WO2011135714A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2011135714A1
WO2011135714A1 PCT/JP2010/057682 JP2010057682W WO2011135714A1 WO 2011135714 A1 WO2011135714 A1 WO 2011135714A1 JP 2010057682 W JP2010057682 W JP 2010057682W WO 2011135714 A1 WO2011135714 A1 WO 2011135714A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylinders
engine
cooling
wall portion
Prior art date
Application number
PCT/JP2010/057682
Other languages
French (fr)
Japanese (ja)
Inventor
能川真一郎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/057682 priority Critical patent/WO2011135714A1/en
Priority to JP2012512602A priority patent/JP5278603B2/en
Publication of WO2011135714A1 publication Critical patent/WO2011135714A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M2250/00Measuring
    • F01M2250/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M2250/00Measuring
    • F01M2250/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M2250/00Measuring
    • F01M2250/64Number of revolutions

Definitions

  • the present invention relates to an engine, and more particularly to an engine that performs cooling.
  • Patent Document 1 discloses a technique that is considered to be related to the present invention in that the engine is cooled with oil injected from an oil jet.
  • the temperature of the wall portion formed between the cylinders is particularly likely to rise due to the structure.
  • the temperature of the wall portion formed between the cylinders shown in (a) is compared with the temperature of the cylinder wall portion formed on the engine intake side shown in (b). High in all engine operating conditions.
  • the temperature of the wall portion formed between the cylinders shown in FIG. Compared with the temperature of the cylinder wall portion formed on the engine intake side shown in FIG. In this respect, the temperature rise of the wall portion formed between the cylinders is problematic in that it causes abnormal consumption of engine oil.
  • an object of the present invention is to provide an engine that can suitably prevent or suppress the occurrence of insufficient cooling at a wall portion formed between cylinders.
  • the present invention can cool from the surface a cylinder block formed with a plurality of cylinders and a wall formed between adjacent cylinders of the plurality of cylinders for each of the plurality of cylinders.
  • a cooling means, and the cooling means is provided between the first cylinder and the second cylinder so that the mode of cooling the wall portion is symmetrical between the first cylinder and the second cylinder, and the cooling means
  • the cooling medium flows through the cylinder block along the plurality of cylinders and from among the plurality of cylinders toward the cylinder side positioned at one end from the cylinder side positioned at one end in the crank axis direction.
  • a cooling medium passage is formed, and the first cylinder is a cylinder located on the most downstream side in the flow direction of the cooling medium flowing through the cooling medium passage among the plurality of cylinders; It is preferable that the cylinder is configured such that, among the plurality of cylinders, one of the cylinders located upstream of the first cylinder in the flow direction of the cooling medium flowing through the cooling medium passage.
  • the intake air introduction means introduces intake air so as to further generate a swirling airflow.
  • FIG. 4 It is a schematic block diagram of the engine concerning an Example. It is a schematic diagram which shows the principal part of the engine concerning an Example in a horizontal cross section. It is a schematic diagram which shows the principal part of the engine concerning an Example by a vertical cross section. It is a figure which shows an example of the temperature of the cylinder peripheral part according to the driving
  • An engine 50 shown in FIG. 1 is an in-line four-cylinder direct fuel injection gasoline engine, and includes a cylinder block 51, a cylinder head 52, a piston 53, an intake valve 55, an exhaust valve 56, and a spark plug 57. And a fuel injection valve 58 and an oil jet 59.
  • the cylinder block 51 is formed with a cylinder 51a and a water jacket 51b.
  • a piston 53 is accommodated in the cylinder 51a.
  • a cylinder head 52 is fixed to the upper surface of the cylinder block 51.
  • the combustion chamber 54 is formed as a space surrounded by the cylinder block 51, the cylinder head 52 and the piston 53.
  • the cylinder head 52 has an intake port 52a and an exhaust port 52b.
  • the intake port 52 a guides the intake air S to the combustion chamber 54, and the exhaust port 52 b exhausts the gas in the combustion chamber 54.
  • the cylinder head 52 is provided with intake and exhaust valves 55 and 56 for opening and closing these intake and exhaust ports 52a and 52b.
  • the cylinder head 52 is provided with a spark plug 57 with an electrode protruding substantially at the center of the upper portion of the combustion chamber 54. Further, the cylinder head 52 is provided with a fuel injection valve 58 so that the fuel F can be directly injected into the cylinder.
  • an oil jet 59 is provided in a lower part of the cylinder block 51.
  • the oil jet 59 includes first and second nozzles 59 a and 59 b, and the first nozzle 59 a is provided on the back side of the piston 53 so as to inject engine oil P that is lubricating oil of the engine 50. .
  • the cylinder block 51 has a plurality of cylinders 51a (four in this case).
  • the plurality of cylinders 51a are provided in series with each other and constitute from # 1 cylinder to # 4 cylinder.
  • a wall 51c is formed between adjacent cylinders among the plurality of cylinders 51a.
  • a water jacket 51b is formed along the plurality of cylinders 51a. Specifically, the water jacket 51b is provided in the cylinder block 51 around the plurality of cylinders 51a so as to surround the entire plurality of cylinders 51a.
  • the water jacket 51b of the plurality of cylinders 51a constitutes a cylinder (here, # 4 cylinder) located at the other end from a cylinder (here, a cylinder constituting # 1 cylinder) located at one end in the crank axis direction L.
  • the cooling water W is circulated toward the cylinder) side.
  • the cooling water W flowing through the water jacket 51b provided in this way sequentially cools each of the plurality of cylinders 51a from one end side to the other end side.
  • the intake air S is introduced in each cylinder 51a so as to circulate toward the wall 51c.
  • the intake air S is further introduced so as to generate a swirling airflow in the cylinder.
  • the intake air S thus introduced is specifically introduced so as to generate an oblique tumble flow as a swirling airflow.
  • an intake port 52a is provided for each cylinder 51a so that the intake air S can be introduced in this manner.
  • the intake port 52a that introduces the intake air S in this manner can cool the wall 51c from the surface.
  • each cylinder 51a is provided with a fuel injection valve 58 so that the fuel F can be injected in such a manner.
  • the fuel injection valve 58 that injects the fuel F in this manner can cool the wall 51c from the surface.
  • the engine oil P is injected not only to the back side of the piston 53 but also to the wall 51c in each cylinder 51a.
  • the second nozzle 59b provided in the oil jet 59 is provided so that the engine oil P can be injected toward the wall portion 51c.
  • an oil jet 59 is provided for each cylinder 51a so that the engine oil P can be injected in this manner.
  • the oil jet 59 that injects the engine oil P in this manner can cool the wall 51c from the surface.
  • an oil jet capable of injecting the engine oil P toward the wall 51c can be separately provided.
  • the intake port 52a is provided so that the aspect of introducing the intake air S between the two cylinders 51a of the plurality of cylinders 51a is symmetrical, whereby the aspect of cooling the wall portion 51c is provided. It is provided to be symmetrical.
  • the intake port 52a is a cylinder located on the most downstream side in the flow direction of the cooling water W flowing through the water jacket 51b among the plurality of cylinders 51a (here, a cylinder constituting the # 4 cylinder),
  • a mode of introducing the intake air S (for example, a mode of cooling the wall portion 51c) between any of the cylinders located upstream of the cylinder (for example, a cylinder constituting the # 3 cylinder) is orthogonal to the crank axis L It is provided so that it may become symmetrical across the surface to perform.
  • the fuel injection valve 58 and the oil jet 59 respectively inject the fuel F between the two cylinders 51a between the two cylinders 51a as in the case of the intake port 52a.
  • the mode for injecting the engine oil P is provided so as to be symmetrical, and thus the mode for cooling the wall 51c is provided so as to be symmetrical. Yes.
  • the cooling water W corresponds to the cooling medium
  • the water jacket 51b corresponds to the cooling medium passage.
  • the cylinder constituting the # 4 cylinder is the first cylinder
  • any of the cylinders constituting the # 1 cylinder to the # 3 cylinder is selected.
  • Each corresponds to a second cylinder.
  • the intake port 52a corresponds to the intake air introduction means
  • the fuel injection valve 58 and the oil jet 59 correspond to the injection means.
  • the intake port 52a, the fuel injection valve 58 and the oil jet 59 correspond to a cooling means.
  • each of the plurality of cylinders 51a can be cooled with the cooling water W flowing through the water jacket 51b.
  • the cooling capacity of the cooling water W decreases with heat reception, a wall formed between the adjacent cylinders 51a.
  • the wall 51c is cooled between two cylinders among the plurality of cylinders 51a (specifically, between the cylinders adjacent to each other with the wall 51c at which cooling may be insufficient).
  • the engine 50 can preferably prevent or suppress the occurrence of insufficient cooling at the wall 51c in that it can prevent or suppress the occurrence of insufficient cooling at the wall 51c where temperature rise is a problem.
  • the water jacket 51b flows the cooling water W along the plurality of cylinders 51a and out of the plurality of cylinders 51a from the cylinder side located at one end to the cylinder side located at the other end in the cylinder arrangement direction. Since it is provided so as to circulate, there is a risk that insufficient cooling will occur in the wall portion 51c located on the most downstream side in the cooling direction of the cooling water W flowing through the water jacket 51b. On the other hand, in the engine 50, in the cooling direction of the cooling water W flowing through the water jacket 51b, any one of a cylinder located on the most downstream side and a cylinder located on the upstream side of this cylinder among the plurality of cylinders 51a.
  • the intake port 52a, the fuel injection valve 58, and the oil jet 59 are provided so that the mode of cooling the wall 51c is symmetrical between the heels.
  • the engine 50 can prevent or suppress the occurrence of insufficient cooling at the wall 51c where the temperature rise is the most problematic, and therefore, the engine 50 as a whole is rational in light of the flow mode of the cooling water W. In particular, it is possible to prevent or suppress the occurrence of insufficient cooling at the wall 51c.
  • the oblique tumble flow generated in the cylinder is maintained until the latter half of the compression stroke and collapsed, thereby causing disturbance in the atmosphere in the cylinder, thereby improving the combustion speed and performing high-speed combustion.
  • the temperature of the combustion gas increases due to the improvement of the combustion speed, and the temperature boundary layer becomes thinner than the swirling airflow, and as a result, the heat transfer coefficient increases, so the combustion chamber 54 The wall temperature becomes higher.
  • the amount of heat generated per unit time increases and the strength of the swirl airflow increases to further increase the heat transfer coefficient. That is, in the engine 50 that performs high-speed combustion, the temperature rise of the wall 51c is particularly problematic due to such circumstances.
  • the engine 50 includes an intake port 52a and a fuel injection valve 58 for cooling the wall 51c from the surface.
  • the intake port 52a and the fuel injection valve 58 the engine 50 is inclined as a swirling airflow in the cylinder. A tumble flow can be generated and high-speed combustion can be realized.
  • the engine 50 is suitable in that it has a configuration suitable for high-speed combustion.
  • the engine 50 further includes an oil jet 59 that cools the wall 51c from the surface. According to the oil jet 59, the engine 50 is applied together with the intake port 52a and the fuel injection valve 58 to obtain a higher cooling effect. be able to.
  • At least one of the intake port 52a, the fuel injection valve 58, and the oil jet 59 can be applied. This is suitable for high-speed combustion in which the temperature rise of the wall 51c is particularly problematic.
  • the intake air introduction means is the intake port 52a .
  • the present invention is not necessarily limited to this, and the intake air introduction means is realized, for example, by an airflow control valve that is provided in the intake port and can control the flow of intake air, or a combination of the airflow control valve and the intake port. May be.
  • each of the intake port 52a, the fuel injection valve 58, and the oil jet 59 has a wall portion 51c between two cylinders of the plurality of cylinders 51a.
  • the case where the cooling mode is provided so as to be symmetrical with respect to the plane orthogonal to the crank axis L has been described.
  • the cooling means is not necessarily limited to this.
  • the cooling means sandwiches a straight line extending between the first and second cylinders so that the wall cooling mode is orthogonal to the crank axis and extends along the cylinder extending direction. It may be provided so as to be symmetrical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Disclosed is an engine (50) which includes a cylinder block (51) with a plurality of cylinders (51a) formed therein. Each of the plurality of cylinders (51a) includes an intake port (52a) which is capable of cooling a wall portion (51c) from a surface thereof, the wall portion being formed between the adjacent cylinders of the plurality of cylinders (51a); a fuel injection valve (58); and an oil jet (59). The engine (50) is provided with the intake port (52a), the fuel injection valve (58), and the oil jet (59) so that the wall portion (51c) between the two cylinders of the plurality of cylinders (51a) is cooled in a symmetrical manner.

Description

エンジンengine
 本発明はエンジンに関し、特に冷却を行うエンジンに関する。 The present invention relates to an engine, and more particularly to an engine that performs cooling.
 従来、エンジンでは一般に冷却が行われている。この点、オイルジェットからの噴射したオイルでエンジンの冷却を行う点で、本発明と関連性があると考えられる技術が例えば特許文献1で開示されている。 Conventionally, the engine is generally cooled. In this regard, for example, Patent Document 1 discloses a technique that is considered to be related to the present invention in that the engine is cooled with oil injected from an oil jet.
特開2008-163936号公報JP 2008-163936 A
 ところでエンジンでは構造上、シリンダ間に形成される壁部の温度が特に上昇し易くなっている。具体的には図4に示すように、(a)に示すシリンダ間に形成される壁部の温度は、(b)に示すエンジン吸気側に形成されるシリンダ壁部の温度と比較して、エンジンの運転状態すべてにおいて高くなっている。また、エンジンの運転状態が低回転低負荷の運転領域から高回転高負荷の運転領域に向かって変化する場合、また(a)に示すシリンダ間に形成される壁部の温度は、(b)に示すエンジン吸気側に形成されるシリンダ壁部の温度と比較して、より大きな度合いで高まるようになっている。この点、シリンダ間に形成される壁部の温度上昇は、エンジンオイルの異常消費を招く点で問題がある。 By the way, in the engine, the temperature of the wall portion formed between the cylinders is particularly likely to rise due to the structure. Specifically, as shown in FIG. 4, the temperature of the wall portion formed between the cylinders shown in (a) is compared with the temperature of the cylinder wall portion formed on the engine intake side shown in (b). High in all engine operating conditions. Further, when the operating state of the engine changes from the low rotation / low load operation region to the high rotation / high load operation region, the temperature of the wall portion formed between the cylinders shown in FIG. Compared with the temperature of the cylinder wall portion formed on the engine intake side shown in FIG. In this respect, the temperature rise of the wall portion formed between the cylinders is problematic in that it causes abnormal consumption of engine oil.
 これに対して特許文献1が開示する内燃機関では、シリンダ間に形成される壁部それぞれに対してオイルジェットを同様に設けている。このためこの内燃機関では、これら壁部それぞれを互いに同等に冷却できると考えられる。
 しかしながら、エンジンでは一般に冷却媒体による冷却が行われているところ、冷却媒体の冷却能力は受熱するに従って次第に低下する。このためエンジンによっては、冷却媒体を流通させる冷却媒体通路の構造上、シリンダ間に形成される壁部それぞれが冷却媒体によって互いに同等に冷却されない場合もある。したがってこの場合には、仮にシリンダ間に形成される壁部それぞれをオイルジェットで互いに同等に冷却した場合でも、これら壁部のうち一部の壁部で冷却不足が発生する虞がある。この点、かかる冷却不足は、特に高速燃焼を行うエンジンなど燃焼室壁面の温度がより高温になるエンジンで高回転高負荷運転時に発生することが懸念される。そして、かかる冷却不足は特に燃費を改善すべく高速燃焼を行うエンジンにおいて、燃費向上の妨げとなる点で問題があった。
On the other hand, in the internal combustion engine disclosed in Patent Document 1, an oil jet is similarly provided for each wall portion formed between the cylinders. For this reason, in this internal combustion engine, it is thought that each of these wall parts can be cooled equally.
However, in an engine, cooling with a cooling medium is generally performed, and the cooling capacity of the cooling medium gradually decreases as heat is received. For this reason, depending on the engine, the walls formed between the cylinders may not be equally cooled by the cooling medium due to the structure of the cooling medium passage through which the cooling medium flows. Therefore, in this case, even when the walls formed between the cylinders are cooled equally by the oil jet, there is a possibility that insufficient cooling occurs in some of the walls. In this respect, there is a concern that such insufficient cooling may occur at the time of high-rotation and high-load operation in an engine in which the temperature of the combustion chamber wall surface becomes higher, such as an engine that performs high-speed combustion. Such a lack of cooling is problematic in that it hinders improvement in fuel consumption, particularly in an engine that performs high-speed combustion to improve fuel consumption.
 そこで本発明は上記課題に鑑みてなされたものであり、シリンダ間に形成される壁部で冷却不足が発生することを好適に防止或いは抑制可能なエンジンを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide an engine that can suitably prevent or suppress the occurrence of insufficient cooling at a wall portion formed between cylinders.
 上記課題を解決するための本発明は複数のシリンダが形成されたシリンダブロックと、前記複数のシリンダそれぞれにつき、前記複数のシリンダのうち隣り合うシリンダ間に形成される壁部を表面から冷却可能な冷却手段とを備え、前記複数のシリンダのうち、第1のシリンダと第2のシリンダとの間で、前記壁部を冷却する態様が対称的になるように前記冷却手段を設け、前記冷却手段を前記壁部に向かって噴射を行う噴射手段、または前記壁部に向かって流通するように吸気を導入する吸気導入手段のうち、少なくともいずれかとし、前記噴射手段を燃料噴射弁またはオイルジェットのうち、少なくともいずれかとしたエンジンである。 In order to solve the above problems, the present invention can cool from the surface a cylinder block formed with a plurality of cylinders and a wall formed between adjacent cylinders of the plurality of cylinders for each of the plurality of cylinders. A cooling means, and the cooling means is provided between the first cylinder and the second cylinder so that the mode of cooling the wall portion is symmetrical between the first cylinder and the second cylinder, and the cooling means At least one of an injection means for injecting toward the wall and an intake air introduction means for introducing intake air so as to flow toward the wall, and the injection means is a fuel injection valve or an oil jet. At least one of these engines.
 また本発明は前記シリンダブロックに前記複数のシリンダに沿って、且つ前記複数のシリンダのうち、クランク軸線方向において一端に位置するシリンダ側から他端に位置するシリンダ側に向かって冷却媒体を流通させる冷却媒体通路が形成されており、前記第1のシリンダが、前記複数のシリンダのうち、前記冷却媒体通路を流通する冷却媒体の流通方向において最も下流側に位置するシリンダであり、前記第2のシリンダが、前記複数のシリンダのうち、前記冷却媒体通路を流通する冷却媒体の流通方向において前記第1のシリンダよりも上流側に位置するシリンダのいずれかである構成であることが好ましい。 According to the present invention, the cooling medium flows through the cylinder block along the plurality of cylinders and from among the plurality of cylinders toward the cylinder side positioned at one end from the cylinder side positioned at one end in the crank axis direction. A cooling medium passage is formed, and the first cylinder is a cylinder located on the most downstream side in the flow direction of the cooling medium flowing through the cooling medium passage among the plurality of cylinders; It is preferable that the cylinder is configured such that, among the plurality of cylinders, one of the cylinders located upstream of the first cylinder in the flow direction of the cooling medium flowing through the cooling medium passage.
 また本発明は前記吸気導入手段が、さらに旋回気流を生成するように吸気を導入する構成であることが好ましい。 In the present invention, it is preferable that the intake air introduction means introduces intake air so as to further generate a swirling airflow.
 本発明によれば、シリンダ間に形成される壁部で冷却不足が発生することを好適に防止或いは抑制できる。 According to the present invention, it is possible to suitably prevent or suppress the occurrence of insufficient cooling at the wall portion formed between the cylinders.
実施例にかかるエンジンの概略構成図である。It is a schematic block diagram of the engine concerning an Example. 実施例にかかるエンジンの要部を水平断面で示す模式図である。It is a schematic diagram which shows the principal part of the engine concerning an Example in a horizontal cross section. 実施例にかかるエンジンの要部を垂直断面で示す模式図である。It is a schematic diagram which shows the principal part of the engine concerning an Example by a vertical cross section. エンジンの運転状態に応じたシリンダ周辺部の温度の一例を示す図である。なお、図4ではエンジンの運転状態に応じた発熱量も参考として破線で同時に示している。It is a figure which shows an example of the temperature of the cylinder peripheral part according to the driving | running state of an engine. In FIG. 4, the amount of heat generated according to the operating state of the engine is also shown by a broken line for reference.
 以下、本発明を実施するための形態を図面と共に詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 図1に示すエンジン50は直列4気筒の筒内燃料直接噴射式のガソリンエンジンであり、シリンダブロック51と、シリンダヘッド52と、ピストン53と、吸気弁55と、排気弁56と、点火プラグ57と、燃料噴射弁58と、オイルジェット59とを備えている。シリンダブロック51にはシリンダ51aとウォータジャケット51bとが形成されている。シリンダ51a内にはピストン53が収容されている。シリンダブロック51の上面にはシリンダヘッド52が固定されている。燃焼室54はシリンダブロック51、シリンダヘッド52及びピストン53に囲まれた空間として形成されている。 An engine 50 shown in FIG. 1 is an in-line four-cylinder direct fuel injection gasoline engine, and includes a cylinder block 51, a cylinder head 52, a piston 53, an intake valve 55, an exhaust valve 56, and a spark plug 57. And a fuel injection valve 58 and an oil jet 59. The cylinder block 51 is formed with a cylinder 51a and a water jacket 51b. A piston 53 is accommodated in the cylinder 51a. A cylinder head 52 is fixed to the upper surface of the cylinder block 51. The combustion chamber 54 is formed as a space surrounded by the cylinder block 51, the cylinder head 52 and the piston 53.
 シリンダヘッド52には吸気ポート52aと排気ポート52bとが形成されている。吸気ポート52aは燃焼室54に吸気Sを導き、排気ポート52bは燃焼室54のガスを排気する。シリンダヘッド52にはこれら吸排気ポート52a及び52bを開閉するための吸排気弁55、56が設けられている。またシリンダヘッド52には、燃焼室54の上部略中央に電極を突出させた状態で点火プラグ57が設けられている。さらにシリンダヘッド52には、燃料噴射弁58が筒内に燃料Fを直接噴射できるように設けられている。またエンジン50では、シリンダブロック51のうち、下方の部分にオイルジェット59が設けられている。オイルジェット59は第1および第2のノズル59a、59bを備えており、第1のノズル59aは、ピストン53の裏側にエンジン50の潤滑油であるエンジンオイルPを噴射できるように設けられている。 The cylinder head 52 has an intake port 52a and an exhaust port 52b. The intake port 52 a guides the intake air S to the combustion chamber 54, and the exhaust port 52 b exhausts the gas in the combustion chamber 54. The cylinder head 52 is provided with intake and exhaust valves 55 and 56 for opening and closing these intake and exhaust ports 52a and 52b. The cylinder head 52 is provided with a spark plug 57 with an electrode protruding substantially at the center of the upper portion of the combustion chamber 54. Further, the cylinder head 52 is provided with a fuel injection valve 58 so that the fuel F can be directly injected into the cylinder. In the engine 50, an oil jet 59 is provided in a lower part of the cylinder block 51. The oil jet 59 includes first and second nozzles 59 a and 59 b, and the first nozzle 59 a is provided on the back side of the piston 53 so as to inject engine oil P that is lubricating oil of the engine 50. .
 図2および図3に示すようにシリンダブロック51には、シリンダ51aが複数(ここでは4つ)形成されている。複数のシリンダ51aは互いに直列に設けられており、#1気筒から#4気筒までを構成している。複数のシリンダ51aのうち、隣り合うシリンダ間それぞれには、壁部51cが形成されている。
 またシリンダブロック51には、ウォータジャケット51bが複数のシリンダ51aに沿って形成されている。ウォータジャケット51bは具体的にはシリンダブロック51のうち、複数のシリンダ51aの周辺部に複数のシリンダ51a全体を囲うようにして設けられている。そしてウォータジャケット51bは、複数のシリンダ51aのうち、クランク軸線方向Lにおいて一端に位置するシリンダ(ここでは#1気筒を構成するシリンダ)側から他端に位置するシリンダ(ここでは#4気筒を構成するシリンダ)側に向かって冷却水Wを流通させるように設けられている。このように設けられたウォータジャケット51bを流通する冷却水Wは、複数のシリンダ51aそれぞれを一端側から他端側に向かって順次冷却する。
As shown in FIGS. 2 and 3, the cylinder block 51 has a plurality of cylinders 51a (four in this case). The plurality of cylinders 51a are provided in series with each other and constitute from # 1 cylinder to # 4 cylinder. A wall 51c is formed between adjacent cylinders among the plurality of cylinders 51a.
In the cylinder block 51, a water jacket 51b is formed along the plurality of cylinders 51a. Specifically, the water jacket 51b is provided in the cylinder block 51 around the plurality of cylinders 51a so as to surround the entire plurality of cylinders 51a. The water jacket 51b of the plurality of cylinders 51a constitutes a cylinder (here, # 4 cylinder) located at the other end from a cylinder (here, a cylinder constituting # 1 cylinder) located at one end in the crank axis direction L. The cooling water W is circulated toward the cylinder) side. The cooling water W flowing through the water jacket 51b provided in this way sequentially cools each of the plurality of cylinders 51a from one end side to the other end side.
 エンジン50では、各シリンダ51aにおいて吸気Sが壁部51cに向かって流通するように導入される。また吸気Sはさらに筒内に旋回気流を生成するように導入される。このように導入される吸気Sは具体的には旋回気流として斜めタンブル流を生成するように導入される。そしてエンジン50では、各シリンダ51aそれぞれにつき、吸気ポート52aがかかる態様で吸気Sを導入できるように設けられている。かかる態様で吸気Sを導入する吸気ポート52aは、壁部51cを表面から冷却可能になっている。 In the engine 50, the intake air S is introduced in each cylinder 51a so as to circulate toward the wall 51c. The intake air S is further introduced so as to generate a swirling airflow in the cylinder. The intake air S thus introduced is specifically introduced so as to generate an oblique tumble flow as a swirling airflow. In the engine 50, an intake port 52a is provided for each cylinder 51a so that the intake air S can be introduced in this manner. The intake port 52a that introduces the intake air S in this manner can cool the wall 51c from the surface.
 またエンジン50では、各シリンダ51aにおいて燃料Fが壁部51cに向かって噴射される。また燃料Fの噴射方向は、壁部51cに向かって流通するように導入される吸気Sの流れに対して、燃料Fが同調して流通できるように設定されており、これにより燃料Fは斜めタンブル流によって輸送される。そしてエンジン50では、各シリンダ51aそれぞれにつき、燃料噴射弁58がかかる態様で燃料Fを噴射できるように設けられている。かかる態様で燃料Fを噴射する燃料噴射弁58は、壁部51cを表面から冷却可能になっている。 In the engine 50, the fuel F is injected toward the wall 51c in each cylinder 51a. The injection direction of the fuel F is set so that the fuel F can flow in synchronization with the flow of the intake air S introduced so as to flow toward the wall portion 51c. Transported by tumble flow. In the engine 50, each cylinder 51a is provided with a fuel injection valve 58 so that the fuel F can be injected in such a manner. The fuel injection valve 58 that injects the fuel F in this manner can cool the wall 51c from the surface.
 またエンジン50では、各シリンダ51aにおいてエンジンオイルPがピストン53の裏側だけでなく、壁部51cに向かって噴射される。この点、エンジン50では、オイルジェット59が備える第2のノズル59bが、壁部51cに向かってエンジンオイルPを噴射できるように設けられている。そしてエンジン50では、各シリンダ51aそれぞれにつき、オイルジェット59がかかる態様でエンジンオイルPを噴射できるように設けられている。かかる態様でエンジンオイルPを噴射するオイルジェット59は、壁部51cを表面から冷却可能になっている。なお、オイルジェット59に第2のノズル59bを設ける代わりに、例えば壁部51cに向かってエンジンオイルPを噴射可能なオイルジェットを別途設けることもできる。 In the engine 50, the engine oil P is injected not only to the back side of the piston 53 but also to the wall 51c in each cylinder 51a. In this regard, in the engine 50, the second nozzle 59b provided in the oil jet 59 is provided so that the engine oil P can be injected toward the wall portion 51c. In the engine 50, an oil jet 59 is provided for each cylinder 51a so that the engine oil P can be injected in this manner. The oil jet 59 that injects the engine oil P in this manner can cool the wall 51c from the surface. Instead of providing the second nozzle 59b in the oil jet 59, for example, an oil jet capable of injecting the engine oil P toward the wall 51c can be separately provided.
 さらにエンジン50では、吸気ポート52aが、複数のシリンダ51aのうち、2つのシリンダ間で吸気Sを導入する態様が対称的になるように設けられており、これにより壁部51cを冷却する態様が対称的になるように設けられている。
 具体的には吸気ポート52aは、複数のシリンダ51aのうち、ウォータジャケット51bを流通する冷却水Wの流通方向において、最も下流側に位置するシリンダ(ここでは#4気筒を構成するシリンダ)と、このシリンダよりも上流側に位置するシリンダのいずれか(例えば#3気筒を構成するシリンダ)との間で、吸気Sを導入する態様(すなわち壁部51cを冷却する態様)がクランク軸線Lと直交する面を挟んで対称的になるように設けられている。
 またエンジン50では、燃料噴射弁58、オイルジェット59それぞれが吸気ポート52aの場合と同様に、複数のシリンダ51aのうち、2つのシリンダ間で、燃料噴射弁58にあっては燃料Fを噴射する態様が、オイルジェット59にあってはエンジンオイルPを噴射する態様がそれぞれ対称的になるように設けられており、これにより壁部51cを冷却する態様がそれぞれ対称的になるように設けられている。
Further, in the engine 50, the intake port 52a is provided so that the aspect of introducing the intake air S between the two cylinders 51a of the plurality of cylinders 51a is symmetrical, whereby the aspect of cooling the wall portion 51c is provided. It is provided to be symmetrical.
Specifically, the intake port 52a is a cylinder located on the most downstream side in the flow direction of the cooling water W flowing through the water jacket 51b among the plurality of cylinders 51a (here, a cylinder constituting the # 4 cylinder), A mode of introducing the intake air S (for example, a mode of cooling the wall portion 51c) between any of the cylinders located upstream of the cylinder (for example, a cylinder constituting the # 3 cylinder) is orthogonal to the crank axis L It is provided so that it may become symmetrical across the surface to perform.
Further, in the engine 50, the fuel injection valve 58 and the oil jet 59 respectively inject the fuel F between the two cylinders 51a between the two cylinders 51a as in the case of the intake port 52a. In the case of the oil jet 59, the mode for injecting the engine oil P is provided so as to be symmetrical, and thus the mode for cooling the wall 51c is provided so as to be symmetrical. Yes.
 本実施例では、冷却水Wが冷却媒体に、ウォータジャケット51bが冷却媒体通路にそれぞれ相当している。また本実施例では、複数のシリンダ51aのうち、#4気筒を構成するシリンダが第1のシリンダに、複数のシリンダ51aのうち、#1気筒から#3気筒までを構成するシリンダのいずれかが第2のシリンダにそれぞれ相当している。また本実施例では、吸気ポート52aが吸気導入手段に相当しており、燃料噴射弁58およびオイルジェット59が噴射手段に相当している。そして本実施例ではこれら吸気ポート52a、燃料噴射弁58およびオイルジェット59が冷却手段に相当している。 In this embodiment, the cooling water W corresponds to the cooling medium, and the water jacket 51b corresponds to the cooling medium passage. In the present embodiment, among the plurality of cylinders 51a, the cylinder constituting the # 4 cylinder is the first cylinder, and among the plurality of cylinders 51a, any of the cylinders constituting the # 1 cylinder to the # 3 cylinder is selected. Each corresponds to a second cylinder. In this embodiment, the intake port 52a corresponds to the intake air introduction means, and the fuel injection valve 58 and the oil jet 59 correspond to the injection means. In this embodiment, the intake port 52a, the fuel injection valve 58 and the oil jet 59 correspond to a cooling means.
 次にエンジン50の作用効果について説明する。エンジン50では、ウォータジャケット51bを流通する冷却水Wで、複数のシリンダ51aそれぞれを冷却できるところ、受熱に伴い冷却水Wの冷却能力が低下することから、隣り合うシリンダ51a間に形成される壁部51cそれぞれのうち、一部の壁部で冷却不足が発生する虞がある。
 これに対してエンジン50では、複数のシリンダ51aのうち、2つのシリンダ間(具体的には冷却不足が発生する虞がある壁部51cを挟んで隣り合うシリンダ間)で壁部51cを冷却する態様が対称的になるように吸気ポート52a、燃料噴射弁58およびオイルジェット59を設けることで、冷却不足が発生する虞がある壁部51cの冷却を強化することができる。そしてこれによりエンジン50は、温度上昇が問題となる壁部51cで冷却不足が発生することを防止或いは抑制できる点で、壁部51cで冷却不足が発生することを好適に防止或いは抑制できる。
Next, the function and effect of the engine 50 will be described. In the engine 50, each of the plurality of cylinders 51a can be cooled with the cooling water W flowing through the water jacket 51b. However, since the cooling capacity of the cooling water W decreases with heat reception, a wall formed between the adjacent cylinders 51a. There is a risk of insufficient cooling at some of the walls of each of the portions 51c.
On the other hand, in the engine 50, the wall 51c is cooled between two cylinders among the plurality of cylinders 51a (specifically, between the cylinders adjacent to each other with the wall 51c at which cooling may be insufficient). By providing the intake port 52a, the fuel injection valve 58, and the oil jet 59 so that the modes are symmetrical, it is possible to enhance the cooling of the wall portion 51c that may cause insufficient cooling. As a result, the engine 50 can preferably prevent or suppress the occurrence of insufficient cooling at the wall 51c in that it can prevent or suppress the occurrence of insufficient cooling at the wall 51c where temperature rise is a problem.
 またエンジン50では、ウォータジャケット51bが複数のシリンダ51aに沿って、且つ複数のシリンダ51aのうち、気筒配列方向において一端に位置するシリンダ側から他端に位置するシリンダ側に向かって冷却水Wを流通させるように設けられているため、ウォータジャケット51bを流通する冷却水Wの冷却方向において、最も下流側に位置する壁部51cで冷却不足が発生する虞がある。
 これに対してエンジン50では、ウォータジャケット51bを流通する冷却水Wの冷却方向において、複数のシリンダ51aのうち、最も下流側に位置するシリンダと、このシリンダよりも上流側に位置するシリンダのいずれかとの間で、壁部51cを冷却する態様が対称的になるように吸気ポート52a、燃料噴射弁58およびオイルジェット59を設けている。そしてこれにより、エンジン50は、温度上昇が最も問題となる壁部51cで冷却不足が発生することを防止或いは抑制でき、以って冷却水Wの流通態様にも照らして、エンジン50全体として合理的に壁部51cで冷却不足が発生することを防止或いは抑制できる。
Further, in the engine 50, the water jacket 51b flows the cooling water W along the plurality of cylinders 51a and out of the plurality of cylinders 51a from the cylinder side located at one end to the cylinder side located at the other end in the cylinder arrangement direction. Since it is provided so as to circulate, there is a risk that insufficient cooling will occur in the wall portion 51c located on the most downstream side in the cooling direction of the cooling water W flowing through the water jacket 51b.
On the other hand, in the engine 50, in the cooling direction of the cooling water W flowing through the water jacket 51b, any one of a cylinder located on the most downstream side and a cylinder located on the upstream side of this cylinder among the plurality of cylinders 51a. The intake port 52a, the fuel injection valve 58, and the oil jet 59 are provided so that the mode of cooling the wall 51c is symmetrical between the heels. As a result, the engine 50 can prevent or suppress the occurrence of insufficient cooling at the wall 51c where the temperature rise is the most problematic, and therefore, the engine 50 as a whole is rational in light of the flow mode of the cooling water W. In particular, it is possible to prevent or suppress the occurrence of insufficient cooling at the wall 51c.
 またエンジン50では、筒内に生成した斜めタンブル流を圧縮行程後半まで維持するとともに崩壊させることで筒内の雰囲気に乱れを生じさせ、これにより燃焼速度の向上を図ることで高速燃焼が行われる。この点、高速燃焼を行うエンジン50では、燃焼速度の向上で燃焼ガスの温度が高まることや、旋回気流より温度境界層が薄くなり、この結果、熱伝達係数が大きくなることから、燃焼室54壁面の温度がより高温になる。また高速燃焼を行うエンジン50では、回転数が大きく負荷が高い場合ほど、単位時間あたりの発熱量が増大するとともに、旋回気流の強さが増すことで熱伝達係数がさらに大きくなる。すなわち高速燃焼を行うエンジン50では、かかる事情により壁部51cの温度上昇が特に問題となる。 Further, in the engine 50, the oblique tumble flow generated in the cylinder is maintained until the latter half of the compression stroke and collapsed, thereby causing disturbance in the atmosphere in the cylinder, thereby improving the combustion speed and performing high-speed combustion. . In this regard, in the engine 50 that performs high-speed combustion, the temperature of the combustion gas increases due to the improvement of the combustion speed, and the temperature boundary layer becomes thinner than the swirling airflow, and as a result, the heat transfer coefficient increases, so the combustion chamber 54 The wall temperature becomes higher. Further, in the engine 50 that performs high-speed combustion, as the rotational speed is larger and the load is higher, the amount of heat generated per unit time increases and the strength of the swirl airflow increases to further increase the heat transfer coefficient. That is, in the engine 50 that performs high-speed combustion, the temperature rise of the wall 51c is particularly problematic due to such circumstances.
 これに対してエンジン50は、壁部51cを表面から冷却する吸気ポート52aおよび燃料噴射弁58を備えているところ、これら吸気ポート52a、燃料噴射弁58によれば、筒内に旋回気流として斜めタンブル流を生成し、高速燃焼を実現することができる。このためエンジン50は高速燃焼を行う場合に適した構成である点で好適である。
 またエンジン50は、壁部51cを表面から冷却するオイルジェット59をさらに備えているところ、オイルジェット59によれば、吸気ポート52aおよび燃料噴射弁58とともに適用することで、さらに高い冷却効果を得ることができる。この点、壁部51cを表面から冷却するにあたっては、例えば吸気ポート52a、燃料噴射弁58およびオイルジェット59のうち、少なくともいずれかを適用することもできるところ、これらすべてを適用したエンジン50は、壁部51cの温度上昇が特に問題となる高速燃焼を行う場合に好適である。
On the other hand, the engine 50 includes an intake port 52a and a fuel injection valve 58 for cooling the wall 51c from the surface. According to the intake port 52a and the fuel injection valve 58, the engine 50 is inclined as a swirling airflow in the cylinder. A tumble flow can be generated and high-speed combustion can be realized. For this reason, the engine 50 is suitable in that it has a configuration suitable for high-speed combustion.
The engine 50 further includes an oil jet 59 that cools the wall 51c from the surface. According to the oil jet 59, the engine 50 is applied together with the intake port 52a and the fuel injection valve 58 to obtain a higher cooling effect. be able to. In this regard, in cooling the wall 51c from the surface, for example, at least one of the intake port 52a, the fuel injection valve 58, and the oil jet 59 can be applied. This is suitable for high-speed combustion in which the temperature rise of the wall 51c is particularly problematic.
 上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
 例えば上述した実施例では吸気導入手段が吸気ポート52aである場合について説明した。しかしながら、本発明においては必ずしもこれに限られず、吸気導入手段は、例えば吸気ポート内に設けられ、吸気の流れを制御可能な気流制御弁や、気流制御弁と吸気ポートとの組み合わせなどによって実現されてもよい。
The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
For example, in the above-described embodiment, the case where the intake air introduction means is the intake port 52a has been described. However, the present invention is not necessarily limited to this, and the intake air introduction means is realized, for example, by an airflow control valve that is provided in the intake port and can control the flow of intake air, or a combination of the airflow control valve and the intake port. May be.
 また例えば上述した実施例では構成上、合理的であることなどから、吸気ポート52a、燃料噴射弁58およびオイルジェット59それぞれが、複数のシリンダ51aのうち、2つのシリンダ間で、壁部51cを冷却する態様がクランク軸線Lと直交する面を挟んで対称的になるように設けられている場合について説明した。しかしながら、本発明においては必ずしもこれに限られず、冷却手段は例えば第1および第2のシリンダ間で、壁部を冷却する態様がクランク軸線と直交するとともに気筒延伸方向に沿って延伸する直線を挟んで対称的になるように設けられてもよい。 Further, for example, in the above-described embodiment, since the configuration is reasonable, each of the intake port 52a, the fuel injection valve 58, and the oil jet 59 has a wall portion 51c between two cylinders of the plurality of cylinders 51a. The case where the cooling mode is provided so as to be symmetrical with respect to the plane orthogonal to the crank axis L has been described. However, in the present invention, the cooling means is not necessarily limited to this. For example, the cooling means sandwiches a straight line extending between the first and second cylinders so that the wall cooling mode is orthogonal to the crank axis and extends along the cylinder extending direction. It may be provided so as to be symmetrical.
  50  エンジン
  51  シリンダブロック
  51a シリンダ
  51b ウォータジャケット
  51c 壁部
  52  シリンダヘッド
  52a 吸気ポート
  58  燃料噴射弁
  59  オイルジェット

 
50 Engine 51 Cylinder block 51a Cylinder 51b Water jacket 51c Wall 52 Cylinder head 52a Intake port 58 Fuel injection valve 59 Oil jet

Claims (3)

  1. 複数のシリンダが形成されたシリンダブロックと、
     前記複数のシリンダそれぞれにつき、前記複数のシリンダのうち、隣り合うシリンダ間に形成される壁部を表面から冷却可能な冷却手段とを備え、
     前記複数のシリンダのうち、第1のシリンダと第2のシリンダとの間で、前記壁部を冷却する態様が対称的になるように前記冷却手段を設け、
     前記冷却手段を、前記壁部に向かって噴射を行う噴射手段、または前記壁部に向かって流通するように吸気を導入する吸気導入手段のうち、少なくともいずれかとし、
     前記噴射手段を、燃料噴射弁またはオイルジェットのうち、少なくともいずれかとしたエンジン。
    A cylinder block formed with a plurality of cylinders;
    For each of the plurality of cylinders, a cooling unit capable of cooling a wall portion formed between adjacent cylinders from the surface of the plurality of cylinders,
    Among the plurality of cylinders, the cooling means is provided between the first cylinder and the second cylinder so that the aspect of cooling the wall portion is symmetric,
    The cooling means is at least one of an injection means for injecting toward the wall portion, or an intake air introduction means for introducing intake air so as to circulate toward the wall portion,
    An engine in which the injection means is at least one of a fuel injection valve and an oil jet.
  2. 請求項1記載のエンジンであって、
     前記シリンダブロックに前記複数のシリンダに沿って、且つ前記複数のシリンダのうち、クランク軸線方向において一端に位置するシリンダ側から他端に位置するシリンダ側に向かって冷却媒体を流通させる冷却媒体通路が形成されており、
     前記第1のシリンダが、前記複数のシリンダのうち、前記冷却媒体通路を流通する冷却媒体の流通方向において最も下流側に位置するシリンダであり、
     前記第2のシリンダが、前記複数のシリンダのうち、前記冷却媒体通路を流通する冷却媒体の流通方向において前記第1のシリンダよりも上流側に位置するシリンダのいずれかであるエンジン。
    The engine according to claim 1,
    A cooling medium passage that circulates the cooling medium through the cylinder block along the plurality of cylinders and from the cylinder side positioned at one end to the cylinder side positioned at the other end of the plurality of cylinders. Formed,
    The first cylinder is a cylinder located on the most downstream side in the flow direction of the cooling medium flowing through the cooling medium passage among the plurality of cylinders,
    The engine, wherein the second cylinder is any one of the plurality of cylinders that is located upstream of the first cylinder in the flow direction of the cooling medium flowing through the cooling medium passage.
  3. 請求項1または2記載のエンジンであって、
     前記吸気導入手段が、さらに旋回気流を生成するように吸気を導入するエンジン。

     
    The engine according to claim 1 or 2,
    An engine in which the intake air introduction means introduces intake air so as to further generate a swirling airflow.

PCT/JP2010/057682 2010-04-30 2010-04-30 Engine WO2011135714A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/057682 WO2011135714A1 (en) 2010-04-30 2010-04-30 Engine
JP2012512602A JP5278603B2 (en) 2010-04-30 2010-04-30 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057682 WO2011135714A1 (en) 2010-04-30 2010-04-30 Engine

Publications (1)

Publication Number Publication Date
WO2011135714A1 true WO2011135714A1 (en) 2011-11-03

Family

ID=44861053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057682 WO2011135714A1 (en) 2010-04-30 2010-04-30 Engine

Country Status (2)

Country Link
JP (1) JP5278603B2 (en)
WO (1) WO2011135714A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321627A (en) * 1992-05-20 1993-12-07 Toyota Motor Corp Piston cooling device for multi-cylinder engine
JP2005155492A (en) * 2003-11-26 2005-06-16 Nissan Motor Co Ltd Water jacket structure of internal combustion engine and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177497A (en) * 1994-12-20 1996-07-09 Nissan Motor Co Ltd Direct injection and spark-ignition type internal combustion engine
JP4821588B2 (en) * 2006-11-30 2011-11-24 株式会社豊田自動織機 Premixed compression ignition engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321627A (en) * 1992-05-20 1993-12-07 Toyota Motor Corp Piston cooling device for multi-cylinder engine
JP2005155492A (en) * 2003-11-26 2005-06-16 Nissan Motor Co Ltd Water jacket structure of internal combustion engine and its manufacturing method

Also Published As

Publication number Publication date
JPWO2011135714A1 (en) 2013-07-18
JP5278603B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US20110226197A1 (en) Cooling water passage structure in cylinder head of internal combustion engine
JP2009062836A (en) Cylinder head of internal combustion engine
JP2018184939A (en) Cooling structure of internal combustion engine
JPH11117803A (en) Cylinder head structure for internal combustion engine
EP1074723A2 (en) Direct-fuel-injection-type spark-ignition internal combustion engine and method of controlling the internal combustion engine
JP5278603B2 (en) engine
JP2009215960A (en) Internal combustion engine
KR20140076872A (en) Cylinder head of ship's engine
KR20030024541A (en) Direct-injection type diesel engine
JP5447128B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2001050106A (en) Cylinder head structure of internal combustion engine
KR101316241B1 (en) Cooling arrangement of cylinder block in engine
JP5800606B2 (en) EGR valve cooling structure
JP2017193971A (en) cylinder head
JP2009185746A (en) Piston for internal combustion engine
KR20040025212A (en) Engine ethaust gas recirculating device
JP2007187107A (en) Internal combustion engine
JP6258654B2 (en) Internal combustion engine
KR20100018868A (en) Water jacket structure of gasoline direct injection engine for cooling injector
JP2007138899A (en) Intake passage structure of internal combustion engine
JP7244382B2 (en) hydrogen gas fuel engine
JP2010031687A (en) Spark ignition internal combustion engine
WO2012081113A1 (en) Engine cooling structure
JP2008150969A (en) Internal combustion engine
JP5915473B2 (en) Intake manifold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512602

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850729

Country of ref document: EP

Kind code of ref document: A1