, fluid resistance of pressure oil, pressure oil passage resistance in pipes and control valves, etc. It was deteriorating. Furthermore, the fact that energy is required to cool the heat generation of the hydraulic oil due to this power loss has also caused the deterioration of energy efficiency.
 上記のように、従来のアスファルトフィニッシャでは、油圧システムに起因してエネルギー効率が悪いという課題、および、それによって二酸化炭素の排出量が多くなるという課題があった。また、従来のアスファルトフィニッシャでは、油圧ポンプおよび油圧モータといった油圧機器や作動油の保守や交換のために、維持経費を要するという課題もある。 As described above, the conventional asphalt finisher has the problem that the energy efficiency is poor due to the hydraulic system, and the carbon dioxide emission increases accordingly. In addition, the conventional asphalt finisher has a problem that maintenance costs are required for maintenance and replacement of hydraulic equipment such as a hydraulic pump and a hydraulic motor and hydraulic oil.
 なお、上記特許文献1には、ショベルの各アクチュエータを電気的に駆動することが開示されているものの、アスファルトフィニッシャ等の道路舗装機械に関しては開示されていない。そのため、発電機による発電あるいは各アクチュエータの駆動に関して、特許文献1の制御方法をアスファルトフィニッシャの制御に対してそのまま採用することはできず、特許文献1の記載に基づいてもアスファルトフィニッシャの各アクチュエータを効率的に電気駆動することはできない。また、上記特許文献2には、スクリードプレートに対して電気加熱を行うことは記載されているものの、他のアクチュエータについては電気的に駆動されないので、上述した課題を解決することはできない。 In addition, although it is disclosed by the said patent document 1 to electrically drive each actuator of a shovel, it is not disclosed regarding road paving machines, such as an asphalt finisher. Therefore, regarding the power generation by the generator or the driving of each actuator, the control method of Patent Document 1 cannot be directly applied to the control of the asphalt finisher. It cannot be electrically driven efficiently. Moreover, although the said patent document 2 describes performing electrical heating with respect to a screed plate, since it is not electrically driven about another actuator, the subject mentioned above cannot be solved.
 それ故、本発明の目的は、アスファルトフィニッシャ等の道路舗装機械において、エネルギー効率を向上し、二酸化炭素の排出量を減少させることである。 Therefore, an object of the present invention is to improve energy efficiency and reduce carbon dioxide emissions in road paving machines such as asphalt finishers.
 本発明は、上記の課題を解決するために、下記(1)~(19)の構成を採用した。 The present invention employs the following configurations (1) to (19) in order to solve the above problems.
 (1)
 本発明は、走行機構、コンベヤ、スクリュー、およびスクリードの各機構を有し、アスファルト道路を舗装する道路舗装機械である。道路舗装機械は、エンジンと、発電機と、複数のモータと、調整部と、複数のインバータとを備える。発電機は、エンジンの駆動によって発電を行う。各モータは、各機構を発電機による電力によってそれぞれ駆動する。調整部は、エンジンが相対的に低い回転数である第1回転状態である場合と、相対的に高い回転数である第2回転状態である場合との両方の場合において発電機の出力電圧が所定範囲内の電圧となるように、発電機の出力電圧を調整する。各インバータは、調整部によって電圧が調整された発電機の出力を所望の周波数に変換して各モータに供給する。
(1)
The present invention is a road paving machine having a traveling mechanism, a conveyor, a screw, and a screed mechanism and paving an asphalt road. The road paving machine includes an engine, a generator, a plurality of motors, an adjustment unit, and a plurality of inverters. The generator generates electricity by driving the engine. Each motor drives each mechanism with electric power from a generator. The adjustment unit is configured to adjust the output voltage of the generator in both the case where the engine is in the first rotation state where the engine speed is relatively low and the case where the engine is in the second rotation state where the engine speed is relatively high. The output voltage of the generator is adjusted so that the voltage is within a predetermined range. Each inverter converts the output of the generator whose voltage has been adjusted by the adjustment unit into a desired frequency and supplies it to each motor.
 上記「調整部」は、後述する実施形態および第4の変形例のように、発電機の発電特性を変更することによって出力電圧を調整するものであってもよいし、第3および第5~第7の変形例のように、発電機の出力に対して処理を行うことによって出力電圧を調整するものであってもよい。 The “adjusting unit” may adjust the output voltage by changing the power generation characteristics of the generator, as in the embodiments and the fourth modification described later. As in the seventh modification, the output voltage may be adjusted by processing the output of the generator.
 上記(1)の構成によれば、道路舗装機械は、走行機構、コンベヤ、およびスクリューといった各機構を電気的に駆動することができる。これによれば、各機構を油圧によって駆動する従来方式に比べ、省エネルギー化を図ることができるとともに、二酸化炭素の排出量を減少させることができる。さらに、上記(1)の構成によれば、エンジンの回転数に応じて発電機の出力電圧が変動する場合であっても、各インバータに入力される電圧が調整部によって調整される。したがって、各インバータを適切に動作させることができ、各インバータによって各モータを正しく制御することができる。 According to the configuration of (1) above, the road paving machine can electrically drive each mechanism such as a traveling mechanism, a conveyor, and a screw. According to this, compared with the conventional system which drives each mechanism with oil_pressure | hydraulic, while being able to achieve energy saving, the discharge | emission amount of a carbon dioxide can be decreased. Furthermore, according to the configuration of (1) above, even if the output voltage of the generator varies according to the engine speed, the voltage input to each inverter is adjusted by the adjustment unit. Therefore, each inverter can be operated appropriately, and each motor can be correctly controlled by each inverter.
 (2)
 調整部は、発電機の出力側に接続され、入力された電圧を所定範囲内の電圧へと変換して出力してもよい。
(2)
The adjustment unit may be connected to the output side of the generator and may convert the input voltage into a voltage within a predetermined range and output the voltage.
 上記(2)の構成によれば、発電機の出力電圧は、調整部によって所定範囲内の電圧へと変換されて各インバータに入力される。したがって、エンジンが第1回転状態である場合と第2回転状態である場合との両方の場合において、所定範囲内の電圧が各インバータに入力されるので、各インバータを適切に動作させることができる。 According to the configuration of (2) above, the output voltage of the generator is converted into a voltage within a predetermined range by the adjustment unit and input to each inverter. Therefore, in both the case where the engine is in the first rotation state and the case where the engine is in the second rotation state, a voltage within a predetermined range is input to each inverter, so that each inverter can be appropriately operated. .
 (3)
 道路舗装機械は、発電機から出力される交流電気を直流電気に変換する整流部をさらに備えていてもよい。このとき、調整部は、直流電気の電圧を所定範囲内の電圧に変換する定電圧装置を含む。
(3)
The road pavement machine may further include a rectifying unit that converts AC electricity output from the generator into DC electricity. At this time, the adjustment unit includes a constant voltage device that converts the voltage of DC electricity into a voltage within a predetermined range.
 上記(3)の構成によれば、発電機の出力電圧を定電圧装置によって容易に調整することができる。さらに、定電圧装置によって発電機の出力電圧を昇圧および降圧することができるので、エンジンの回転数が何らかの原因で変動した場合にも対応することができ、所定範囲内の電圧を各インバータに入力することができる。また、定電圧装置によって直流電圧を変換するので、交流電圧を変換する場合(例えば後述の第6および第7の変形例)に比べて、より精度良く電圧調整を行うことができる。 According to the configuration of (3) above, the output voltage of the generator can be easily adjusted by the constant voltage device. In addition, the output voltage of the generator can be boosted and stepped down by a constant voltage device, so that it is possible to cope with the case where the engine speed fluctuates for some reason, and a voltage within a predetermined range is input to each inverter. can do. In addition, since the DC voltage is converted by the constant voltage device, the voltage can be adjusted with higher accuracy than when the AC voltage is converted (for example, sixth and seventh modifications described later).
 (4)
 調整部は、エンジンが第1回転状態である場合と第2回転状態である場合とで発電機の発電特性を変化させることによって、発電機の出力電圧を調整してもよい。なお、調整部は、後述する実施形態のように、発電機のコイルの巻き数を変化させることで発電特性を変化させてもよいし、第4の変形例のように、界磁コイルに流れる電流を変化させることで発電特性を変化させてもよい。
(4)
The adjustment unit may adjust the output voltage of the generator by changing the power generation characteristics of the generator between when the engine is in the first rotation state and when the engine is in the second rotation state. The adjustment unit may change the power generation characteristics by changing the number of turns of the generator coil as in the embodiment described later, or may flow through the field coil as in the fourth modification. The power generation characteristics may be changed by changing the current.
 上記(4)の構成によれば、調整部によって発電機の発電特性が変化することによって、発電機の出力電圧を調整することができ、各インバータに適切な大きさの電圧を入力することができる。 According to the configuration of (4) above, the output voltage of the generator can be adjusted by changing the power generation characteristics of the generator by the adjustment unit, and an appropriate voltage can be input to each inverter. it can.
 (5)
 道路舗装機械は、切換部をさらに備えていてもよい。切換部は、エンジンが第1回転状態である場合には発電機の出力が調整部を介して各インバータに入力され、エンジンが第2回転状態である場合には発電機の出力が調整部を介さずに各インバータに入力されるように、発電機から各インバータまでの電力伝達経路を切り換える。このとき、発電機は、エンジンが第2回転状態である場合に所定範囲の電圧を出力する。調整部は、エンジンが第2回転状態である場合における発電機の出力電圧を、所定範囲の電圧へと変換する。
(5)
The road paving machine may further include a switching unit. The switching unit is configured such that when the engine is in the first rotation state, the output of the generator is input to each inverter via the adjustment unit, and when the engine is in the second rotation state, the output of the generator is The power transmission path from the generator to each inverter is switched so that it is input to each inverter without going through. At this time, the generator outputs a voltage within a predetermined range when the engine is in the second rotation state. The adjustment unit converts the output voltage of the generator when the engine is in the second rotation state into a voltage within a predetermined range.
 上記(5)の構成によれば、エンジンが第1回転状態である場合には発電機の出力電圧が調整部によって調整されるので、各インバータに適切な電圧を入力することができる。一方、エンジンが第2回転状態である場合には発電機は所定範囲の電圧を出力するので、発電機の出力電圧がそのまま各インバータに入力されることによって、各インバータに適切な電圧を入力することができる。つまり、上記(5)の構成によっても上記(1)~(4)の構成と同様、エンジンが第1回転状態である場合と第2回転状態である場合との両方の場合において、各インバータに適切な電圧を入力することができる。また、上記(5)の構成によれば、エンジンが高回転状態である場合における出力電圧に調整部が対応しなくてもよいので、調整部をより簡易な構成とすることができる。 According to the configuration of (5) above, since the output voltage of the generator is adjusted by the adjustment unit when the engine is in the first rotation state, an appropriate voltage can be input to each inverter. On the other hand, since the generator outputs a voltage within a predetermined range when the engine is in the second rotation state, an appropriate voltage is input to each inverter by inputting the output voltage of the generator as it is to each inverter. be able to. That is, in the case of both the case where the engine is in the first rotation state and the case where the engine is in the second rotation state, the inverter of each inverter in the case of the configuration of the above (5) as well as the configurations of (1) to (4). An appropriate voltage can be input. Further, according to the configuration of (5) above, the adjustment unit does not have to correspond to the output voltage when the engine is in a high rotation state, so that the adjustment unit can be configured more simply.
 (6)
 発電機から出力される交流電気を直流電気に変換する整流部をさらに備え、
 切換部は、直流電気の電力伝達経路を切り換え、
 調整部は、直流電気の電圧を所定範囲内の電圧に昇圧する昇圧装置を含む、請求項5に記載の道路舗装機械。
(6)
A rectifier that converts alternating current electricity output from the generator into direct current electricity;
The switching unit switches the power transmission path of DC electricity,
The road paving machine according to claim 5, wherein the adjustment unit includes a booster that boosts the voltage of DC electricity to a voltage within a predetermined range.
 上記(6)の構成によれば、発電機の出力電圧が昇圧装置によって昇圧されて各インバータに入力されるので、各インバータに適切な電圧を入力することができる。
また、上記(6)の構成によれば、上記(3)の構成に比べて調整部をより簡易な構成とすることができる。また、上記(3)の構成と同様、交流電圧を変換する場合に比べて、より精度良く電圧調整を行うことができる。
According to the configuration of (6) above, the output voltage of the generator is boosted by the booster and input to each inverter, so that an appropriate voltage can be input to each inverter.
Moreover, according to the configuration of (6) above, the adjustment unit can be made simpler than the configuration of (3) above. Further, similarly to the configuration of (3) above, voltage adjustment can be performed with higher accuracy than in the case of converting an AC voltage.
 (7)
 調整部は、発電機から出力される交流電気を変圧する変圧器を含んでいてもよい。
(7)
The adjustment unit may include a transformer that transforms AC electricity output from the generator.
 上記(7)の構成によれば、変圧器によって発電機の出力電圧を容易に調整することができる。 According to the configuration of (7) above, the output voltage of the generator can be easily adjusted by the transformer.
 (8)
 道路舗装機械は、発電機の出力電圧に基づいて発電機の界磁電流を制御する自動電圧調整器をさらに備えていてもよい。
(8)
The road paving machine may further include an automatic voltage regulator that controls the field current of the generator based on the output voltage of the generator.
 上記(8)の構成によれば、発電機の出力電圧は、変圧器だけでなく自動電圧調整器によっても調整される。したがって、変圧器のみを用いる場合に比べてより精度良く出力電圧を調整することができる。 According to the configuration of (8) above, the output voltage of the generator is adjusted not only by the transformer but also by an automatic voltage regulator. Therefore, the output voltage can be adjusted with higher accuracy than when only the transformer is used.
 (9)
 道路舗装機械は、加熱装置と、制御装置とをさらに備えていてもよい。加熱装置は、発電機による電力によってスクリードを加熱する。制御装置は、各インバータおよび加熱装置の動作を制御する。発電機は、発電特性が異なる第1のモードと第2のモードとの間で切り換えが可能である。ここで、第1のモードは、エンジンが第1の回転数である場合における発電電力が第2のモードよりも大きくなるモードである。第2のモードは、エンジンが第1の回転数よりも低い第2の回転数である場合における発電電力が第1のモードよりも大きくなるモードである。
(9)
The road paving machine may further include a heating device and a control device. The heating device heats the screed by the electric power generated by the generator. The control device controls the operation of each inverter and heating device. The generator can be switched between a first mode and a second mode having different power generation characteristics. Here, the first mode is a mode in which the generated power when the engine is at the first rotation speed is larger than that in the second mode. The second mode is a mode in which the generated power is larger than that in the first mode when the engine has a second rotation speed lower than the first rotation speed.
 なお、発電機は、エンジンが第1の回転数である場合に所定の第1電力を出力し、第1の回転数よりも低い第2の回転数である場合に第2電力を出力可能な第1のモードと、エンジンが第2の回転数である場合に第2電力よりも大きい第3電力を出力可能な第2のモードとの間で切り換えが可能であってもよい。ここで、「第1のモード」および「第2のモード」とは、発電機の性質(特性)を特定するものであり、発電機の実際の動作を特定するものではない。つまり、発電機は、第1のモードに設定された場合に、第2の回転数で第2電力を出力することが「可能」であればよく、実際には第2の回転数で第2電力が出力されることがないように動作するものであってもよい。換言すれば、発電機は、後述する実施形態のように、第2の回転数では常に第2のモードに設定される結果、第1のモードにおいて第2電力を出力することがないように制御されてもよい。 The generator can output predetermined first power when the engine is at the first rotation speed, and can output second power when the engine is at a second rotation speed lower than the first rotation speed. It may be possible to switch between the first mode and the second mode in which the third power larger than the second power can be output when the engine is at the second rotation speed. Here, the “first mode” and the “second mode” specify the property (characteristic) of the generator, and do not specify the actual operation of the generator. That is, when the generator is set to the first mode, it is only necessary that the generator can output the second electric power at the second rotational speed, and actually the second electric power at the second rotational speed is the second. It may operate so that power is not output. In other words, the generator is controlled so as not to output the second power in the first mode as a result of being always set to the second mode at the second rotational speed as in the embodiment described later. May be.
 また、上記において、第1のモードにおける第2電力の値は0であってもよい。つまり、第1のモードは、第2の回転数である場合に発電を行えなくてもよい。換言すれば、発電機は、エンジンの高速回転時の第1の回転数で発電可能な第1の発電特性と、エンジンの低速回転時の第2の回転数で発電可能であり、かつ、第2の回転数時における発電電力が第1の発電特性よりも大きい第2の発電特性との間で切り換え可能であってもよい。 In the above, the value of the second power in the first mode may be zero. That is, in the first mode, it is not necessary to generate power when the rotation speed is the second. In other words, the generator is capable of generating power at the first power generation characteristic capable of generating power at the first rotational speed at the time of high-speed rotation of the engine, and at the second rotational speed at the time of low-speed rotation of the engine, and It may be possible to switch between the second power generation characteristic in which the generated power at the rotation speed of 2 is larger than the first power generation characteristic.
 上記(9)の構成によれば、発電機は、異なる回転数に対して適応する2つのモードを切り換えることが可能であるので、エンジンの回転数に応じてモードを切り換えることによって、発電効率を向上することができ、より省エネルギー化を図ることができる。 According to the configuration of (9) above, the generator can switch between two modes that are adapted to different rotational speeds. Therefore, by changing the mode according to the rotational speed of the engine, the power generation efficiency can be improved. It is possible to improve the energy saving.
 (10)
 発電機は、第1のモードにおいてコイルの巻き数が相対的に少なくなり、第2のモードにおいてコイルの巻き数が相対的に多くなるように構成された発電機を含んでいてもよい。
(10)
The generator may include a generator configured such that the number of coil turns is relatively small in the first mode and the number of coil turns is relatively large in the second mode.
 上記(10)の構成によれば、コイルの巻き数を変化させることによって、発電機の発電特性(モード)を容易に切り換えることができる。 According to the configuration of (10) above, the power generation characteristics (mode) of the generator can be easily switched by changing the number of turns of the coil.
 (11)
 発電機は、第2のモードにおいて、第3電力として、加熱装置の作動に必要な電力を少なくとも出力するものであってもよい。
(11)
In the second mode, the generator may output at least power necessary for the operation of the heating device as the third power.
 上記(11)の構成によれば、エンジンが低回転状態である場合においても加熱装置を作動させることができる。ここで、道路舗装機械に関しては、実際の使用態様として、舗装施工の準備時において加熱装置を作動させておく使用態様が考えられる。上記(3)の構成によれば、このような使用態様で使用する場合に、エンジンを低回転状態にしておくことができる。つまり、舗装施工の準備時においてはエンジンを低回転状態とすることで、省エネルギー化を図ることができるとともに、舗装施工の準備時における騒音を低減することができる。 According to the configuration of (11) above, the heating device can be operated even when the engine is in a low rotation state. Here, regarding the road pavement machine, as an actual usage mode, a usage mode in which the heating device is operated at the time of preparation for pavement construction can be considered. According to the configuration of (3) above, the engine can be kept in a low rotation state when used in such a usage mode. That is, at the time of preparation for pavement construction, it is possible to save energy by setting the engine to a low rotation state, and it is possible to reduce noise during preparation for pavement construction.
 (12)
 道路舗装機械は、エンジンの回転数を検出する検出部をさらに備えていてもよい。このとき、制御装置は、検出部の検出結果に応じて第1のモードと第2のモードとを切り換える。
(12)
The road paving machine may further include a detection unit that detects the rotational speed of the engine. At this time, the control device switches between the first mode and the second mode according to the detection result of the detection unit.
 上記(12)の構成によれば、エンジンが高回転状態であるか低回転状態であるかに応じて発電機のモードが自動的に切り換えられる。これによれば、ユーザ(オペレータ)が発電機のモードを手動で操作する必要がなく、操作を容易にすることができるとともに、エンジンの回転数に合わせた最適なモードで発電を行うことができる。 According to the configuration of (12) above, the generator mode is automatically switched according to whether the engine is in a high rotation state or a low rotation state. According to this, it is not necessary for the user (operator) to manually operate the mode of the generator, the operation can be facilitated, and power generation can be performed in an optimal mode according to the engine speed. .
 (13)
 制御装置は、各モータおよび加熱装置の総消費電力が、発電機の発電電力を超えないように、各モータおよび加熱装置の動作を制御してもよい。
(13)
The control device may control the operation of each motor and the heating device so that the total power consumption of each motor and the heating device does not exceed the generated power of the generator.
 上記(13)の構成によれば、各モータおよび加熱装置は、発電機による発電量を超えないように動作が制御される。したがって、発電機に過大な負荷がかかることを防止することができ、各アクチュエータを安定的に動作させることができる。 According to the configuration of (13) above, the operation of each motor and heating device is controlled so as not to exceed the amount of power generated by the generator. Therefore, it is possible to prevent an excessive load from being applied to the generator, and it is possible to stably operate each actuator.
 (14)
 制御装置は、各モータおよび加熱装置のうちいずれか2つ以上を起動する場合、起動開始のタイミングをずらして各モータおよび加熱装置を起動してもよい。
(14)
When starting any two or more of the motors and the heating devices, the control device may start the motors and the heating devices with different start timings.
 上記(14)の構成によれば、起動開始のタイミングをずらすことによって、アクチュエータの起動時に消費電力が一時的に大きくなったとしても、複数のアクチュエータの消費電力を時間的に分散させることができる。そのため、総消費電力が発電機の電力を超えることを容易に防止することができる。 According to the configuration of (14) above, the power consumption of a plurality of actuators can be dispersed in time even if the power consumption temporarily increases at the time of actuator activation by shifting the timing of starting activation. . Therefore, it is possible to easily prevent the total power consumption from exceeding the power of the generator.
 (15)
 制御装置は、各モータの少なくとも1つを起動する場合、加熱装置に対する電力供給を一時的に停止または減少させてもよい。
(15)
The control device may temporarily stop or reduce the power supply to the heating device when starting at least one of the motors.
 上記(15)の構成によれば、モータを起動する間は加熱装置による加熱が一時的に停止される。これによれば、モータを起動する際に総消費電力が発電機の電力を超えることをより確実に防止することができる。 According to the configuration of (15) above, heating by the heating device is temporarily stopped while the motor is started. According to this, when starting a motor, it can prevent more reliably that total power consumption exceeds the electric power of a generator.
 (16)
 制御装置は、各モータおよび加熱装置の総消費電力を算出し、総消費電力が所定値以上である場合、各モータおよび加熱装置のうちの少なくとも1つに供給する電力を停止または減少させてもよい。
(16)
The control device calculates the total power consumption of each motor and heating device, and when the total power consumption is equal to or greater than a predetermined value, the power supplied to at least one of each motor and heating device may be stopped or reduced. Good.
 上記(16)の構成によれば、所定値を適切に設定することにより、各モータおよび加熱装置の総消費電力が発電機の発電電力を超えることを確実に防止することができる。 According to the configuration of (16) above, it is possible to reliably prevent the total power consumption of each motor and heating device from exceeding the power generated by the generator by appropriately setting the predetermined value.
 (17)
 道路舗装機械は、スクリードを振動させるためのバイブレータと、発電機による電力によってバイブレータを駆動するバイブレータ用モータとをさらに備えていてもよい。
(17)
The road pavement machine may further include a vibrator for vibrating the screed and a vibrator motor that drives the vibrator with electric power from a generator.
 上記(17)の構成によれば、バイブレータを電気駆動するので、油圧駆動する場合に比べてよりエネルギー効率をより向上することができる。また、バイブレータを電気的に制御するので、バイブレータの振動数をより精度良く制御することができる。さらに、バイブレータへの油圧配管が不要となるので、スクリードの機構を簡易化することができる。 According to the configuration of (17) above, since the vibrator is electrically driven, the energy efficiency can be further improved as compared with the case of hydraulic driving. Further, since the vibrator is electrically controlled, the vibration frequency of the vibrator can be controlled with higher accuracy. Furthermore, since the hydraulic piping to the vibrator becomes unnecessary, the screed mechanism can be simplified.
 (18)
 道路舗装機械は、外部電力を得るための電源端子をさらに備えていてもよい。このとき、制御装置は、発電機からの電力と電源端子からの電力とを切り換え可能である。
(18)
The road paving machine may further include a power supply terminal for obtaining external power. At this time, the control device can switch between power from the generator and power from the power supply terminal.
 上記(18)の構成によれば、外部電力によって各アクチュエータおよび加熱装置を駆動することができる。外部電源を用いる場合には、エンジンによって発電機で発電を行う場合に比べて(一般的に)電気変換効率も良く、二酸化炭素排出量も削減できる。したがって、外部電源に接続可能な状況(例えば、道路舗装機械の停止中)には、外部電源から供給される電力を用いるようにすれば、より省エネルギー化を図ることができるとともに、二酸化炭素の排出をより削減することができる。 According to the configuration of (18) above, each actuator and heating device can be driven by external power. When an external power source is used, compared with the case where power is generated by a generator by an engine (generally), electric conversion efficiency is good and carbon dioxide emissions can be reduced. Therefore, in a situation where it can be connected to an external power source (for example, when the road paving machine is stopped), it is possible to save energy and to discharge carbon dioxide by using the power supplied from the external power source. Can be further reduced.
 (19)
 また、本発明は、走行機構、コンベヤ、スクリュー、およびスクリードの各機構を有し、アスファルト道路を舗装する道路舗装機械であってもよい。この道路舗装機械は、エンジンと、発電機と、複数のモータと、加熱装置と、制御装置とを備える。発電機は、エンジンの駆動によって発電を行う。各モータは、各機構を発電機による電力によってそれぞれ駆動する。加熱装置は、発電機による電力によってスクリードを加熱する。制御装置は、各インバータおよび加熱装置の動作を制御する。制御装置は、各モータおよび加熱装置の総消費電力が、発電機の発電電力を超えないように、各モータおよび加熱装置の動作を制御する。
(19)
Further, the present invention may be a road paving machine having a traveling mechanism, a conveyor, a screw, and a screed mechanism and paving an asphalt road. The road paving machine includes an engine, a generator, a plurality of motors, a heating device, and a control device. The generator generates electricity by driving the engine. Each motor drives each mechanism with electric power from a generator. The heating device heats the screed by the electric power generated by the generator. The control device controls the operation of each inverter and heating device. The control device controls the operation of each motor and heating device so that the total power consumption of each motor and heating device does not exceed the power generated by the generator.
 上記(19)の構成によれば、上記(1)の構成と同様、道路舗装機械は、走行機構、コンベヤ、およびスクリューといった各機構を電気的に駆動することができる。したがって、各機構を油圧によって駆動する従来方式に比べ、省エネルギー化を図ることができるとともに、二酸化炭素の排出量を減少させることができる。さらに、上記(19)の構成によれば、各モータおよび加熱装置は、発電機による発電量を超えないように動作が制御される。したがって、発電機に過大な負荷がかかることを防止することができ、各アクチュエータを安定的に動作させることができる。 According to the configuration of (19) above, the road paving machine can electrically drive each mechanism such as a traveling mechanism, a conveyor, and a screw, as in the configuration of (1) above. Therefore, energy saving can be achieved and the amount of carbon dioxide emission can be reduced as compared with the conventional method in which each mechanism is driven by hydraulic pressure. Furthermore, according to the configuration of (19), the operation of each motor and heating device is controlled so as not to exceed the amount of power generated by the generator. Therefore, it is possible to prevent an excessive load from being applied to the generator, and it is possible to stably operate each actuator.
 本発明によれば、主要アクチュエータと加熱装置とを電気的に駆動することによって、省エネルギー化を図り、二酸化炭素の排出量を減少させることができる。また、本発明によれば、異なる回転数に対して適応する2つのモードを切り換えることが可能な発電機を用いることによって、発電効率を向上することができ、より省エネルギー化を図ることができる。 According to the present invention, the main actuator and the heating device are electrically driven to save energy and to reduce carbon dioxide emission. Further, according to the present invention, by using a generator capable of switching between two modes adapted to different rotational speeds, the power generation efficiency can be improved, and further energy saving can be achieved.
本実施形態に係るアスファルトフィニッシャの機器構成図Equipment configuration diagram of asphalt finisher according to this embodiment 本実施形態に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electric constitution of the asphalt finisher which concerns on this embodiment インバータを用いる場合と用いない場合とにおけるモータ起動時の電流の違いを説明する図The figure explaining the difference of the current at the time of motor starting with and without the inverter 図2に示す発電機の内部電気配線を示す図The figure which shows the internal electrical wiring of the generator shown in FIG. 図2に示すコントローラ25における処理の流れを示すフローチャートThe flowchart which shows the flow of a process in the controller 25 shown in FIG. 図5に示すステップS4の詳細な処理を示すサブフローチャートSub-flowchart showing the detailed processing of step S4 shown in FIG. 図5に示すステップS6の詳細な処理を示すサブフローチャートSub-flowchart showing detailed processing of step S6 shown in FIG. 図5に示すステップS21の詳細な処理を示すサブフローチャートSub-flowchart showing the detailed processing of step S21 shown in FIG. 複数の制御対象装置を起動する場合における消費電力を示す図The figure which shows the power consumption in the case of starting a some control object apparatus 第1の変形例に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electric constitution of the asphalt finisher which concerns on a 1st modification. 第2の変形例に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electrical structure of the asphalt finisher which concerns on a 2nd modification. 第3の変形例に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electric constitution of the asphalt finisher which concerns on a 3rd modification. 第4の変形例に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electric constitution of the asphalt finisher which concerns on a 4th modification 第5の変形例に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electric constitution of the asphalt finisher which concerns on a 5th modification 第6の変形例に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electric constitution of the asphalt finisher which concerns on a 6th modification 第7の変形例に係るアスファルトフィニッシャの電気的な構成を示す図The figure which shows the electric constitution of the asphalt finisher which concerns on a 7th modification 従来のアスファルトフィニッシャの構成を示す図Diagram showing the structure of a conventional asphalt finisher
 以下、本発明の一実施形態に係るアスファルトフィニッシャについて図面を参照して説明する。図1は、本実施形態に係るアスファルトフィニッシャの機器構成図である。本実施形態に係るアスファルトフィニッシャ1は、主要なアクチュエータ(走行機構、コンベヤ、スクリュー)を電気的に駆動するとともにスクリードの加熱を電気的に行うことによって、エネルギー消費を低減し、かつ、安全性を高めることができるものである。 Hereinafter, an asphalt finisher according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an equipment configuration diagram of an asphalt finisher according to the present embodiment. The asphalt finisher 1 according to the present embodiment reduces energy consumption and safety by electrically driving main actuators (traveling mechanism, conveyor, screw) and electrically heating the screed. It can be raised.
 (本実施形態に係るアスファルトフィニッシャの外観構成)
 まず、本実施形態に係るアスファルトフィニッシャの外観構成について説明する。図1において、アスファルトフィニッシャ1は、車体2と、スクリード11とを備えている。車体2は、ホッパ3、前輪4、後輪5、コンベヤ6、ならびにスクリュー7を有している。前輪4および後輪5は、アスファルトフィニッシャ1の走行機構であり、前輪4が操向輪であり後輪5が駆動輪である。ホッパ3は、車体2の前部(図1では左側)に設けられ、供給側(ダンプカー等)からアスファルト合材を受け入れるためのものである。コンベヤ6は、ホッパ3の下側から車体2の後部まで設けられ、ホッパ3で受けたアスファルト合材を後方へ搬送する。スクリュー7は、コンベヤ6で搬送されてきたアスファルト合材を左右方向へ拡幅しつつ路面に拡散する。これらの部材3~7は、従来のアスファルトフィニッシャと同じであってもよい。
(External structure of asphalt finisher according to this embodiment)
First, the external configuration of the asphalt finisher according to the present embodiment will be described. In FIG. 1, the asphalt finisher 1 includes a vehicle body 2 and a screed 11. The vehicle body 2 includes a hopper 3, a front wheel 4, a rear wheel 5, a conveyor 6, and a screw 7. The front wheels 4 and the rear wheels 5 are traveling mechanisms of the asphalt finisher 1, the front wheels 4 are steering wheels, and the rear wheels 5 are drive wheels. The hopper 3 is provided in the front part (left side in FIG. 1) of the vehicle body 2 and receives asphalt mixture from the supply side (dump truck or the like). The conveyor 6 is provided from the lower side of the hopper 3 to the rear part of the vehicle body 2 and conveys the asphalt mixture received by the hopper 3 to the rear. The screw 7 diffuses the asphalt mixture conveyed by the conveyor 6 to the road surface while widening in the left-right direction. These members 3 to 7 may be the same as the conventional asphalt finisher.
 スクリード11は、レベリングアーム8によって車体2と上下可動に連結される。スクリード11は、加熱装置12およびバイブレータ13を有している。加熱装置12は、スクリード11の下面(スクリードプレート)を加熱する。本実施形態において、加熱装置12は、典型的には電熱ヒーターであり、電力によって加熱する加熱手段である。バイブレータ13はスクリード11を振動させる。 The screed 11 is connected to the vehicle body 2 by a leveling arm 8 so as to be movable up and down. The screed 11 has a heating device 12 and a vibrator 13. The heating device 12 heats the lower surface (screed plate) of the screed 11. In the present embodiment, the heating device 12 is typically an electric heater, which is a heating unit that heats with electric power. The vibrator 13 vibrates the screed 11.
 以上の構成により、アスファルトフィニッシャ1は、ホッパ3に供給されたアスファルト合材をコンベヤ6を介して後方のスクリュー7から路面に拡散し、拡散されたアスファルト合材をスクリード11によって均一平坦に転圧して舗装する。 With the above configuration, the asphalt finisher 1 diffuses the asphalt mixture supplied to the hopper 3 from the rear screw 7 to the road surface via the conveyor 6, and rolls the diffused asphalt mixture uniformly and flatly by the screed 11. Paving.
 なお、図1に示す構成は一例であり、本発明は、走行機構、コンベヤ、およびスクリューからなる主要アクチュエータと加熱装置とを備える任意の道路舗装機械に適用可能である。例えば、走行機構はホイール式でなくクローラ式であってもよいし、上記主要アクチュエータ以外の他のアクチュエータを備えていてもよい。 The configuration shown in FIG. 1 is an example, and the present invention can be applied to any road paving machine including a main mechanism and a heating device including a traveling mechanism, a conveyor, and a screw. For example, the traveling mechanism may be a crawler type instead of a wheel type, and may include an actuator other than the main actuator.
 (アスファルトフィニッシャの内部構成)
 次に、図2~図4を参照して、本実施形態に係るアスファルトフィニッシャの内部構成について説明する。図2は、本実施形態に係るアスファルトフィニッシャの電気的な構成を示す図である。図2に示すように、アスファルトフィニッシャ1は、エンジン21、発電機22、操作パネル23、制御ボックス24、各モータ30~32b、および、デファレンシャルギア33を備えている。
(Internal structure of asphalt finisher)
Next, the internal configuration of the asphalt finisher according to the present embodiment will be described with reference to FIGS. FIG. 2 is a diagram illustrating an electrical configuration of the asphalt finisher according to the present embodiment. As shown in FIG. 2, the asphalt finisher 1 includes an engine 21, a generator 22, an operation panel 23, a control box 24, motors 30 to 32 b, and a differential gear 33.
 動力源であるエンジン21は、発電機22に機械的に接続されており、発電機22を回転駆動する。エンジン21は典型的にはディーゼルエンジンであり、本実施形態では、図示しないエンジン制御装置によって高回転状態または低回転状態で駆動される。高回転状態とは、エンジン21が定格回転数からハイアイドル(燃料供給量を設定される最大値とし、かつ、負荷をかけない状態)時の回転数までの範囲付近の回転数で駆動する状態である。低回転状態とは、エンジン21がローアイドル時の回転数(エンジン21を安定的に駆動できる最小の回転数)付近の回転数で駆動する状態である。ここでは、高回転状態におけるエンジン21の(単位時間当たりの)回転数を第1の回転数と呼び、低回転状態におけるエンジン21の回転数を第2の回転数と呼ぶ。 The engine 21 as a power source is mechanically connected to the generator 22 and rotates the generator 22. The engine 21 is typically a diesel engine. In this embodiment, the engine 21 is driven in a high rotation state or a low rotation state by an engine control device (not shown). The high rotation state is a state in which the engine 21 is driven at a rotation speed in the vicinity of the rotation speed from the rated rotation speed to the rotation speed at high idle (maximum fuel supply amount is set and no load is applied). It is. The low rotation state is a state in which the engine 21 is driven at a rotation speed near the rotation speed at the time of low idle (the minimum rotation speed at which the engine 21 can be stably driven). Here, the rotation speed (per unit time) of the engine 21 in the high rotation state is referred to as a first rotation speed, and the rotation speed of the engine 21 in the low rotation state is referred to as a second rotation speed.
 発電機22は、エンジン21の駆動によって発電を行う。本実施形態では、発電機22は三相交流同期発電機である場合を例として説明するが、発電機22の種類はどのようなものであってもよい。発電機22は制御ボックス24に接続されており、発電機22による三相交流電気出力は制御ボックス24に入力される。 The generator 22 generates power by driving the engine 21. In this embodiment, the case where the generator 22 is a three-phase AC synchronous generator will be described as an example, but the type of the generator 22 may be any type. The generator 22 is connected to the control box 24, and the three-phase AC electrical output from the generator 22 is input to the control box 24.
 また、本実施形態では、発電機22は、エンジン21が高回転状態である場合に適応する第1のモードと、エンジン21が低回転状態である場合に適応する第2のモードという、発電特性が異なる2つのモードで発電可能である。発電機22が2つのモードを切り換えるための具体的な構成については後述する(図4参照)。また、2つのモードの切り換えは制御ボックス24からの指令に基づいて行われるものとする。 Further, in the present embodiment, the generator 22 has a power generation characteristic of a first mode adapted when the engine 21 is in a high rotation state and a second mode adapted when the engine 21 is in a low rotation state. Can generate power in two different modes. A specific configuration for the generator 22 to switch between the two modes will be described later (see FIG. 4). In addition, switching between the two modes is performed based on a command from the control box 24.
 操作パネル23は、ユーザ(オペレータ)の入力手段であり、各制御対象装置(各アクチュエータ5~7および加熱装置12)の駆動のオン/オフ、および、各制御対象装置の駆動状態(例えばコンベヤ6の搬送速度や、スクリュー7の回転速度または/およびトルク等)等に対する操作指示を受け付ける。本実施形態では、操作パネル23は、少なくとも次の操作指示を入力可能である。
・切換指示:エンジンの高回転状態と低回転状態とを切り換える指示である。
・個別起動指示:各アクチュエータを個別に起動する指示である
・加熱指示:加熱装置12による加熱を開始する指示である。
・複数起動指示:複数の制御対象装置を一度に起動する指示である。ユーザ(オペレータ)の操作の手間を軽減する目的等のために設けられる。
・変更指示:各制御対象装置の駆動状態を変更する指示である。
 操作パネル23は制御ボックス24に接続されており、操作パネル23に対して入力された操作指示を表す信号は制御ボックス24に入力される。
The operation panel 23 is an input means for a user (operator), and on / off of driving of each control target device (actuators 5 to 7 and heating device 12) and a driving state of each control target device (for example, the conveyor 6). And the like, and the like, and the like. In the present embodiment, the operation panel 23 can input at least the next operation instruction.
Switching instruction: An instruction to switch between a high rotation state and a low rotation state of the engine.
Individual start instruction: an instruction to start each actuator individually. Heating instruction: an instruction to start heating by the heating device 12.
Multiple activation instruction: An instruction to activate a plurality of control target devices at once. It is provided for the purpose of reducing the effort of the user (operator) operation.
Change instruction: An instruction to change the driving state of each control target device.
The operation panel 23 is connected to the control box 24, and a signal representing an operation instruction input to the operation panel 23 is input to the control box 24.
 制御ボックス24は、各モータ30~32bおよび加熱装置12に接続されており、各モータ30~32bと加熱装置12の動作を制御する。図2に示すように、制御ボックス24は、コントローラ25、走行用インバータ(図2では、インバータ(AC Drive)を“AC-D”と略記する。以下同様。)26、右コンベヤ用インバータ27a、左コンベヤ用インバータ27b、右スクリュー用インバータ28a、左スクリュー用インバータ28b、および電力調整器29を有している。 The control box 24 is connected to the motors 30 to 32b and the heating device 12, and controls the operations of the motors 30 to 32b and the heating device 12. As shown in FIG. 2, the control box 24 includes a controller 25, a traveling inverter (in FIG. 2, the inverter (AC Drive) is abbreviated as “AC-D”, the same shall apply hereinafter) 26, a right conveyor inverter 27a, It has a left conveyor inverter 27 b, a right screw inverter 28 a, a left screw inverter 28 b, and a power regulator 29.
 コントローラ25は、操作パネル23および各インバータ26~28bおよび電力調整器29に接続される。コントローラ25は、操作パネル23からの操作指示等に基づいて、各インバータ26~28bおよび電力調整器29を制御する。また、コントローラ25は発電機22に接続されており、発電機22に対してモードの切り換え指示を出力する。なお、コントローラ25は、典型的には、CPU等の情報処理手段とメモリ等の記憶手段とを含むシーケンサであり、プログラムによって動作を行うものである。ただし、コントローラ25はリレー回路等を用いた専用回路によって実現されてもよい。 The controller 25 is connected to the operation panel 23, the inverters 26 to 28b, and the power regulator 29. The controller 25 controls each of the inverters 26 to 28b and the power regulator 29 based on an operation instruction from the operation panel 23 or the like. The controller 25 is connected to the generator 22 and outputs a mode switching instruction to the generator 22. The controller 25 is typically a sequencer including information processing means such as a CPU and storage means such as a memory, and operates according to a program. However, the controller 25 may be realized by a dedicated circuit using a relay circuit or the like.
 各インバータ26~28bは、発電機22に接続され、発電機22から供給される三相交流の電力を所望の周波数に変換して出力することで、各モータ30~32bをそれぞれ駆動する。各インバータ26~28bから出力される交流電気の周波数(あるいは電力)は、コントローラ25の制御指示に従って調整される。つまり、各インバータ26~28bは、コントローラ25の制御指示に従って各モータ30~32bをそれぞれ駆動する。 The inverters 26 to 28b are connected to the generator 22, and drive the motors 30 to 32b by converting the three-phase AC power supplied from the generator 22 into a desired frequency and outputting the same. The frequency (or power) of AC electricity output from each of the inverters 26 to 28b is adjusted according to the control instruction of the controller 25. That is, each of the inverters 26 to 28b drives each of the motors 30 to 32b in accordance with a control instruction from the controller 25.
 具体的には、走行用インバータ26は、走行用モータ30に接続され、走行用モータ30を駆動する。走行用モータ30は、デファレンシャルギア33を経由して右後輪5aおよび後輪5bを駆動する。 Specifically, the traveling inverter 26 is connected to the traveling motor 30 and drives the traveling motor 30. The traveling motor 30 drives the right rear wheel 5 a and the rear wheel 5 b via the differential gear 33.
 また、右コンベヤ用インバータ27aは、右コンベヤ用モータ31aに接続され、右コンベヤ用モータ31aを駆動する。右コンベヤ用モータ31aは、コンベヤ6のうちの右コンベヤ6aを駆動する。同様に、左コンベヤ用インバータ27bは、左コンベヤ用モータ31bに接続され、左コンベヤ用モータ31bを駆動する。左コンベヤ用モータ31bは、コンベヤ6のうちの左コンベヤ6bを駆動する。 Also, the right conveyor inverter 27a is connected to the right conveyor motor 31a and drives the right conveyor motor 31a. The right conveyor motor 31 a drives the right conveyor 6 a of the conveyors 6. Similarly, the left conveyor inverter 27b is connected to the left conveyor motor 31b and drives the left conveyor motor 31b. The left conveyor motor 31 b drives the left conveyor 6 b of the conveyor 6.
 また、右スクリュー用インバータ28aは、右スクリュー用モータ32aに接続され、右スクリュー用モータ32aを駆動する。右スクリュー用モータ32aは、スクリュー7のうちの右スクリュー7aを駆動する。同様に、左スクリュー用インバータ28bは、左スクリュー用モータ32bに接続され、左スクリュー用モータ32bを駆動する。左スクリュー用モータ32bは、スクリュー7のうちの左スクリュー7bを駆動する。 The right screw inverter 28a is connected to the right screw motor 32a and drives the right screw motor 32a. The right screw motor 32 a drives the right screw 7 a of the screws 7. Similarly, the left screw inverter 28b is connected to the left screw motor 32b and drives the left screw motor 32b. The left screw motor 32 b drives the left screw 7 b of the screws 7.
 図3は、インバータを用いる場合と用いない場合とにおけるモータ起動時の電流の違いを説明する図である。図3に示すグラフの縦軸は、定格電流に対して実際に流れる電流の割合を表し、横軸は時間を表す。図3に示すように、インバータを用いない場合、モータ起動時(インバータの出力周波数とモータの回転数とが一致するまでの加速中の期間。)において、定格電流の5倍程度の突入電流が流れる。一方、インバータを用いる場合、インバータ内におけるスイッチング素子等による制御によって、起動時における電流を定格電流の2倍程度に抑えることができる。 FIG. 3 is a diagram for explaining the difference in current when the motor is started when the inverter is used and when it is not used. The vertical axis of the graph shown in FIG. 3 represents the ratio of the current that actually flows relative to the rated current, and the horizontal axis represents time. As shown in FIG. 3, when the inverter is not used, an inrush current of about 5 times the rated current is generated at the time of motor start-up (a period during acceleration until the inverter output frequency and the motor rotation speed match). Flowing. On the other hand, when an inverter is used, the current at startup can be suppressed to about twice the rated current by control by a switching element or the like in the inverter.
 電力調整器29は、発電機22に接続され、発電機22から供給される三相交流の電力を調整して出力することで、加熱装置12の動作を制御する。電力調整器29は、加熱装置12へ供給する電力を、最大出力の0%~100%の間で連続的に変化させることが可能である。ここで、電力調整器29から出力される交流電気の電力(周波数)は、コントローラ25の制御指示に従って調整される。つまり、電力調整器29は、コントローラ25の制御指示に従って加熱装置12の動作を制御する。電力調整器29からの電力供給によって加熱装置12が発熱し、スクリード11(スクリードプレート)が加熱される。 The power regulator 29 is connected to the generator 22 and controls the operation of the heating device 12 by adjusting and outputting the three-phase AC power supplied from the generator 22. The power regulator 29 can continuously change the power supplied to the heating device 12 between 0% and 100% of the maximum output. Here, the power (frequency) of AC electricity output from the power regulator 29 is adjusted according to the control instruction of the controller 25. That is, the power regulator 29 controls the operation of the heating device 12 according to the control instruction of the controller 25. The heating device 12 generates heat by the power supply from the power regulator 29, and the screed 11 (screed plate) is heated.
 次に、発電機22の詳細な構成を説明する。図4は、図2に示す発電機の内部電気配線を示す図である。図4に示すように、発電機22は、三相コイル41、および第1~第3スイッチ42a~42cを有する。三相コイル41を構成する3つのコイルの一方端は互いに接続されており(Y結線されており)、他方端(出力端)から延びる三相のラインは、それぞれ第1スイッチ42aを介して制御ボックス24にそれぞれ接続されている。第1スイッチ42aは、3つのコイルの出力端と制御ボックス24との間を接続/切断する。また、3つのコイルの出力端は、当該出力端と第1スイッチ42aとの間において、第2スイッチ42bを介して互いに接続される。第2スイッチ42bは、3つのコイルの出力端を接続/切断する。また、3つのコイルの各中央部は、第3スイッチ42cを介して制御ボックス24にそれぞれ接続されている。第3スイッチ42cは、3つのコイルの上記中央部と制御ボックス24との間を接続/切断する。各スイッチ42a~42cは、コントローラ25に接続されており、コントローラ25からの切換指示に従って接続/切断を切り換える。詳細は後述するが、図4に示す構成により、発電機22は、各スイッチ42a~42cの切換によって三相コイル41の巻き数を変化させることができ、上述した第1のモードと第2のモードとを切り換えることができる。 Next, the detailed configuration of the generator 22 will be described. FIG. 4 is a diagram showing the internal electrical wiring of the generator shown in FIG. As shown in FIG. 4, the generator 22 includes a three-phase coil 41 and first to third switches 42a to 42c. One ends of the three coils constituting the three-phase coil 41 are connected to each other (Y-connected), and three-phase lines extending from the other end (output end) are controlled via the first switch 42a. Each is connected to a box 24. The first switch 42 a connects / disconnects between the output ends of the three coils and the control box 24. The output ends of the three coils are connected to each other via the second switch 42b between the output end and the first switch 42a. The second switch 42b connects / disconnects the output ends of the three coils. The central portions of the three coils are connected to the control box 24 via the third switch 42c. The third switch 42c connects / disconnects between the central portion of the three coils and the control box 24. Each of the switches 42a to 42c is connected to the controller 25 and switches connection / disconnection in accordance with a switching instruction from the controller 25. Although details will be described later, with the configuration shown in FIG. 4, the generator 22 can change the number of turns of the three-phase coil 41 by switching the switches 42a to 42c, and the first mode and the second mode described above can be changed. The mode can be switched.
 なお、図4に示す発電機22の内部配線は一例であり、他の実施形態においては、発電機22は、三相コイルの巻き数を変化させることができる構成であればどのような構成であってもよい。また、本実施形態では、発電機22のコイルの巻き数を変化させることで発電機22の発電特性を切り換えたが、発電特性を切り換える方法はこれに限らない。例えば、コイルの数を変化させたり、(電磁石を用いる場合)発電機の磁石の数や磁束を変化させたりすることで、発電特性を切り換えることも可能である。なお、発電機の構成を小型化することを鑑みれば、発電特性の切り換えは、本実施形態のように電気配線を切り換えることによって行われることが好ましい。 In addition, the internal wiring of the generator 22 shown in FIG. 4 is an example, and in other embodiments, the generator 22 has any configuration as long as the number of turns of the three-phase coil can be changed. There may be. In the present embodiment, the power generation characteristics of the generator 22 are switched by changing the number of turns of the coil of the generator 22, but the method of switching the power generation characteristics is not limited to this. For example, the power generation characteristics can be switched by changing the number of coils or changing the number of magnets and magnetic flux of the generator (when using an electromagnet). In view of downsizing the configuration of the generator, it is preferable to switch the power generation characteristics by switching the electrical wiring as in the present embodiment.
 (アスファルトフィニッシャの動作)
 次に、図5~図9を参照して、本実施形態に係るアスファルトフィニッシャの動作について説明する。図5は、図2に示すコントローラ25における処理の流れを示すフローチャートである。本実施形態では、コントローラ25は所定のプログラムを実行することによって図5に示す動作を行うものとするが、他の実施形態においては、コントローラ25は図5に示す処理を実行する専用回路によって実現されてもよい。コントローラ25は、アスファルトフィニッシャの動作中(エンジン21が駆動している間)、図5に示すステップS1~S11の一連の処理を繰り返し実行する。
(Operation of asphalt finisher)
Next, the operation of the asphalt finisher according to the present embodiment will be described with reference to FIGS. FIG. 5 is a flowchart showing the flow of processing in the controller 25 shown in FIG. In the present embodiment, the controller 25 performs the operation shown in FIG. 5 by executing a predetermined program. In other embodiments, the controller 25 is realized by a dedicated circuit that executes the process shown in FIG. May be. The controller 25 repeatedly executes a series of processes in steps S1 to S11 shown in FIG. 5 while the asphalt finisher is operating (while the engine 21 is being driven).
 まずステップS1において、コントローラ25は、エンジン21の回転数(高回転状態/低回転状態)が切り換えられたか否かを判定する。本実施形態では、ステップS1の判定は、ユーザによって上述の切換指示(エンジン21の高回転状態と低回転状態とを切り換える指示)が行われたか否かによって行われる。具体的には、コントローラ25は、操作パネル23からの操作指示の信号を入力し、切換指示が行われたか否かを判定する。例えば、操作パネル23には切換レバーが設けられており、切換指示はこの切換レバーを用いて行われる。ステップS1の判定結果が肯定である場合、ステップS2の処理が実行される。一方、ステップS1の判定結果が否定である場合、ステップS2の処理がスキップされてステップS3の処理が実行される。 First, in step S1, the controller 25 determines whether or not the rotation speed (high rotation state / low rotation state) of the engine 21 has been switched. In the present embodiment, the determination in step S <b> 1 is made based on whether or not the above-described switching instruction (instruction to switch the engine 21 between the high rotation state and the low rotation state) has been performed by the user. Specifically, the controller 25 inputs an operation instruction signal from the operation panel 23 and determines whether or not a switching instruction has been performed. For example, the operation panel 23 is provided with a switching lever, and a switching instruction is performed using this switching lever. If the determination result of step S1 is affirmative, the process of step S2 is executed. On the other hand, if the determination result of step S1 is negative, the process of step S2 is skipped and the process of step S3 is executed.
 ここで、操作パネル23に対して切換指示が行われた場合、エンジン制御装置(図示せず)はエンジン21の高回転状態と低回転状態とを切り換える。すなわち、切換レバーが高回転状態を表す側へ切り換えられた場合、エンジン制御装置は、上記第1の回転数となるようにエンジン21を制御する。また、切換レバーが低回転状態を表す側へ切り換えられた場合、エンジン制御装置は、上記第2の回転数(上記第1の回転数よりも低速である)となるようにエンジン21を制御する。したがって、切換指示が行われたか否かを判定する上記ステップS1の処理は、エンジン21が高回転状態であるか低回転状態であるかを検出するための処理であると言える。なお、他の実施形態においては、エンジン21の高回転状態と低回転状態とを切り換えは、所定の条件に応じて(例えば、各制御対象装置の総消費電力が所定値を上回ったことに応じて)自動的に行われてもよい。 Here, when a switching instruction is given to the operation panel 23, an engine control device (not shown) switches between a high rotation state and a low rotation state of the engine 21. That is, when the switching lever is switched to the side representing the high rotation state, the engine control device controls the engine 21 so as to achieve the first rotation speed. Further, when the switching lever is switched to the side representing the low rotation state, the engine control device controls the engine 21 so as to be the second rotation speed (slower than the first rotation speed). . Therefore, it can be said that the process of step S1 for determining whether or not a switching instruction is performed is a process for detecting whether the engine 21 is in a high rotation state or a low rotation state. In other embodiments, switching between the high rotation state and the low rotation state of the engine 21 is performed according to a predetermined condition (for example, when the total power consumption of each control target device exceeds a predetermined value). It may be done automatically.
 なお、上記ステップS1では、エンジン21が高回転状態であるか低回転状態であるかを検出するために、コントローラ25は、上記切換指示が行われたか否かを判定した。ここで、他の実施形態においては、エンジン21が高回転状態であるか低回転状態であるかを検出する方法は、他の方法であってもよい。例えば他の実施形態においては、コントローラ25は、エンジン21あるいは発電機22の回転数を検出し、検出した回転数に基づいて、エンジン21が高回転状態であるか低回転状態であるかを判断してもよい。 In step S1, in order to detect whether the engine 21 is in a high rotation state or a low rotation state, the controller 25 determines whether or not the switching instruction has been performed. Here, in another embodiment, the method for detecting whether the engine 21 is in a high rotation state or a low rotation state may be another method. For example, in another embodiment, the controller 25 detects the rotation speed of the engine 21 or the generator 22 and determines whether the engine 21 is in a high rotation state or a low rotation state based on the detected rotation speed. May be.
 ステップS2において、コントローラ25は、発電機22のモードを切り換える。すなわち、コントローラ25は、発電機22内の各スイッチ42a~42cを制御し、三相コイル41の巻き数を変化させる。具体的には、エンジン21が高回転状態へと切り換えられた場合、第1スイッチ42aは切断され、第2スイッチ42bは接続され、第3スイッチ42cは接続される。これによって、三相コイル41は、3つのコイルがそれぞれ中央部で分割され、分割された2つのコイルが並列接続されることになる。つまり、三相コイル41の巻き数は実質的に半分になる。一方、エンジン21が低回転状態へと切り換えられた場合、第1スイッチ42aは接続され、第2スイッチ42bは切断され、第3スイッチ42cは切断される。この場合、高回転状態において分割されていた2つのコイルが直列に接続されることになるので、三相コイル41の巻き数は(低回転状態に比べて)2倍になる。なお、本実施形態では、高回転状態においてコイルの巻き数が半分になるようにしたが、高回転状態と低回転状態との間におけるコイルの巻き数の変化量は、これに限らない。高回転状態と低回転状態の各状態における巻き数は、各状態におけるエンジン21の回転速度や、各状態において必要と想定される電力量等を考慮して、適宜設定される。 In step S2, the controller 25 switches the mode of the generator 22. That is, the controller 25 controls the switches 42 a to 42 c in the generator 22 to change the number of turns of the three-phase coil 41. Specifically, when the engine 21 is switched to a high rotation state, the first switch 42a is disconnected, the second switch 42b is connected, and the third switch 42c is connected. Accordingly, in the three-phase coil 41, three coils are divided at the center, and the two divided coils are connected in parallel. That is, the number of turns of the three-phase coil 41 is substantially halved. On the other hand, when the engine 21 is switched to the low rotation state, the first switch 42a is connected, the second switch 42b is disconnected, and the third switch 42c is disconnected. In this case, since the two coils divided in the high rotation state are connected in series, the number of turns of the three-phase coil 41 is doubled (compared to the low rotation state). In the present embodiment, the number of turns of the coil is halved in the high rotation state, but the amount of change in the number of turns of the coil between the high rotation state and the low rotation state is not limited to this. The number of turns in each state of the high rotation state and the low rotation state is appropriately set in consideration of the rotation speed of the engine 21 in each state, the amount of electric power assumed to be necessary in each state, and the like.
 上記のように、本実施形態においては、発電機22は、2つのモードにおいて三相コイル41の巻き数を変化させる。低回転状態においては、三相コイル41の巻き数が相対的に多い第2のモードに設定することによって、エンジン21の低速回転(第2の回転数)に対応できるようにする。すなわち、巻き数を多くすることによって、所望の出力電力を得るための発電機22の回転数を少なくすることができ、低い回転数で発電を開始できるようになる。また、エンジン21が低回転状態にある場合において第2のモードで出力される電力は、同じ場合において第1のモードで出力される電力よりも大きくなる。 As described above, in the present embodiment, the generator 22 changes the number of turns of the three-phase coil 41 in two modes. In the low rotation state, the second mode in which the number of turns of the three-phase coil 41 is relatively large is set so that the engine 21 can cope with the low speed rotation (second rotation speed). That is, by increasing the number of turns, the number of revolutions of the generator 22 for obtaining a desired output power can be reduced, and power generation can be started at a low number of revolutions. Further, when the engine 21 is in a low rotation state, the power output in the second mode is larger than the power output in the first mode in the same case.
 一方、高回転状態においては、三相コイル41の巻き数が相対的に少ない第1のモードに設定することによって、エンジン21の高速回転(第1の回転数)に対応できるようにする。すなわち、巻き数を少なくすることによって、高速回転時の出力電力を第2のモードよりも増加させることができる。 On the other hand, in the high rotation state, by setting the first mode in which the number of turns of the three-phase coil 41 is relatively small, it is possible to cope with the high speed rotation (first rotation number) of the engine 21. That is, by reducing the number of turns, the output power during high-speed rotation can be increased as compared with the second mode.
 このように、本実施形態においては、エンジン21の2種類の回転数に応じた発電特性となるように発電機22のモードを切り換えることによって、効率良く発電を行うことができる。 Thus, in the present embodiment, it is possible to efficiently generate power by switching the mode of the generator 22 so that the power generation characteristics corresponding to the two types of rotation speeds of the engine 21 are obtained.
 また、本実施形態においては、エンジン21が高回転状態であるか低回転状態であるかを検出し、検出結果に応じて自動的に発電機22のモードを切り換えるようにした。これによって、ユーザが発電機22のモードを手動で操作することなく、エンジン21の回転数に合わせた最適なモードで発電機22を駆動させることができる。ただし、他の実施形態においては、(エンジン21に対する上記切換指示とは独立して)ユーザが発電機22のモードを手動で操作できるようにしてもよい。 In the present embodiment, it is detected whether the engine 21 is in a high rotation state or a low rotation state, and the mode of the generator 22 is automatically switched according to the detection result. As a result, the generator 22 can be driven in an optimal mode that matches the rotational speed of the engine 21 without the user manually operating the mode of the generator 22. However, in other embodiments, the user may be able to manually operate the mode of the generator 22 (independent of the switching instruction for the engine 21).
 ここで、スクリードプレートは、舗装施工の開始時に100℃以上にしておく必要がある。そのため、アスファルトフィニッシャ1の実際の使用に際しては、舗装施工の準備段階において、加熱装置12を駆動させてスクリード11を予め加熱しておくことが考えられる。したがって、舗装施工の準備段階においては、エンジン21は低回転状態としておき、低回転状態においても加熱装置12が動作可能であることが好ましい。そこで、本実施形態においては、低回転状態である場合における第2のモードの出力電力は、加熱装置12の作動に必要な電力よりも大きくなるように設計される。つまり、発電機22の第2のモードにおける発電特性は、低回転状態において加熱装置12を少なくとも動作させることができるように設定される。さらに言えば、本実施形態では、発電機22の第2のモードにおける発電特性は、低回転状態において加熱装置12に加えて、他のアクチュエータを(高回転状態に比べて)低電力で動作させることができるように設定される。 Here, it is necessary to keep the screed plate at 100 ° C. or higher at the start of pavement construction. Therefore, when the asphalt finisher 1 is actually used, it is conceivable that the screed 11 is heated in advance by driving the heating device 12 in the preparation stage for pavement construction. Therefore, it is preferable that the engine 21 be in a low rotation state in the preparatory stage for pavement construction, and the heating device 12 can operate even in a low rotation state. Therefore, in the present embodiment, the output power in the second mode in the low rotation state is designed to be larger than the power required for the operation of the heating device 12. That is, the power generation characteristics in the second mode of the generator 22 are set so that the heating device 12 can be operated at least in the low rotation state. Furthermore, in this embodiment, the power generation characteristics in the second mode of the generator 22 are such that, in addition to the heating device 12 in the low rotation state, other actuators are operated with low power (compared to the high rotation state). Is set to be able to.
 上記ステップS2の次に、ステップS3の処理が実行される。ステップS3において、コントローラ25は、アクチュエータのいずれか1つを個別に起動するか否かを判定する。ステップS3における判定は、ユーザによって上述の個別起動指示(各アクチュエータを個別に起動する指示)が行われたかによって行われる。具体的には、コントローラ25は、操作パネル23からの操作指示の信号を入力し、上記個別起動指示が行われたか否かを判定する。なお、本実施形態では、操作パネル23には、アクチュエータを起動するためのスイッチがアクチュエータ毎に設けられており、個別起動指示は、各スイッチのいずれかに対する指示である。ステップS3の判定結果が肯定である場合、ステップS4の処理が実行される。一方、ステップS3の判定結果が否定である場合、ステップS4の処理がスキップされてステップS5の処理が実行される。 After step S2, the process of step S3 is executed. In step S3, the controller 25 determines whether any one of the actuators is activated individually. The determination in step S3 is performed depending on whether the above-described individual activation instruction (instruction for individually activating each actuator) has been performed by the user. Specifically, the controller 25 inputs an operation instruction signal from the operation panel 23 and determines whether or not the individual activation instruction has been performed. In the present embodiment, the operation panel 23 is provided with a switch for activating an actuator for each actuator, and the individual activation instruction is an instruction for one of the switches. If the determination result of step S3 is affirmative, the process of step S4 is executed. On the other hand, if the determination result of step S3 is negative, the process of step S4 is skipped and the process of step S5 is executed.
 ステップS4において、アクチュエータの1つを起動するための個別起動処理が実行される。なお、個別起動処理においては、各モータ30~32bおよび加熱装置12は、それらの総消費電力が、発電機22の発電量を超えないように制御される。以下、図6を参照して、個別起動処理の詳細を説明する。 In step S4, an individual activation process for activating one of the actuators is executed. In the individual activation process, the motors 30 to 32b and the heating device 12 are controlled such that their total power consumption does not exceed the power generation amount of the generator 22. Hereinafter, the details of the individual activation process will be described with reference to FIG.
 図6は、図5に示すステップS4の詳細な処理を示すサブフローチャートである。図6に示す個別起動処理においては、まずステップS21において、コントローラ25は、加熱装置12による加熱が行われている最中か否かを判定する。ステップS21の判定結果が肯定である場合、ステップS22の処理が実行される。一方、ステップS21の判定結果が否定である場合、ステップS22の処理がスキップされてステップS23の処理が実行される。 FIG. 6 is a sub-flowchart showing detailed processing of step S4 shown in FIG. In the individual activation process shown in FIG. 6, first, in step S <b> 21, the controller 25 determines whether or not the heating by the heating device 12 is being performed. If the determination result of step S21 is affirmative, the process of step S22 is executed. On the other hand, when the determination result of step S21 is negative, the process of step S22 is skipped and the process of step S23 is executed.
 ステップS22において、コントローラ25は、加熱装置12における加熱を停止する。具体的には、電力調整器29に対して、加熱装置12に対する給電を停止する制御指示を行う。これによって、電力調整器29は加熱装置12への電力の出力を停止し、加熱装置12による加熱が停止される。なお、詳細は後述するが、ステップS22における加熱の停止は一時的な停止であり、ステップS22において加熱が停止された場合には、後述するステップS27において加熱が再開される。ステップS22の後、ステップS23の処理が実行される。 In step S22, the controller 25 stops heating in the heating device 12. Specifically, a control instruction for stopping power supply to the heating device 12 is given to the power regulator 29. Thereby, the power regulator 29 stops the output of the electric power to the heating apparatus 12, and the heating by the heating apparatus 12 is stopped. Although details will be described later, the stop of the heating in step S22 is a temporary stop, and when the heating is stopped in step S22, the heating is resumed in step S27 described later. After step S22, the process of step S23 is executed.
 ステップS23において、コントローラ25は、発電機22が第1のモードであるか否かを判定する。ステップS23の判定結果が肯定である場合、ステップS24の処理が実行される。一方、ステップS23の判定結果が否定である場合、ステップS25の処理が実行される。 In step S23, the controller 25 determines whether or not the generator 22 is in the first mode. If the determination result of step S23 is affirmative, the process of step S24 is executed. On the other hand, when the determination result of step S23 is negative, the process of step S25 is executed.
 ステップS24において、コントローラ25は、個別起動指示に係るアクチュエータの起動(ステップS25における起動と区別する意味で、「通常起動」と呼ぶことがある。)を開始する。すなわち、コントローラ25は、個別起動指示に係るアクチュエータに対応するインバータに対して、当該アクチュエータに対する給電を開始する制御指示を行う。これによって、インバータは各モータへの電力出力を開始し、モータによってアクチュエータの駆動が開始される。ステップS24の後、ステップS26の処理が実行される。 In step S24, the controller 25 starts activation of the actuator related to the individual activation instruction (sometimes referred to as “normal activation” in the sense of being distinguished from activation in step S25). That is, the controller 25 instructs the inverter corresponding to the actuator related to the individual activation instruction to start power supply to the actuator. As a result, the inverter starts power output to each motor, and driving of the actuator is started by the motor. After step S24, the process of step S26 is executed.
 一方、ステップS25において、コントローラ25は、ステップS24における通常起動よりも低電力で、個別起動指示に係るアクチュエータの起動を開始する。すなわち、コントローラ25は、個別起動指示に係るアクチュエータに対応するインバータに対して、通常起動よりも低い電力で当該アクチュエータに対する給電を開始する制御指示を行う。これによって、インバータは通常起動よりも低い電力でモータへの電力出力を開始し、モータによってアクチュエータの駆動が開始される。したがって、ステップS25においては、通常起動の場合よりも低出力(低速)でアクチュエータは駆動する。ステップS25の後、ステップS26の処理が実行される。 On the other hand, in step S25, the controller 25 starts activation of the actuator according to the individual activation instruction with lower power than the normal activation in step S24. That is, the controller 25 instructs the inverter corresponding to the actuator related to the individual activation instruction to start power supply to the actuator with lower power than the normal activation. As a result, the inverter starts power output to the motor with lower power than normal startup, and driving of the actuator is started by the motor. Therefore, in step S25, the actuator is driven at a lower output (lower speed) than in the case of normal activation. After step S25, the process of step S26 is executed.
 以上のように、本実施形態においては、エンジン21が低回転状態で発電機22が第2のモードである場合、ステップS25の処理が実行され、通常起動(ステップS24)の場合よりも低電力でアクチュエータが起動される。つまり、低回転状態においては、高回転状態よりも低電力でアクチュエータが起動される。ここで、低回転状態における発電機22の出力電力は高回転状態よりも小さくなるので、高回転状態と同じようにアクチュエータを起動しようとすると、発電機22の電力が足りずにアクチュエータが駆動できなくなる可能性がある。これに対して、ステップS25の処理によって、低回転状態においても各アクチュエータを(低出力ではあるものの)より確実に駆動することができる。 As described above, in the present embodiment, when the engine 21 is in the low rotation state and the generator 22 is in the second mode, the process of step S25 is executed, and the power is lower than in the case of normal startup (step S24). The actuator is activated. That is, in the low rotation state, the actuator is activated with lower power than in the high rotation state. Here, since the output power of the generator 22 in the low rotation state is smaller than that in the high rotation state, if the actuator is started in the same manner as in the high rotation state, the actuator can be driven without the power of the generator 22 being sufficient. There is a possibility of disappearing. On the other hand, by the process of step S25, each actuator can be driven more reliably (although it has a low output) even in a low rotation state.
 なお、他の実施形態においては、低回転状態においては各アクチュエータを起動しないようにしてもよい。すなわち、上記ステップS23の判定結果が否定である場合には、コントローラ25は、ステップS25の処理をスキップして後述のステップS26の処理を実行するようにしてもよい。また、他の実施形態においては、特定のアクチュエータ(例えば、コンベヤ6およびスクリュー7)についてのみステップS25の処理に従って低電力で起動し、その他のアクチュエータについては起動しない(あるいは通常起動する)ようにしてもよい。 In other embodiments, each actuator may not be activated in a low rotation state. That is, when the determination result of step S23 is negative, the controller 25 may skip the process of step S25 and execute the process of step S26 described later. In other embodiments, only specific actuators (for example, the conveyor 6 and the screw 7) are activated at low power according to the process of step S25, and other actuators are not activated (or normally activated). Also good.
 ステップS26において、コントローラ25は、ステップS24またはS25で起動を開始したアクチュエータの起動が終了したか否かを判定する。ここで、「アクチュエータの起動が終了した」とは、アクチュエータを起動した後、消費電力が所定値以下に落ち着いたことを指す。本実施形態では、ステップS26の判定は、アクチュエータの起動を開始してからの経過時間が所定時間を超えた否かによって行われる。この所定時間は、予め設定されており、アクチュエータ毎に設定されてもよいし、各アクチュエータで同じ時間が設定されてもよい。なお、他の実施形態では、ステップS26の判定は、アクチュエータの駆動に要する電力が所定値以下となったか否かによって行われてもよい。ステップS26においてアクチュエータの起動が終了した(経過時間が所定時間を超えた)と判定された場合、ステップS27の処理が実行される。一方、ステップS26においてアクチュエータの起動が終了していないと判定された場合、ステップS26の処理が再度実行される。つまり、コントローラ25は、アクチュエータの起動中は処理を待機し、アクチュエータの起動が終了すればステップS27の処理を開始する。 In step S26, the controller 25 determines whether or not the activation of the actuator started in step S24 or S25 is completed. Here, “actuator activation is completed” means that the power consumption has settled below a predetermined value after the actuator is activated. In the present embodiment, the determination in step S26 is performed based on whether or not the elapsed time since the start of the actuator has exceeded a predetermined time. The predetermined time is set in advance, and may be set for each actuator, or the same time may be set for each actuator. In other embodiments, the determination in step S26 may be performed based on whether or not the power required for driving the actuator is equal to or less than a predetermined value. If it is determined in step S26 that the actuator has been activated (elapsed time has exceeded a predetermined time), the process of step S27 is executed. On the other hand, when it is determined in step S26 that the actuator has not been started, the process of step S26 is executed again. That is, the controller 25 waits for the process while the actuator is activated, and starts the process of step S27 when the activation of the actuator is completed.
 ステップS27において、コントローラ25は、加熱装置12による加熱を再開させる。具体的には、電力調整器29に対して、加熱装置12に対する給電を開始する制御指示を行う。これによって、電力調整器29は加熱装置12への電力の出力を開始し、加熱装置12による加熱が開始される。なお、上述したステップS22において加熱装置12による加熱が停止されていない(加熱装置12が元々動作していない)場合には、ステップS27の処理は実行されない。ステップS27の後、コントローラ25は個別起動処理を終了する。 In step S27, the controller 25 restarts heating by the heating device 12. Specifically, a control instruction to start power supply to the heating device 12 is given to the power regulator 29. As a result, the power regulator 29 starts outputting power to the heating device 12 and heating by the heating device 12 is started. In addition, when the heating by the heating device 12 is not stopped in the above-described step S22 (the heating device 12 is not originally operating), the process of step S27 is not executed. After step S27, the controller 25 ends the individual activation process.
 以上の個別起動処理によれば、コントローラ25は、あるアクチュエータの起動が終了するまで待機する(ステップS26)ので、アクチュエータの起動中は他のアクチュエータが起動することはない。ここで、モータの起動時には一時的に消費電力が大きくなるので、仮に複数のアクチュエータを同時に起動させると、アクチュエータを駆動するための総消費電力が発電機22の発電電力を超えてしまうおそれがある(図9参照)。この場合、発電機22に過負荷がかかることによってエンジンストップ等の不具合に繋がることも考えられる。これに対して、本実施形態によれば、複数のアクチュエータを同時に起動させることがないので、総消費電力が発電機22の発電電力を超えることがなく、各アクチュエータを確実に駆動することができる。また、上記個別起動処理によれば、コントローラ25は、あるアクチュエータを起動する間は、加熱装置12の加熱を一時停止する(ステップS22)ので、これによっても、総消費電力が発電機22の発電電力を超えることを防止することができる。 According to the individual activation process described above, the controller 25 waits until the activation of a certain actuator is completed (step S26), so that no other actuator is activated while the actuator is activated. Here, since the power consumption temporarily increases when the motor is started, if a plurality of actuators are simultaneously started, the total power consumption for driving the actuators may exceed the power generated by the generator 22. (See FIG. 9). In this case, it is conceivable that an overload is applied to the generator 22, leading to problems such as engine stop. On the other hand, according to this embodiment, since a plurality of actuators are not activated simultaneously, the total power consumption does not exceed the generated power of the generator 22, and each actuator can be driven reliably. . Further, according to the individual activation process, the controller 25 temporarily stops the heating of the heating device 12 while activating an actuator (step S22). It can prevent exceeding electric power.
 図5の説明に戻り、ステップS5において、所定の複数の制御対象装置を一度に起動するか否かを判定する。ステップS5における判定は、ユーザによって上述の複数起動指示(複数の制御対象装置を一度に起動する指示)が行われたかによって行われる。具体的には、コントローラ25は、操作パネル23からの操作指示の信号を入力し、上記複数起動指示が行われたか否かを判定する。なお、本実施形態では、操作パネル23には、所定の複数の制御対象装置を一度に起動するためのスイッチが設けられており、複数起動指示は、このスイッチに対する指示である。ステップS5の判定結果が肯定である場合、ステップS6の処理が実行される。一方、ステップS5の判定結果が否定である場合、ステップS6の処理がスキップされてステップS7の処理が実行される。 Returning to the description of FIG. 5, in step S <b> 5, it is determined whether or not a plurality of predetermined control target devices are activated at a time. The determination in step S5 is performed based on whether the above-described multiple activation instruction (instruction for activating a plurality of control target devices at once) has been performed by the user. Specifically, the controller 25 inputs an operation instruction signal from the operation panel 23 and determines whether or not the multiple activation instruction has been performed. In the present embodiment, the operation panel 23 is provided with a switch for activating a predetermined plurality of control target devices at once, and the multiple activation instruction is an instruction for this switch. If the determination result of step S5 is affirmative, the process of step S6 is executed. On the other hand, when the determination result of step S5 is negative, the process of step S6 is skipped and the process of step S7 is executed.
 ステップS6において、所定の複数の制御対象装置を一度に起動するための複数起動処理が実行される。複数起動処理においても上記個別起動処理と同様、各モータ30~32bおよび加熱装置12は、それらの総消費電力が、エンジン21が高回転状態である場合における(第1のモードにおける)発電量を超えないように制御される。以下、図7を参照して、複数起動処理の詳細を説明する。なお、以下では、上記「所定の複数の制御対象装置」として、コンベヤ6、スクリュー7、および加熱装置12の3つを一度に起動する場合を例として説明する。 In step S6, a plurality of activation processes for activating a plurality of predetermined control target devices at once are executed. Also in the multiple activation process, as in the individual activation process, each of the motors 30 to 32b and the heating device 12 has the total power consumption of the power generation amount (in the first mode) when the engine 21 is in a high rotation state. It is controlled not to exceed. Details of the multiple activation process will be described below with reference to FIG. In the following, a case where three of the conveyor 6, the screw 7, and the heating device 12 are activated at a time as the “predetermined plural control target devices” will be described as an example.
 図7は、図5に示すステップS6の詳細な処理を示すサブフローチャートである。図7に示す複数起動処理においては、まずステップS30において、コントローラ25は、発電機22が第1のモードであるか否かを判定する。ステップS30の判定結果が肯定である場合、ステップS31の処理が実行される。一方、ステップS30の判定結果が否定である場合、コントローラ25は複数起動処理を終了する。 FIG. 7 is a sub-flowchart showing detailed processing of step S6 shown in FIG. In the multiple activation process shown in FIG. 7, first, in step S30, the controller 25 determines whether or not the generator 22 is in the first mode. If the determination result of step S30 is affirmative, the process of step S31 is executed. On the other hand, when the determination result of step S30 is negative, the controller 25 ends the multiple activation process.
 ステップS31において、コントローラ25は、上記所定の複数の制御対象装置を順に(1つずつ)指定する。ここでは、コントローラ25は、ステップS31が到来する度に、コンベヤ6、スクリュー7、加熱装置12の順に1つずつ指定するものとする。なお、指定する順序はどのような順序であってもよいが、(1以上のアクチュエータと加熱装置とを同時に起動する場合)加熱装置12を最後に指定することが好ましい。加熱装置12を起動する際の消費電力は、(a)(モータを起動する場合とは異なり)起動時に一時的に大きくなることがない点、および、(b)加熱装置12の応答性はモータに比べると低いので、加熱装置12の起動タイミングの多少の違いには大差がない点、を鑑みれば、加熱装置12の起動を先に行う必要性が低いからである。ステップS31の次にステップS32の処理が実行される。 In step S31, the controller 25 designates the predetermined plurality of control target devices in order (one by one). Here, it is assumed that the controller 25 designates the conveyor 6, the screw 7, and the heating device 12 one by one every time step S <b> 31 arrives. The order of designation may be any order, but it is preferable to designate the heating apparatus 12 last (when one or more actuators and the heating apparatus are activated simultaneously). The power consumption when starting the heating device 12 is (a) (unlike starting the motor) that the power consumption is not temporarily increased at the time of starting, and (b) the response of the heating device 12 is the motor In view of the fact that there is no significant difference in the start timing of the heating device 12, it is less necessary to start the heating device 12 first. Following step S31, the process of step S32 is executed.
 ステップS32において、コントローラ25は、ステップS31で指定された制御対象装置を起動する。ステップS32における具体的な処理は、上述のステップS24またはS27と同様である。また、ステップS32において、ステップS31で指定された制御対象装置が既に駆動している場合(すなわち、複数起動指示が行われた時点で制御対象装置が既に起動していた場合)には、ステップS32の処理は実行されない。ステップS32の次にステップS33の処理が実行される。 In step S32, the controller 25 activates the control target device specified in step S31. Specific processing in step S32 is the same as that in step S24 or S27 described above. In step S32, if the control target device specified in step S31 is already driven (that is, if the control target device has already been started when a plurality of start instructions are issued), step S32 is executed. This process is not executed. Following step S32, the process of step S33 is executed.
 ステップS33において、コントローラ25は、ステップS32で起動を開始した制御対象装置の起動が終了したか否かを判定する。ステップS33の処理は、上述のステップS26と同じである。なお、加熱装置12に関しては、モータを駆動するものではないので、起動直後に消費電力が一時的に増大することがない(図9に示すグラフG参照)。そのため、制御対象装置が加熱装置12である場合には上記ステップS26の所定時間を“0”としてもよい。ステップS33において制御対象装置の起動が終了したと判定された場合、ステップS34の処理が実行される。一方、ステップS33において制御対象装置の起動が終了していないと判定された場合、ステップS33の処理が再度実行される。つまり、コントローラ25は、制御対象装置の起動中は処理を待機し、制御対象装置の起動が終了すればステップS34の処理を実行する。 In step S33, the controller 25 determines whether or not the activation of the control target device started in step S32 is completed. The process in step S33 is the same as that in step S26 described above. Note that the heating device 12 does not drive a motor, so power consumption does not increase temporarily immediately after startup (see graph G shown in FIG. 9). Therefore, when the device to be controlled is the heating device 12, the predetermined time in step S26 may be set to “0”. If it is determined in step S33 that the activation of the control target device has ended, the process of step S34 is executed. On the other hand, if it is determined in step S33 that the control target device has not been activated, the process of step S33 is executed again. That is, the controller 25 waits for the process while the control target device is activated, and executes the process of step S34 when the control target device is activated.
 ステップS34において、コントローラ25は、上記所定の複数の制御対象装置の全ての起動が終了したか否かを判定する。ステップS34の判定結果が否定である場合、上記ステップS31の処理が再度実行される。一方、ステップS34の判定結果が肯定である場合、コントローラ25は複数起動処理を終了する。 In step S34, the controller 25 determines whether or not all of the predetermined plurality of control target devices have been activated. If the determination result of step S34 is negative, the process of step S31 is executed again. On the other hand, when the determination result of step S34 is affirmative, the controller 25 ends the multiple activation process.
 なお、上記複数起動処理においては、発電機22が第2のモードである場合(エンジン21が低回転状態である場合)には、制御対象装置は起動されず、複数起動指示は受け付けられないこととなる。低回転状態において複数の制御対象装置を起動する必要性は低いと考えられるからである。ただし、他の実施形態においては、発電機22が第2のモードである場合においては、上述のステップS25と同様に、各制御対象装置を(第1のモードの場合よりも)低電力で起動するようにしてもよい。 In the multiple activation process, when the generator 22 is in the second mode (when the engine 21 is in a low rotation state), the control target device is not activated and the multiple activation instruction is not accepted. It becomes. This is because the necessity of activating a plurality of control target devices in a low rotation state is considered low. However, in other embodiments, when the generator 22 is in the second mode, each control target device is activated with lower power (than in the case of the first mode) as in step S25 described above. You may make it do.
 以上のように、上記複数起動処理によれば、ユーザは、複数起動指示によって複数の制御対象装置を一度に起動することができる。これによって、ユーザの操作の手間を省き、操作を簡易化することができる。また、上記複数起動処理によれば、コントローラ25は、複数の各制御対象装置を、起動開始のタイミングをずらして起動する。これによって、各制御対象装置の総消費電力が、高回転状態における発電機22の最大発電量を超えないようにすることができる。 As described above, according to the above-described multiple activation process, the user can activate a plurality of control target devices at once by a multiple activation instruction. As a result, it is possible to save the user's operation and simplify the operation. Further, according to the multiple activation process, the controller 25 activates each of the plurality of control target devices while shifting the activation start timing. As a result, the total power consumption of each control target device can be prevented from exceeding the maximum power generation amount of the generator 22 in the high rotation state.
 図9は、複数の制御対象装置を起動する場合における消費電力を示す図である。図9において、各グラフA~Hの縦軸は消費電力を表し、横軸は時間を表す。また、左側のグラフA~Dは複数の制御対象装置を同時に起動した場合を示し、右側のグラフE~Hは複数の制御対象装置をタイミングをずらして起動した場合を示している。ここで、仮に、図9に示すグラフA~Cのように複数の制御対象装置を同時に起動した場合には、図9に示すグラフDに示されるように、起動時における総消費電力が発電機22の発電電力を超えるおそれがある。これに対して、上記複数起動処理では、図9に示すグラフE~Gのように、複数の制御対象装置の起動を開始するタイミングをずらしている。その結果、図9に示すグラフHに示されるように、起動時における総消費電力が発電機22の発電電力を超えることを防止することができる。このように、本実施形態では、コントローラ25は、各モータおよび加熱装置の総消費電力が、高回転状態において第1のモードによって発電される発電量を超えないように、各モータおよび加熱装置の動作を制御する。 FIG. 9 is a diagram showing power consumption when a plurality of control target devices are activated. In FIG. 9, the vertical axis of each graph A to H represents power consumption, and the horizontal axis represents time. The left graphs A to D show a case where a plurality of control target devices are started simultaneously, and the right graphs E to H show a case where a plurality of control target devices are started at different timings. Here, if a plurality of devices to be controlled are simultaneously activated as shown in graphs A to C in FIG. 9, the total power consumption at the time of activation is determined as the generator as shown in the graph D in FIG. There is a risk of exceeding the generated power of 22. On the other hand, in the above-described multiple activation processing, as shown in graphs E to G shown in FIG. As a result, as shown in the graph H shown in FIG. 9, it is possible to prevent the total power consumption at startup from exceeding the power generated by the generator 22. As described above, in this embodiment, the controller 25 controls the motors and the heating devices so that the total power consumption of the motors and the heating devices does not exceed the power generation amount generated by the first mode in the high rotation state. Control the behavior.
 なお、上記総消費電力が発電機22の発電量を超えないようにするための制御方法は、上記に限らない。例えば、他の実施形態においては、コントローラ25は、複数起動処理において、起動時における電力を個別起動処理に比べて低くし、次第に電力を上げていくように各制御対象装置を駆動することで、各制御対象装置を同時に起動するようにしてもよい。これによっても、総消費電力が発電機22の発電量を超えないように制御することができる。 The control method for preventing the total power consumption from exceeding the power generation amount of the generator 22 is not limited to the above. For example, in another embodiment, the controller 25 drives each control target device so that the power at the time of startup is lower than that of the individual startup processing and gradually increases the power in the multiple startup processing. You may make it start each control object apparatus simultaneously. This also makes it possible to control so that the total power consumption does not exceed the power generation amount of the generator 22.
 図5の説明に戻り、ステップS7において、コントローラ25は、加熱装置12による加熱を開始するか否かを判定する。ステップS7における判定は、ユーザによって上述の加熱指示(加熱装置12による加熱を開始する指示)が行われたかによって行われる。具体的には、コントローラ25は、操作パネル23からの操作指示の信号の入力を受け付け、上記加熱指示が行われたか否かを判定する。なお、本実施形態では、操作パネル23には、加熱装置12を動作させるためのスイッチが設けられており、加熱指示は、このスイッチに対する指示である。ステップS7の判定結果が肯定である場合、ステップS8の処理が実行される。一方、ステップS7の判定結果が否定である場合、ステップS8の処理がスキップされてステップS9の処理が実行される。 Returning to the description of FIG. 5, in step S <b> 7, the controller 25 determines whether or not heating by the heating device 12 is started. The determination in step S7 is performed depending on whether the above-described heating instruction (instruction to start heating by the heating device 12) has been performed by the user. Specifically, the controller 25 receives an input of an operation instruction signal from the operation panel 23 and determines whether or not the heating instruction has been performed. In the present embodiment, the operation panel 23 is provided with a switch for operating the heating device 12, and the heating instruction is an instruction to this switch. If the determination result of step S7 is affirmative, the process of step S8 is executed. On the other hand, if the determination result of step S7 is negative, the process of step S8 is skipped and the process of step S9 is executed.
 ステップS8において、コントローラ25は、加熱装置12を動作させる。ステップS8の処理は、上述のステップS27の処理と同様である。ステップS8の次にステップS9の処理が実行される。 In step S8, the controller 25 operates the heating device 12. The process of step S8 is the same as the process of step S27 described above. Following step S8, the process of step S9 is executed.
 ステップS9において、各制御対象装置の駆動状態を変更するか否かを判定する。ステップS9における判定は、ユーザによって上述の変更指示(各制御対象装置の駆動状態を変更する指示)が行われたかによって行われる。具体的には、コントローラ25は、操作パネル23からの操作指示の信号の入力を受け付け、上記変更指示が行われたか否かを判定する。なお、本実施形態では、操作パネル23には、各制御対象装置の駆動状態(例えば、コンベヤ6であれば搬送速度、加熱装置12であれば加熱温度等)を指定するためのダイヤルが設けられており、変更指示は、このダイヤルに対する指示である。なお、変更指示には、制御対象装置の駆動を停止する指示も含まれ、変更指示は、アクチュエータを起動するためのスイッチ(上記ステップS3参照)をオフにする指示であってもよい。ステップS9の判定結果が肯定である場合、ステップS10の処理が実行される。一方、ステップS9の判定結果が否定である場合、ステップS10の処理がスキップされてステップS1の処理が再度実行される。以降、ステップS1~S10の処理が繰り返し実行される。 In step S9, it is determined whether or not to change the drive state of each control target device. The determination in step S9 is performed based on whether or not the above change instruction (instruction to change the driving state of each control target device) has been performed by the user. Specifically, the controller 25 receives an input of an operation instruction signal from the operation panel 23 and determines whether or not the change instruction has been performed. In the present embodiment, the operation panel 23 is provided with a dial for designating the driving state of each control target device (for example, the conveyance speed for the conveyor 6 and the heating temperature for the heating device 12). The change instruction is an instruction to this dial. Note that the change instruction includes an instruction to stop driving the control target device, and the change instruction may be an instruction to turn off a switch for starting the actuator (see step S3 above). If the determination result of step S9 is affirmative, the process of step S10 is executed. On the other hand, if the determination result of step S9 is negative, the process of step S10 is skipped and the process of step S1 is executed again. Thereafter, the processes of steps S1 to S10 are repeatedly executed.
 ステップS10において、コントローラ25は、変更指示に従って制御対象装置を制御する。具体的には、コントローラ25は、変更指示に係る制御対象装置に対応するインバータ(あるいは電力調整器29)に対して、変更指示によって指定された駆動状態となるように、出力周波数を変更する制御指示を行う。また、変更指示が制御対象装置の駆動を停止する指示の場合は、給電を停止する制御指示を行う。これによって、変更指示に従って制御対象装置が制御される。ステップS10の後、ステップS11の処理が実行される。 In step S10, the controller 25 controls the device to be controlled according to the change instruction. Specifically, the controller 25 controls the output frequency so that the inverter (or the power regulator 29) corresponding to the control target device related to the change instruction is in the drive state specified by the change instruction. Give instructions. In addition, when the change instruction is an instruction to stop driving of the control target device, a control instruction to stop power feeding is performed. As a result, the device to be controlled is controlled according to the change instruction. After step S10, the process of step S11 is executed.
 ステップS11においては、電力調整処理が実行される。上記個別起動処理および複数起動処理が、制御対象装置の起動時において総消費電力が発電機22の発電電力を超えないように制御するための処理であるのに対して、電力調整処理は、主に、複数の制御対象装置の駆動中において総消費電力が発電機22の発電電力を超えないように制御するための処理である。以下、図8を参照して、個別起動処理の詳細を説明する。 In step S11, power adjustment processing is executed. The individual activation process and the multiple activation process are processes for controlling the total power consumption so as not to exceed the generated power of the generator 22 when the control target device is activated. In addition, this is a process for controlling the total power consumption so as not to exceed the generated power of the generator 22 during the driving of a plurality of control target devices. Hereinafter, the details of the individual activation process will be described with reference to FIG.
 図8は、図5に示すステップS11の詳細な処理を示すサブフローチャートである。図8に示す電力調整処理においては、まずステップS41において、コントローラ25は、各制御対象装置の総消費電力を算出する。すなわち、コントローラ25は、各制御対象装置の消費電力を検出し、検出した消費電力を合算する。各消費電力の検出方法はどのような方法であってもよく、例えば、各モータ30~32bに供給される電力を検知してもよい。ステップS41の次にステップS42の処理が実行される。 FIG. 8 is a sub-flowchart showing detailed processing of step S11 shown in FIG. In the power adjustment process shown in FIG. 8, first, in step S41, the controller 25 calculates the total power consumption of each control target device. That is, the controller 25 detects the power consumption of each control target device and adds the detected power consumption. The detection method of each power consumption may be any method, for example, the power supplied to each motor 30 to 32b may be detected. Following step S41, the process of step S42 is executed.
 ステップS42において、コントローラ25は、上記総消費電力が所定値以上であるか否かを判定する。この所定値は、発電機22の最大電力あるいは最大電力よりもやや低い値に予め設定される。ステップS42の判定結果が肯定である場合、ステップS43の処理が実行される。一方、ステップS42の判定結果が否定である場合、ステップS43の処理がスキップされて、コントローラ25は電力調整処理を終了する。 In step S42, the controller 25 determines whether or not the total power consumption is equal to or greater than a predetermined value. This predetermined value is set in advance to the maximum power of the generator 22 or a value slightly lower than the maximum power. When the determination result of step S42 is affirmative, the process of step S43 is executed. On the other hand, when the determination result of step S42 is negative, the process of step S43 is skipped, and the controller 25 ends the power adjustment process.
 ステップS43において、コントローラ25は、上記総消費電力が上記所定値よりも小さくなるように、制御対象装置に対する供給電力を調整する。ステップS43における調整の具体的な方法はどのような方法であってもよいが、例えば以下の方法が考えられる。すなわち、コントローラ25は、現在駆動中の制御対象装置のうちの所定の1つまたは複数を選択し、選択した制御対象装置への電力供給を制限する(停止または減少させる)。なお、電力供給を制限する制御対象装置を選択する方法としては、例えば、まず加熱装置12を選択し、加熱装置12が停止中の場合にはコンベヤ6および/またはスクリュー7を選択することが考えられる。また、コントローラ25は、現在駆動中の各制御対象装置への供給電力をそれぞれ減少させるようにしてもよい。上記ステップS43の後、コントローラ25は電力調整処理を終了する。 In step S43, the controller 25 adjusts the power supplied to the device to be controlled so that the total power consumption is smaller than the predetermined value. Although the specific method of adjustment in step S43 may be any method, for example, the following method can be considered. That is, the controller 25 selects one or a plurality of control target devices that are currently being driven, and restricts (stops or reduces) power supply to the selected control target devices. In addition, as a method of selecting the control target device that restricts power supply, for example, first, the heating device 12 is selected, and when the heating device 12 is stopped, the conveyor 6 and / or the screw 7 may be selected. It is done. In addition, the controller 25 may reduce the power supplied to each control target device currently driven. After the step S43, the controller 25 ends the power adjustment process.
 上記ステップS43によれば、制御対象装置の総消費電力が発電機22の発電電力を超えないように制御することができる。また、上記ステップS43の処理は、アスファルトフィニッシャの動作中に常時(繰り返し)実行されるので、アスファルトフィニッシャの動作中に総消費電力が発電機22の発電電力を超えることを常に防止することができる。 According to the above step S43, it is possible to control so that the total power consumption of the device to be controlled does not exceed the power generated by the generator 22. Further, since the process of step S43 is always (repeatedly) performed during the operation of the asphalt finisher, it is possible to always prevent the total power consumption from exceeding the generated power of the generator 22 during the operation of the asphalt finisher. .
 なお、本実施形態においては、制御対象装置の総消費電力が発電機22の発電電力を超えないように制御する処理として、コントローラ25は、ステップS4、ステップS6、およびステップS11の3種類の処理を実行した。ここで、他の実施形態においては、コントローラ25は、これら3種類の処理のうちいずれか1つまたは2つの処理のみを実行するものであってもよい。 In the present embodiment, as a process for controlling the total power consumption of the control target device so as not to exceed the generated power of the generator 22, the controller 25 performs three types of processes of step S4, step S6, and step S11. Was executed. Here, in other embodiments, the controller 25 may execute only one or two of these three types of processes.
 ステップS11の電力調整処理の後、ステップS1の処理が再度実行される。以降、ステップS1~S11の処理が繰り返し実行される。以上で、図5に示すコントローラ25の動作の説明を終了する。 After the power adjustment process in step S11, the process in step S1 is executed again. Thereafter, the processes of steps S1 to S11 are repeatedly executed. Above, description of operation | movement of the controller 25 shown in FIG. 5 is complete | finished.
 なお、加熱装置12の駆動に関しては、図5~図7に示した処理に加えて、加熱温度に基づく制御が行われてもよい。すなわち、アスファルトフィニッシャ1は、スクリードプレートの温度を検知する温度検知手段をさらに備え、温度検知手段による検知結果に基づいて加熱装置12の駆動が制御されてもよい。具体的には、(ユーザによる加熱指示が行われてから加熱を停止する変更指示が行われるまでの間において、)コントローラ25は、温度検知手段による検知温度が所定の目標温度に達した場合、加熱装置12の駆動を停止し、検知温度が所定の目標温度を下回った場合、加熱装置12の駆動を行うようにしてもよい。なお、この場合、上記ステップS21の判定は上記と同様に行えばよい。一方、上記ステップS32の処理は、ユーザによる加熱指示が既に行われていれば、(検知温度が目標温度に達したために加熱されていない場合であっても)加熱装置12を駆動しないようにするとよい。 In addition, regarding the driving of the heating device 12, in addition to the processing shown in FIGS. 5 to 7, control based on the heating temperature may be performed. That is, the asphalt finisher 1 may further include a temperature detection unit that detects the temperature of the screed plate, and the drive of the heating device 12 may be controlled based on the detection result of the temperature detection unit. Specifically, when the temperature detected by the temperature detection means reaches a predetermined target temperature (between the time when the user gives a heating instruction and the time when the change instruction to stop heating is given), the controller 25 If the driving of the heating device 12 is stopped and the detected temperature falls below a predetermined target temperature, the heating device 12 may be driven. In this case, the determination in step S21 may be performed in the same manner as described above. On the other hand, if the heating instruction by the user has already been performed, the process of step S32 is performed so as not to drive the heating device 12 (even if the detected temperature has not reached the target temperature). Good.
 以上のように、上記実施形態によれば、アスファルトフィニッシャ1は、主要アクチュエータおよびスクリード加熱を電気的に駆動することができる。これによって、油圧システムで駆動する場合に比べて、省エネルギー化を図ることができるとともに、二酸化炭素の排出量を減少させることができる。また、油圧システムのメンテナンスを行わなくて済むので、維持経費を抑えることができるとともに維持管理を容易にすることができる。さらに、各制御対象装置に対して電気制御を行うことによって(上記実施形態のようにインバータを用いる場合は特に)、各制御対象装置に対する制御性を向上することができる。 As described above, according to the above embodiment, the asphalt finisher 1 can electrically drive the main actuator and screed heating. As a result, energy can be saved and the amount of carbon dioxide emission can be reduced as compared with the case of driving with a hydraulic system. In addition, since it is not necessary to perform maintenance on the hydraulic system, it is possible to reduce maintenance costs and facilitate maintenance. Furthermore, by performing electrical control on each control target device (especially when an inverter is used as in the above embodiment), the controllability for each control target device can be improved.
 また、上記実施形態によれば、スクリード11の加熱を電気的に駆動することによって、スクリードプレートの均熱性、燃焼効率、および安全性において従来方式を改善することができる。すなわち、スクリードプレートをガスによって加熱する従来方式では、スクリードプレートは長細い形状であるので、ガスバーナで均一に加熱することが難しかった。また、ガスバーナは下向き燃焼構造が採用される(スクリードプレートを上方から加熱する必要があるため)ために燃焼ガスが上方に流れてしまうことから、燃焼効率が悪くなっていた。これに対して、上記実施形態によれば、スクリードプレートを電熱ヒーター等で電気的に加熱することによって、スクリードプレートの均熱性および燃焼効率を改善することができる。さらに、従来方式では、ガスボンベを搭載することや、油圧システムの油圧配管がガスバーナの近傍に配置されることによって、火災リスクが生じるという課題もあった。これに対して、上記実施形態によれば、ガスを用いない構成であるので、従来における火災リスクは無く、安全性を向上することができる。 In addition, according to the above-described embodiment, the conventional method can be improved in terms of heat uniformity, combustion efficiency, and safety of the screed plate by electrically driving the heating of the screed 11. That is, in the conventional method in which the screed plate is heated with gas, the screed plate has a long and thin shape, and thus it has been difficult to uniformly heat the screed plate with a gas burner. Further, since the gas burner employs a downward combustion structure (because it is necessary to heat the screed plate from above), the combustion gas flows upward, resulting in poor combustion efficiency. On the other hand, according to the said embodiment, the soaking | uniform-heating property and combustion efficiency of a screed plate can be improved by electrically heating a screed plate with an electric heater. Furthermore, in the conventional method, there is a problem that a fire risk is caused by mounting a gas cylinder or arranging the hydraulic piping of the hydraulic system in the vicinity of the gas burner. On the other hand, according to the said embodiment, since it is the structure which does not use gas, there is no conventional fire risk and safety can be improved.
 また、上記実施形態によれば、エンジン21は2種類の回転数(低回転状態と高回転状態)で駆動可能であり、発電機22はエンジン21の回転数に応じて発電特性を切り換えることが可能である。このように、低回転状態での駆動を可能とすることによって、騒音の低減を図ることができる。また、発電機22は低回転状態に適応する特性で発電を行うので、発電効率を向上することができ、より省エネルギー化を図ることができる。さらに、上記実施形態によれば、低回転状態においてもスクリード加熱を行う電力は保証されるので、実際の使用を考慮しても、舗装作業の準備時にアスファルトフィニッシャ1を低回転状態とすることができる。そのため、準備時において騒音の低減や排出二酸化炭素の低減を図ることができる。 Further, according to the above embodiment, the engine 21 can be driven at two types of rotation speeds (low rotation state and high rotation state), and the generator 22 can switch the power generation characteristics according to the rotation speed of the engine 21. Is possible. Thus, noise can be reduced by enabling driving in a low rotation state. Further, since the generator 22 generates power with characteristics adapted to the low rotation state, it is possible to improve the power generation efficiency and further save energy. Furthermore, according to the above-described embodiment, the power to perform screed heating is ensured even in a low rotation state, so that the asphalt finisher 1 can be set in a low rotation state when preparing for paving work even in consideration of actual use. it can. Therefore, it is possible to reduce noise and exhaust carbon dioxide during preparation.
 また、上記実施形態によれば、発電機22は発電特性を切り換えることによって、各インバータに入力される電圧を適切な大きさに調整することができる。なお、上記実施形態においては、第1~第3スイッチ42a~42cが請求項に記載の調整部に相当する。通常の発電機であれば、エンジン21が低回転状態である場合と高回転状態である場合とで出力電圧が大きく変化してしまい、いずれかの場合において出力電圧がインバータの入力許容電圧を満たさなくなるおそれがある。これに対して、上記実施形態によれば、発電機22は、2つのモードを切り換えることによって、エンジン21が低回転状態である場合と高回転状態である場合との両方において、出力電圧を同程度の値とすることができる。つまり、いずれの場合においても発電機22の出力電圧がインバータの入力許容電圧を満たすので、適切な大きさの電圧がインバータに入力される。 Further, according to the above embodiment, the generator 22 can adjust the voltage input to each inverter to an appropriate magnitude by switching the power generation characteristics. In the above embodiment, the first to third switches 42a to 42c correspond to the adjusting unit described in the claims. In the case of a normal generator, the output voltage varies greatly between when the engine 21 is in a low rotation state and when it is in a high rotation state. In either case, the output voltage satisfies the input allowable voltage of the inverter. There is a risk of disappearing. On the other hand, according to the above embodiment, the generator 22 switches the two modes so that the output voltage is the same both when the engine 21 is in the low rotation state and in the high rotation state. It can be a value of the degree. That is, in any case, since the output voltage of the generator 22 satisfies the input allowable voltage of the inverter, a voltage having an appropriate magnitude is input to the inverter.
 (変形例)
 上記実施形態は本発明を実施するための一形態であり、本発明は、例えば以下に説明する変形例として実施することも可能である。
(Modification)
The said embodiment is one form for implementing this invention, and this invention can also be implemented as a modified example demonstrated below, for example.
 (バイブレータを電気駆動させる変形例)
 上記実施形態では主要アクチュエータを電気駆動する場合を例にとって説明したが、主要アクチュエータ以外の他のアクチュエータも電気駆動するようにしてもよい。例えば、アスファルトフィニッシャは、主要アクチュエータに加えて、バイブレータ13を電気駆動するようにしてもよい。以下、第1の変形例として、バイブレータ13を電気駆動する例について説明する。
(Variation that electrically drives the vibrator)
Although the case where the main actuator is electrically driven has been described as an example in the above embodiment, other actuators other than the main actuator may be electrically driven. For example, the asphalt finisher may electrically drive the vibrator 13 in addition to the main actuator. Hereinafter, an example in which the vibrator 13 is electrically driven will be described as a first modification.
 図10は、第1の変形例に係るアスファルトフィニッシャの電気的な構成を示す図である。なお、図10では、図2と相違する部分を主に示し、図2と同じ構成については記載を省略している。第1の変形例においては、アスファルトフィニッシャは、図2に示す構成に加えて、右主バイブレータ用モータ52a、左主バイブレータ用モータ52b、右伸縮バイブレータ用モータ52c、および左伸縮バイブレータ用モータ52dを備えている。また、制御ボックス24は、図2に示す構成に加えて、バイブレータ用インバータ51を備えている。 FIG. 10 is a diagram showing an electrical configuration of the asphalt finisher according to the first modification. In FIG. 10, portions different from those in FIG. 2 are mainly shown, and description of the same configuration as that in FIG. 2 is omitted. In the first modification, the asphalt finisher includes a right main vibrator motor 52a, a left main vibrator motor 52b, a right telescopic vibrator motor 52c, and a left telescopic vibrator motor 52d in addition to the configuration shown in FIG. I have. Further, the control box 24 includes a vibrator inverter 51 in addition to the configuration shown in FIG.
 図10において、バイブレータ用インバータ51は、発電機22に接続され、発電機22から供給される三相交流の電力を(一旦直流に整流した後)所望の周波数に変換して出力することで、各モータ52a~52dをそれぞれ駆動する。バイブレータ用インバータ51から出力される交流電気の周波数は、コントローラ25の制御指示に従って調整される。つまり、バイブレータ用インバータ51は、コントローラ25の制御指示に従って各モータ52a~52dをそれぞれ駆動する。 In FIG. 10, the vibrator inverter 51 is connected to the generator 22, and converts the three-phase AC power supplied from the generator 22 into a desired frequency (after being once rectified to DC) and outputs it, Each motor 52a to 52d is driven. The frequency of AC electricity output from the vibrator inverter 51 is adjusted according to the control instruction of the controller 25. That is, the vibrator inverter 51 drives each of the motors 52a to 52d in accordance with a control instruction from the controller 25.
 右主バイブレータ用モータ52aは、スクリード11のうちの右側の主スクリードを振動させる右主バイブレータ13aを駆動する。左主バイブレータ用モータ52bは、スクリード11のうちの左側の主スクリードを振動させる左主バイブレータ13bを駆動する。右伸縮バイブレータ用モータ52cは、スクリード11のうちの右側の伸縮スクリードを振動させる右伸縮バイブレータ13cを駆動する。左伸縮バイブレータ用モータ52dは、スクリード11のうちの左側の伸縮スクリードを振動させる左伸縮バイブレータ13dを駆動する。 The right main vibrator motor 52 a drives the right main vibrator 13 a that vibrates the right main screed of the screed 11. The left main vibrator motor 52 b drives the left main vibrator 13 b that vibrates the left main screed of the screed 11. The right extension vibrator motor 52 c drives the right extension vibrator 13 c that vibrates the right extension screed of the screed 11. The left telescopic vibrator motor 52 d drives the left telescopic vibrator 13 d that vibrates the left telescoping screed of the screed 11.
 アスファルトフィニッシャの使用時におけるバイブレータ13(各バイブレータ13a~13d)の制御は、上記実施形態における各アクチュエータと同様である。すなわち、バイブレータ13は、ユーザによる個別起動指示あるいは複数起動指示に従って起動されてもよいし、ユーザによる変更指示に従って駆動状態を変更されたり、あるいは、停止されてもよい。 Control of the vibrator 13 (vibrators 13a to 13d) when the asphalt finisher is used is the same as that of each actuator in the above embodiment. That is, the vibrator 13 may be activated in accordance with an individual activation instruction or a plurality of activation instructions by the user, or the driving state may be changed or stopped according to a change instruction by the user.
 以上のように、バイブレータ13を電気駆動することによって、油圧駆動する場合に比べてよりエネルギー効率を向上することができる。また、バイブレータ13を電気的に制御することによって、各バイブレータ13a~13dの振動数をより精度良く制御することができ、各バイブレータ13a~13dを同じ振動数で動作させることができる。さらに、バイブレータ13への油圧配管が不要となるので、スクリード11の伸縮機構を簡易化することができる。 As described above, by electrically driving the vibrator 13, energy efficiency can be further improved compared to the case of hydraulic driving. Further, by electrically controlling the vibrator 13, the vibration frequencies of the vibrators 13a to 13d can be controlled with higher accuracy, and the vibrators 13a to 13d can be operated at the same frequency. Furthermore, since the hydraulic piping to the vibrator 13 is not required, the expansion / contraction mechanism of the screed 11 can be simplified.
 なお、上記実施形態および第1の変形例において特に説明していないアクチュエータ(スクリード11の伸縮機構やレベリングアーム8の駆動機構)については、駆動方法はどのようなものであってもよく、油圧駆動されてもよいし電気駆動されてもよい。 It should be noted that any actuator that is not particularly described in the above embodiment and the first modification (the telescopic mechanism of the screed 11 and the driving mechanism of the leveling arm 8) may be driven by any hydraulic drive. Or may be electrically driven.
 (外部電力を供給可能とする変形例)
 上記実施形態においては、エンジン21を駆動源とする発電機22による電力によって各制御対象装置が電気的に駆動された。ここで、アスファルトフィニッシャは、外部電源から電力供給を受けることが可能であり、各制御対象装置は、外部電源からの電力によって駆動されてもよい。以下、第2の変形例として、外部電源からの電力によって各制御対象装置が駆動される例について説明する。
(Modification that enables external power supply)
In the above-described embodiment, each control target device is electrically driven by electric power from the generator 22 using the engine 21 as a drive source. Here, the asphalt finisher can receive power supply from an external power source, and each control target device may be driven by power from the external power source. Hereinafter, an example in which each control target device is driven by power from an external power source will be described as a second modification.
 図11は、第2の変形例に係るアスファルトフィニッシャの電気的な構成を示す図である。なお、図11では、図2と相違する部分を主に示し、図2と同じ構成については一部記載を省略している。第2の変形例においては、アスファルトフィニッシャは、図2(または図10)に示す構成に加えて、電源プラグ61および切換スイッチ62を備えている。 FIG. 11 is a diagram showing an electrical configuration of the asphalt finisher according to the second modification. Note that FIG. 11 mainly shows parts different from FIG. 2, and a part of the same configuration as FIG. 2 is omitted. In the second modification, the asphalt finisher includes a power plug 61 and a changeover switch 62 in addition to the configuration shown in FIG. 2 (or FIG. 10).
 外部電力を得るための電源端子の一例である電源プラグ61は、外部電源に着脱可能に接続され、外部電源からの電力供給を受ける。切換スイッチ62は、発電機22と制御ボックス24との間、かつ、電源プラグ61と制御ボックス24との間に設けられ、発電機22と電源プラグ61のいずれか一方と制御ボックス24とを接続する。以上の構成により、制御ボックス24は、発電機22からの電力と電源プラグ61からの電力とを切り換え可能である。なお、図示していないが、切換スイッチ62はコントローラ25に接続されており、切換スイッチ62の切換は、コントローラ25からの切換指示に従って行われてもよい。コントローラ25は、ユーザの指示に従って切換スイッチ62の切換を行ってもよいし、電源プラグ61が外部電源に接続されたことを検知する検知手段を備える場合には、そのことが検知された場合に電源プラグ61と制御ボックス24とを自動的に接続するように切換を行ってもよい。 A power plug 61, which is an example of a power supply terminal for obtaining external power, is detachably connected to the external power supply and receives power supply from the external power supply. The changeover switch 62 is provided between the generator 22 and the control box 24 and between the power plug 61 and the control box 24, and connects either the generator 22 or the power plug 61 and the control box 24. To do. With the above configuration, the control box 24 can switch between the power from the generator 22 and the power from the power plug 61. Although not shown, the changeover switch 62 is connected to the controller 25, and the changeover of the changeover switch 62 may be performed in accordance with a change instruction from the controller 25. The controller 25 may switch the changeover switch 62 in accordance with a user's instruction, and when it is provided with detection means for detecting that the power plug 61 is connected to an external power source, if this is detected. Switching may be performed so that the power plug 61 and the control box 24 are automatically connected.
 以上のように、第2の変形例においては、アスファルトフィニッシャは、外部電源からの電力供給を受けることができるように構成される。これによって、例えば、舗装施工の準備時においては、外部電源から供給される電力によって加熱装置12を駆動させ、エンジン21を停止するようにすることも可能である。したがって、第2の変形例によれば、一層の省エネルギー化を図ることができるとともに、二酸化炭素の排出をより低減することができる。 As described above, in the second modified example, the asphalt finisher is configured to be able to receive power supply from an external power source. Thus, for example, at the time of preparation for pavement construction, the heating device 12 can be driven by power supplied from an external power source, and the engine 21 can be stopped. Therefore, according to the second modification, it is possible to further save energy and to further reduce carbon dioxide emissions.
 (発電機の出力を調整する変形例)
 上記実施形態においては、高回転状態と低回転状態とで発電機の発電特性(具体的にはコイルの巻き数)を変化させることで、2つの状態における発電機出力を調整した。これによって、各インバータに入力される電圧を2つの状態で同程度となるので、予め定められた、各インバータの入力許容電圧の範囲内の電圧を入力することができる。ここで、他の実施形態においては、上記2つの状態における発電機の出力電圧の調整は、以下に示す各変形例の構成によって実現されてもよい。以下、第3~第7の変形例として、発電機の出力を調整する変形例について説明する。
(Modification to adjust the output of the generator)
In the above embodiment, the generator output in the two states is adjusted by changing the power generation characteristics (specifically, the number of turns of the coil) of the generator between the high rotation state and the low rotation state. As a result, the voltage input to each inverter is approximately the same in the two states, so that a voltage within a predetermined allowable input voltage range of each inverter can be input. Here, in other embodiments, the adjustment of the output voltage of the generator in the above two states may be realized by the configuration of each modification shown below. Hereinafter, modified examples for adjusting the output of the generator will be described as third to seventh modified examples.
 (第3の変形例)
 図12は、第3の変形例に係るアスファルトフィニッシャの電気的な構成を示す図である。なお、図12では、図2と相違する部分を主に示し、図2と同じ構成については記載を省略している。第3の変形例においては、アスファルトフィニッシャは、図2に示す構成に加えて、整流器71および定電圧装置72を備えている。また、第3の変形例においては、アスファルトフィニッシャは、上述の発電機22に代えて、発電機70を備えている。また、図12では一部のみしか図示していないが、アスファルトフィニッシャは、上記実施形態と同様に各インバータ26~28bを備えている。また、図12では図示していないが、上記実施形態と同様、各インバータ26~28bおよび電力調整器29にはコントローラ25が接続され、各インバータ26~28bおよび電力調整器29はコントローラ25によって制御される。
(Third Modification)
FIG. 12 is a diagram illustrating an electrical configuration of an asphalt finisher according to a third modification. Note that FIG. 12 mainly shows portions that are different from FIG. 2, and a description of the same configuration as FIG. 2 is omitted. In the third modification, the asphalt finisher includes a rectifier 71 and a constant voltage device 72 in addition to the configuration shown in FIG. In the third modification, the asphalt finisher includes a generator 70 instead of the above-described generator 22. Although only a part is shown in FIG. 12, the asphalt finisher includes the inverters 26 to 28b as in the above embodiment. Although not shown in FIG. 12, the controller 25 is connected to each of the inverters 26 to 28b and the power regulator 29, and the inverters 26 to 28b and the power regulator 29 are controlled by the controller 25, as in the above embodiment. Is done.
 発電機70は、エンジン21に機械的に接続されており、エンジン21の駆動によって発電を行う。第3の変形例において、発電機70は、上記実施形態における発電機22のような2つの発電特性を有するものに限らず、どのような種類の発電機であってもよく、例えば従来の発電機であってもよい。したがって、第3の変形例においては、例えばIPMモータ等、永久磁石を用いた小型で高効率のモータを用いることも可能であるので、上記実施形態や後述する第4の変形例に比べて発電効率を向上するとともに装置の小型化を図ることができる。 The generator 70 is mechanically connected to the engine 21 and generates power by driving the engine 21. In the third modified example, the generator 70 is not limited to the generator having the two generation characteristics like the generator 22 in the above-described embodiment, and may be any type of generator, for example, conventional power generation It may be a machine. Therefore, in the third modified example, it is possible to use a small and high-efficiency motor using a permanent magnet such as an IPM motor, for example, so that power generation is performed as compared with the above-described embodiment and a fourth modified example described later. The efficiency can be improved and the apparatus can be miniaturized.
 整流器71は、発電機70に接続され、発電機70から出力される交流電気(ここでは三相交流電気)を直流電気に変換(整流)する。整流器71としては、交流電気を直流変換する機能を有していればどのような種類のものが用いられてもよい。 The rectifier 71 is connected to the generator 70 and converts (rectifies) AC electricity (here, three-phase AC electricity) output from the generator 70 into DC electricity. Any type of rectifier 71 may be used as long as it has a function of converting AC electricity into DC.
 定電圧装置72は、整流器71に接続され、整流器71から出力される直流電気の電圧を所定範囲内の電圧に調整(昇圧または降圧)する。つまり、第3変形例においては、定電圧装置72が請求項に記載の調整部に相当する。ここで、所定範囲とは、各インバータ26~28bの入力許容電圧の範囲である。定電圧装置72は、一般的な昇圧回路を含む構成等、直流電気の電圧を調整する機能を有していればどのような構成であってもよい。また、定電圧装置72は、入力電圧を昇圧および降圧する機能を有するものが好ましいが、入力電圧を昇圧する機能を少なくとも有していればよい。例えば、上記所定範囲よりも高い電圧が入力されることが想定されない場合(つまり、発電機70の出力電圧が上記所定範囲を超えないと想定される場合)には、定電圧装置72は降圧機能を有していなくてもよい。 The constant voltage device 72 is connected to the rectifier 71 and adjusts (boosts or steps down) the voltage of DC electricity output from the rectifier 71 to a voltage within a predetermined range. That is, in the third modified example, the constant voltage device 72 corresponds to the adjusting unit described in the claims. Here, the predetermined range is a range of allowable input voltage of each of the inverters 26 to 28b. The constant voltage device 72 may have any configuration as long as it has a function of adjusting the voltage of DC electricity, such as a configuration including a general booster circuit. The constant voltage device 72 preferably has a function of stepping up and stepping down the input voltage, but it is sufficient that it has at least a function of stepping up the input voltage. For example, when it is not assumed that a voltage higher than the predetermined range is input (that is, when the output voltage of the generator 70 is not expected to exceed the predetermined range), the constant voltage device 72 has a step-down function. May not be included.
 各インバータ26~28bは定電圧装置72に接続される。したがって、第3の変形例では各インバータ26~28bは、定電圧装置72から出力される所定範囲内の大きさの直流電圧を入力する。上記実施形態と同様、各インバータ26~28bは、コントローラ25の制御指示に従って各モータ30~32bをそれぞれ駆動する。ここで、第3変形例においては、各インバータ26~28bは、直流電気を入力し、所望の周波数の交流電気(3相交流電気)を出力する。なお、交流電気を入力とする一般的なインバータは、入力された交流電気を内部で一旦直流に変換してから交流電気を出力する。第3変形例においては、インバータの内部で交流電気を直流電気に変換する必要がないので、各インバータ26~28bの構成を簡易化することができる。また、 The inverters 26 to 28b are connected to a constant voltage device 72. Therefore, in the third modification, each of the inverters 26 to 28b inputs a DC voltage having a magnitude within a predetermined range output from the constant voltage device 72. As in the above embodiment, the inverters 26 to 28b drive the motors 30 to 32b according to the control instructions of the controller 25, respectively. Here, in the third modification, each of the inverters 26 to 28b inputs DC electricity and outputs AC electricity (three-phase AC electricity) having a desired frequency. Note that a general inverter that receives alternating current electricity inputs the alternating current electricity once into internal direct current, and then outputs alternating current electricity. In the third modification, there is no need to convert AC electricity into DC electricity inside the inverter, so that the configuration of each of the inverters 26 to 28b can be simplified. Also,
 また、第3の変形例では、電力調整器29としては直流電気を入出力するものが用いられる。上記実施形態と同様、電力調整器29は、コントローラ25の制御指示に従って加熱装置12の動作を制御する。 In the third modification, a power regulator 29 that inputs and outputs DC electricity is used. Similar to the above embodiment, the power regulator 29 controls the operation of the heating device 12 in accordance with the control instruction of the controller 25.
 次に、第3の変形例におけるアスファルトフィニッシャの動作を説明する。まず、エンジン21が低回転状態で駆動する場合、発電機70は相対的に低い電圧を出力する。発電機70の出力電圧は、上記所定範囲よりも低い電圧である。この場合、定電圧装置72は、整流器71から出力される直流電圧を上記所定範囲内の電圧に昇圧して出力する。これによって、各インバータ26~28bには入力許容電圧の範囲内の電圧が入力される。 Next, the operation of the asphalt finisher in the third modification will be described. First, when the engine 21 is driven in a low rotation state, the generator 70 outputs a relatively low voltage. The output voltage of the generator 70 is a voltage lower than the predetermined range. In this case, the constant voltage device 72 boosts and outputs the DC voltage output from the rectifier 71 to a voltage within the predetermined range. As a result, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
 一方、エンジン21が高回転状態で駆動する場合、発電機22は相対的に高い電圧を出力する。この場合も、定電圧装置72は、整流器71から出力される直流電圧を上記所定範囲内の電圧に調整して出力する。すなわち、定電圧装置72は、発電機22の出力電圧が上記所定範囲内の電圧よりも低い場合には昇圧を行い、発電機22の出力電圧が上記所定範囲内の電圧よりも高い場合には降圧を行う。なお、発電機22の出力電圧が上記所定範囲内の電圧である場合には、定電圧装置72は実質的には電圧の調整を行わなくてもよい。以上によって、各インバータ26~28bには入力許容電圧の範囲内の電圧が入力される。 On the other hand, when the engine 21 is driven in a high rotation state, the generator 22 outputs a relatively high voltage. Also in this case, the constant voltage device 72 adjusts and outputs the DC voltage output from the rectifier 71 to a voltage within the predetermined range. That is, the constant voltage device 72 performs boosting when the output voltage of the generator 22 is lower than the voltage within the predetermined range, and when the output voltage of the generator 22 is higher than the voltage within the predetermined range. Step down. When the output voltage of the generator 22 is a voltage within the predetermined range, the constant voltage device 72 does not have to substantially adjust the voltage. Thus, a voltage within the input allowable voltage range is input to each of the inverters 26 to 28b.
 以上のように、第3の変形例によれば、定電圧装置72が発電機70の出力側に接続され、定電圧装置72は、入力された電圧を所定範囲内の電圧へと変換して出力する。これによって、エンジン21が低回転状態である場合と高回転状態である場合との両方の場合において、各インバータ26~28bに入力される電圧を一定とすることができ、入力許容電圧の範囲内の電圧を各インバータ26~28bに入力することができる。したがって、第3の変形例によれば、各インバータ26~28bを正常に動作させることができ、各機構を正確に制御することができる。 As described above, according to the third modification, the constant voltage device 72 is connected to the output side of the generator 70, and the constant voltage device 72 converts the input voltage into a voltage within a predetermined range. Output. As a result, in both cases where the engine 21 is in the low rotation state and in the high rotation state, the voltage input to each of the inverters 26 to 28b can be made constant and within the range of the input allowable voltage. Can be input to each of the inverters 26 to 28b. Therefore, according to the third modification, each of the inverters 26 to 28b can be operated normally, and each mechanism can be accurately controlled.
 また、上記第3の変形例によれば、エンジン21の回転数が何らかの原因で変動したとしても、発電機70の出力電圧が定電圧装置72によって適宜昇圧あるいは降圧されるので、このような変動にも十分対応することができる。また、上記第3の変形例によれば、定電圧装置72によって直流電圧を変換するので、交流電圧を変換する場合(後述の第6および第7の変形例)に比べて、より精度良く電圧調整を行うことができる。 Further, according to the third modification, even if the rotational speed of the engine 21 fluctuates for some reason, the output voltage of the generator 70 is appropriately boosted or stepped down by the constant voltage device 72. Can also cope with. Further, according to the third modification, since the DC voltage is converted by the constant voltage device 72, the voltage is more accurately compared with the case of converting the AC voltage (sixth and seventh modifications described later). Adjustments can be made.
 (第4の変形例)
 図13は、第4の変形例に係るアスファルトフィニッシャの電気的な構成を示す図である。なお、図13では、図2と相違する部分を主に示し、図2と同じ構成については記載を省略している。第4の変形例においては、アスファルトフィニッシャは、図2に示す構成に加えて、自動電圧調整器(図13では、“AVR(Automatic Voltage Regulator)”と略記する。以下同様。)73、および、検出用変圧器79を備える。また、第4の変形例においては、アスファルトフィニッシャは、上述の発電機22に代えて、発電機80を備えている。発電機80は、発電機本体74および励磁装置77を有する。また、図13では一部のみしか図示していないが、アスファルトフィニッシャは、上記実施形態と同様に各インバータ26~28bおよび電力調整器29を備えている。また、図13では図示していないが、上記実施形態と同様、各インバータ26~28bおよび電力調整器29にはコントローラ25が接続され、各インバータ26~28bおよび電力調整器29はコントローラ25によって制御される。
(Fourth modification)
FIG. 13 is a diagram illustrating an electrical configuration of an asphalt finisher according to a fourth modification. Note that FIG. 13 mainly shows portions that are different from FIG. 2, and a description of the same configuration as FIG. 2 is omitted. In the fourth modification example, the asphalt finisher has an automatic voltage regulator (abbreviated as “AVR (Automatic Voltage Regulator)” in FIG. 13) in addition to the configuration shown in FIG. 2. A detection transformer 79 is provided. In the fourth modification, the asphalt finisher includes a generator 80 instead of the above-described generator 22. The generator 80 has a generator body 74 and an excitation device 77. Although only a part of the asphalt finisher is shown in FIG. 13, the asphalt finisher includes the inverters 26 to 28b and the power regulator 29 as in the above embodiment. Although not shown in FIG. 13, a controller 25 is connected to each of the inverters 26 to 28b and the power regulator 29 as in the above embodiment, and each of the inverters 26 to 28b and the power regulator 29 is controlled by the controller 25. Is done.
 図13において、発電機80は、エンジン21に機械的に接続されており、エンジン21の駆動によって発電を行う。具体的には、発電機本体74および励磁装置77は、エンジン21に機械的に接続されており、エンジン21によって駆動される。励磁装置77は、発電機本体74の界磁コイル75の電流を制御することで、発電機本体74における磁界を制御する。 In FIG. 13, the generator 80 is mechanically connected to the engine 21 and generates power by driving the engine 21. Specifically, the generator body 74 and the excitation device 77 are mechanically connected to the engine 21 and driven by the engine 21. The excitation device 77 controls the magnetic field in the generator main body 74 by controlling the current of the field coil 75 of the generator main body 74.
 自動電圧調整器73は、所定範囲内の電圧が出力されるように発電機80の出力電圧を調整する。自動電圧調整器73は、発電機80の出力電圧に基づいて発電機80の界磁電流を制御するものである。換言すれば、自動電圧調整器73は、エンジン21が第1回転状態である場合と第2回転状態である場合とで発電機80の発電特性を変化させることによって、発電機の出力電圧を調整する。つまり、第4の変形例においては、自動電圧調整器73が請求項に記載の調整部に相当する。 The automatic voltage regulator 73 adjusts the output voltage of the generator 80 so that a voltage within a predetermined range is output. The automatic voltage regulator 73 controls the field current of the generator 80 based on the output voltage of the generator 80. In other words, the automatic voltage regulator 73 adjusts the output voltage of the generator by changing the power generation characteristics of the generator 80 when the engine 21 is in the first rotation state and when the engine 21 is in the second rotation state. To do. That is, in the fourth modified example, the automatic voltage regulator 73 corresponds to the adjustment unit described in the claims.
 具体的には、自動電圧調整器73は、検出用変圧器79によって検出された発電機80の出力電圧に基づいて、励磁装置77のコイル78に供給される電流を制御する。励磁装置77は、コイル78の電流に応じた電流を、回転整流器76を介して発電機本体74の界磁コイル75に供給する。自動電圧調整器73は、発電機80の出力電圧が設定された所望の電圧値となるように、上記界磁コイル75の電流を制御する。以上によって、発電機80の出力電圧は、自動電圧調整器73で設定された値に制御される。 Specifically, the automatic voltage regulator 73 controls the current supplied to the coil 78 of the excitation device 77 based on the output voltage of the generator 80 detected by the detection transformer 79. The excitation device 77 supplies a current corresponding to the current of the coil 78 to the field coil 75 of the generator main body 74 via the rotary rectifier 76. The automatic voltage regulator 73 controls the current of the field coil 75 so that the output voltage of the generator 80 becomes a set desired voltage value. As described above, the output voltage of the generator 80 is controlled to the value set by the automatic voltage regulator 73.
 第4の変形例においては、エンジン21が低回転状態で駆動する場合も高回転状態で駆動する場合も、発電機80の出力電圧は、自動電圧調整器73によって調整される結果、上記所定範囲内の値となる。これによって、各インバータ26~28bには入力許容電圧の範囲内の電圧が入力される。 In the fourth modification, the output voltage of the generator 80 is adjusted by the automatic voltage regulator 73 regardless of whether the engine 21 is driven in a low rotation state or in a high rotation state. It becomes the value in. As a result, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
 上記第3および第4の変形例においては、エンジン21が低回転状態であるか高回転状態であるかによって配線を切り換えること無く、インバータに入力される電圧を調整することができる。したがって、上記第3および第4の変形例においては、エンジン21が高回転状態であるか低回転状態であるかを検出する手段を設けなくても、発電機の出力電圧を調整することができる。 In the third and fourth modifications, the voltage input to the inverter can be adjusted without switching the wiring depending on whether the engine 21 is in a low rotation state or a high rotation state. Therefore, in the third and fourth modified examples, the output voltage of the generator can be adjusted without providing means for detecting whether the engine 21 is in a high rotation state or a low rotation state. .
 (第5の変形例)
 図14は、第5の変形例に係るアスファルトフィニッシャの電気的な構成を示す図である。なお、図14では、図2と相違する部分を主に示し、図2と同じ構成については記載を省略している。第5の変形例におけるアスファルトフィニッシャは、図12に示す構成と比べて、定電圧装置72に代えて昇圧装置82を備え、切換部81およびダイオード83を備えている点で異なり、その他の点は第3の変形例と同様である。以下、第3の変形例との相違点を中心に第5の変形例について説明する。
(Fifth modification)
FIG. 14 is a diagram illustrating an electrical configuration of an asphalt finisher according to a fifth modification. In FIG. 14, portions different from those in FIG. 2 are mainly shown, and description of the same configuration as that in FIG. 2 is omitted. The asphalt finisher in the fifth modified example is different from the configuration shown in FIG. 12 in that it includes a booster 82 instead of the constant voltage device 72, and includes a switching unit 81 and a diode 83. This is the same as the third modification. Hereinafter, the fifth modification will be described with a focus on differences from the third modification.
 図14において、整流器71は、上記第3の変形例と同様の構成である。切換部81は、整流器71の出力側に接続される。切換部81は、整流器71の出力をそのまま各インバータ26~28bに入力する経路と、整流器71の出力を昇圧装置82を介して各インバータ26~28bに入力する経路とを切り換えることが可能である。整流器71の出力側の経路は二手に分岐され、一方の経路はダイオード83を介して各インバータ26~28bに接続される。他方の経路は、切換部81が有するスイッチ81aおよび昇圧装置82を介して各インバータ26~28bに接続される。すなわち、整流器71の出力端はダイオード83のアノード端子に接続され、ダイオード83のカソード端子は各インバータ26~28bに接続される。また、整流器71の出力端はスイッチ81aを介して昇圧装置82の入力端に接続され、昇圧装置82の出力端は各インバータ26~28bに接続される。 In FIG. 14, the rectifier 71 has the same configuration as that of the third modified example. The switching unit 81 is connected to the output side of the rectifier 71. The switching unit 81 can switch between a path for inputting the output of the rectifier 71 to the inverters 26 to 28b as it is and a path for inputting the output of the rectifier 71 to the inverters 26 to 28b via the booster 82. . The path on the output side of the rectifier 71 is bifurcated, and one path is connected to each of the inverters 26 to 28b via the diode 83. The other path is connected to each of the inverters 26 to 28b via a switch 81a included in the switching unit 81 and a booster 82. That is, the output terminal of the rectifier 71 is connected to the anode terminal of the diode 83, and the cathode terminal of the diode 83 is connected to each of the inverters 26 to 28b. The output terminal of the rectifier 71 is connected to the input terminal of the booster 82 via the switch 81a, and the output terminal of the booster 82 is connected to each of the inverters 26 to 28b.
 なお、図示しないが、切換部81はコントローラ25に接続されており、切換部81における経路の切換はコントローラ25によって制御される。すなわち、スイッチ81aの接続/切断はコントローラ25によって制御される。 Although not shown, the switching unit 81 is connected to the controller 25, and the path switching in the switching unit 81 is controlled by the controller 25. That is, the connection / disconnection of the switch 81a is controlled by the controller 25.
 また、昇圧装置82は、整流器71に接続され、整流器71から出力される直流電気の電圧を所定範囲内の電圧に昇圧する。つまり、第5の変形例においては、昇圧装置82が請求項に記載の調整部に相当する。昇圧装置82は、入力電圧を昇圧する機能を少なくとも有していればどのような構成であってもよく、一般的な昇圧回路等で構成されてもよい。なお、詳細は後述するが、第5の変形例においては発電機70が上記所定範囲よりも低い電圧を出力する場合にのみ昇圧装置82が動作する。したがって、第3の変形例とは異なり、昇圧装置82は降圧機能を有する必要はない。したがって、第5の変形例においては、発電機70の出力電圧を調整するための構成をより簡易化することができる。 Further, the booster 82 is connected to the rectifier 71 and boosts the DC electric voltage output from the rectifier 71 to a voltage within a predetermined range. That is, in the fifth modified example, the booster 82 corresponds to the adjustment unit described in the claims. The booster 82 may have any configuration as long as it has at least a function of boosting the input voltage, and may be configured by a general booster circuit or the like. Although details will be described later, in the fifth modified example, the booster 82 operates only when the generator 70 outputs a voltage lower than the predetermined range. Therefore, unlike the third modification, the booster 82 need not have a step-down function. Therefore, in the fifth modification, the configuration for adjusting the output voltage of the generator 70 can be further simplified.
 第5の変形例において、エンジン21が低回転状態で駆動する場合、発電機70は相対的に低い電圧を出力する。発電機70の出力電圧は、上記所定範囲よりも低い電圧である。この場合、コントローラ25は、発電機70の出力が昇圧装置82に入力されるように切換部81を制御する。すなわち、コントローラ25はスイッチ81aを接続するように制御する。したがって、昇圧装置82は、整流器71から出力される直流電圧を上記所定範囲内の電圧に昇圧して出力する。これによって、各インバータ26~28bには入力許容電圧の範囲内の電圧が入力される。なお、ダイオード83は、昇圧装置82が動作する場合に電流の逆流を防止するために設けられる。 In the fifth modification, when the engine 21 is driven in a low rotation state, the generator 70 outputs a relatively low voltage. The output voltage of the generator 70 is a voltage lower than the predetermined range. In this case, the controller 25 controls the switching unit 81 so that the output of the generator 70 is input to the booster 82. That is, the controller 25 controls to connect the switch 81a. Therefore, the booster 82 boosts and outputs the DC voltage output from the rectifier 71 to a voltage within the predetermined range. As a result, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b. The diode 83 is provided in order to prevent a reverse current flow when the booster 82 operates.
 一方、エンジン21が高回転状態で駆動する場合、発電機70は相対的に高い電圧を出力する。第5の変形例においては、この場合に発電機70から出力される電圧は、インバータ26~28bの入力許容電圧の範囲内の値であるとする。この場合、コントローラ25は、発電機70の出力が昇圧装置82に入力されないように切換部81を制御する。すなわち、コントローラ25はスイッチ81aを切断するように制御する。したがって、整流器71からの出力はそのまま各インバータ26~28bに入力される。これによって、高回転状態である場合も低回転状態である場合と同様、各インバータ26~28bには入力許容電圧の範囲内の電圧が入力される。 On the other hand, when the engine 21 is driven in a high rotation state, the generator 70 outputs a relatively high voltage. In the fifth modification, it is assumed that the voltage output from the generator 70 in this case is a value within the input allowable voltage range of the inverters 26 to 28b. In this case, the controller 25 controls the switching unit 81 so that the output of the generator 70 is not input to the booster 82. That is, the controller 25 controls the switch 81a to be disconnected. Therefore, the output from the rectifier 71 is directly input to the inverters 26 to 28b. Thus, as in the case of the high rotation state and the low rotation state, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
 以上のように、第5の変形例によれば、エンジン21が低回転状態である場合には発電機70の出力が昇圧装置82を介して各インバータ26~28bに入力され、エンジン21が高回転状態である場合には発電機70の出力が昇圧装置82を介さずに各インバータ26~28bに入力されるように、発電機70から各インバータ26~28bまでの電力伝達経路が切換部81によって切り替えられる。これによって、いずれの状態である場合にも各インバータ26~28bに適切な電圧を入力することができる。また、上記第5の変形例によれば、昇圧装置82によって直流電圧を変換するので、交流電圧を変換する場合(後述の第6および第7の変形例)に比べて、より精度良く電圧調整を行うことができる。 As described above, according to the fifth modification, when the engine 21 is in the low rotation state, the output of the generator 70 is input to the inverters 26 to 28b via the booster 82, and the engine 21 is In the rotating state, the power transmission path from the generator 70 to each of the inverters 26 to 28b is switched to the switching unit 81 so that the output of the generator 70 is input to each of the inverters 26 to 28b without passing through the booster 82. It is switched by. Thus, an appropriate voltage can be input to each of the inverters 26 to 28b in any state. Further, according to the fifth modified example, since the DC voltage is converted by the booster 82, the voltage adjustment is performed with higher accuracy than in the case of converting the AC voltage (sixth and seventh modified examples described later). It can be performed.
 (第6の変形例)
 図15は、第6の変形例に係るアスファルトフィニッシャの電気的な構成を示す図である。なお、図15では、図2と相違する部分を主に示し、図2と同じ構成については記載を省略している。第6の変形例においては、アスファルトフィニッシャは、図2に示す構成に加えて、切換部84および変圧器85を備えている。また、第6の変形例においては、アスファルトフィニッシャは、上述の発電機22に代えて、上記第3の変形例と同様の発電機70を備えている。また、図16では一部のみしか図示していないが、アスファルトフィニッシャは、上記実施形態と同様に各インバータ26~28bおよび電力調整器29を備えている。また、図16では図示していないが、上記実施形態と同様、各インバータ26~28bおよび電力調整器29にはコントローラ25が接続され、各インバータ26~28bおよび電力調整器29はコントローラ25によって制御される。
(Sixth Modification)
FIG. 15 is a diagram illustrating an electrical configuration of an asphalt finisher according to a sixth modification. In FIG. 15, portions different from those in FIG. 2 are mainly shown, and description of the same configuration as that in FIG. 2 is omitted. In the sixth modification, the asphalt finisher includes a switching unit 84 and a transformer 85 in addition to the configuration shown in FIG. In the sixth modification, the asphalt finisher includes a generator 70 similar to that in the third modification, instead of the above-described generator 22. Further, although only a part is shown in FIG. 16, the asphalt finisher includes inverters 26 to 28b and a power regulator 29 as in the above embodiment. Although not shown in FIG. 16, the controller 25 is connected to each of the inverters 26 to 28b and the power regulator 29 as in the above embodiment, and each of the inverters 26 to 28b and the power regulator 29 is controlled by the controller 25. Is done.
 図15において、切換部84は発電機70に接続される。切換部84は、発電機70の出力をそのまま各インバータ26~28bに入力する経路と、発電機70の出力を変圧器85を介して各インバータ26~28bに入力する経路とを切り換えることが可能である。発電機70の出力側の経路は二手に分岐され、一方の経路は切換部84が有するスイッチ81aおよび変圧器85を介して各インバータ26~28bに接続される。他方の経路は、切換部84が有するスイッチ81bを介して各インバータ26~28bおよび電力調整器29に接続される。また、図示しないが、切換部84はコントローラ25に接続されており、切換部84における経路の切換はコントローラ25によって制御される。すなわち、スイッチ83aおよび83bの接続/切断はコントローラ25によって制御される。 15, the switching unit 84 is connected to the generator 70. The switching unit 84 can switch between a path for inputting the output of the generator 70 as it is to each of the inverters 26 to 28 b and a path for inputting the output of the generator 70 to each of the inverters 26 to 28 b via the transformer 85. It is. The output side path of the generator 70 is bifurcated, and one path is connected to each of the inverters 26 to 28b via a switch 81a and a transformer 85 included in the switching unit 84. The other path is connected to each of the inverters 26 to 28b and the power regulator 29 via a switch 81b included in the switching unit 84. Although not shown, the switching unit 84 is connected to the controller 25, and path switching in the switching unit 84 is controlled by the controller 25. That is, connection / disconnection of the switches 83a and 83b is controlled by the controller 25.
 変圧器85は、入力される交流電圧(ここでは、三相交流の電圧)を、上記所定範囲の電圧に変換して出力する。つまり、第6の変形例(および後述の第7の変形例)においては、変圧器85が請求項に記載の調整部に相当する。変圧器85の種類や具体的な構成はどのようなものであってもよい。 The transformer 85 converts an input AC voltage (here, a three-phase AC voltage) into a voltage within the predetermined range and outputs the voltage. That is, in the sixth modification (and a seventh modification described later), the transformer 85 corresponds to the adjustment unit described in the claims. The type and specific configuration of the transformer 85 may be anything.
 次に、第6の変形例におけるアスファルトフィニッシャの動作を説明する。まず、エンジン21が低回転状態で駆動する場合、発電機70は相対的に低い電圧を出力する。この場合、コントローラ25は、発電機70の出力が変圧器85に入力されるように切換部84を制御する。すなわち、コントローラ25はスイッチ83aを接続し、スイッチ83bを切断するように制御する。したがって、変圧器85は、発電機70から出力される三相交流の電圧を上記所定範囲内の電圧に昇圧して出力する。これによって、各インバータ26~28bには入力許容電圧の範囲内の電圧が入力される。 Next, the operation of the asphalt finisher in the sixth modification will be described. First, when the engine 21 is driven in a low rotation state, the generator 70 outputs a relatively low voltage. In this case, the controller 25 controls the switching unit 84 so that the output of the generator 70 is input to the transformer 85. That is, the controller 25 controls to connect the switch 83a and disconnect the switch 83b. Therefore, the transformer 85 boosts and outputs the three-phase AC voltage output from the generator 70 to a voltage within the predetermined range. As a result, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
 一方、エンジン21が高回転状態で駆動する場合、発電機70は相対的に高い電圧を出力する。第6の変形例においては、この場合に発電機70から出力される電圧は、インバータ26~28bの入力許容電圧の範囲内の値であるとする。この場合、コントローラ25は、発電機70の出力が変圧器85に入力されないように切換部84を制御する。すなわち、コントローラ25はスイッチ83aを切断し、スイッチ83bを接続するように制御する。したがって、発電機70から出力される三相交流電気はそのまま各インバータ26~28bに入力される。これによって、高回転状態である場合も低回転状態である場合と同様、各インバータ26~28bには入力許容電圧の範囲内の電圧が入力される。 On the other hand, when the engine 21 is driven in a high rotation state, the generator 70 outputs a relatively high voltage. In the sixth modification, it is assumed that the voltage output from the generator 70 in this case is a value within the range of the input allowable voltage of the inverters 26 to 28b. In this case, the controller 25 controls the switching unit 84 so that the output of the generator 70 is not input to the transformer 85. That is, the controller 25 controls to disconnect the switch 83a and connect the switch 83b. Therefore, the three-phase AC electricity output from the generator 70 is input to the inverters 26 to 28b as they are. Thus, as in the case of the high rotation state and the low rotation state, a voltage within the range of the input allowable voltage is input to each of the inverters 26 to 28b.
 以上のように、第6の変形例によれば、エンジン21が低回転状態である場合には発電機70の出力が変圧器85を介して各インバータ26~28bに入力され、エンジン21が高回転状態である場合には発電機70の出力が変圧器85を介さずに各インバータ26~28bに入力されるように、発電機70から各インバータ26~28bまでの電力伝達経路が切換部84によって切り替えられる。これによって、いずれの状態である場合にも各インバータ26~28bに適切な電圧を入力することができる。 As described above, according to the sixth modification, when the engine 21 is in the low rotation state, the output of the generator 70 is input to each of the inverters 26 to 28b via the transformer 85, and the engine 21 is In the rotating state, the power transmission path from the generator 70 to each of the inverters 26 to 28b is switched to the switching unit 84 so that the output of the generator 70 is input to each of the inverters 26 to 28b without passing through the transformer 85. It is switched by. Thus, an appropriate voltage can be input to each of the inverters 26 to 28b in any state.
 (第7の変形例)
 図16は、第7の変形例に係るアスファルトフィニッシャの電気的な構成を示す図である。なお、図16では、図2と相違する部分を主に示し、図2と同じ構成については記載を省略している。第7の変形例におけるアスファルトフィニッシャは、図15に示す第6の変形例の構成と比べて、自動電圧調整器73、および、検出用変圧器79を備える点で異なる。また、第7の変形例においては、アスファルトフィニッシャは、第6の変形例における発電機70に代えて、第4の変形例と同様の発電機80を備えている。以下、第6の変形例との相違点を中心に第5の変形例について説明する。
(Seventh Modification)
FIG. 16 is a diagram illustrating an electrical configuration of an asphalt finisher according to a seventh modification. In FIG. 16, portions different from those in FIG. 2 are mainly shown, and description of the same components as those in FIG. 2 is omitted. The asphalt finisher in the seventh modified example is different from the configuration of the sixth modified example shown in FIG. 15 in that an automatic voltage regulator 73 and a detection transformer 79 are provided. Further, in the seventh modification, the asphalt finisher includes a generator 80 similar to that in the fourth modification, instead of the generator 70 in the sixth modification. Hereinafter, the fifth modification will be described with a focus on differences from the sixth modification.
 図16において、発電機80および自動電圧調整器73は、第4の変形例と同様の構成である。第7の変形例においては、検出用変圧器79は変圧器85の出力側に接続される。自動電圧調整器73は、変圧器85(およびスイッチ84b)の出力端の電圧が所定範囲内の電圧となるように、発電機80の出力電圧を調整する。すなわち、自動電圧調整器73は、変圧器85(およびスイッチ84b)の出力端の電圧が設定された所望の電圧値となるように、上記界磁コイル75の電流を制御する。 In FIG. 16, the generator 80 and the automatic voltage regulator 73 have the same configuration as that of the fourth modified example. In the seventh modification, the detection transformer 79 is connected to the output side of the transformer 85. The automatic voltage regulator 73 adjusts the output voltage of the generator 80 so that the voltage at the output terminal of the transformer 85 (and the switch 84b) becomes a voltage within a predetermined range. That is, the automatic voltage regulator 73 controls the current of the field coil 75 so that the voltage at the output terminal of the transformer 85 (and the switch 84b) becomes a set desired voltage value.
 第7の変形例においても、コントローラ25および切換部84は第6の変形例と同様に動作する。したがって、エンジン21が低回転状態である場合であっても高回転状態である場合であっても、発電機80の出力電圧は、上記所定範囲内に調整される。ここで、交流電圧を変換する変圧器85による電圧変換は、直流電圧を変換する定電圧装置72(昇圧装置82)による電圧変換に比べると、詳細な電圧調整が一般的には難しい。これに対して、第7の変形例においては、変圧器85(およびスイッチ84b)の出力端の電圧は自動電圧調整器73によっても調整されるので、当該電圧の調整をより詳細に(精度良く)行うことができる。また、高回転状態である場合にエンジン21の回転数に多少の変動がある場合でも、自動電圧調整器73によって発電機70の出力電圧が調整されるので、各インバータ26~28bに対する入力電圧をより安定させることができる。 Also in the seventh modification, the controller 25 and the switching unit 84 operate in the same manner as in the sixth modification. Therefore, the output voltage of the generator 80 is adjusted within the predetermined range whether the engine 21 is in a low rotation state or a high rotation state. Here, voltage conversion by the transformer 85 that converts AC voltage is generally difficult to perform detailed voltage adjustment compared to voltage conversion by the constant voltage device 72 (boost device 82) that converts DC voltage. On the other hand, in the seventh modification, the voltage at the output terminal of the transformer 85 (and the switch 84b) is also adjusted by the automatic voltage regulator 73, so that the voltage adjustment is performed in more detail (with high accuracy). )It can be carried out. In addition, even when there is some fluctuation in the rotational speed of the engine 21 in the high rotation state, the output voltage of the generator 70 is adjusted by the automatic voltage regulator 73, so that the input voltage to each of the inverters 26 to 28b is adjusted. It can be made more stable.
 以上のように、第5~第7の変形例においては、切換部81または84は、エンジン21が低回転状態である場合には発電機の出力が調整部(昇圧装置82または変圧器85)を介して各インバータ26~28bに入力され、エンジン21が高回転状態である場合には発電機の出力が調整部を介さずに各インバータ26~28bに入力されるように、発電機から各インバータ26~28bまでの電力伝達経路を切り替える。したがって、低回転状態である場合には発電機の出力電圧が調整部によって調整されるので、各インバータ26~28bに適切な電圧を入力することができる。また、高回転状態である場合には発電機は所定範囲の電圧を出力するので、発電機の出力電圧がそのまま各インバータ26~28bに入力されることによって、各インバータ26~28bに適切な電圧を入力することができる。第5~第7の変形例においては、エンジン21が高回転状態である場合における出力電圧に調整部が対応する必要はないので、調整部をより簡易な構成とすることができる。 As described above, in the fifth to seventh modification examples, the switching unit 81 or 84 has the output of the generator adjusted when the engine 21 is in a low rotation state (the booster 82 or the transformer 85). To the inverters 26 to 28b, and when the engine 21 is in a high rotation state, the generator outputs each of the inverters 26 to 28b so that the output of the generator is not input to the inverters 26 to 28b. The power transmission path to the inverters 26 to 28b is switched. Therefore, since the output voltage of the generator is adjusted by the adjustment unit in the low rotation state, an appropriate voltage can be input to each of the inverters 26 to 28b. Further, since the generator outputs a voltage within a predetermined range in the high rotation state, an appropriate voltage is applied to each inverter 26 to 28b by inputting the output voltage of the generator as it is to each inverter 26 to 28b. Can be entered. In the fifth to seventh modifications, the adjustment unit does not need to correspond to the output voltage when the engine 21 is in the high rotation state, and therefore the adjustment unit can be configured more simply.
 なお、第5~第7の変形例において、エンジン21が低回転状態であるか高回転状態であるかを検出する方法は、上記実施形態と同様、どのような方法であってもよい。例えば、コントローラ25は、ユーザによる指示、または、エンジン21あるいは発電機22の回転数等に基づいて低回転状態であるか高回転状態であるかを検出するようにしてもよい。 In the fifth to seventh modifications, any method may be used for detecting whether the engine 21 is in a low rotation state or a high rotation state, as in the above embodiment. For example, the controller 25 may detect whether the engine is in a low rotation state or a high rotation state based on an instruction from the user or the rotational speed of the engine 21 or the generator 22.
 以上のように、本発明は、エネルギー効率を向上し、二酸化炭素の排出量を減少させること等を目的として、アスファルトフィニッシャ、リペーバ、およびリミキサ等のアスファルト道路を舗装する道路舗装機械に利用することが可能である。 As described above, the present invention is applied to a road paving machine for paving asphalt roads such as asphalt finishers, repavers, and remixers for the purpose of improving energy efficiency and reducing carbon dioxide emissions. Is possible.
1   アスファルトフィニッシャ
2   車体
3   ホッパ
4   前輪
5   後輪
6   コンベヤ
7   スクリュー
8   レベリングアーム
11  スクリード
12  加熱装置
13  バイブレータ
21  エンジン
22  発電機
23  操作パネル
24  制御ボックス
25  コントローラ
26~28b,51 インバータ
29  電力調整器
30~33b,52a~52d モータ
41  三相コイル
42a~42c スイッチ
61  電源プラグ
62  切換スイッチ
70  発電機
71  整流器
72  定電圧装置
73  自動電圧調整器
80  発電機
81  切換部
82  昇圧装置
84  切換部
85  変圧器
DESCRIPTION OF SYMBOLS 1 Asphalt finisher 2 Car body 3 Hopper 4 Front wheel 5 Rear wheel 6 Conveyor 7 Screw 8 Leveling arm 11 Screed 12 Heating device 13 Vibrator 21 Engine 22 Generator 23 Operation panel 24 Control box 25 Controllers 26 to 28b, 51 Inverter 29 Power regulator 30 33b, 52a to 52d Motor 41 Three-phase coils 42a to 42c Switch 61 Power plug 62 Changeover switch 70 Generator 71 Rectifier 72 Constant voltage device 73 Automatic voltage regulator 80 Generator 81 Switching unit 82 Booster 84 Switching unit 85 Transformer

Claims (19)

  1.  走行機構、コンベヤ、スクリュー、およびスクリードの各機構を有し、アスファルト道路を舗装する道路舗装機械であって、
     エンジンと、
     前記エンジンの駆動によって発電を行う発電機と、
     前記各機構を前記発電機による電力によってそれぞれ駆動する各モータと、
     前記エンジンが相対的に低い回転数である第1回転状態である場合と、相対的に高い回転数である第2回転状態である場合との両方の場合において前記発電機の出力電圧が所定範囲内の電圧となるように、前記発電機の出力電圧を調整する調整部と、
     前記調整部によって電圧が調整された前記発電機の出力を所望の周波数に変換して前記各モータに供給する各インバータとを備える、道路舗装機械。
    A road paving machine having a traveling mechanism, a conveyor, a screw, and a screed mechanism, and paving an asphalt road,
    Engine,
    A generator for generating electricity by driving the engine;
    Each motor that drives each mechanism with electric power from the generator;
    The output voltage of the generator is in a predetermined range in both the case where the engine is in a first rotation state where the engine speed is relatively low and the case where the engine is in a second rotation state where the engine speed is relatively high. An adjustment unit that adjusts the output voltage of the generator so as to be a voltage within,
    A road paving machine comprising: an inverter that converts an output of the generator, the voltage of which has been adjusted by the adjusting unit, into a desired frequency and supplies the inverter to each motor.
  2.  前記調整部は、前記発電機の出力側に接続され、入力された電圧を前記所定範囲内の電圧へと変換して出力する、請求項1に記載の道路舗装機械。 The road paving machine according to claim 1, wherein the adjustment unit is connected to an output side of the generator and converts an input voltage into a voltage within the predetermined range and outputs the converted voltage.
  3.  前記発電機から出力される交流電気を直流電気に変換する整流部をさらに備え、
     前記調整部は、前記直流電気の電圧を前記所定範囲内の電圧に変換する定電圧装置を含む、請求項2に記載の道路舗装機械。
    A rectifier that converts alternating current electricity output from the generator into direct current electricity;
    The road paving machine according to claim 2, wherein the adjustment unit includes a constant voltage device that converts the voltage of the DC electricity into a voltage within the predetermined range.
  4.  前記調整部は、前記エンジンが第1回転状態である場合と第2回転状態である場合とで前記発電機の発電特性を変化させることによって、前記発電機の出力電圧を調整する、請求項1に記載の道路舗装機械。 The said adjustment part adjusts the output voltage of the said generator by changing the electric power generation characteristic of the said generator between the case where the said engine is a 1st rotation state, and the case where it is a 2nd rotation state. Road paving machine as described in
  5.  前記エンジンが前記第1回転状態である場合には前記発電機の出力が前記調整部を介して前記各インバータに入力され、前記エンジンが前記第2回転状態である場合には前記発電機の出力が前記調整部を介さずに前記各インバータに入力されるように、前記発電機から前記各インバータまでの電力伝達経路を切り換える切換部をさらに備え、
     前記発電機は、前記エンジンが前記第2回転状態である場合に前記所定範囲の電圧を出力し、
     前記調整部は、前記エンジンが前記第2回転状態である場合における前記発電機の出力電圧を、前記所定範囲の電圧へと変換する、請求項1に記載の道路舗装機械。
    When the engine is in the first rotation state, the output of the generator is input to the inverters via the adjustment unit, and when the engine is in the second rotation state, the output of the generator is input. Is further provided with a switching unit that switches a power transmission path from the generator to each of the inverters so that it is input to each of the inverters without going through the adjustment unit,
    The generator outputs the voltage within the predetermined range when the engine is in the second rotation state,
    The road paving machine according to claim 1, wherein the adjustment unit converts an output voltage of the generator into a voltage within the predetermined range when the engine is in the second rotation state.
  6.  前記発電機から出力される交流電気を直流電気に変換する整流部をさらに備え、
     前記切換部は、前記直流電気の電力伝達経路を切り換え、
     前記調整部は、前記直流電気の電圧を前記所定範囲内の電圧に昇圧する昇圧装置を含む、請求項5に記載の道路舗装機械。
    A rectifier that converts alternating current electricity output from the generator into direct current electricity;
    The switching unit switches the power transmission path of the DC electricity,
    The road paving machine according to claim 5, wherein the adjustment unit includes a booster that boosts the voltage of the DC electricity to a voltage within the predetermined range.
  7.  前記調整部は、前記発電機から出力される交流電気を変圧する変圧器を含む、請求項5に記載の道路舗装機械。 The road paving machine according to claim 5, wherein the adjustment unit includes a transformer that transforms AC electricity output from the generator.
  8.  前記発電機の出力電圧に基づいて前記発電機の界磁電流を制御する自動電圧調整器をさらに備える、請求項7に記載の道路舗装機械。 The road paving machine according to claim 7, further comprising an automatic voltage regulator for controlling a field current of the generator based on an output voltage of the generator.
  9.  前記発電機による電力によって前記スクリードを加熱する加熱装置と、
     前記各インバータおよび前記加熱装置の動作を制御する制御装置とをさらに備え、
     前記発電機は、発電特性が異なる第1のモードと第2のモードとの間で切り換えが可能であり、前記第1のモードは、前記エンジンが第1の回転数である場合における発電電力が前記第2のモードよりも大きくなるモードであり、前記第2のモードは、前記エンジンが前記第1の回転数よりも低い第2の回転数である場合における発電電力が前記第1のモードよりも大きくなるモードである、請求項1に記載の道路舗装機械。
    A heating device for heating the screed by the electric power generated by the generator;
    A control device for controlling the operation of each inverter and the heating device;
    The generator can be switched between a first mode and a second mode having different power generation characteristics, and the first mode generates power generated when the engine is at the first rotational speed. The second mode is a mode in which the generated power is higher than that in the first mode when the engine has a second rotational speed lower than the first rotational speed. The road paving machine according to claim 1, wherein the road paving machine is also a mode of increasing.
  10.  前記発電機は、前記第1のモードにおいてコイルの巻き数が相対的に少なくなり、前記第2のモードにおいてコイルの巻き数が相対的に多くなるように構成された発電機を含む、請求項9に記載の道路舗装機械。 The generator includes a generator configured to have a relatively small number of coil turns in the first mode and a relatively large number of coil turns in the second mode. 9. Road paving machine according to 9.
  11.  前記発電機は、前記第2のモードにおいて、前記加熱装置の作動に必要な電力を少なくとも出力する、請求項10に記載の道路舗装機械。 The road paving machine according to claim 10, wherein the generator outputs at least electric power necessary for the operation of the heating device in the second mode.
  12.  前記エンジンの回転数を検出する検出部をさらに備え、
     前記制御装置は、前記検出部の検出結果に応じて前記第1のモードと前記第2のモードとを切り換える、請求項9に記載の道路舗装機械。
    A detector that detects the number of revolutions of the engine;
    The road pavement machine according to claim 9, wherein the control device switches between the first mode and the second mode according to a detection result of the detection unit.
  13.  前記制御装置は、前記各モータおよび前記加熱装置の総消費電力が、前記発電機の発電電力を超えないように、前記各モータおよび前記加熱装置の動作を制御する、請求項9に記載の道路舗装機械。 The road according to claim 9, wherein the control device controls operations of the motors and the heating device so that a total power consumption of the motors and the heating device does not exceed a generated power of the generator. Paving machine.
  14.  前記制御装置は、前記各モータおよび前記加熱装置のうちいずれか2つ以上を起動する場合、起動開始のタイミングをずらして各モータおよび前記加熱装置を起動する、請求項13に記載の道路舗装機械。 The road pavement machine according to claim 13, wherein, when starting any two or more of the motors and the heating devices, the control device starts the motors and the heating devices at different start timings. .
  15.  前記制御装置は、前記各モータの少なくとも1つを起動する場合、前記加熱装置に対する電力供給を一時的に停止または減少させる、請求項13に記載の道路舗装機械。 The road paving machine according to claim 13, wherein the control device temporarily stops or reduces the power supply to the heating device when starting at least one of the motors.
  16.  前記制御装置は、前記各モータおよび前記加熱装置の総消費電力を算出し、総消費電力が所定値以上である場合、前記各モータおよび前記加熱装置のうちの少なくとも1つに供給する電力を停止または減少させる、請求項13に記載の道路舗装機械。 The control device calculates total power consumption of each motor and the heating device, and stops power supplied to at least one of the motors and the heating device when the total power consumption is a predetermined value or more. 14. A road paving machine according to claim 13, wherein the road paving machine is reduced.
  17.  前記スクリードを振動させるためのバイブレータと、
     前記発電機による電力によって前記バイブレータを駆動するバイブレータ用モータとをさらに備える、請求項9に記載の道路舗装機械。
    A vibrator for vibrating the screed;
    The road paving machine according to claim 9, further comprising a vibrator motor that drives the vibrator with electric power generated by the generator.
  18.  外部電力を得るための電源端子をさらに備え、
     前記制御装置は、前記発電機からの電力と前記電源端子からの電力とを切り換え可能である、請求項9に記載の道路舗装機械。
    Further provided with a power supply terminal for obtaining external power,
    The road paving machine according to claim 9, wherein the control device is capable of switching between electric power from the generator and electric power from the power supply terminal.
  19.  走行機構、コンベヤ、スクリュー、およびスクリードの各機構を有し、アスファルト道路を舗装する道路舗装機械であって、
     エンジンと、
     前記エンジンの駆動によって発電を行う発電機と、
     前記各機構を前記発電機による電力によってそれぞれ駆動する各モータと、
     前記発電機による電力によって前記スクリードを加熱する加熱装置と、
     前記各インバータおよび前記加熱装置の動作を制御する制御装置とを備え、
     前記制御装置は、前記各モータおよび前記加熱装置の総消費電力が、前記発電機の発電電力を超えないように、前記各モータおよび前記加熱装置の動作を制御する、道路舗装機械。
    A road paving machine having a traveling mechanism, a conveyor, a screw, and a screed mechanism, and paving an asphalt road,
    Engine,
    A generator for generating electricity by driving the engine;
    Each motor that drives each mechanism with electric power from the generator;
    A heating device for heating the screed by the electric power generated by the generator;
    A control device for controlling the operation of each inverter and the heating device;
    The road paving machine, wherein the control device controls operations of the motors and the heating device so that total power consumption of the motors and the heating device does not exceed the power generated by the generator.
PCT/JP2011/002443 2010-04-27 2011-04-26 Asphalt finisher WO2011135846A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011554342A JP5066664B2 (en) 2010-04-27 2011-04-26 Road paving machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-102311 2010-04-27
JP2010102311 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011135846A1 true WO2011135846A1 (en) 2011-11-03

Family

ID=44861168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002443 WO2011135846A1 (en) 2010-04-27 2011-04-26 Asphalt finisher

Country Status (2)

Country Link
JP (1) JP5066664B2 (en)
WO (1) WO2011135846A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911937A (en) * 2012-12-28 2014-07-09 住友建机株式会社 Device for controlling generator in road plaster machine and generator control method
WO2014124545A1 (en) * 2013-02-14 2014-08-21 Ammann Schweiz Ag Method for heating a paver screed
JP2015090054A (en) * 2013-11-07 2015-05-11 大成ロテック株式会社 Joint reinforcement bar insertion device and joint reinforcement bar insertion method
JP2015094132A (en) * 2013-11-12 2015-05-18 住友建機株式会社 Asphalt finisher
JP2015206172A (en) * 2014-04-17 2015-11-19 住友建機株式会社 Road paving machine
WO2018172244A1 (en) * 2017-03-22 2018-09-27 Liebherr-Components Biberach Gmbh Self-propelled material processor and/or handling system
JP2018168690A (en) * 2017-03-29 2018-11-01 ヨゼフ フェゲーレ アーゲー Road paving machine provided with heating element for screed
EP4183926A1 (en) 2021-11-18 2023-05-24 Joseph Vögele AG Electrified road construction machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269204A (en) * 1990-12-14 1992-09-25 Josef Voegele Ag Finishing machine
JPH10252012A (en) * 1997-03-14 1998-09-22 Kinki Kensetsu Kk Heating device for screed plate in screeding machine
JP2008121373A (en) * 2006-11-15 2008-05-29 Nippon Adox Kk Movable laying apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762323B2 (en) * 1990-05-08 1995-07-05 東洋ゴム工業株式会社 Method and device for paving roads with rubber chips
DE9308802U1 (en) * 1993-06-14 1993-08-19 Voegele Ag J Paver
JPH0787799A (en) * 1993-09-16 1995-03-31 Isuzu Motors Ltd Controlling device for output of ac generator
JP2001172908A (en) * 1999-12-22 2001-06-26 Yanmar Diesel Engine Co Ltd Asphalt leveling machine
JP4165281B2 (en) * 2003-04-10 2008-10-15 アイシン精機株式会社 Engine-driven air conditioner with power generation function
JP4774095B2 (en) * 2008-10-27 2011-09-14 住友建機株式会社 Power generation control device for road paving machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269204A (en) * 1990-12-14 1992-09-25 Josef Voegele Ag Finishing machine
JPH10252012A (en) * 1997-03-14 1998-09-22 Kinki Kensetsu Kk Heating device for screed plate in screeding machine
JP2008121373A (en) * 2006-11-15 2008-05-29 Nippon Adox Kk Movable laying apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911937B (en) * 2012-12-28 2018-09-14 住友建机株式会社 The generator control unit and generator control method of road pavement machinery
JP2014129695A (en) * 2012-12-28 2014-07-10 Sumitomo (Shi) Construction Machinery Co Ltd Generator control device and generator control method in road paving machine
CN103911937A (en) * 2012-12-28 2014-07-09 住友建机株式会社 Device for controlling generator in road plaster machine and generator control method
WO2014124545A1 (en) * 2013-02-14 2014-08-21 Ammann Schweiz Ag Method for heating a paver screed
JP2015090054A (en) * 2013-11-07 2015-05-11 大成ロテック株式会社 Joint reinforcement bar insertion device and joint reinforcement bar insertion method
JP2015094132A (en) * 2013-11-12 2015-05-18 住友建機株式会社 Asphalt finisher
JP2015206172A (en) * 2014-04-17 2015-11-19 住友建機株式会社 Road paving machine
WO2018172244A1 (en) * 2017-03-22 2018-09-27 Liebherr-Components Biberach Gmbh Self-propelled material processor and/or handling system
US11548735B2 (en) 2017-03-22 2023-01-10 Liebherr-Components Biberach Gmbh Self-propelled material processing and/or handling system
JP2018168690A (en) * 2017-03-29 2018-11-01 ヨゼフ フェゲーレ アーゲー Road paving machine provided with heating element for screed
US10538886B2 (en) 2017-03-29 2020-01-21 Joseph Voegele Ag Road paver with heating element for a screed
EP4183926A1 (en) 2021-11-18 2023-05-24 Joseph Vögele AG Electrified road construction machine
EP4183925A1 (en) * 2021-11-18 2023-05-24 Joseph Vögele AG Heating system for a construction machine

Also Published As

Publication number Publication date
JP5066664B2 (en) 2012-11-07
JPWO2011135846A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5066664B2 (en) Road paving machine
CN106941333B (en) Hybrid device with segmented waveform converter
US9762160B2 (en) Method of controlling multiple parallel-connected generators
CN108327885B (en) Device for supplying electrical consumers with electrical energy and/or for charging batteries in a ship
KR100498733B1 (en) Hybrid vehicle and control method therefor
US7289901B2 (en) Vehicle-mounted power generator set
EP2454810B1 (en) Method of controlling a variable speed constant frequency generator
JP2007195315A (en) Method and apparatus for controlling operation of wind turbine generator system
JP2006158121A5 (en)
CN107834720A (en) Using the automobile using starter-generator of winding control technology
KR20020020174A (en) Electric Power Supply System For a Veheicle
JP6581063B2 (en) Switched reluctance motor controller
JP5125155B2 (en) Power supply control device and power supply control method
JP6656404B2 (en) Generator motor control device and generator motor control method
JP6118713B2 (en) Asphalt finisher
JP2019522589A (en) Method for controlling components of a hybrid transmission for a motor vehicle
JP6019734B2 (en) Inverter control device
CN109672377A (en) A kind of quick Lai control of method of diesel locomotive generator
JP6073162B2 (en) Power generation system and method of operating power generation system
US20230361699A1 (en) Pump actuating device, and associated pumping system, aircraft and fuel supply method
JP2014011905A (en) Apparatus and method for controlling generator motor
JP5638829B2 (en) Engine generator operation method
JP5793993B2 (en) Power supply system, PWM power supply control device, and load control device
JP5213566B2 (en) System no-voltage generator starting method
JP2004257293A (en) Hybrid system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011554342

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774632

Country of ref document: EP

Kind code of ref document: A1