WO2011134304A1 - 光背板互连系统及通信设备 - Google Patents

光背板互连系统及通信设备 Download PDF

Info

Publication number
WO2011134304A1
WO2011134304A1 PCT/CN2011/071272 CN2011071272W WO2011134304A1 WO 2011134304 A1 WO2011134304 A1 WO 2011134304A1 CN 2011071272 W CN2011071272 W CN 2011071272W WO 2011134304 A1 WO2011134304 A1 WO 2011134304A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
terminal
board
positioning device
optical waveguide
Prior art date
Application number
PCT/CN2011/071272
Other languages
English (en)
French (fr)
Inventor
贾功贤
刘炜霞
汪泽文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11774295A priority Critical patent/EP2511744A1/en
Publication of WO2011134304A1 publication Critical patent/WO2011134304A1/zh
Priority to US13/462,625 priority patent/US20120213469A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/044Details of backplane or midplane for mounting orthogonal PCBs

Definitions

  • the present invention relates to the field of communication device technologies, and in particular, to an optical backplane interconnection system and a communication device.
  • the access capacity of the device becomes larger and larger, and accordingly the system bandwidth increases accordingly.
  • increasing the number of buses is one of the ways to increase the system bandwidth.
  • optical interconnections are low-loss.
  • the low crosstalk, high density, and channel characteristics are independent of speed, and the optical backplane interconnect system is a better solution.
  • the optical backplane interconnection system used in the prior art is specifically an optical waveguide backplane interconnection system.
  • the waveguide channel 21 is processed layer by layer like a conventional printed circuit board technology, and then pressed.
  • the optical waveguide backplane 22 and the wiring boards 23, 24 are obtained.
  • the optical signal is received by the circuit board 23, and is output from the circuit board 24 through the waveguide channel in the optical waveguide backplane 22 to realize transmission of the optical signal.
  • the inventors have found in the process of implementing the present invention that since the optical waveguide itself has a large signal loss, and the optical link in the scheme is long, the optical signal loss is greater and the signal transmission quality is degraded.
  • Embodiments of the present invention provide an optical backplane interconnection system and a communication device, which can shorten the optical link length and reduce the loss of optical signals.
  • An embodiment of the present invention provides an optical backplane interconnection system, including a backboard, a circuit board, and a connector, where the circuit board includes a front board and a rear board; the front board and the rear board are respectively located The backboard Both sides of the front board and the rear board have optical waveguide channels, and are connected by connectors connected to the back board to form a light path for optical signals to pass through the light path. transmission.
  • the embodiment of the invention further provides a communication device, comprising the above optical backplane interconnection system, and a switchboard connected to the optical backplane interconnection system.
  • the front and rear insert boards in the circuit board are separately disposed on both sides of the back board and disposed perpendicular to each other, and the optical waveguide channels in the front and rear insert boards are directly connected through the connector to form an optical path, thereby realizing optical signals.
  • Transmission without setting up an optical waveguide channel on the backplane, shortening the optical link, reducing the loss of the optical signal, and improving the transmission quality of the optical signal.
  • FIG. 1 is a schematic structural view of an optical backplane interconnection system in the prior art
  • FIG. 2 is a schematic structural diagram of an optical backplane interconnection system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the transmission of an optical signal in the optical backplane interconnection system shown in FIG. 3 according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another optical backplane interconnection system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first positioning device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a third positioning device in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a fourth positioning device in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another optical backplane interconnection system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an optical backplane interconnection system according to an embodiment of the present invention. detailed description
  • a multi-layer polymer waveguide is processed by using a similar PCB (Printed Circuit Board) processing technology, so that the optical backplane interconnection system has better processing performance and avoids the existence of a high-density optical fiber backplane.
  • PCB printed Circuit Board
  • the optical waveguide itself has a large signal loss, and the optical link in the prior art is longer, the optical signal loss is greater, the signal transmission quality is physically realized, and the front and rear of the circuit board are
  • the plug-in board is disposed on both sides of the backboard and arranged perpendicular to each other, and the optical waveguide channel in the backboard is omitted, and the optical waveguide channel in the front and rear inserts is directly connected through the connector to realize optical signal transmission, thereby shortening
  • the optical link reduces the loss of optical signals.
  • FIG. 2 is a schematic structural diagram of an optical backplane interconnection system according to an embodiment of the present invention.
  • the optical backplane interconnect system includes a backplane 31, a circuit board, and a connector 35.
  • the circuit board further includes a front board 32 and a rear board 33.
  • the front board 32 and the rear board 33 are respectively located on both sides of the back board 31 and orthogonal to each other, so that signals of different slots can be linked to each other.
  • the front board 32 and the rear board 33 each have an optical waveguide channel 34, wherein the optical waveguide channel 34 can be embedded, that is, embedded in the printed circuit board of the front and rear boards, or can be placed in the front and rear boards.
  • the optical waveguide channel 34 can be a rigid optical waveguide channel or a flexible optical waveguide channel.
  • the connector 35 is connected to the backplane 31 for connecting between the circuit board and the backboard 31, and inserts and pulls the circuit board on the backboard 31, and is also used for connecting the optical waveguide channels between the front and rear boards.
  • a mounting hole may be disposed on the backboard 31, and the connector 35 is inserted into the mounting hole to realize connection with the front and rear boards.
  • An optical waveguide channel may be disposed in the connector 35 such that the optical waveguides 34 of the front interposer 32 and the rear interposer 33 are butted through the connector 35 on the backplane 31 to form an optical path for optical signals to be transmitted through the optical path. .
  • the transmission of optical signals in the optical backplane interconnection system is as shown in the figure.
  • the optical signal of the transmitting chip (TX) passes through the mirror into the optical waveguide channel 34 of the front board 32, is transmitted through the connector 35 to the rear board 33 on the rear side of the back board 31, and then passes through the mirror, and the light The signal enters the receiving chip (RX) and completes the transmission of the signal.
  • the optical waveguides of the front and rear boards are Flexible optical waveguides, such as flexible waveguide plates, avoid the use of mirrors to achieve a 90 degree turn in the optical path, further reducing additional losses.
  • FIG. 10 is a schematic structural diagram of an optical backplane interconnection system according to an embodiment of the present invention.
  • the front boards 201 - 203 and one rear board 101 are separated from the back board 100. Both sides of the board are disposed orthogonally to each other.
  • the one rear board 101 can pass through a plurality of connectors (such as the connector 301, the connector 401 and the connector 501 in the figure) and the plurality of front boards 201 - 203, respectively.
  • the connector 301, the connector 401 and the connector 501 can pass through the base 300 provided on the backboard 100, respectively.
  • the base 400 and the base 501 are mounted on the back plate 100.
  • each rear board when there are a plurality of front boards and a plurality of rear boards, since the front board and the rear board are separated on both sides of the back board and arranged orthogonally to each other, each rear board
  • the connector can be connected to each of the front boards through a connector disposed at a corresponding position on the backplane, and a light path can be formed after each butting of the front board, so that it is not necessary to provide an optical waveguide on the back board, and directly
  • Each rear board and each front board interwork to realize the transmission of optical signals.
  • the front and rear insert boards in the circuit board are separately disposed on opposite sides of the back board and arranged orthogonally to each other, and the optical waveguide channels in the front and rear insert boards are directly connected through the connector to form an optical path to realize an optical signal.
  • Transmission without setting up an optical waveguide channel on the backplane, thereby shortening the optical link and reducing the loss of optical signals.
  • the embodiment of the invention makes the system have better processing performance by using the optical waveguide channel, and reduces the physical realization complexity of the high-density fiber backplane, and the optical waveguide channel is not in the backplane of the system. It also reduces the physical difficulty of the system implementation.
  • positioning means such as a positioning pin and a positioning hole may be provided on the front and rear boards. Wait.
  • FIG. 4 it is a schematic structural diagram of another optical backplane interconnection system according to an embodiment of the present invention.
  • the optical backplane interconnect system can include a backplane 51, a front board 52, a rear board 53 and a connector 54.
  • the back plate 51 has a mounting hole 511, and the mounting hole 511 can also be provided with a bottom.
  • the front board 52 and the rear board 53 are respectively located on both sides of the back board 51 and are orthogonal to each other, and the front board 52 and the rear board 53 each have an optical waveguide channel 55, and the optical waveguide channel 55 extends to the front and rear boards. Board edge.
  • the optical waveguide channel 55 is of a buried type, that is, a rigid optical waveguide channel embedded in the printed wiring board of the front and rear interposer boards.
  • the connector 54 may include a first terminal 541 connected to the front board 52, and a second terminal 542 connected to the rear board 53, wherein the first terminal 541 and the second terminal 542 each have an optical waveguide channel, first,
  • the two terminals can be inserted on the base 512 of the backboard 51 to realize the docking of the optical waveguides between the two terminals, so that the front board 52, the first terminal 541 of the connector, the second terminal 542 of the connector and the rear board 53
  • the upper optical waveguide channels are sequentially butted to form an optical path for optical signals to be transmitted through the optical path.
  • the front board 52, the first terminal 541, the back board 51, the base 512, the second terminal 542, and the rear board 53 can each be an independent entity.
  • the base 512 When the optical backplane interconnection system is connected, the base 512 can be inserted. It is placed on the mounting hole 511 of the backboard 51, and then the front board 52 and the first terminal 541 are butted and fixed, the rear board 53 and the second terminal 542 are butt-fixed, and then placed on the base 512 on both sides of the back board 51, respectively. on.
  • the transmission process of the optical signal in the optical backplane interconnection system is as follows: the optical signal of the transmitting chip (TX) passes through the mirror into the optical waveguide channel 55 of the front board 52, and is first through the connector 54.
  • the terminal 541 and the second terminal 542 are transmitted to the rear board 53 on the rear side of the back board 51, and then pass through the mirror, and the optical signal enters the receiving chip (RX) to complete the signal transmission.
  • FIG. 10 when there are a plurality of front inserts (shown as front inserts 201 - 203) and a rear insert 101, due to the front insert 201 -
  • the 203 and the rear interposer 101 are separated on both sides of the backboard 100 and disposed orthogonally to each other.
  • the one rear interposer 101 can pass through a plurality of connectors (such as the connector 301, the connector 401, and the connector 501 in the figure).
  • the connector 301, the connector 401, and the connector 501 can pass through the base 300 provided on the backboard 100, respectively.
  • the base 400 and the base 501 are mounted on the back plate 100.
  • each rear board when there are a plurality of front boards and a plurality of rear boards, since the front board and the rear board are separated on both sides of the back board and arranged orthogonally to each other, each rear board
  • the connector can be docked with each front panel by a corresponding position on the back panel, and the front panel can be connected with each front panel.
  • the optical path is formed, so that it is not necessary to provide an optical waveguide on the backplane, and each rear board and each front board are directly connected to realize optical signal transmission.
  • the front and rear interposers in the circuit board are separately disposed on opposite sides of the back board and arranged orthogonally to each other, and the optical waveguide channels in the front and rear interposers are connected to each other through the first and second terminals of the connector to form light.
  • the path realizes the transmission of the optical signal, thereby shortening the optical link and reducing the loss of the optical signal.
  • the embodiment of the invention makes the system have better processing performance by using the optical waveguide channel, and reduces the physical realization complexity of the high-density fiber backplane, and the optical waveguide channel is not in the backplane of the system. It also reduces the physical difficulty of the system implementation.
  • positioning means can be provided at the optical channel abutment of each component.
  • the first board of the front board and the connector may have positioning means for aligning the front board and the optical waveguide channel on the first terminal, for example, the front board is provided with a first positioning device, on the first terminal A second positioning device is provided, the first positioning device and the second positioning device are matched to each other for aligning the optical waveguide channels on the front board and the first terminal.
  • the first and second positioning devices can take various forms, such as setting a mark or the like.
  • the first positioning device may specifically be provided with a positioning pin 611 at the interface of the front board 61 and the first terminal 62 , and the positioning pin may pass through the screw 612 and the fixing plate. 613 or the like is fixed on the front insertion plate 61. As shown in FIG.
  • the fixed positions of the two screws 612 can be symmetrically disposed on both sides of the optical waveguide channel, and specifically, the positioning of the fixed position of the screw 612 can be marked on the front insertion plate 61. Graphics.
  • the second positioning device on the first terminal 62 may be provided with a positioning hole 621 at a position corresponding to the positioning pin 611, so that the positioning pin 611 can be inserted into the positioning hole 621, thereby ensuring the front card 61 and the first The optical waveguide channel of a terminal 62 can be accurately docked.
  • the second positioning device can be a position pin
  • the first positioning device can be a positioning hole that cooperates with the positioning pin.
  • the rear board and the second terminal may also have positioning means for aligning the optical waveguide channels on the rear board and the second terminal.
  • a third positioning device is disposed on the rear board, and the second terminal is provided with a The fourth positioning device, the third positioning device and the fourth positioning device are matched with each other for aligning the optical waveguide channel located on the second terminal of the rear insertion board, and the third and fourth positioning devices can be used with the first and second positioning devices
  • other positioning methods can also be used, and will not be described here.
  • the first terminal and the second terminal may also have positioning means for aligning the optical waveguide channels on the first terminal and the second terminal.
  • the first terminal is provided with a fifth positioning device
  • the second terminal is provided
  • a sixth positioning device is provided, and the fifth positioning device and the sixth positioning device are matched to each other for aligning the optical waveguide channels located on the first terminal and the second terminal.
  • the fifth positioning device may be configured to provide a positioning pin 711 at abutment of the first terminal 71 and the second terminal 72, correspondingly, on the second terminal 72.
  • the six positioning means may be a positioning hole 721 provided at a position corresponding to the positioning pin 711 so that the positioning pin 711 can be inserted into the positioning hole 721, thereby ensuring accurate docking of the optical waveguide passages of the first terminal 71 and the second terminal 72.
  • a positioning hole on the first terminal 71 and a positioning pin on the second terminal 72 it is also possible to provide a positioning hole on the first terminal 71 and a positioning pin on the second terminal 72.
  • the number of the positioning holes (positioning pins) can be set as needed.
  • the first and second terminals are mounted on the base of the backboard to realize the docking of the optical waveguide channels between the two terminals.
  • the base can be further Positioning means for aligning the optical waveguide channels on the first terminal and the second terminal are disposed on the first terminal and the second terminal, for example, a seventh positioning device is disposed on the base, and an eighth positioning device is disposed on the first terminal, A ninth positioning device is disposed on the second terminal, and the seventh positioning device is matched with the eighth positioning device and the ninth positioning device, respectively, for aligning the optical waveguide channels located on the first terminal and the second terminal. As shown in FIG.
  • the seventh positioning device may be provided with a protrusion 811 on the inner wall of the base 81 of the backboard, and the eighth positioning device is a recess 821 provided on the first terminal 82 corresponding to the position of the protrusion 811.
  • the ninth positioning device is a recess 831 provided at a corresponding position of the second terminal 83 and the protrusion 811, so that when the first terminal 82 and the second terminal 83 are inserted into the base 81, the recesses 821, 831 can be convex
  • the matching of 811 enables accurate docking of the optical waveguides on the first terminal 82 and the first terminal 83.
  • the optical waveguide channels on the front and rear boards can also be used as flexible optical waveguide channels.
  • FIG. 10 when there are a plurality of front inserts (shown as front inserts 201 - 203) and a rear insert 101, due to the front insert 201 -
  • the 203 and the rear interposer 101 are separated on both sides of the backboard 100 and disposed orthogonally to each other.
  • the one rear interposer 101 can pass through a plurality of connectors (such as the connector 301, the connector 401, and the connector 501 in the figure).
  • the connector 301, the connector 401, and the connector 501 can pass through the base 300 provided on the backboard 100, respectively.
  • the base 400 and the base 501 are mounted on the back plate 100.
  • each rear board can be connected to each of the front boards through a connector disposed at a corresponding position on the backplane, and a light path can be formed after each butting of the front board, so that it is not necessary to provide an optical waveguide on the back board, and directly
  • the front and rear interposers in the circuit board are separately disposed on opposite sides of the back board and arranged orthogonally to each other, and the optical waveguide channels in the front and rear interposers are connected to each other through the first and second terminals of the connector to form light.
  • the path realizes the transmission of the optical signal, and the optical waveguide channel is not required to be established on the backplane, thereby shortening the optical link and reducing the loss of the optical signal.
  • the embodiment of the invention makes the system have better processing performance by using the optical waveguide channel, and reduces the physical realization complexity of the high-density fiber backplane, and the optical waveguide channel is not in the backplane of the system. It also reduces the physical difficulty of the system implementation. Further, by providing positioning means on the front and rear boards, the docking of the optical waveguide channels between the front board and the rear board is more accurate.
  • FIG. 8 is a schematic structural diagram of another optical backplane interconnection system according to an embodiment of the present invention.
  • the optical backplane interconnection system may include a backplane 91, a front board 92, and a rear board 93.
  • the front and rear boards are all flexible waveguide boards, and the front and rear boards can be assembled through connectors. The interconnection of the optical waveguide channels is achieved.
  • the front and rear boards are interconnected by the connector 94 to realize the interconnection of the optical waveguide channels.
  • this embodiment avoids the additional loss caused by the need for a rigid waveguide to require a mirror to bend the optical path at 90 degrees.
  • the assembly and positioning relationship between the flexible optical waveguide 95 on the front and rear boards and the first and second terminals of the connector is similar to that of the previous embodiment, with the difference that the flexible optical waveguide is not embedded in the printed circuit board, and therefore, when assembled, It is necessary to first install the flexible optical waveguide channel 95 and the connector 94 and then assemble this portion with the rigid front and rear insert plates.
  • the transmission process of the optical signal in the optical backplane interconnection system is as follows: the optical signal of the transmitting chip (TX) passes through the connector into the flexible optical waveguide channel of the front board 92, and is transmitted to the back through the connector 94.
  • the flexible optical waveguide channel of the back panel 93 of the rear side of the board 91 is then passed through the waveguide connector, and the optical signal enters the receiving chip (RX) to complete the transmission of the signal.
  • FIG. 10 when there are a plurality of front inserts (shown as front inserts 201 - 203) and a rear insert 101, due to the front insert 201 -
  • the 203 and the rear interposer 101 are separated on both sides of the backboard 100 and disposed orthogonally to each other.
  • the one rear interposer 101 can pass through a plurality of connectors (such as the connector 301, the connector 401, and the connector 501 in the figure). ) and multiple front inserts 201 - 203 is docked. After docking, an optical path can be formed with each front board, so that no optical waveguide is disposed on the back board, and the optical signal is directly transmitted through each front board.
  • the connector 301, the connector 401, and the connector 501 can pass through the base 300 disposed on the backplane 100, respectively.
  • the base 400 and the base 501 are mounted on the backboard 100.
  • each rear board when there are a plurality of front boards and a plurality of rear boards, since the front board and the rear board are separated on both sides of the back board and arranged orthogonally to each other, each rear board
  • the connector can be connected to each of the front boards through a connector disposed at a corresponding position on the backplane, and a light path can be formed after each butting of the front board, so that it is not necessary to provide an optical waveguide on the back board, and directly
  • Each rear board and each front board interwork to realize the transmission of optical signals.
  • the optical waveguide channels in the front and rear interposers are connected by a connector to form an optical path to realize an optical signal.
  • the transmission does not need to set up an optical waveguide channel on the backplane, thereby shortening the optical link and reducing the loss of optical signals.
  • the use of a rigid waveguide avoids the need for a mirror to bend the optical path 90 degrees. The extra loss caused.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the communication device can include a switchboard 91 and an optical backplane interconnect system 92 coupled to the switchboard 91.
  • the optical backplane interconnection system 92 includes a backplane, a front board, a rear board, and a connector; the front board and the rear board are respectively located on opposite sides of the back board and are orthogonal to each other, and the front board and the rear board are both An optical waveguide channel is disposed, and a light path is formed by a connector connected to the backplane for optical signals to be transmitted through the optical path.
  • the specific structure of the optical backplane interconnection system 92 can be similar to the foregoing embodiment, and details are not described herein again.
  • a drive or receiving device with a waveguide interface on the switch board 91 is coupled to the optical backplane interconnect system 92.
  • the communication device is widely used in network devices such as routers, transmission devices, servers, and the like.
  • the communication device may further include a service board having an optical module on the service board, and a drive or receiving device with a waveguide interface on the service board.
  • the optical backplane interconnection system 92 in the communication device directly connects the optical waveguide channels in the front and rear insertion boards through the connector by separating the front and rear insertion boards in the circuit board on both sides of the back board and orthogonally disposed to each other.
  • the optical path is formed to realize the transmission of the optical signal, and the optical waveguide channel is not required to be established on the backplane, thereby shortening the optical link and reducing the loss of the optical signal.
  • the embodiment of the invention makes the system have better processing performance by using the optical waveguide channel, and reduces the physical realization complexity of the high-density fiber backplane, and the optical waveguide channel is not in the backplane of the system. It also reduces the physical difficulty of the system implementation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

光背板互连系统及通信设备 本申请要求于 2010年 4月 26日提交中国专利局, 申请号为 201010158509.0, 发明名称为"光背板互连系统及通信设备 "的中国专利申请的优先权,其全部内 容通过引用结合在本申请中。 技术领域
本发明涉及通信设备技术领域, 尤其涉及一种光背板互连系统及通信设 备。
背景技术
通讯系统中, 随着信号速率不断提高, 设备的接入容量越来越大, 相应地 系统带宽也相应地增加。 其中, 增加总线数量是增加系统带宽的方式之一, 但 是受芯片技术、 工艺技术、散热等的限制, 目前大容量电互连系统的实现变得 越来越困难, 而光互连由于低损耗、 低串扰、 高密度以及通道特性与速率无关 等优势, 光背板互连系统成为更好地解决方案。
现有技术中采用的光背板互连系统具体为光波导背板互连系统, 如图 1所 示,将波导通道 21像传统的印刷电路板技术一样一层一层地加工, 然后通过压 合得到光波导背板 22和线路板 23、 24。 光信号由线路板 23接收, 经过光波导背 板 22中的波导通道由线路板 24输出, 实现光信号的传输。 然而, 发明人在实现 本发明的过程中研究发现, 由于光波导本身对信号损耗较大, 而该方案中光链 路较长, 使得光信号损耗更大, 信号传输质量下降。
发明内容
本发明实施例提供一种光背板互连系统及通信设备, 能够缩短光链路长 度, 降低光信号的损耗。
为了解决上述技术问题, 本发明实施例的技术方案如下:
本发明实施例提供了一种光背板互连系统, 包括背板、 线路板和连接器, 所述线路板包括前插板和后插板;所述前插板与所述后插板分别位于所述背板 的两侧且相互正交, 所述前插板和后插板均具有光波导通道,且通过连接在所 述背板上的连接器对接形成光通路, 用于光信号通过所述光通路进行传输。
本发明实施例还提供了一种通信设备, 包括上述光背板互连系统,和与所 述光背板互连系统连接的交换板。
本发明实施例通过将线路板中的前、后插板分立在背板两侧且相互垂直设 置, 将前、 后插板中的光波导通道直接通过连接器对接形成光通路, 实现光信 号的传输, 不用在背板上设立光波导通道, 缩短了光链路, 降低了光信号的损 耗, 提高了光信号的传输质量。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中光背板互连系统的结构示意图;
图 2是本发明实施例一种光背板互连系统的结构示意图;
图 3是本发明实施例一种光信号在图 3所示的光背板互连系统中的传输示 意图;
图 4是本发明实施例另一种光背板互连系统的结构示意图;
图 5是本发明实施例中第一定位装置的结构示意图;
图 6是本发明实施例中第三定位装置的结构示意图;
图 7是本发明实施例中第四定位装置的结构示意图;
图 8是本发明实施例另一种光背板互连系统的结构示意图;
图 9是本发明实施例一种通信设备的结构示意图;
图 10是本发明实施例一种光背板互连系统的结构示意图。 具体实施方式
为了使本领域技术人员能进一步了解本发明实施例的特征及技术内容,请 参阅以下有关本发明实施例的详细说明与附图, 附图仅提供参考与说明, 并非 用来限制本发明实施例。
现有技术中采用类似现有 PCB ( Printed Circuit Board 印刷线路板 )加工 技术, 加工出多层聚合物波导, 使光背板互连系统具有更好的加工性能, 避免 了高密度光纤背板存在的物理实现复杂度问题。 然而, 由于光波导本身对信号 损耗较大, 而现有技术中光链路又较长, 使得光信号损耗更大, 信号传输质量 物理实现的复杂度, 而且通过将线路板中的前、后插板分立在背板两侧且相互 垂直设置, 并且省去背板中的光波导通道, 改为将前、 后插板中的光波导通道 直接通过连接器对接实现光信号的传输,从而缩短了光链路, 降低了光信号的 损耗。
下面结合附图和实施例, 对本发明实施例的技术方案进行描述。
参照图 2, 为本发明实施例一种光背板互连系统的结构示意图。
该光背板互连系统包括背板 31、 线路板和连接器 35。
其中, 线路板又包括前插板 32和后插板 33。前插板 32与后插板 33分别位于 背板 31的两侧且相互正交, 以实现不同槽位的信号能相互链接。
前插板 32和后插板 33均具有光波导通道 34, 其中, 光波导通道 34可以采用 埋入式, 即嵌入前、后插板的印刷线路板中,也可以设置在前、后插板的外部, 该光波导通道 34可以是刚性光波导通道或柔性光波导通道。
连接器 35连接在背板 31上, 用于线路板与背板 31之间的连接, 实现线路板 在背板 31上的插、 拔, 还用于前、 后插板间光波导通道的连接。 具体的, 可以 在背板 31上设置一安装孔, 连接器 35插放在该安装孔上实现与前、后插板的连 接。该连接器 35内可设置光波导通道,从而前插板 32和后插板 33的光波导通道 34通过背板 31上的连接器 35对接形成光通路,用于光信号通过该光通路进行传 输。
本实施例中, 如果前、 后插板的光波导通道 34采用埋入式, 也即嵌入前、 后插板的印刷线路板中, 则光信号在该光背板互连系统中的传输如图 4所示, 发送芯片 (TX ) 的光信号经过反射镜进入前插板 32的光波导通道 34中, 经连 接器 35传输至背板 31后侧的后插板 33, 然后经过反射镜, 光信号进入接收芯片 ( RX ), 完成信号的传输。 在一个实施例中, 若前、 后插板的光波导通道采用 柔性光波导通道, 例如柔性波导板, 则可以避免使用反射镜来使光路实现 90 度转弯, 从而可以进一步减少额外的损耗。
需要说明的是,在一个实施例中, 图 10是本发明实施例一种光背板互连系 统的结构示意图。 如图 10 所示, 当有多个前插板(图中示为前插板 201 - 203 ) 和一个后插板 101时, 由于前插板 201 - 203和后插板 101分立在背板 100的两侧 且相互正交设置, 此时这一个后插板 101可以通过多个连结器(如图中的连接 器 301、 连接器 401和连接器 501 )分别和多个前插板 201 - 203进行对接, 对接 后与每个前插板可以形成光通路,这样就不需要在背板上设置光波导, 而直接 与每个前插板互通实现光信号的传输。 如图 10 所述, 连接器 301、 连接器 401 和连接器 501可以分别通过设置在背板 100上的底座 300。 底座 400和底座 501, 安装在背板 100上。
在一个实施例中, 当有一个前插板或者多个后插板时, 具有类似的效果, 不再赘述。
在一个实施例中, 当存在多个前插板和多个后插板时, 由于前插板和后插 板分立在背板的两侧且相互正交设置,此时每一个后插板上可以通过设置在背 板上的相应位置的连结器和每一个前插板进行对接,对接后与每个前插板可以 形成光通路, 这样就不需要在背板上设置光波导, 而直接使每个后插板和每个 前插板互通实现光信号的传输。
本发明实施例通过将线路板中的前、后插板分立在背板两侧且相互正交设 置,将前、后插板中的光波导通道直接通过连接器对接形成光通路实现光信号 的传输, 不用在背板上设立光波导通道, 从而缩短了光链路, 降低了光信号的 损耗。 同时, 本发明实施例通过采用光波导通道, 使该系统有了更好的加工性 能, 减少了高密度光纤背板的物理实现的复杂度, 而且, 本系统的背板中没有 光波导通道, 也降低了系统实现的物理难度。
在本发明的另一实施例中,为了实现前插板 32和后插板 33之间的光波导通 道的准确对接, 还可以在前、 后插板上设置定位装置, 如定位销和定位孔等。
参见图 4, 为本发明实施例另一种光背板互连系统的结构示意图。
该光背板互连系统可以包括背板 51、 前插板 52、 后插板 53和连接器 54。 本实施例中, 背板 51上具有安装孔 511, 在该安装孔 511处还可以设置有底 前插板 52与后插板 53分别位于背板 51的两侧且相互正交,前插板 52和后插 板 53均具有光波导通道 55, 前、 后插板中光波导通道 55延伸至板边。 本实施例 中, 光波导通道 55采用埋入式, 也即嵌入前、 后插板的印刷线路板中的刚性光 波导通道。
连接器 54可以包括与前插板 52连接的第一端子 541, 和与后插板 53连接的 第二端子 542, 其中, 第一端子 541和第二端子 542均具有光波导通道, 第一、 二端子可以插放在背板 51的底座 512上, 实现两端子间光波导通道的对接, 从 而前插板 52、连接器的第一端子 541、连接器的第二端子 542和后插板 53上的光 波导通道依次对接形成光通路, 用于光信号通过该光通路进行传输。 其中, 前 插板 52、 第一端子 541、 背板 51、 底座 512、 第二端子 542和后插板 53均可以为 独立的个体, 在连接形成光背板互连系统时, 可以将底座 512插放在背板 51的 安装孔 511上,然后前插板 52和第一端子 541对接固定,后插板 53和第二端子 542 对接固定, 然后分别在背板 51的两侧插放在底座 512上。
本实施例中, 光信号在该光背板互连系统中的传输过程如下, 发送芯片 ( TX ) 的光信号经过反射镜进入前插板 52的光波导通道 55中, 经连接器 54的 第一端子 541、 第二端子 542传输至背板 51后侧的后插板 53, 然后经过反射镜, 光信号进入接收芯片 (RX ), 完成信号的传输。
需要说明的是, 在一个实施例中, 如图 10 所示, 当有多个前插板(图中 示为前插板 201 - 203 )和一个后插板 101时, 由于前插板 201 - 203和后插板 101 分立在背板 100的两侧且相互正交设置,此时这一个后插板 101可以通过多个连 结器 (如图中的连接器 301、 连接器 401和连接器 501 ) 分别和多个前插板 201 - 203进行对接, 对接后与每个前插板可以形成光通路, 这样就不需要在背板 上设置光波导, 而直接与每个前插板互通实现光信号的传输。 如图 10 所述, 连接器 301、连接器 401和连接器 501可以分别通过设置在背板 100上的底座 300。 底座 400和底座 501, 安装在背板 100上。
在一个实施例中, 当有一个前插板或者多个后插板时, 具有类似的效果, 不再赘述。
在一个实施例中, 当存在多个前插板和多个后插板时, 由于前插板和后插 板分立在背板的两侧且相互正交设置,此时每一个后插板上可以通过设置在背 板上的相应位置的连结器和每一个前插板进行对接,对接后与每个前插板可以 形成光通路, 这样就不需要在背板上设置光波导, 而直接使每个后插板和每个 前插板互通实现光信号的传输。
本发明实施例通过将线路板中的前、后插板分立在背板两侧且相互正交设 置, 将前、 后插板中的光波导通道通过连接器的第一、 二端子对接形成光通路 实现光信号的传输, 从而缩短了光链路, 降低了光信号的损耗。 同时, 本发明 实施例通过采用光波导通道,使该系统有了更好的加工性能, 减少了高密度光 纤背板的物理实现的复杂度, 而且, 本系统的背板中没有光波导通道, 也降低 了系统实现的物理难度。
由于光波导很小, 一般在 30〜50微米, 在本发明的另一实施例中, 为了进 一步保证各光波导通道之间的准确对接,还可以在各部件的光通道对接处设置 定位装置。
前插板与连接器的第一端子上可以具有用于对准前插板和第一端子上的 光波导通道的定位装置, 例如, 前插板上设置有第一定位装置, 第一端子上设 置有第二定位装置, 第一定位装置与第二定位装置相互匹配, 用于对准位于前 插板和第一端子上的光波导通道。 该第一、 二定位装置可以采用多种方式, 例 如设置标记等。 在本实施例中, 如图 5所示, 该第一定位装置具体可以为, 在 前插板 61上与第一端子 62的对接处设置定位销 611,该定位销可以通过螺钉 612 和固定板 613等固定在前插板 61上, 如图 5所示, 两螺钉 612的固定位置可以对 称设置在光波导通道的两侧, 具体的可以在前插板 61上标记出螺钉 612固定位 置的定位图形。对应的,在第一端子 62上的第二定位装置可以是在与定位销 611 对应的位置上设置定位孔 621, 以使定位销 611可以插入该定位孔 621, 从而保 证前插板 61和第一端子 62的光波导通道可以准确对接。 当然可以理解的是,在 另一个实施例中, 第二定位装置可以为位销, 第一定位装置可以为与定位销配 合的定位孔。后插板与第二端子上也可以具有用于对准后插板和第二端子上的 光波导通道的定位装置, 例如, 后插板上设置第三定位装置, 第二端子上设置 有第四定位装置, 第三定位装置和第四定位装置相互匹配, 用于对准位于后插 板述第二端子上的光波导通道, 该第三、 四定位装置可以采用与第一、 二定位 装置类似的设置, 也可以采用其它定位方式, 此处不再赘述。
第一端子与第二端子上也可以具有用于对准第一端子和第二端子上的光 波导通道的定位装置, 例如, 第一端子上设置有第五定位装置, 第二端子上设 置有第六定位装置, 第五定位装置与第六定位装置相互匹配, 用于对准位于第 一端子和第二端子上的光波导通道。 在本实施例中, 如图 6所示, 该第五定位 装置可以为, 在第一端子 71上与第二端子 72的对接处设置定位销 711,对应的, 在第二端子 72上的第六定位装置可以是在与定位销 711对应的位置处设置的定 位孔 721, 以使定位销 711可以插入定位孔 721, 从而保证第一端子 71和第二端 子 72的光波导通道的准确对接。 当然, 也可以在第一端子 71上设置定位孔, 在 第二端子 72上设置定位销, 定位孔(定位销) 的数量可以根据需要设定。
在本实施例中, 第一、二端子安装在背板的底座上以实现两端子间光波导 通道的对接, 为了更进一步使第一、 二端子之间的准确对接, 还可以进一步, 在底座、第一端子和第二端子上设置用于对准第一端子和第二端子上的光波导 通道的定位装置, 例如, 底座上设置第七定位装置, 第一端子上设置第八定位 装置, 第二端子上设置第九定位装置, 第七定位装置分别与第八定位装置和第 九定位装置相互匹配, 用于对准位于第一端子和第二端子上的光波导通道。如 图 7所示, 该第七定位装置可以为, 在背板的底座 81内壁上设置凸起 811, 第八 定位装置为在第一端子 82上与凸起 811的对应位置设置的凹陷处 821,第九定位 装置是在第二端子 83上与凸起 811的对应位置设置的凹陷处 831,以使在第一端 子 82和第二端子 83插入底座 81时, 凹陷处 821、 831可以与凸起 811匹配, 实现 第一端子 82和第一端子 83上光波导通道的准确对接。
前、后插板上的光波导通道除了可以采用上述嵌入印刷线路板中的刚性光 波导通道, 也还可以采用柔性光波导通道。
需要说明的是, 在一个实施例中, 如图 10 所示, 当有多个前插板(图中 示为前插板 201 - 203 )和一个后插板 101时, 由于前插板 201 - 203和后插板 101 分立在背板 100的两侧且相互正交设置,此时这一个后插板 101可以通过多个连 结器 (如图中的连接器 301、 连接器 401和连接器 501 ) 分别和多个前插板 201 - 203进行对接, 对接后与每个前插板可以形成光通路, 这样就不需要在背板 上设置光波导, 而直接与每个前插板互通实现光信号的传输。 如图 10 所述, 连接器 301、连接器 401和连接器 501可以分别通过设置在背板 100上的底座 300。 底座 400和底座 501, 安装在背板 100上。
在一个实施例中, 当有一个前插板或者多个后插板时, 具有类似的效果, 不再赘述。 在一个实施例中, 当存在多个前插板和多个后插板时, 由于前插板和后插 板分立在背板的两侧且相互正交设置,此时每一个后插板上可以通过设置在背 板上的相应位置的连结器和每一个前插板进行对接,对接后与每个前插板可以 形成光通路, 这样就不需要在背板上设置光波导, 而直接使每个后插板和每个 前插板互通实现光信号的传输。
本发明实施例通过将线路板中的前、后插板分立在背板两侧且相互正交设 置, 将前、 后插板中的光波导通道通过连接器的第一、 二端子对接形成光通路 实现光信号的传输, 不用在背板上设立光波导通道, 从而缩短了光链路, 降低 了光信号的损耗。 同时, 本发明实施例通过采用光波导通道, 使该系统有了更 好的加工性能, 减少了高密度光纤背板的物理实现的复杂度, 而且, 本系统的 背板中没有光波导通道, 也降低了系统实现的物理难度。 进一步, 通过在前、 后插板上设置定位装置, 使前插板和后插板之间的光波导通道的对接更准确。
参照图 8, 为本发明实施例另一种光背板互连系统的结构示意图。
在本实施例中, 光背板互连系统可以包括背板 91、 前插板 92、 后插板 93, 前、 后插板均采用柔性波导板, 前、后插板可以通过连接器组装在一起实现光 波导通道的互连。 本实施例以前、后插板通过连接器 94实现光波导通道的互连 为例进行说明。
本实施例通过采用柔性光波导通道 95,避免了采用刚性波导需要反射镜来 使光路 90度转弯造成的额外损耗。前、后插板上柔性光波导通道 95与连接器第 一、二端子之间的装配和定位关系与前述实施例类似, 差异在于柔性光波导通 道没有嵌入印刷线路板, 因此, 在组装时, 需要先把柔性光波导通道 95与连接 器 94安装好后再把这部分与刚性的前、 后插板组装在一起。
本实施例中, 光信号在该光背板互连系统中的传输过程如下, 发送芯片 ( TX ) 的光信号经过连接器进入前插板 92的柔性光波导通道中, 经连接器 94 传输至背板 91后侧后插板 93的柔性光波导通道, 然后经过波导连接器, 光信号 进入接收芯片 (RX ), 完成信号的传输。
需要说明的是, 在一个实施例中, 如图 10 所示, 当有多个前插板(图中 示为前插板 201 - 203 )和一个后插板 101时, 由于前插板 201 - 203和后插板 101 分立在背板 100的两侧且相互正交设置,此时这一个后插板 101可以通过多个连 结器 (如图中的连接器 301、 连接器 401和连接器 501 ) 分别和多个前插板 201 - 203进行对接, 对接后与每个前插板可以形成光通路, 这样就不需要在背板 上设置光波导, 而直接与每个前插板互通实现光信号的传输。 如图 10 所述, 连接器 301、连接器 401和连接器 501可以分别通过设置在背板 100上的底座 300。 底座 400和底座 501, 安装在背板 100上。
在一个实施例中, 当有一个前插板或者多个后插板时, 具有类似的效果, 不再赘述。
在一个实施例中, 当存在多个前插板和多个后插板时, 由于前插板和后插 板分立在背板的两侧且相互正交设置,此时每一个后插板上可以通过设置在背 板上的相应位置的连结器和每一个前插板进行对接,对接后与每个前插板可以 形成光通路, 这样就不需要在背板上设置光波导, 而直接使每个后插板和每个 前插板互通实现光信号的传输。
本实施例中,通过将线路板中的前、后插板分立在背板两侧且相互正交设 置,将前、后插板中的光波导通道通过连接器对接形成光通路实现了光信号的 传输, 不用在背板上设立光波导通道, 从而缩短了光链路, 降低了光信号的损 耗, 而且, 通过采用柔性光波导通道, 避免了采用刚性波导需要反射镜来使光 路 90度转弯造成的额外损耗。 同时, 本发明实施例的背板中没有光波导通道, 也降低了系统实现的物理难度。
上述实施例中, 连接器 94的具体设置也可以与前述实施例类似, 此处不再 赘述。
参照图 9, 为本发明实施例一种通信设备的结构示意图。
该通信设备可以包括交换板 91和与该交换板 91连接的光背板互连系统 92。 其中, 光背板互连系统 92包括背板、 前插板、 后插板和连接器; 前插板与 后插板分别位于背板的两侧且相互正交, 前插板和后插板均设置有光波导通 道,且通过连接在背板上的连接器对接形成光通路,用于光信号通过该光通路 进行传输。 该光背板互连系统 92的具体结构可以与前述实施例类似, 此处不再 赘述。 交换板 91上带有波导接口的驱动或接受器件, 以与光背板互连系统 92 连接。
该通信设备广泛应用于网络类设备中,例如路由器、传输设备、服务器等。 在其它实施例中, 通信设备还可以包括业务板, 业务板上有光模块, 业务板上 也带有波导接口的驱动或接受器件。 该通信设备中的光背板互连系统 92通过将线路板中的前、后插板分立在背 板两侧且相互正交设置, 将前、后插板中的光波导通道直接通过连接器对接形 成光通路实现光信号的传输, 不用在背板上设立光波导通道,从而缩短了光链 路, 降低了光信号的损耗。 同时, 本发明实施例通过采用光波导通道, 使该系 统有了更好的加工性能, 减少了高密度光纤背板的物理实现的复杂度, 而且, 本系统的背板中没有光波导通道, 也降低了系统实现的物理难度。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。任何在 本发明的精神和原则之内所作的修改、等同替换和改进等, 均应包含在本发明 的权利要求保护范围之内。

Claims

权 利 要 求
1、 一种光背板互连系统, 其特征在于, 包括背板、 前插板、 后插板和连 接器; 所述前插板与所述后插板分别位于所述背板的两侧且相互正交, 所述前 插板和后插板均设置有光波导通道,且通过连接在所述背板上的连接器对接形 成光通路, 用于光信号通过所述光通路进行传输。
2、 根据权利要求 1所述的光背板互连系统, 其特征在于,
所述连接器包括与所述前插板连接的第一端子和与所述后插板连接的第 二端子, 所述第一端子和所述第二端子均具有光波导通道;
所述前插板和后插板上的光波导通道通过连接在所述背板上的连接器对 接形成光通路, 具体为:
所述前插板、连接器的第一端子、连接器的第二端子和后插板上的光波导 通道依次对接形成光通路。
3、 根据权利要求 2所述的光背板互连系统, 其特征在于, 所述前插板上设 置有第一定位装置, 所述第一端子上设置有第二定位装置, 所述第一定位装置 与所述第二定位装置相互匹配,用于对准位于所述前插板和所述第一端子上的 光波导通道。
4、 根据权利要求 3所述的光背板互连系统, 其特征在于, 所述第一定位装 置和所述第二定位装置位于所述前插板和所述第一端子的对接处,所述第一定 位装置包括设置在所述前插板上的定位销,所述第二定位装置包括设置在所述 第一端子上的与所述定位销对应的定位孔。
5、 根据权利要求 2所述的光背板互连系统, 其特征在于, 所述后插板上设 置有第三定位装置, 所述第二端子上设置有第四定位装置, 所述第三定位装置 和所述第四定位装置相互匹配,用于对准位于所述后插板和所述第二端子上的 光波导通道。
6、 根据权利要求 5所述的光背板互连系统, 其特征在于, 所述第三定位装 置和所述第四定位装置位于所述后插板和所述第二端子的对接处,所述第三定 位装置包括设置在所述后插板上的定位销,所述第四定位装置包括设置在所述 第二端子上的与所述定位销对应的定位孔。
7、 根据权利要求 2所述的光背板互连系统, 其特征在于, 所述第一端子上 设置有第五定位装置, 所述第二端子上设置有第六定位装置, 所述第五定位装 置与所述第六定位装置相互匹配,用于对准位于所述第一端子和所述第二端子 上的光波导通道。
8、 根据权利要求 7所述的光背板互连系统, 其特征在于, 所述第五定位装 置和所述第六定位装置位于所述第一端子和所述第二端子的对接处,所述第五 定位装置包括设置在所述第一端子上的定位销,所述第六定位装置包括设置在 所述第二端子上的与所述定位销对应的定位孔。
9、 根据权利要求 2所述的光背板互连系统, 其特征在于, 所述背板上具有 用于安装所述第一端子和第二端子的底座。
10、 根据权利要求 9所述的光背板互连系统, 其特征在于, 所述底座上设 置有第七定位装置, 所述第一端子上设置有第八定位装置, 所述第二端子上设 置有第九定位装置,所述第七定位装置分别与第八定位装置和第九定位装置相 互匹配, 用于对准位于所述第一端子和所述第二端子上的光波导通道。
11、 根据权利要求 10所述的光背板互连系统, 其特征在于, 所述第七定位 装置包括设置在所述背板底座上的凸起,所述第八定位装置包括设置在所述第 一端子上与所述凸起对应位置设置的凹陷,所述第九定位装置包括设置在所述 第二端子上与所述凸起对应位置设置的凹陷。
12、根据权利要求 1至 11中任意一项所述的光背板互连系统, 其特征在于, 所述光波导通道为嵌入所述前、后插板中的刚性光波导通道; 或者为组装 在所述前、 后插板上的柔性光波导通道。
13、 一种通信设备, 其特征在于, 包括如权利要求 1至 11中任意一项所述 的光背板互连系统, 和与所述光背板互连系统连接的交换板。
14、 根据权利要求 13所述的通信设备, 其特征在于, 所述光波导通道为嵌 入所述前、 后插板中的刚性光波导通道; 或者为组装在所述前、 后插板上的柔 性光波导通道。
PCT/CN2011/071272 2010-04-26 2011-02-24 光背板互连系统及通信设备 WO2011134304A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11774295A EP2511744A1 (en) 2010-04-26 2011-02-24 Optical backplane interconnection system and communication device
US13/462,625 US20120213469A1 (en) 2010-04-26 2012-05-02 Optical backplane interconnection system and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010158509.0 2010-04-26
CN201010158509.0A CN101882955B (zh) 2010-04-26 2010-04-26 光背板互连系统及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/462,625 Continuation US20120213469A1 (en) 2010-04-26 2012-05-02 Optical backplane interconnection system and communication device

Publications (1)

Publication Number Publication Date
WO2011134304A1 true WO2011134304A1 (zh) 2011-11-03

Family

ID=43054864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071272 WO2011134304A1 (zh) 2010-04-26 2011-02-24 光背板互连系统及通信设备

Country Status (4)

Country Link
US (1) US20120213469A1 (zh)
EP (1) EP2511744A1 (zh)
CN (1) CN101882955B (zh)
WO (1) WO2011134304A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882955B (zh) * 2010-04-26 2013-04-17 华为技术有限公司 光背板互连系统及通信设备
TW201239434A (en) * 2011-03-24 2012-10-01 Netgami System Llc Multi-diameter optical fiber link for transmitting unidirectional signals and eliminating signal deterioration
US9417418B2 (en) 2011-09-12 2016-08-16 Commscope Technologies Llc Flexible lensed optical interconnect device for signal distribution
US9229172B2 (en) * 2011-09-12 2016-01-05 Commscope Technologies Llc Bend-limited flexible optical interconnect device for signal distribution
CN102695393B (zh) * 2012-05-04 2014-11-05 华为技术有限公司 一种垂直正交互连系统及通信设备
ES2792122T3 (es) 2012-09-28 2020-11-10 Commscope Connectivity Uk Ltd Casete de fibra óptica
US9223094B2 (en) 2012-10-05 2015-12-29 Tyco Electronics Nederland Bv Flexible optical circuit, cassettes, and methods
US20140126170A1 (en) * 2012-11-05 2014-05-08 Huawei Technologies Co., Ltd. Backplane, Cabinet-Level Communication Device, and Method for Replacing Backplane
CN103974538B (zh) * 2013-02-05 2017-09-12 华为技术有限公司 电子设备、电子系统及其电路板互联架构
CN104238035B (zh) * 2013-06-21 2016-03-23 中航光电科技股份有限公司 光背板及其制造方法
CN105408792B (zh) * 2014-04-29 2017-03-15 华为技术有限公司 一种光波导层间互连的方法及装置
CN105323660B (zh) * 2014-07-01 2019-11-29 南京中兴软件有限责任公司 光信号的交叉系统、交叉处理方法及装置
FR3032572B1 (fr) * 2015-02-10 2017-01-27 Airbus Operations Sas Systeme de commande et dispositif abonne d'un reseau de communication d'un systeme de commande
CN106954102B (zh) * 2016-01-06 2021-05-07 中兴通讯股份有限公司 一种光背板子架装置
CN107231195B (zh) * 2016-03-23 2022-01-25 中兴通讯股份有限公司 一种实现板间通信的方法和装置
CN107231189A (zh) * 2016-03-24 2017-10-03 中兴通讯股份有限公司 一种用于光背板光信号检测的装置及方法
EP3510432A1 (en) 2016-09-08 2019-07-17 CommScope Connectivity Belgium BVBA Telecommunications distribution elements
CN108267817B (zh) * 2016-12-30 2019-06-25 中兴通讯股份有限公司 一种光交换装置、光连接装置及光连接器
EP3692404A4 (en) 2017-10-02 2021-06-16 Commscope Technologies LLC FIBER OPTIC CIRCUIT AND MANUFACTURING METHOD
CN111367021B (zh) * 2020-03-20 2022-05-20 中航光电科技股份有限公司 一种板间波导-光纤耦合系统
CN113917620A (zh) * 2021-09-29 2022-01-11 中航光电科技股份有限公司 一种vita架构下的光纤后io连接结构及连接方法
CN116192243A (zh) * 2021-11-26 2023-05-30 华为技术有限公司 一种光背板互连装置及通信设备
CN116367017A (zh) * 2021-12-27 2023-06-30 华为技术有限公司 一种光交叉互连架构及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040100782A1 (en) * 2002-11-27 2004-05-27 Bozso Ferenc M. Backplane assembly with board to board optical interconnections and a method of continuity checking board connections
US20040100781A1 (en) * 2002-11-27 2004-05-27 Bozso Ferenc M. Optically connectable circuit board with optical component(s) mounted thereon
CN1506706A (zh) * 2002-12-02 2004-06-23 �Ҵ���˾ 用于光学背板连接系统的无插芯光纤设备
US7142748B1 (en) * 2004-03-11 2006-11-28 New Span Opto-Technology, Inc. Optical waveguide evanescent ribbon coupler
CN101882955A (zh) * 2010-04-26 2010-11-10 华为技术有限公司 光背板互连系统及通信设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296748A (en) * 1992-06-24 1994-03-22 Network Systems Corporation Clock distribution system
JPH09172240A (ja) * 1995-12-20 1997-06-30 Nippon Telegr & Teleph Corp <Ntt> 三次元実装構造
JP3500844B2 (ja) * 1996-04-01 2004-02-23 富士ゼロックス株式会社 信号伝送バス及び信号処理装置
US6755573B2 (en) * 2001-01-29 2004-06-29 Martin Hoffmann Full mesh optical interconnect
CA2349494C (en) * 2001-05-30 2004-09-28 Tropic Networks Inc. Module and method for interconnecting optoelectronic cards
US6757177B2 (en) * 2001-07-05 2004-06-29 Tropic Networks Inc. Stacked backplane assembly
US7639903B2 (en) * 2007-10-15 2009-12-29 Hewlett-Packard Development Company, L.P. Daisy chain optical interconnect

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040100782A1 (en) * 2002-11-27 2004-05-27 Bozso Ferenc M. Backplane assembly with board to board optical interconnections and a method of continuity checking board connections
US20040100781A1 (en) * 2002-11-27 2004-05-27 Bozso Ferenc M. Optically connectable circuit board with optical component(s) mounted thereon
CN1506706A (zh) * 2002-12-02 2004-06-23 �Ҵ���˾ 用于光学背板连接系统的无插芯光纤设备
US7142748B1 (en) * 2004-03-11 2006-11-28 New Span Opto-Technology, Inc. Optical waveguide evanescent ribbon coupler
CN101882955A (zh) * 2010-04-26 2010-11-10 华为技术有限公司 光背板互连系统及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511744A4 *

Also Published As

Publication number Publication date
CN101882955A (zh) 2010-11-10
EP2511744A4 (en) 2012-10-17
EP2511744A1 (en) 2012-10-17
CN101882955B (zh) 2013-04-17
US20120213469A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
WO2011134304A1 (zh) 光背板互连系统及通信设备
US10365445B2 (en) Optical modules integrated into an IC package of a network switch having electrical connections extend on different planes
US10374726B2 (en) Rack level pre-installed interconnect for enabling cableless server/storage/networking deployment
US9638876B2 (en) Opto-electrical transceiver module and active optical cable
CN106954102B (zh) 一种光背板子架装置
Bamiedakis et al. A 40 Gb/s optical bus for optical backplane interconnections
US9465179B2 (en) Optical base layer
CN104503044A (zh) 光模块
WO2014146231A1 (zh) 背板、插框和网络设备
US11805592B2 (en) Circuit board assembly and electronic device
CN102446534A (zh) 用于连接多个硬盘驱动器的系统和方法
CN108351481B (zh) 光学电路板组件
TW201820945A (zh) 使用模組化vpx技術的電子介面
US8953337B2 (en) Communication apparatus with removable circuit boards
US9634771B2 (en) Optical connector interconnection system and method
WO2012095047A2 (zh) 互连板及服务器系统
TWI730325B (zh) 伺服器盒子
WO2015081506A1 (zh) 用于通信设备的互连系统
WO2023124580A1 (zh) 一种光交叉互连架构及通信设备
Yamamoto et al. Optical interconnect technology for high-bandwidth data connection in next-generation servers
US10116074B1 (en) Graded midplane
WO2022242190A1 (zh) 电子组件、交换机及计算机系统
WO2023093105A1 (zh) 一种光背板互连装置及通信设备
CN115864032A (zh) 正交系统架构及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011774295

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE