WO2011134215A1 - Stereoscopic camera device - Google Patents
Stereoscopic camera device Download PDFInfo
- Publication number
- WO2011134215A1 WO2011134215A1 PCT/CN2010/075841 CN2010075841W WO2011134215A1 WO 2011134215 A1 WO2011134215 A1 WO 2011134215A1 CN 2010075841 W CN2010075841 W CN 2010075841W WO 2011134215 A1 WO2011134215 A1 WO 2011134215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- planar mirror
- lens group
- imaging lens
- optical
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/08—Stereoscopic photography by simultaneous recording
- G03B35/10—Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
Definitions
- the utility model relates to the technical field of stereo imaging, in particular to a stereo camera device. Background technique
- 1 is a summary drawing of a patent "a stereo camera device and method"; 2 is a top plan view of the stereo camera device of the present invention;
- ⁇ Using a precision optical imaging structure to ensure the consistency on the optical path, two pairs of plane mirrors are arranged in front of the camera, and when the device is used for shooting, the light reflected by the object passes through the two pairs of plane mirrors. , enters the camera; the reflected light of the object passes through the optical imaging lens set on the camera, focuses on the optical sensor, and uses only one image sensor to receive two images, ensuring that the electrical properties of the captured image are completely consistent.
- the front surface refers to the configuration of the stereo camera device from the direction of the optical sensor 212 after the stereo camera device is laid flat.
- the optical imaging lens group 211 is disposed in the optical sensor 212.
- the front surface, the first plane mirror 22, the second plane mirror 23, the third plane mirror 24, and the fourth plane mirror 25 are disposed in front of the optical imaging lens group 211, and further, the second plane mirror 23 And the fourth plane mirror 25 may be disposed in front of the first plane mirror 22 and the third plane mirror 24;
- the first plane mirror 22 reflects the light 31 emitted by the photographing object 30 once, and the reflected light 32 is irradiated to the second plane mirror 23; the second plane mirror 23 reflects the first plane mirror 22 The light ray 32 is subjected to secondary reflection, and the reflected light 33 is irradiated to the optical imaging lens group 211 in the camera module 21;
- the optical imaging lens group 211 focuses the light 33 reflected by the second plane mirror 23, and the focused light 34 is irradiated to the optical sensor 212 in the camera module 21;
- the optical imaging lens group 211 focuses the light 43 reflected by the second plane mirror 23, and the focused light 44 is irradiated to the optical sensor 212 in the camera module 21;
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Studio Devices (AREA)
- Stereoscopic And Panoramic Photography (AREA)
Abstract
A stereoscopic camera device comprises a camera module (21), a first plane reflective mirror (22), a second plane reflective mirror (23), a third plane reflective mirror (24), and a fourth plane reflective mirror (25). The camera module (21) comprises an optical imaging lens group (211) and an optical sensor (212). The first plane reflective mirror (22) is parallel to the second plane reflective mirror (23). The third plane reflective mirror (24) is parallel to the fourth plane reflective mirror (25). The four plane reflective mirrors are positioned before the optical imaging lens group (211). The optical imaging lens group (211) is positioned before the optical sensor (212). The device can improve the consistency of the optical paths and electrical performance during imaging.
Description
一种立 像装置 技术领域 An image device
本实用新型涉及立体成像技术领域, 特别是指一种立体摄像装置。 背景技术 The utility model relates to the technical field of stereo imaging, in particular to a stereo camera device. Background technique
随着数字成像技术的日趋成熟, 立体成像技术正在快速的发展。 立体 成像技术主要利用人的两只眼睛的视差特性实现的, 其具体实现方式主要 包括: 色分法、 光分法、 时分法和光栅法等。 具体实现方式虽然有多种, 但所有实现方式的原理相似, 即: 利用两台并列安置的摄影机, 同步拍摄 出两个略带水平视差的画面, 这两台摄影机分别代表人的左眼与右眼。 放 映时, 将两个画面分别装入左眼放映装置与右眼放映装置, 左眼放映装置 与右眼放映装置同步运转, 同时将画面放映出来, 形成包括左眼图像与右 眼图像的双影图像。 观看者通过一些特殊设备, 例如: 偏光眼镜等, 使左 眼只能看到左眼图像, 右眼只能看到右眼图像, 再通过双眼的汇聚功能, 分别将左眼图像、 右眼图像叠合在视网膜上, 由大脑神经产生三维立体的 视觉效果。 With the maturity of digital imaging technology, stereo imaging technology is rapidly developing. Stereoscopic imaging technology is mainly realized by the parallax characteristics of two eyes of human beings. The specific implementation methods mainly include: color separation method, light division method, time division method and grating method. Although there are many specific implementation methods, the principles of all implementations are similar, namely: using two cameras arranged side by side, two pictures with horizontal parallax are simultaneously captured, and the two cameras respectively represent the left eye and the right of the person. eye. During the screening, the two screens are respectively loaded into the left-eye projection device and the right-eye projection device, and the left-eye projection device and the right-eye projection device are synchronized, and the screen is projected to form a double shadow including the left-eye image and the right-eye image. image. The viewer uses some special equipment, such as polarized glasses, so that the left eye can only see the left eye image, the right eye can only see the right eye image, and then through the binocular convergence function, the left eye image and the right eye image respectively. Superimposed on the retina, the three-dimensional visual effect is produced by the brain nerves.
以上描述说明: 无论釆用哪种实现方式, 关键在于必须做到观看者的 左眼与右眼看到的图像不能完全相同, 即: 对应于左眼的画面只被左眼观 察到, 对应于右眼的画面只被右眼观察到。 如此, 具有立体效果的拍摄装 置必须带有两个摄像头进行成像, 并对图像进行处理。 但是, 现有的拍摄 装置存在一些缺点, 主要表现在以下三个方面: The above description explains: Regardless of which implementation is used, the key is that the image seen by the viewer's left eye and right eye must not be exactly the same, ie: the picture corresponding to the left eye is only observed by the left eye, corresponding to the right The picture of the eye is only observed by the right eye. In this way, a stereoscopic camera must have two cameras for imaging and processing the image. However, existing camera devices have some shortcomings, mainly in the following three aspects:
首先, 两个摄像头由于物理性能不可能完全相同, 比如: 焦距不完全 相同, 因此, 会造成两个摄像头在聚焦性能上不完全一致, 进而导致左右 视频清晰度不完全一致, 最终导致图像成像模糊。
其次, 两个摄像头在安装对位上存在误差, 导致双摄像头拍摄的图像在 视角的水平和倾斜上不完全一致, 进而导致图像处理时出现偏差, 最终导 致图像产生叠影。 First of all, the two cameras may not be identical in physical performance, for example: the focal lengths are not exactly the same, so the two cameras are not completely consistent in focusing performance, which leads to the inconsistency of left and right video intelligibility, resulting in image blurring. . Secondly, there are errors in the installation alignment of the two cameras, which causes the images captured by the dual cameras to be inconsistent in the horizontal and oblique angles of the viewing angle, which leads to deviations in image processing, which ultimately leads to image superimposition.
最后, 双摄像头中各自的图像传感器存在电性能上的差异, 致使所拍摄 到的图像在亮度、 对比度、 色度、 灰阶等特性上不一致, 进而导致左右图 像出现视觉差异, 最终导致观众产生视觉眩晕、 图像模糊等现象。 Finally, the difference in electrical performance between the respective image sensors in the dual cameras causes the captured images to be inconsistent in characteristics such as brightness, contrast, chromaticity, grayscale, etc., which in turn causes visual differences between the left and right images, ultimately leading to visual perception of the viewer. Dizziness, blurred images, etc.
图 1为申请号为 200910104853.9的中国专利 《一种立体摄像装置及方 法》 的摘要附图, 该专利公开了一种立体摄像装置, 用精密光学成像结构 来保证光路上的一致性, 仅用一个图像传感器来接收两路图像的技术, 但 是, 从图 1中看出, 该专利存在重要技术缺陷, 主要表现在: 1 is a summary drawing of a Chinese patent "A Stereo Camera Device and Method" of Application No. 200910104853.9, which discloses a stereo camera device that uses a precision optical imaging structure to ensure uniformity on the optical path, using only one The technique of image sensor to receive two-way image, however, as seen in Figure 1, the patent has important technical defects, mainly in:
首先, 第一光学成像透镜组 111、 第二光学成像透镜组 112与图像传感 器 120 的光路距离较远。 当拍摄远景时, 根据透镜成像规则, 一般要求光 学成像透镜组与图像传感器的光路距离较近, 否则会成像模糊, 因此, 该 专利阐述的装置及方法, 无法拍摄远景; First, the optical paths of the first optical imaging lens group 111, the second optical imaging lens group 112, and the image sensor 120 are far apart. When shooting a distant view, according to the lens imaging rule, it is generally required that the optical imaging lens group and the image sensor have a relatively close optical path, otherwise the image will be blurred. Therefore, the device and method described in the patent cannot capture the distant view;
其次,由于物体发出的每束光线中所有的光线只有经过平面镜相同角度 的反射后才可以成像, 该专利未充分披露第一平面反射镜 114、 第二平面反 射镜 115与第三反射镜 113的镜面的位置存在一定关系的技术细节, 如此, 可能会造成无法在图像传感器 120上成像, 从而根本无法实现拍摄的目的。 发明内容 Secondly, since all the light in each of the rays emitted by the object can be imaged only after being reflected by the plane mirror at the same angle, the patent does not fully disclose the first planar mirror 114, the second planar mirror 115 and the third mirror 113. There is a certain technical detail in the position of the mirror, which may result in the inability to image on the image sensor 120, so that the purpose of shooting cannot be achieved at all. Summary of the invention
有鉴于此, 本实用新型的主要目的在于提供一种立体摄像装置, 能拍 摄到两幅带有视差、 电性能完全一致的图像, 且能适用于拍摄远景。 In view of the above, the main object of the present invention is to provide a stereo camera capable of capturing two images with parallax and identical electrical performance, and is suitable for shooting a distant view.
为达到上述目的, 本实用新型的技术方案是这样实现的: In order to achieve the above object, the technical solution of the present invention is realized as follows:
本实用新型提供了一种立体摄像装置, 包括: 摄像头模组、 第一平面 反射镜、 第二平面反射镜、 第三平面反射镜、 第四平面反射镜; The present invention provides a stereo camera device, including: a camera module, a first planar mirror, a second planar mirror, a third planar mirror, and a fourth planar mirror;
所述摄像头模组包括: 光学成像透镜组、 以及光学敏感器;
所述第一平面反射镜的镜面, 平行于所述第二平面反射镜的镜面; 所 述第三平面反射镜的镜面, 平行于所述第四平面反射镜的镜面; The camera module includes: an optical imaging lens group, and an optical sensor; a mirror surface of the first planar mirror parallel to a mirror surface of the second planar mirror; a mirror surface of the third planar mirror parallel to a mirror surface of the fourth planar mirror;
所述第一平面反射镜、 所述第二平面反射镜、 所述第三平面反射镜、 以及所述第四平面反射镜安置于所述光学成像透镜组的前面; 所述光学成 像透镜组安置于所述光学敏感器的前面。 The first planar mirror, the second planar mirror, the third planar mirror, and the fourth planar mirror are disposed in front of the optical imaging lens group; the optical imaging lens group is disposed In front of the optical sensor.
上述方案中, 所述第一平面反射镜的中心点与所述第三平面反射镜的 中心点之间的间距与人的双眼间的间距相等或近似。 In the above solution, the distance between the center point of the first plane mirror and the center point of the third plane mirror is equal to or similar to the distance between the eyes of the person.
上述方案中, 所述第一平面反射镜与所述第三平面反射镜以所述光学 成像透镜组的光轴为对称轴对称安置; 所述第二平面反射镜与所述第四平 面反射镜以所述光学成像透镜组的光轴为对称轴对称安置。 In the above solution, the first planar mirror and the third planar mirror are symmetrically disposed with the optical axis of the optical imaging lens group as an axis of symmetry; the second planar mirror and the fourth planar mirror The optical axes of the optical imaging lens groups are symmetrically arranged symmetrically.
上述方案中, 所述第一平面反射镜、 第二平面反射镜、 第三平面反射 镜、 第四平面反射镜的外形为矩形或圓形。 In the above solution, the first planar mirror, the second planar mirror, the third planar mirror, and the fourth planar mirror have a rectangular or circular outer shape.
上述方案中, 所述光学成像透镜组为一个凸透镜。 In the above solution, the optical imaging lens group is a convex lens.
上述方案中, 所述光学敏感器为电荷耦合元件(CCD, Charge-coupled Device )图像传感器或互补金属氧化物半导体( CMOS, Complementary Metal Oxide Semiconductor )光学敏感器。 In the above solution, the optical sensor is a CCD (Charge-coupled Device) image sensor or a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) optical sensor.
本实用新型提供的立体摄像装置, 在摄像头模组的前方、 以光学成像 透镜组的光轴为对称轴安置两对平面反射镜, 物体反射的光线通过这两对 平面反射镜, 都聚焦到摄像头模组的光学成像透镜组上, 并利用一个光学 敏感器对敏感到的光线进行电信号的转换, 如此, 既能保证成像光路上的 一致性, 还能保证拍摄到的图像的电性能完全一致; 另外, 光学成像透镜 组与光学敏感器之间没有两组平面反射镜相隔, 相对距离较近, 也适用于 拍摄远景。 附图说明 The stereo camera device of the present invention has two pairs of plane mirrors disposed in front of the camera module with the optical axis of the optical imaging lens group as an axis of symmetry. The light reflected by the object passes through the two pairs of plane mirrors and is focused on the camera. The optical imaging lens assembly of the module uses an optical sensor to convert the sensitive light into an electrical signal, so as to ensure the consistency of the imaging optical path and ensure the electrical properties of the captured image are completely consistent. In addition, there is no two sets of plane mirrors between the optical imaging lens group and the optical sensor, and the relative distance is relatively close, which is also suitable for shooting distant scenes. DRAWINGS
图 1为专利 《一种立体摄像装置及方法》 的摘要附图;
图 2为本实用新型立体摄像装置的俯视图; 1 is a summary drawing of a patent "a stereo camera device and method"; 2 is a top plan view of the stereo camera device of the present invention;
图 3为本实用新型实施例反射光线通过的光路图。 具体实施方式 FIG. 3 is a light path diagram of the reflected light passing through in the embodiment of the present invention. detailed description
本实用新型的基本思想是: 釆用精密光学成像结构保证光路上的一致 性, 在摄像头前方安置两对平面反射镜, 当使用该装置进行拍摄时, 物体 反射的光线通过这两对平面反射镜, 进入摄像头; 物体的反射的光线再通 过摄像头上的光学成像透镜组, 聚焦于光学敏感器上, 只用一个图像传感 器来接收两路图像, 保证拍摄到的图像的电性能完全一致。 The basic idea of the utility model is: 保证 Using a precision optical imaging structure to ensure the consistency on the optical path, two pairs of plane mirrors are arranged in front of the camera, and when the device is used for shooting, the light reflected by the object passes through the two pairs of plane mirrors. , enters the camera; the reflected light of the object passes through the optical imaging lens set on the camera, focuses on the optical sensor, and uses only one image sensor to receive two images, ensuring that the electrical properties of the captured image are completely consistent.
下面结合附图及具体实施例对本实用新型再作进一步详细的说明。 图 2为本实用新型提供的立体摄像装置的俯视图, 如图 2所示, 包括: 摄像头模组 21、 第一平面反射镜 22、 第二平面反射镜 23、 第三平面反射镜 24、 第四平面反射镜 25; 其中, The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. 2 is a top view of a stereo camera device according to the present invention, as shown in FIG. 2, including: a camera module 21, a first planar mirror 22, a second planar mirror 23, a third planar mirror 24, and a fourth Planar mirror 25; wherein
所述摄像头模组 21包括: 光学成像透镜组 211、 以及光学敏感器 212。 第一平面反射镜 22的镜面, 平行于第二平面反射镜 23的镜面; 第三 平面反射镜 24的镜面, 平行于第四平面反射镜 25的镜面; The camera module 21 includes: an optical imaging lens group 211, and an optical sensor 212. The mirror surface of the first plane mirror 22 is parallel to the mirror surface of the second plane mirror 23; the mirror surface of the third plane mirror 24 is parallel to the mirror surface of the fourth plane mirror 25;
第一平面反射镜 22的中心点与第三平面反射镜 24的中心点之间的间 距与人的双眼间的间距相等或近似, 一般, 可以取间距的数值为 65mm, 或 者, 也可以取间距的数值为 65±10mm之间的任意数值, 以保证人眼观看到 清晰的立体图像; 第一平面反射镜 22与第三平面反射镜 24以光学成像透 镜组 211 的光轴为对称轴在光学成像透镜组 211 的前面对称安置; 第二平 面反射镜 23与第四平面反射镜 25以光学成像透镜组 211的光轴为对称轴 在光学成像透镜组 211的前面对称安置; The distance between the center point of the first plane mirror 22 and the center point of the third plane mirror 24 is equal to or similar to the distance between the eyes of the person. Generally, the value of the pitch may be 65 mm, or the spacing may be taken. The value is any value between 65 ± 10 mm to ensure that the human eye sees a clear stereoscopic image; the first planar mirror 22 and the third planar mirror 24 are optically imaged with the optical axis of the optical imaging lens group 211 as the axis of symmetry. The front surface of the lens group 211 is symmetrically disposed; the second planar mirror 23 and the fourth planar mirror 25 are symmetrically disposed on the front side of the optical imaging lens group 211 with the optical axis of the optical imaging lens group 211 as an axis of symmetry;
光学成像透镜组 211安置于光学敏感器 212的前面; The optical imaging lens group 211 is disposed in front of the optical sensor 212;
所述前面是指将立体摄像装置平放后, 从光学敏感器 212 的方向看立 体摄像装置的组成结构依次为:光学成像透镜组 211安置于光学敏感器 212
的前面, 第一平面反射镜 22、 第二平面反射镜 23、 第三平面反射镜 24、 以 及第四平面反射镜 25安置于光学成像透镜组 211的前面, 进一步地, 第二 平面反射镜 23与第四平面反射镜 25可以安置于第一平面反射镜 22与第三 平面反射镜 24的前面; The front surface refers to the configuration of the stereo camera device from the direction of the optical sensor 212 after the stereo camera device is laid flat. The optical imaging lens group 211 is disposed in the optical sensor 212. The front surface, the first plane mirror 22, the second plane mirror 23, the third plane mirror 24, and the fourth plane mirror 25 are disposed in front of the optical imaging lens group 211, and further, the second plane mirror 23 And the fourth plane mirror 25 may be disposed in front of the first plane mirror 22 and the third plane mirror 24;
第二平面反射镜 23与第四平面反射镜 25之间的距离可以在能反射到 光线的距离范围内任意设置。 The distance between the second plane mirror 23 and the fourth plane mirror 25 can be arbitrarily set within a distance that can be reflected to the light.
第一平面反射镜 22、 第二平面反射镜 23、 第三平面反射镜 24、 以及第 四平面反射镜 25的外形可以是矩形, 或者, 也可以是圓形。 The outer shape of the first plane mirror 22, the second plane mirror 23, the third plane mirror 24, and the fourth plane mirror 25 may be rectangular or may be circular.
第一平面反射镜 22将拍摄物体发射的光线, 进行一次反射, 反射出的 光线照射至第二平面反射镜 23; 第二平面反射镜 23将第一平面反射镜 22 反射过来的光线进行二次反射, 反射出的光线照射至摄像头模组 21中的光 学成像透镜组 211 ; The first plane mirror 22 reflects the light emitted by the object, and the reflected light is irradiated to the second plane mirror 23; the second plane mirror 23 reproduces the light reflected by the first plane mirror 22 twice. Reflecting, the reflected light is irradiated to the optical imaging lens group 211 in the camera module 21;
摄像头模组 21中的光学成像透镜组 211 ,聚焦第二平面反射镜 23反射 过来的光线, 聚焦后的光线照射至摄像头模组 21中的光学敏感器 212; 第三平面反射镜 24将拍摄物体发射的光线, 进行一次反射, 反射出的 光线照射至第四平面反射镜 25; 第四平面反射镜 25将第三平面反射镜 24 反射过来的光线进行二次反射, 反射出的光线照射至摄像头模组 21中的光 学成像透镜组 211 ; The optical imaging lens group 211 in the camera module 21 focuses the light reflected by the second planar mirror 23, and the focused light is irradiated to the optical sensor 212 in the camera module 21; the third planar mirror 24 will capture the object. The emitted light is reflected once, and the reflected light is irradiated to the fourth plane mirror 25; the fourth plane mirror 25 re-reflects the light reflected by the third plane mirror 24, and the reflected light is irradiated to the camera. The optical imaging lens group 211 in the module 21;
摄像头模组 21中的光学成像透镜组 211 ,聚焦第四平面反射镜 25反射 过来的光线, 聚焦后的光线照射至摄像头模组 11中的光学敏感器 212; 光学敏感器 212将敏感到的摄像头模组 21中光学成像透镜组 211聚焦 后的光线, 转换为电信号。 The optical imaging lens group 211 in the camera module 21 focuses the light reflected by the fourth plane mirror 25, and the focused light is irradiated to the optical sensor 212 in the camera module 11; the optical sensor 212 will be sensitive to the camera. The focused light of the optical imaging lens group 211 in the module 21 is converted into an electrical signal.
所述光学成像透镜组 211可以是一个凸透镜; 所述光学敏感器 212, 可 以是 CCD图像传感器, 或者, 还可以是 CMOS光学敏感器。 The optical imaging lens group 211 may be a convex lens; the optical sensor 212 may be a CCD image sensor, or may be a CMOS optical sensor.
下面结合实施例对本实用新型再作进一步详细的描述。
图 3 为应用本实用新型提供的立体摄像装置拍摄物体时, 反射光线通 过的光路图, 如图 3 所示, 假设利用本实用新型提供的立体摄像装置所拍 摄的物体 30, 发射出两束光线, 即: 光线 31和光线 41。 The present invention will be further described in detail below with reference to the embodiments. 3 is an optical path diagram through which a reflected light passes when an object is photographed by the stereo camera provided by the present invention. As shown in FIG. 3, it is assumed that two objects are emitted by the object 30 photographed by the stereo camera provided by the present invention. , namely: light 31 and light 41.
第一平面反射镜 22将所拍摄设物体 30发射的光线 31 ,进行一次反射, 反射出的光线 32照射至第二平面反射镜 23; 第二平面反射镜 23将第一平 面反射镜 22反射过来的光线 32进行二次反射, 反射出的光线 33照射至摄 像头模组 21中的光学成像透镜组 211 ; The first plane mirror 22 reflects the light 31 emitted by the photographing object 30 once, and the reflected light 32 is irradiated to the second plane mirror 23; the second plane mirror 23 reflects the first plane mirror 22 The light ray 32 is subjected to secondary reflection, and the reflected light 33 is irradiated to the optical imaging lens group 211 in the camera module 21;
光学成像透镜组 211聚焦第二平面反射镜 23反射过来的光线 33 ,聚焦 后的光线 34照射至摄像头模组 21中的光学敏感器 212; The optical imaging lens group 211 focuses the light 33 reflected by the second plane mirror 23, and the focused light 34 is irradiated to the optical sensor 212 in the camera module 21;
第三平面反射镜 24将所拍摄设物体 30发射的光线 41 ,进行一次反射, 反射出的光线 42照射至第四平面反射镜 25; 第四平面反射镜 25将第三平 面反射镜 24反射过来的光线 42进行二次反射, 反射出的光线 43照射至摄 像头模组 21中的光学成像透镜组 211 ; The third plane mirror 24 reflects the light 41 emitted by the photographing object 30 once, and the reflected light 42 is irradiated to the fourth plane mirror 25; the fourth plane mirror 25 reflects the third plane mirror 24. The light ray 42 is subjected to secondary reflection, and the reflected light 43 is irradiated to the optical imaging lens group 211 in the camera module 21;
光学成像透镜组 211聚焦第二平面反射镜 23反射过来的光线 43 ,聚焦 后的光线 44照射至摄像头模组 21中的光学敏感器 212; The optical imaging lens group 211 focuses the light 43 reflected by the second plane mirror 23, and the focused light 44 is irradiated to the optical sensor 212 in the camera module 21;
光学敏感器 212将敏感到的摄像头模组 21中光学成像透镜组 211聚焦 后的光线 34与光线 44, 转换为电信号。 The optical sensor 212 converts the light 34 and the light 44 focused by the optical imaging lens group 211 in the sensitive camera module 21 into electrical signals.
如此, 摄像头模组 21就可以获得两幅带有视差的图像, 其电性能完全 一致。 In this way, the camera module 21 can obtain two images with parallax, and the electrical properties are completely identical.
以上所述, 仅为本实用新型的较佳实施例而已, 并非用于限定本实用 新型的保护范围, 凡在本实用新型的精神和原则之内所作的任何修改、 等 同替换和改进等, 均应包含在本实用新型的保护范围之内。
The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention are It should be included in the scope of protection of the present invention.
Claims
1、 一种立体摄像装置, 其特征在于, 该装置包括: 摄像头模组、 第一 平面反射镜、 第二平面反射镜、 第三平面反射镜、 第四平面反射镜; A stereo camera device, comprising: a camera module, a first plane mirror, a second plane mirror, a third plane mirror, and a fourth plane mirror;
所述摄像头模组包括: 光学成像透镜组、 以及光学敏感器; The camera module includes: an optical imaging lens group, and an optical sensor;
所述第一平面反射镜的镜面, 平行于所述第二平面反射镜的镜面; 所 述第三平面反射镜的镜面, 平行于所述第四平面反射镜的镜面; a mirror surface of the first planar mirror parallel to a mirror surface of the second planar mirror; a mirror surface of the third planar mirror parallel to a mirror surface of the fourth planar mirror;
所述第一平面反射镜、 所述第二平面反射镜、 所述第三平面反射镜、 以及所述第四平面反射镜安置于所述光学成像透镜组的前面; 所述光学成 像透镜组安置于所述光学敏感器的前面。 The first planar mirror, the second planar mirror, the third planar mirror, and the fourth planar mirror are disposed in front of the optical imaging lens group; the optical imaging lens group is disposed In front of the optical sensor.
2、 根据权利要求 1所述的装置, 其特征在于, 2. Apparatus according to claim 1 wherein:
所述第一平面反射镜的中心点与所述第三平面反射镜的中心点之间的 间距与人的双眼间的间距相等或近似。 The spacing between the center point of the first planar mirror and the center point of the third planar mirror is equal or similar to the spacing between the eyes of the person.
3、 根据权利要求 1或 2所述的装置, 其特征在于, 3. Apparatus according to claim 1 or 2, characterized in that
所述第一平面反射镜与所述第三平面反射镜以所述光学成像透镜组的 光轴为对称轴对称安置; 所述第二平面反射镜与所述第四平面反射镜以所 述光学成像透镜组的光轴为对称轴对称安置。 The first planar mirror and the third planar mirror are symmetrically disposed with respect to an optical axis of the optical imaging lens group; the second planar mirror and the fourth planar mirror are optically The optical axes of the imaging lens group are symmetrically arranged symmetrically.
4、 根据权利要求 1或 2所述的装置, 其特征在于, 所述第一平面反射 镜、 第二平面反射镜、 第三平面反射镜、 第四平面反射镜的外形为矩形或 圓形。 The device according to claim 1 or 2, wherein the first planar mirror, the second planar mirror, the third planar mirror, and the fourth planar mirror have a rectangular or circular outer shape.
5、 根据权利要求 1或 2所述的装置, 其特征在于, 所述光学成像透镜 组为一个凸透镜。 The apparatus according to claim 1 or 2, wherein the optical imaging lens group is a convex lens.
6、 根据权利要求 1或 2所述的装置, 其特征在于, 所述光学敏感器为 电荷耦合元件(CCD )图像传感器、 或互补金属氧化物半导体(CMOS )光 学敏感器。 6. Apparatus according to claim 1 or 2, wherein the optical sensor is a charge coupled device (CCD) image sensor, or a complementary metal oxide semiconductor (CMOS) optical sensor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201020173257.4 | 2010-04-27 | ||
CN2010201732574U CN201662682U (en) | 2010-04-27 | 2010-04-27 | Stereo pick-up device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011134215A1 true WO2011134215A1 (en) | 2011-11-03 |
Family
ID=43233100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/075841 WO2011134215A1 (en) | 2010-04-27 | 2010-08-10 | Stereoscopic camera device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN201662682U (en) |
WO (1) | WO2011134215A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012215807A (en) * | 2011-03-29 | 2012-11-08 | Sony Corp | Reflex lens device and stereoscopic imaging apparatus with reflex lens device |
CN105892216A (en) * | 2015-12-14 | 2016-08-24 | 乐视网信息技术(北京)股份有限公司 | 3D video recording device, 3D video processing method and mobile equipment |
CN205750269U (en) * | 2016-05-09 | 2016-11-30 | 丰唐物联技术(深圳)有限公司 | A kind of camera lens and filming apparatus |
CN107390348B (en) * | 2016-05-17 | 2023-12-29 | 杭州海康机器人股份有限公司 | Optical imaging device and camera |
CN107490842B (en) * | 2017-09-26 | 2024-03-05 | 北京地平线信息技术有限公司 | Image pickup module, imaging apparatus, and image processing method |
CN108759685B (en) * | 2018-06-16 | 2023-05-30 | 慧眼自动化科技(广州)有限公司 | Mechanism based on line sweeps camera height measurement |
CN109829927B (en) * | 2019-01-31 | 2020-09-01 | 深圳职业技术学院 | Electronic glasses and high-altitude scene image reconstruction method |
CN110286385A (en) * | 2019-07-02 | 2019-09-27 | 苏州全视智能光电有限公司 | A kind of binocular spatial structure light sensing equipment |
CN113566986A (en) * | 2021-07-27 | 2021-10-29 | 浙江大学 | Method and device for synchronously testing strain field and temperature field of non-contact solid surface |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050174427A1 (en) * | 2004-01-23 | 2005-08-11 | Hideaki Yoshida | Electronic camera and image generating apparatus generating stereo image |
US7148916B2 (en) * | 2000-07-03 | 2006-12-12 | Canon Kabushiki Kaisha | Photographing system |
JP2007264504A (en) * | 2006-03-29 | 2007-10-11 | Fujitsu Ltd | Imaging device and imaging method |
CN101482693A (en) * | 2008-12-01 | 2009-07-15 | 深圳市掌网立体时代视讯技术有限公司 | Single-sensor paralleling type stereoscopic picture shooting method and device |
CN201298140Y (en) * | 2008-12-04 | 2009-08-26 | 胡超 | A single lens stereo image optical signal acquisition device |
-
2010
- 2010-04-27 CN CN2010201732574U patent/CN201662682U/en not_active Expired - Fee Related
- 2010-08-10 WO PCT/CN2010/075841 patent/WO2011134215A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7148916B2 (en) * | 2000-07-03 | 2006-12-12 | Canon Kabushiki Kaisha | Photographing system |
US20050174427A1 (en) * | 2004-01-23 | 2005-08-11 | Hideaki Yoshida | Electronic camera and image generating apparatus generating stereo image |
JP2007264504A (en) * | 2006-03-29 | 2007-10-11 | Fujitsu Ltd | Imaging device and imaging method |
CN101482693A (en) * | 2008-12-01 | 2009-07-15 | 深圳市掌网立体时代视讯技术有限公司 | Single-sensor paralleling type stereoscopic picture shooting method and device |
CN201298140Y (en) * | 2008-12-04 | 2009-08-26 | 胡超 | A single lens stereo image optical signal acquisition device |
Also Published As
Publication number | Publication date |
---|---|
CN201662682U (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011134215A1 (en) | Stereoscopic camera device | |
Okano et al. | Real-time integral imaging based on extremely high resolution video system | |
JP4620131B2 (en) | Panoramic 3D adapter for optical equipment and combination of panoramic 3D adapter and optical equipment | |
JP5140210B2 (en) | Imaging apparatus and image processing method | |
CN107991838B (en) | Self-adaptive three-dimensional imaging system | |
KR20150068299A (en) | Method and system of generating images for multi-surface display | |
WO2011068139A1 (en) | Stereoscopic imaging device | |
TW201012202A (en) | Solid-state panoramic image capture apparatus | |
US9019603B2 (en) | Two-parallel-channel reflector with focal length and disparity control | |
JPWO2012029299A1 (en) | Imaging apparatus, playback apparatus, and image processing method | |
WO2010078752A1 (en) | 3-d image pick-up device and method | |
JP2017072821A (en) | Array lens module | |
CN101916035A (en) | Stereo pick-up device and method | |
WO2014119965A1 (en) | Method for photographing side-by-side stereoscopic images and monocular camera therefor | |
JP2018152748A (en) | Imaging/display device of stereoscopic image and head mount device | |
JP4293821B2 (en) | Stereo imaging device | |
CN111669565A (en) | Three-dimensional imaging device and imaging method thereof | |
JP6367803B2 (en) | Method for the description of object points in object space and combinations for its implementation | |
CN104834102B (en) | Optical system capable of changing single camera into stereo camera and method thereof | |
Arai | Three-dimensional television system based on spatial imaging method using integral photography | |
JP4360180B2 (en) | 3D image shooting device | |
US8912483B2 (en) | Display measuring device | |
Koyama et al. | A 3D vision 2.1 Mpixel image sensor for single-lens camera systems | |
CN105263016A (en) | Stereo optical system and imaging method thereof | |
WO2012117619A1 (en) | 3d imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10850546 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10850546 Country of ref document: EP Kind code of ref document: A1 |