WO2011132723A1 - 内圧解放機構付きの蓄電デバイス、蓄電モジュール - Google Patents

内圧解放機構付きの蓄電デバイス、蓄電モジュール Download PDF

Info

Publication number
WO2011132723A1
WO2011132723A1 PCT/JP2011/059772 JP2011059772W WO2011132723A1 WO 2011132723 A1 WO2011132723 A1 WO 2011132723A1 JP 2011059772 W JP2011059772 W JP 2011059772W WO 2011132723 A1 WO2011132723 A1 WO 2011132723A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
internal pressure
power storage
release mechanism
pressure release
Prior art date
Application number
PCT/JP2011/059772
Other languages
English (en)
French (fr)
Inventor
小川琢司
神田正晴
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010100437A external-priority patent/JP5455768B2/ja
Priority claimed from JP2010118822A external-priority patent/JP5404527B2/ja
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Publication of WO2011132723A1 publication Critical patent/WO2011132723A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electricity storage device with an internal pressure release mechanism in which an electrode laminate formed by laminating a positive electrode and a negative electrode is hermetically sealed in a container made of a metal laminate film together with an electrolyte, and the electricity storage device is electrically connected in series. Or it is related with the electrical storage module with an internal pressure release mechanism connected in parallel.
  • Electric storage systems such as load leveling devices such as solar power generation and wind power generation, instantaneous voltage drop countermeasure devices for electronic devices such as computers, and energy regeneration devices for electric vehicles and hybrid cars are well known.
  • load leveling devices such as solar power generation and wind power generation
  • instantaneous voltage drop countermeasure devices for electronic devices such as computers
  • energy regeneration devices for electric vehicles and hybrid cars
  • an electricity storage device having a large energy capacity and capable of rapid charge / discharge is required.
  • Conventional lead-acid batteries and other secondary batteries are difficult to charge and discharge with a large current and have a short cycle life, and thus it is difficult to cope with power storage systems. Accordingly, in recent years, non-aqueous power storage devices have attracted attention as new power storage devices that can solve these problems.
  • the lithium ion capacitor includes an electrode laminate formed by laminating a positive electrode, a negative electrode, and a separator.
  • the electrode laminate is accommodated in a laminate case made of, for example, a soft aluminum laminate foil.
  • the case is filled with an organic electrolyte containing lithium ions.
  • gas is generated in the laminate case when an abnormality such as overcharge occurs. Then, the internal pressure of the laminate case increases and the case expands.
  • an internal pressure release mechanism for releasing the internal pressure of the laminate case is provided in order to prevent the laminate case from bursting in the event of an abnormality.
  • a part of the sealing portion of the laminate case is formed to be weaker than the fusion strength of other parts (specifically, the fusion width is narrowed or the fusion force is weakened).
  • a safety mechanism has been proposed in the past (for example, see Patent Document 1).
  • a safety mechanism in which a through-hole is provided in a part of a laminate case and a safety valve is attached so as to close the opening has been proposed (see, for example, Patent Document 2).
  • Patent Document 3 the following techniques have been conventionally proposed (see, for example, Patent Document 3).
  • the power storage module (device assembly) disclosed in Patent Document 3 the power storage devices are stacked in a separated state. And the gas discharge hole formation member which has a needle-like projection part is provided in the state spaced apart from the position of the central part where the laminate case of an electrical storage device swells most.
  • this electricity storage module when gas is generated in the electricity storage device and the laminate case expands, needle-like protrusions are pierced into the laminate case to form gas discharge holes. And gas is discharged
  • the respective power storage devices are stacked apart from each other, and a gas discharge hole forming member is installed in a space formed between the power storage devices.
  • a gas discharge hole forming member is installed in a space formed between the power storage devices.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an electricity storage device with an internal pressure release mechanism that can reliably release the internal pressure of a container when gas is generated while ensuring the reliability of the container. There is to do.
  • Another object of the present invention is to provide a power storage device with an internal pressure release mechanism that can reliably release the internal pressure of the container during gas generation and reliably avoid the rupture of the container of the power storage device without increasing the module size.
  • An electrode laminate formed by laminating a positive electrode and a negative electrode is hermetically sealed in a container made of a metal laminate film together with an electrolytic solution, and external terminals respectively connected to the positive electrode and the negative electrode are connected to the container.
  • An electrical storage device with an internal pressure release mechanism comprising: an internal pressure release mechanism that has a breaking portion that abuts the container deformed when gas is generated and breaks the container.
  • the internal pressure release mechanism it is necessary to configure the internal pressure release mechanism by partially reducing the fusion strength or providing the opening at the sealing portion of the container made of the laminate case as in the prior art. There is no. That is, the internal pressure releasing mechanism can be provided without changing the container side. Therefore, the sealed portion of the container can be fused with a uniform strength, and moisture can be reliably prevented from entering the container. Moreover, even if it is a thin container, it can fix by pinching
  • the fixing portion is a U-shaped member that sandwiches the outer peripheral end portion of the container, and the fracture portion is opposed to the container at one end portion of the U-shaped member.
  • the fixing portion is a U-shaped member
  • the outer peripheral end portion of the container can be securely sandwiched.
  • rupture part can be arrange
  • the break portion is a cutting edge member, the container can be easily broken by coming into contact with the deformed container at the time of gas generation.
  • the internal pressure release mechanism is made of a member harder than the container, a sufficient force for breaking the container can be applied without following the deformation of the container. .
  • An electrode laminate formed by laminating a positive electrode and a negative electrode is hermetically sealed in a container made of a metal laminate film together with an electrolytic solution, and external terminals respectively connected to the positive electrode and the negative electrode are connected to the container.
  • a plurality of power storage devices protruding and exposed, and a frame-shaped stack member interposed between the power storage devices stacked in a state where device main surfaces are overlapped with each other, and the plurality of power storage devices Is a power storage module electrically connected in series or in parallel, and a cutting blade that contacts the outer edge portion of the container expanded due to an increase in internal pressure to cleave the container is provided in the stack member as an internal pressure release mechanism
  • a power storage module with an internal pressure release mechanism is provided in the stack member as an internal pressure release mechanism.
  • the power storage module can be made compact. Further, in the power storage module, when an abnormality such as overcharge or overdischarge occurs, gas is generated in the container of the power storage device and the internal pressure rises. In this case, since each electrical storage device is arrange
  • a power storage module with an internal pressure release mechanism according to means 5, wherein the cutting blade is a metal member and is fixed to the stack member made of a resin material.
  • the cutting blade is a metal member
  • the blade portion can be formed to have a strong and sharp edge shape.
  • the container can be reliably cleaved.
  • the metal cutting blade is preferably fixed to the resin stack member by heat welding. In this case, the cutting blade can be fixed to the stack member easily and reliably. In addition, you may fix so that a metal cutting blade may be inserted in the resin-made stack members.
  • the cutting blade is formed such that a plate-like member having blade portions at two places is bent in two, and the two blade portions face each of two adjacent power storage devices.
  • a power storage module with an internal pressure release mechanism is provided.
  • the invention described in the means 7 it is possible to efficiently cleave the containers of the two power storage devices adjacent to each other by the two blade portions formed on the cutting blade.
  • the number of components can be reduced as compared with the case where a cutting blade is provided for each power storage device. Therefore, the component cost of the power storage module can be suppressed.
  • a power storage module with an internal pressure release mechanism wherein in the means 5, the cutting blade is formed integrally with the stack member made of a resin material.
  • the cutting blade is integrally formed on the stack member made of the resin material, the number of parts is smaller than that in the case where the stack member and the cutting blade are configured as separate members. Can be reduced. As a result, the component cost of the power storage module can be suppressed.
  • the external terminal of the positive electrode and the external terminal of the negative electrode protrude in opposite directions, and the cutting blade is an external terminal of the positive electrode
  • a power storage module with an internal pressure release mechanism is provided corresponding to the outer edge portion on the side where the protrusion protrudes and the outer edge portion on the side where the external terminal of the negative electrode protrudes.
  • the positive external terminal and the negative external terminal are provided so as to protrude in opposite directions.
  • the container of this electricity storage device when the internal pressure rises, either the outer edge portion on the side where the positive external terminal protrudes or the outer edge portion on the side where the negative external terminal protrudes may swell first.
  • the cutting blade is provided corresponding to these outer edge parts, the outer edge part of a container can be rapidly cleaved by any one cutting blade.
  • the cutting blade since the cutting blade has a pointed edge shape with a triangular mountain shape, a relatively large hole can be formed in the container, and the gas generated in the container can be reduced. It can be discharged reliably.
  • an electricity storage device with an internal pressure release mechanism that can reliably release the internal pressure of the container when gas is generated while ensuring the reliability of the container. be able to.
  • the internal pressure is released so that the internal pressure of the container can be surely released when gas is generated and the container of the electricity storage device can be surely avoided without increasing the module size.
  • a power storage module with a mechanism can be provided.
  • (A) is a front view of a cutting blade
  • (b) is a plan view of the cutting blade
  • (c) is a side view of the cutting blade.
  • Explanatory drawing which shows the container expanded and deformed in the electrical storage module.
  • Sectional drawing which shows schematic structure of the electrical storage module of another embodiment. Sectional drawing which shows schematic structure of the electrical storage module of another embodiment.
  • FIG. 1 is a side view showing a lithium ion capacitor 10 with an internal pressure release mechanism in the present embodiment
  • FIG. 2 is a plan view of the lithium ion capacitor 10.
  • FIG. 3 is a cross-sectional view showing the electrode laminate 11 constituting the lithium ion capacitor 10.
  • the lithium ion capacitor 10 includes an electrode stack 11 having a structure in which positive electrodes 21 and negative electrodes 31 formed in a sheet shape are alternately stacked via separators 41. Yes.
  • the electrode laminate 11 is hermetically sealed in the container 51 together with an electrolyte containing a lithium salt.
  • the electrode stack 11 has a thickness of about 6 mm, and is configured as a thin power storage device (so-called power storage cell).
  • the separator 41 is made of a non-conductive porous body having durability against an electrolytic solution, an electrode active material, and the like and having continuous air holes.
  • a nonwoven fabric or a porous body made of cellulose, such as glass fiber, polyethylene, polypropylene, or the like is used.
  • the thickness of the separator 41 is preferably thin in order to reduce the internal resistance of the capacitor, but can be appropriately set in consideration of the amount of electrolyte retained, the flowability, the strength, and the like.
  • the positive electrode 21 has a structure in which a positive electrode material 22 made of a carbon material is formed on a positive electrode current collector 23.
  • a positive electrode material 22 made of a carbon material is formed on a positive electrode current collector 23.
  • activated carbon is used as the carbon material forming the positive electrode material 22. This carbon material is kneaded and molded together with a conductive agent and a binder as necessary.
  • the positive electrode current collector 23 is a member for collecting current while supporting the positive electrode material 22, and is formed using a conductive metal plate made of aluminum, for example.
  • the positive electrode current collector 23 is formed in a rectangular shape in plan view, and a tab 24 projects from one of the four sides.
  • the tab 24 is connected to a positive electrode external terminal 25 made of aluminum (see FIGS. 1 and 2).
  • the negative electrode 31 has a structure in which a negative electrode material 32 made of a material capable of occluding and releasing lithium ions is formed on a negative electrode current collector 33.
  • a negative electrode material 32 made of a material capable of occluding and releasing lithium ions is formed on a negative electrode current collector 33.
  • the material for forming the negative electrode material 32 include carbon materials such as graphitic carbon, graphitizable carbon, and non-graphitizable carbon. Since these carbon materials have properties such as high reversibility, they are suitable as negative electrode materials.
  • the carbon material for the negative electrode 32 is kneaded and molded with a conductive agent and a binder as necessary.
  • the negative electrode current collector 33 is a member for collecting current while supporting the negative electrode material 32, and is formed using a conductive metal plate made of, for example, copper.
  • the negative electrode current collector 33 is formed in a rectangular shape in plan view, and a tab 34 is drawn from one of the four sides.
  • the tab 34 is connected to a negative electrode external terminal 35 made of copper (see FIGS. 1 and 2).
  • the container 51 of the lithium ion capacitor 10 is a soft container processed into a rectangular bag shape using an aluminum laminate film obtained by laminating an aluminum foil on a resin film.
  • the outer peripheral part 52 in the container 51 is sealed by heat sealing. Sealing by thermal fusion is performed in a state where the positive electrode external terminal 25 and the negative electrode external terminal 35 are sandwiched between the fusion portions.
  • the sealed portion of the container 51 is formed so that the fusion width is equal and the fusion force is uniform.
  • the positive electrode external terminal 25 is drawn out from one end portion (left end portion in FIG. 1) of the container 51 and the other end portion (FIG. 1). Then, the negative external terminal 35 is pulled out from the right end).
  • an internal pressure release mechanism 60 is provided at a position on the outer peripheral side of the stacked body storage portion 53 that stores the electrode stack 11. It has been.
  • the internal pressure release mechanism 60 is fixed in a state where the outer peripheral end of the container 51 is sandwiched, and the container 51 extends from the fixed part 61 and comes into contact with the deformed container 51 when gas is generated, thereby breaking the container 51. It has the fracture
  • the fixing part 61 and the breaking part 62 constituting the internal pressure releasing mechanism 60 are made of a metal member harder than the container 51.
  • the fixing portion 61 is a member formed in a U shape.
  • the breaking portion 62 is a cutting blade-like member provided so as to face the container 51 at one end portion 61 a of the U-shaped fixing portion 61.
  • the end 61b of the fixing portion 61 on the opposite side of the fracture portion 62 is fixed to the container 51 using an adhesive or the like.
  • rupture part 62 is provided in the non-contact state with respect to the undeformed container 51 before gas generation.
  • the fixing portion 61 is formed by pressing an elongated rod-shaped metal material made of brass or the like into a U shape.
  • the breaking portion 62 is formed integrally with the fixing portion 61 by performing cutting or polishing on the end portion 61 a of the fixing portion 61.
  • the internal pressure release mechanism 60 may be configured by forming the fixing portion 61 and the breaking portion 62 separately and connecting the breaking portion 62 to one end 61 a of the fixing portion 61 by welding.
  • the length of the fixing portion 61 is about 12 mm
  • the interval between the one end portion 61a and the other end portion 61b in the fixing portion 61 is about 4 mm.
  • the length and interval of the fixing portion 61 can be appropriately changed according to the size of the container 51.
  • fixed part 61 is made narrower than the thickness of the laminated body accommodating part 53.
  • the internal pressure release mechanism 60 does not protrude from the stacked body storage portion 53. Therefore, the same storage property as the conventional one can be secured.
  • the container 51 expands as shown in FIG.
  • the container 51 is deformed in a direction in which the U-shaped fixing portion 61 of the internal pressure release mechanism 60 is pushed and widened, and the outer peripheral side portion of the container 51 is sandwiched between the internal pressure release mechanisms 60.
  • fixed part 61 is pressed on the container 51 surface.
  • the container 51 is cracked along the cutting edge of the breaking portion 62, and the container 51 is broken. As a result, a hole is opened in the container 51 and the gas generated in the container 51 is released to the outside, so that the internal pressure of the container 51 is released.
  • an internal pressure release mechanism 60 is provided at a position on the outer peripheral side of the container 51.
  • the internal pressure release mechanism 60 includes a fixing portion 61 that is fixed in a state where the outer peripheral end portion of the container 51 is sandwiched, and a break portion 62 that breaks the container 51.
  • the internal pressure release mechanism 60 can be provided without changing the container 51 side. Therefore, the sealed portion of the container 51 can be fused with a uniform strength, and moisture can be reliably prevented from entering the container 51 during normal use.
  • the thin container 51 can be fixed by sandwiching the outer peripheral portion of the container 51 with the fixing portion 61. Therefore, the container 51 swelled when gas is generated can be reliably broken at the breaking portion 62. Thereby, since the internal pressure of the container 51 applied at the time of gas generation can be reliably released, the container 51 can be prevented from bursting.
  • the fixing portion 61 is a U-shaped member, and therefore the outer peripheral end of the container 51 can be securely sandwiched.
  • the rupture portion 62 can be arranged to face the container 51.
  • rupture part 62 is a cutting blade-shaped member, it can contact
  • the fracture portion 62 of the internal pressure release mechanism 60 is not in contact with the container 51 during normal use where no gas is generated. For this reason, the container 51 is not accidentally broken by vibration or the like, and the reliability of the container 51 can be sufficiently maintained.
  • the internal pressure release mechanism 60 of the present embodiment is made of a metal member that is harder than the container 51. Therefore, a sufficient force for breaking the container 51 can be applied without following the deformation of the container 51.
  • the internal pressure release mechanism 60 is configured by a metal member, but may be configured by using a ceramic member or the like.
  • the internal pressure release mechanism 60 is made of a metal member, the U-shaped fixing portion 61 and the cutting edge-shaped fracture portion 62 can be formed relatively easily, and the material cost can be reduced. This is preferable.
  • the internal pressure release mechanism 60 includes the cutting edge-shaped fracture portion 62, but may also include a sharply pointed needle-like member as the fracture portion. Furthermore, the internal pressure release mechanism may be configured to provide a plurality of fracture portions 62 and to reliably break the container 51.
  • fixed part 61 was a U-shaped member, if it is the shape which pinches
  • fixed part 61 was fixed to the outer peripheral end part of the container 51, you may fix in the state which pinched
  • the positive electrode external terminal 25 and the negative electrode external terminal 35 are drawn in opposite directions, but the present invention is not limited to this.
  • the positive electrode external terminal 25 and the negative electrode external terminal 35 may be drawn out from the same direction.
  • the present invention is embodied in the lithium ion capacitor 10, but the present invention can be embodied in other power storage devices as long as the power storage device includes a container made of a laminate film.
  • the present invention may be embodied in an electric double layer capacitor or a lithium ion secondary battery.
  • the electricity storage device with an internal pressure release mechanism according to (1), wherein the fixing portion is fixed to a tab-like external terminal provided so as to protrude from the container.
  • a lithium ion capacitor that is hermetically sealed in a laminate film container together with an electrolyte solution containing a lithium salt.
  • a fixed portion that is fixed in a state in which a portion on the outer peripheral side of the stacked body storage portion that stores the electrode stacked body is sandwiched, and a container that extends from the fixed portion and contacts the container that is deformed when gas is generated.
  • a lithium ion capacitor with an internal pressure release mechanism comprising an internal pressure release mechanism having a breaking portion for breaking the battery.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the power storage module in the present embodiment.
  • FIG. 7 is a plan view of an electricity storage device constituting the electricity storage module, and
  • FIG. 8 is a cross-sectional view of the electricity storage device.
  • the power storage module 110 with an internal pressure release mechanism of the present embodiment is a module in which a plurality of (for example, 12) power storage devices 111 (so-called power storage cells) of lithium ion capacitors are stacked.
  • a stack plate 112 (stack member) is interposed between the power storage devices 111.
  • the power storage device 111 of the present embodiment includes an electrode stack 145 formed by stacking a positive electrode 121, a negative electrode 131, and a separator 141.
  • this electrode laminate 145 a plurality of units of power generation elements are stacked, with one unit being a power generation element in which the positive electrode 121 and the negative electrode 131 are arranged to face each other with a separator 141 therebetween.
  • the positive electrode 121 has a structure in which a positive electrode 122 made of a material capable of reversibly supporting lithium ions is formed on a positive electrode current collector 123.
  • the positive electrode current collector 123 is a member for collecting current while supporting the positive electrode 122, and is formed using a conductive metal plate made of aluminum, for example.
  • the positive electrode current collector 123 is formed in a rectangular shape in plan view, and a tab 124 projects from one of the four sides. The tab 124 is connected to a positive external terminal 125 made of aluminum.
  • the negative electrode 131 has a structure in which a negative electrode 132 made of a material capable of reversibly supporting lithium ions is formed on a negative electrode current collector 133.
  • the negative electrode current collector 133 is a member for collecting current while supporting the negative electrode 132, and is formed using a conductive metal plate made of, for example, copper.
  • the negative electrode current collector 133 is formed in a rectangular shape in plan view, and a tab 134 projects from one of the four sides. The tab 134 is connected to a negative electrode external terminal 135 made of copper.
  • the electrode laminate 145 is hermetically sealed in the container 146 together with the electrolyte containing the lithium salt.
  • This container 146 is a soft container processed into a rectangular bag shape using an aluminum laminate film (metal laminate film) obtained by laminating an aluminum foil on a resin film. The opening is sealed by heat sealing. Sealing by thermal fusion is performed in a state where the positive external terminal 125 and the negative external terminal 135 are sandwiched between the fusion parts.
  • the positive electrode external terminal 125 protrudes from one end of the container 146 (the right end in FIG. 8). Further, the negative external terminal 135 protrudes from the other end portion (the left end portion in FIG. 8) in the opposite direction.
  • the container 146 may be formed using a metal laminate film made of a metal foil other than the aluminum foil.
  • stack plate 112 is interposed between power storage devices 111, and the device main surfaces (upper surface 111a and lower surface 111b in FIG. 6) of each power storage device 111 are stacked. It is arranged.
  • each power storage device 111 is modularized. Then, by welding the positive external terminal 25 of one electrical storage device 111 and the negative external terminal 35 of the other electrical storage device 111 for each electrical storage device 111 arranged above and below, each electrical storage device 111 is electrically connected in series. It is connected.
  • the electrical storage module 110 is good also as a module of the structure which welded the external terminals of the same polarity, and connected each electrical storage device 111 in parallel.
  • the stack plate 112 is a rectangular frame-shaped member, and is formed using, for example, flame-retardant polypropylene or glass-filled nylon which is a flame-retardant resin material. ing. More specifically, the stack plate 112 includes a flat plate portion 152 having an opening 151 in the center, and an outer frame portion 153 provided so as to surround the outer periphery of the flat plate portion 152. The storage portion of the electrode stack 145 in the container 146 is disposed at a position inside the opening 151. The flat plate portion 152 is provided so as to be connected to a substantially central portion of the inner surface of the outer frame portion 153. The cross-sectional shape of the connecting portion is substantially T-shaped.
  • a metal plate 155 (for example, an aluminum plate) is disposed so as to close the opening 151 in the flat plate portion 152 (see FIG. 6).
  • the metal plate 155 is interposed between the power storage devices 111 so as to be in surface contact with the device main surfaces 111 a and 111 b of the adjacent power storage devices 111.
  • the metal plate 155 functions as a heat radiating plate that radiates heat generated in each power storage device 111.
  • positioning protrusions 157 and 158 are provided on the inner side of the corner portion which is diagonal in the outer frame portion 153 of the stack plate 112.
  • the positioning protrusions 157 and 158 are structures for engaging with the other stack plate 112 to achieve mutual positioning.
  • the positioning protrusions 157 and 158 are provided so as to protrude above the stack plate 112.
  • the stack plates 112 are positioned by engaging with the inner surface of the outer frame portion 153 of the stack plate 112 disposed above.
  • a cutting edge 161 is provided at the opening edge of the flat plate portion 152 in the stack plate 112.
  • the cutting blades 161 are not provided on all the stack plates 112 but the cutting blades 161 are provided on every other stack plate 112.
  • a cutting blade 161 is arranged.
  • the cutting edge 161 is a metal member having a substantially Y shape.
  • the cutting blade 161 is formed by bending a plate-like member 163 (see FIG.
  • tip of the cutting blade 161 has the shape of a blade-pointed blade edge sharpened in a triangular mountain shape.
  • a circular fixing hole 165 is provided on the base end side serving as a fixing portion.
  • a circular protrusion 166 is provided on the flat plate portion 152 of the stack plate 112.
  • the cutting blade 161 is fixed to the stack plate 112 by heat welding in a state where the fixing hole 165 of the cutting blade 161 is fitted into the protrusion 166.
  • the fixing method of the cutting blade 161 is not limited to thermal welding. When sufficient fixing strength is obtained, the cutting blade 161 may be fixed only by fitting.
  • a through hole 167 through which the blade portion 162 is inserted is formed between the projection 166 that fixes the cutting blade 161 and the opening 151.
  • each blade portion 162 in the cutting blade 161 is inclined in the center direction of the stack plate 112 with reference to a direction orthogonal to the flat plate portion 152 of the stack plate 112 (in FIG. 6, the stacking direction of the stack plate 112 being the vertical direction). is doing.
  • the inclination angle of the blade portion 162 with respect to the flat plate portion 152 is about 55 °.
  • the cutting blade 161 is arranged so that the two blade portions 162 face each of the two adjacent power storage devices 111. Moreover, the cutting blade 161 is arrange
  • FIG. 16 when using a cutting blade 171 (see FIG. 14) formed through a blade attaching process consisting of one process (punching process) like the cutting edge shape of a cutter knife, as shown in FIG. A relatively small hole 172 is formed in 146. In this case, there is a possibility that the gas generated in the container 146 is not sufficiently removed and the container 146 is ruptured.
  • the cutting blade 161 (see FIG. 11) of the present embodiment is formed to have a blade-shaped cutting edge shape through a blade attaching process consisting of two processes of punching and bending. ing. For this reason, as shown in FIG. 16, a relatively large hole 172 having a width is formed in the container 146, and the gas generated in the container 146 is efficiently discharged.
  • each power storage device 111 is housed between the stack plates 112 in a state where the electrode stack 145 is pressurized. Therefore, the electrodes of the positive electrode 121 and the negative electrode 131 can be held at an appropriate interval, and the power storage performance of the power storage device 111 can be sufficiently ensured.
  • the cutting blade 161 provided on the stack plate 112 functions. That is, the cutting blade 161 contacts the outer edge portion 46 a of the expanded container 146 to cleave the container 146. As a result, gas is discharged from the hole 172 opened in the container 146, and the internal pressure of the container 146 can be reliably released. Therefore, it is possible to reliably avoid the rupture of the container 146, in other words, to provide an explosion-proof function.
  • the cutting blade 161 is a metal member, and the blade portion 162 can be formed so as to have a strong and sharp edge shape. Therefore, the container 146 can be reliably cleaved.
  • a metal cutting edge 161 is fixed to the resin stack plate 112 by thermal welding. More specifically, a fixing hole 165 is formed on the base end side of the cutting edge 161, and the base end of the cutting edge 161 is fixed by thermal welding in a state where the fixing hole 165 is fitted in the protrusion 166 provided on the stack plate 112. Is done. In this way, the metal cutting blade 161 can be easily and reliably fixed to the resin stack plate 112.
  • the cutting blade 161 bends the plate-like member 163 having the blade portions 162 in two places into two, and the two blade portions 162 face each of the two adjacent power storage devices 111. It is formed as follows. If it does in this way, the container 146 of the two adjacent electrical storage devices 111 can be efficiently and reliably cleaved by one cutting edge 161. Further, the number of components can be reduced as compared with the case where a cutting blade is provided for each power storage device 111. Therefore, the component cost of the power storage module 110 can be suppressed.
  • the cutting edge 161 has a pointed edge shape sharpened in a triangular mountain shape, so that a relatively large hole 172 can be formed in the container 146. Therefore, the gas generated in the container 146 can be reliably discharged.
  • the tip of the cutting edge 161 is arranged so as to be retracted from the opening edge of the stack plate 112. In this case, it is possible to prevent the cutting edge 161 from hitting the container 146 when the container 146 is not expanded.
  • the cutting blade 161 is arranged in a state where the blade portion 162 is inclined in the center direction of the stack plate 112 with respect to the stacking direction of the stack plate 112.
  • the blade portion 162 can be brought into contact with the outer edge portion 146a of the container 146 that is inflated and deformed at the time of abnormality at a right angle. Therefore, the container 146 can be reliably cleaved.
  • the cutting edge 161 is provided corresponding to one outer edge portion 146a from which the external terminals 125 and 135 protrude from the container 146.
  • the cutting edge 161 may be provided corresponding to the outer edge portion 146a on the side where the positive electrode external terminal 125 protrudes in the container 146 and the outer edge portion 146a on the side where the negative electrode external terminal 135 protrudes.
  • the bulge will occur.
  • the outer edge portion 146a abuts on the cutting edge 161, and the container 146 can be quickly cleaved.
  • the cutting blades 161 are provided on every other stack plate 112, but the cutting blades 161 may be provided on all the stack plates 112. Even in this case, the container 146 expanded by the increase in internal pressure can be reliably cleaved.
  • the positive external terminal 125 and the negative external terminal 135 are drawn out in opposite directions.
  • the configuration is not limited to this, and the positive external terminal 125 and the negative external terminal 135 may be drawn from the same direction.
  • the cutting blade 161 may be provided in the container 146 corresponding to the outer edge portion 146a on the side where the external terminals 125 and 135 are provided.
  • the cutting edge 161 may be provided corresponding to the outer edge portion 146a on the side opposite to the side where the external terminals 125 and 135 are provided (the side where the external terminals 125 and 135 are not provided).
  • the cutting edges 161 are provided at positions corresponding to the two opposing sides of the stack plate 112 corresponding to the outer edge portion 146a on the side where the external terminals 125 and 135 are provided and the outer edge portion 146a on the opposite side. May be. Even in this case, the container 146 expanded by the increase in internal pressure can be reliably cleaved.
  • the cutting blade 161 is made of a metal member, but may be made of a ceramic member, a resin member, or the like. Further, like the power storage module 110B shown in FIG. 18, the cutting blade 161A may be integrally formed on the stack plate 112A made of a resin material. If it does in this way, compared with the case where the stack plate 112 and the cutting blade 161 are comprised by another member, the number of parts can be reduced. Therefore, the component cost of the power storage module 110B can be suppressed.
  • the present invention is embodied as a power storage module including a lithium ion capacitor, but may be embodied as another type of power storage module as long as it includes a container 146 made of a metal laminate film.
  • the present invention may be embodied as a power storage module including an electric double layer capacitor or a lithium ion secondary battery.
  • the power storage module with an internal pressure release mechanism according to any one of the means 6 to 11, wherein the cutting blade is provided on each of two opposing sides of the stack member.
  • the electric storage module with an internal pressure release mechanism according to any one of the means 6 to 11, wherein the cutting blade is provided at an opening edge of the stack member.
  • the tip of the cutting blade is disposed so as to be in a position retracted from the opening edge of the stack member. Power storage module with release mechanism.
  • the power storage module with an internal pressure release mechanism wherein the cutting blade in the means 8 is substantially Y-shaped.
  • the stack member has positioning protrusions which are engaged with other adjacent stack members when positioned in a stacked manner to position each other.
  • a power storage module with an internal pressure release mechanism is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

(課題)容器の信頼性を確保しつつ、ガス発生時に容器の内圧を確実に解放することができる内圧開放 機構付き蓄電デバイスを提供すること。(解決手段)リチウムイオンキャパシタ10において、電極積 層体11が電解液とともにラミネートフィルムからなる容器51内に密封封止されている。容器51に おいて電極積層体11を収納する積層体収納部53よりも外周側の位置に、内圧解放機構60が設けら れている。内圧解放機構60は、固定部61と破断部62とを有する。固定部61は、容器51の外周 端部を挟み込んだ状態で固定される。破断部62は、固定部61から延設され、ガス発生時に変形した 容器51に当接して容器51を破断させる。

Description

内圧解放機構付きの蓄電デバイス、蓄電モジュール
 本発明は、正極と負極とを積層してなる電極積層体を電解液とともに金属ラミネートフィルムからなる容器内に密封封止してなる内圧解放機構付き蓄電デバイス、及び、蓄電デバイスが電気的に直列または並列に接続されてなる内圧解放機構付き蓄電モジュールに関するものである。
 太陽光発電や風力発電等の負荷平準化装置、コンピュータ等に代表される電子機器の瞬時電圧低下対策装置、電気自動車やハイブリッドカーのエネルギー回生装置などのような蓄電システムが従来よく知られている。この種のシステムにおいては、エネルギー容量が大きくてかつ急速充放電が可能な蓄電デバイスが必要とされている。従来の鉛蓄電池やその他の二次電池では、大電流の充放電に弱くサイクル寿命が短いため、蓄電システムに対応することは困難であった。そこで、それらの問題を解決しうる新たな蓄電デバイスとして、近年、非水系の蓄電デバイスが注目されている。
 現在、急速充放電や長寿命化が可能な蓄電デバイスとして、リチウムイオンキャパシタが提案されている。リチウムイオンキャパシタは、正極、負極及びセパレータを積層してなる電極積層体を備えている。電極積層体は例えば柔らかいアルミラミネート箔からなるラミネートケース内に収容される。ケース内はリチウムイオンを含んだ有機電解質で満たされている。このリチウムイオンキャパシタにおいて、過充電等の異常時には、ラミネートケース内でガスが発生する。すると、ラミネートケースの内圧が上昇しケースが膨らむ。従来では、その異常時において、ラミネートケースの破裂を未然に防止するために、ラミネートケースの内圧を解放するための内圧解放機構が設けられている。
 内圧解放機構の具体例としては、例えば、ラミネートケースの封止部分の一部を他の部位の融着強度よりも弱く形成する(具体的には、融着幅を狭くするか融着力を弱くする)安全機構などが従来提案されている(例えば、特許文献1等参照)。また、ラミネートケースの一部に貫通口を設け、その開口を塞ぐ形で安全弁を取り付けてなる安全機構なども従来提案されている(例えば、特許文献2等参照)。
 さらに別のものとして、下記のような技術も従来提案されている(例えば、特許文献3等参照)。特許文献3に開示されている蓄電モジュール(デバイス集合体)では、蓄電デバイスが離間した状態で積層配置されている。そして、蓄電デバイスのラミネートケースが最も膨らむ中央部の位置に対して、針状突起部を有するガス排出穴形成部材が、離間した状態で設けられている。この蓄電モジュールでは、蓄電デバイス内でガスが発生してラミネートケースが膨張すると、ラミネートケースに針状突起部が突き刺さり、ガス排出用穴が形成される。そして、そのガス排出用穴からガスが排出されることで、内圧が開放され、ラミネートケースの破裂が回避される。
特開2007−53023号公報 特開2007−157678号公報 特開2010−33789号公報
 ところが、特許文献1の安全機構では、ラミネートケースにおける封止部分の融着強度を部分的に弱くしているため、その部分から水分が透過するといった問題が懸念される。また、特許文献2の安全機構でも、貫通口を設けそれを安全弁で塞ぐ構成となっているため、その部分を水分が透過するといった問題がある。ラミネートケース内に水分が入り込むと、リチウムが反応してキャパシタ性能を劣化させる原因となってしまう。
 ところで、上述した特許文献3の従来の蓄電モジュールでは、各蓄電デバイスが離間して積層配置されており、蓄電デバイス間に形成されるスペースにガス排出穴形成部材が設置されている。このようにガス排出穴形成部材の設置スペースを蓄電デバイス間に設ける場合、蓄電モジュールのサイズが大きくなってしまう。またこの場合、蓄電モジュール全体としてのエネルギー密度が低下する。さらに、蓄電モジュールが搭載される装置において、蓄電モジュールの設置スペースを十分に確保しなければならず、装置の小型化が困難となる。
 本発明は上記の課題に鑑みてなされたものであり、その目的は、容器の信頼性を確保しつつ、ガス発生時に容器の内圧を確実に解放することができる内圧開放機構付き蓄電デバイスを提供することにある。
 また、本発明の別の目的は、モジュールサイズが大型化することなく、ガス発生時に容器の内圧を確実に解放して蓄電デバイスの容器の破裂を確実に回避することができる内圧開放機構付き蓄電モジュールを提供することにある。
 上記課題を解決するための手段[1]~[10]を以下に列挙する。
 [1]正極と負極とを積層してなる電極積層体を電解液とともに金属ラミネートフィルムからなる容器内に密封封止してなり、前記正極及び前記負極にそれぞれ連結された外部端子が前記容器から突出して露呈している蓄電デバイスであって、前記容器において前記電極積層体を収納する積層体収納部よりも外周側の部位を挟み込んだ状態で固定される固定部と、前記固定部から延設され、ガス発生時に変形した前記容器に当接してその容器を破断させる破断部とを有する内圧解放機構を備えたことを特徴とする内圧解放機構付き蓄電デバイス。
 従って、手段1に記載の発明によると、従来技術のようにラミネートケースからなる容器の封止部分において部分的に融着強度を弱くしたり開口部を設けたりして内圧解放機構を構成する必要がない。つまり、容器側に変更を加えることなく、内圧解放機構を設けることができる。従って、容器の封止部分を均一の強度で融着することができ、容器内への水分の浸入を確実に防ぐことができる。また、薄型の容器であっても、容器の外周側の部分を固定部で挟み込むことで固定することができ、ガス発生時に膨らんだ容器を破断部で確実に破断させることができる。これにより、ガス発生時に加わる容器の内圧を確実に解放することができる。
 [2]手段1において、前記固定部は、前記容器の外周端部を挟み込むU字状の部材であり、前記破断部は、前記U字状の部材における一方の端部にて前記容器と対向するよう設けられる切刃状の部材であることを特徴とする内圧解放機構付き蓄電デバイス。
 従って、手段2に記載の発明によれば、固定部がU字状の部材であるため、容器の外周端部を確実に挟みこむことができる。また、U字状の固定部における一方の端部に破断部を設けることにより、容器と対向するよう破断部を配置させることができる。さらに、破断部は、切刃状の部材であるので、ガス発生時に変形した容器に当接することで、容器を容易に破断させることができる。
 [3]手段1または2において、前記破断部は、ガス発生前の未変形の前記容器に対して非接触の状態で設けられていることを特徴とする内圧解放機構付き蓄電デバイス。
 従って、手段3に記載の発明によると、ガスが発生していない通常使用時において、破断部が容器に接触していないため、振動等により誤って容器が破断されることがなく、容器の信頼性を維持することができる。
 [4]手段1乃至3のいずれか1項に記載の手段において、前記内圧解放機構は、前記容器よりも硬い部材からなることを特徴とする内圧解放機構付き蓄電デバイス。
 従って、手段4に記載の発明によれば、内圧解放機構は、容器よりも硬い部材からなるため、容器の変形に追従することなく、容器を破断させるための十分な力を作用させることができる。
 [5]正極と負極とを積層してなる電極積層体を電解液とともに金属ラミネートフィルムからなる容器内に密封封止してなり、前記正極及び前記負極にそれぞれ連結された外部端子が前記容器から突出して露呈している複数枚の蓄電デバイスと、デバイス主面同士を重ね合わせた状態で積層配置した前記蓄電デバイスの間に介在される枠状のスタック部材とを備え、前記複数枚の蓄電デバイスが電気的に直列または並列に接続された蓄電モジュールであって、内圧上昇により膨張した前記容器の外縁部分に接触して前記容器を開裂させる切刃を、内圧解放機構として前記スタック部材に設けたことを特徴とする内圧解放機構付き蓄電モジュール。
 従って、手段5に記載の発明によると、複数枚の蓄電デバイスは、デバイス主面同士を重ね合わせた状態で積層配置されているので、従来技術のように蓄電デバイス間に隙間ができず、それゆえ蓄電モジュールをコンパクトに構成することができる。また、蓄電モジュールにおいて、過充電や過放電等の異常時には、蓄電デバイスの容器内でガスが発生して内圧が上昇する。この場合、各蓄電デバイスは、デバイス主面同士を重ね合わせた状態で配置されているので、容器の外縁部分が膨張する。このとき、スタック部材に設けられている切刃がその膨張した容器の外縁部分に接触して容器を開裂させる。この結果、容器に開いた穴からガスが排出され、容器の内圧を確実に解放することができ、容器の破裂を防止することができる。
 [6]手段5において、前記切刃は、金属製の部材であり、樹脂材料からなる前記スタック部材に固定されていることを特徴とする内圧解放機構付き蓄電モジュール。
 従って、手段6に記載の発明によると、切刃は金属製の部材であるため、強度が強く鋭利な刃先形状となるよう刃部を形成することができる。このため、容器を確実に開裂させることができる。また、金属製の切刃は、樹脂製のスタック部材に熱溶着にて固定されることが好ましい。この場合、スタック部材に簡単かつ確実に切刃を固定することができる。なお、樹脂製のスタック部材に金属製の切刃を嵌め込むようにして固定してもよい。
 [7]手段6において、前記切刃は、2箇所に刃部を有する板状部材を2つに折り曲げるとともに、前記2つの刃部が隣接する2つの蓄電デバイスのそれぞれを向くように形成されていることを特徴とする内圧解放機構付き蓄電モジュール。
 従って、手段7に記載の発明によると、切刃に形成された2つの刃部により隣接する2つの蓄電デバイスの容器を効率よく開裂させることができる。また、蓄電デバイス毎に切刃を設ける場合と比較して部品数を削減することができる。そのため、蓄電モジュールの部品コストを抑えることができる。
 [8]手段5において、前記切刃は、樹脂材料からなる前記スタック部材に一体的に形成されていることを特徴とする内圧解放機構付き蓄電モジュール。
 従って、手段8に記載の発明によると、樹脂材料からなるスタック部材に切刃が一体的に形成されているため、スタック部材と切刃とを別部材で構成する場合と比較して、部品数を削減することができる。この結果、蓄電モジュールの部品コストを抑えることができる。
 [9]手段5乃至8のいずれか1項に記載の手段において、前記正極の外部端子及び前記負極の外部端子は、互いに反対方向に突出しているとともに、前記切刃は、前記正極の外部端子が突出している側の外縁部分及び前記負極の外部端子が突出している側の外縁部分に対応してそれぞれ設けられていることを特徴とする内圧解放機構付き蓄電モジュール。
 従って、手段9に記載の発明の蓄電デバイスでは、正極の外部端子及び負極の外部端子が互いに反対方向に突出するよう設けられている。この蓄電デバイスの容器において、内圧が上昇すると、正極の外部端子が突出している側の外縁部分及び負極の外部端子が突出している側の外縁部分のいずれか一方が先に膨らむことがある。本発明では、それら外縁部分に対応して切刃が設けられているので、いずれか一方の切刃によって容器の外縁部分を迅速に開裂させることができる。
 [10]手段5乃至9のいずれか1項に記載の手段において、前記切刃は、三角山形に尖った槍先状の刃先形状を有していることを特徴とする内圧解放機構付き蓄電モジュール。
 従って、手段10に記載の発明によると、切刃は、三角山形に尖った槍先状の刃先形状を有するので、容器に比較的大きな穴を形成することができ、容器内で発生したガスを確実に排出することができる。
 以上詳述したように、手段1~4に記載の発明によると、容器の信頼性を確保しつつ、ガス発生時に容器の内圧を確実に解放することができる内圧開放機構付き蓄電デバイスを提供することができる。
 また、手段5~10に記載の発明によると、モジュールサイズが大型化することなく、ガス発生時に容器の内圧を確実に解放して蓄電デバイスの容器の破裂を確実に回避することができる内圧開放機構付き蓄電モジュールを提供することができる。
第1の実施の形態のリチウムイオンキャパシタを示す側面図。 第1の実施の形態のリチウムイオンキャパシタを示す平面図。 第1の実施の形態の電極積層体を示す断面図。 内圧解放機構を示す側面図。 ガス解放時の動作を説明するための説明図。 第2の実施の形態の蓄電モジュールの概略構成を示す断面図。 第2の実施の形態の蓄電デバイスを示す平面図。 蓄電デバイスを示す断面図。 スタックプレートを示す平面図。 スタックプレートを示す側面図。 (a)は切刃の正面図、(b)は切刃の平面図、(c)は切刃の側面図。 切刃を形成するための板状部材の平面図。 蓄電モジュールにおいて膨張変形した容器を示す説明図。 比較例の切刃を示す平面図。 図14の切刃により容器に形成される穴を示す平面図。 図11の切刃により容器に形成される穴を示す平面図。 別の実施の形態の蓄電モジュールの概略構成を示す断面図。 別の実施の形態の蓄電モジュールの概略構成を示す断面図。
[第1の実施の形態]
 以下、本発明の内圧開放機構付き蓄電デバイスをリチウムイオンキャパシタに具体化した第1の実施の形態を図面に基づき詳細に説明する。図1は本実施の形態における内圧開放機構付きリチウムイオンキャパシタ10を示す側面図であり、図2はそのリチウムイオンキャパシタ10の平面図である。また、図3は上記リチウムイオンキャパシタ10を構成する電極積層体11を示す断面図である。
 図1~図3に示されるように、リチウムイオンキャパシタ10は、シート状に成形された正極21と負極31とがセパレータ41を介して交互に積み重ねられた構造を有する電極積層体11を備えている。リチウムイオンキャパシタ10において、電極積層体11は、リチウム塩を含んだ電解液とともに容器51内に密封封止されている。本実施の形態のリチウムイオンキャパシタ10は、電極積層体11の厚さが6mm程度であり、薄型の蓄電デバイス(いわゆる蓄電セル)として構成されている。
 セパレータ41は、電解液や電極活物質等に対して耐久性があり、連通気孔を有する非導電性の多孔体等からなる。通常、ガラス繊維、ポリエチレン、ポリプロピレン等、セルロース等からなる不織布あるいは多孔体が用いられる。セパレータ41の厚さは、キャパシタの内部抵抗を小さくするために薄いほうが好ましいが、電解液の保持量、流通性、強度等を勘案して適宜設定することができる。
 正極21は、炭素材料からなる正極材22を正極集電体23上に形成した構造を有している。正極材22を形成する炭素材料としては、活性炭が用いられる。この炭素材料は、必要に応じて導電剤及びバインダとともに混練され、成形される。
 正極集電体23は、正極材22を支持しつつ集電を行うための部材であって、例えばアルミニウムからなる導電性金属板を用いて形成されている。正極集電体23は平面視矩形状に形成され、その四辺のうちの一辺からタブ24が突出している。このタブ24は、アルミニウムからなる正極用外部端子25に接続されている(図1及び図2参照)。
 負極31は、リチウムイオンの吸蔵及び放出が可能な材料からなる負極材32を負極集電体33上に形成した構造を有している。負極材32の形成材料としては、黒鉛系炭素、易黒鉛化炭素、難黒鉛化炭素等の炭素材料がある。これらの炭素材料は、可逆性が高い等の性質を有するため、負極材料として好適である。負極電極32用の炭素材料は、必要に応じて導電剤及びバインダとともに混練され、成形される。
 負極集電体33は、負極材32を支持しつつ集電を行うための部材であって、例えば銅からなる導電性金属板を用いて形成されている。負極集電体33は平面視矩形状に形成され、その四辺のうちの一辺からタブ34が引き出されている。このタブ34は、銅からなる負極用外部端子35に接続されている(図1及び図2参照)。
 図1及び図2に示されるように、リチウムイオンキャパシタ10の容器51は、アルミ箔を樹脂フィルムにラミネートしてなるアルミニウム・ラミネートフィルムを用いて矩形袋状に加工したソフト容器である。容器51における外周部52は、熱融着によって封止されている。熱融着による封止は、融着部に正極用外部端子25及び負極用外部端子35を挟み込んだ状態で行われる。本実施の形態では、容器51の封止部分は、融着幅が等しくかつ融着力が均一となるように形成されている。
 このようにして容器51内に電極積層体11を収容した場合、容器51における一方の端部(図1では左側の端部)から正極用外部端子25が引き出され、他方の端部(図1では右側の端部)から負極用外部端子35が引き出される。なお、アルミ箔以外の他の金属箔からなる金属ラミネートフィルム材を用いて、容器51を形成してもよい。
 図1、図2及び図4に示されるように、本実施の形態の容器51において、電極積層体11を収納する積層体収納部53よりも外周側の位置には、内圧解放機構60が設けられている。内圧解放機構60は、容器51の外周端部を挟みこんだ状態で固定される固定部61と、固定部61から延設され、ガス発生時に変形した容器51に当接してその容器51を破断させる破断部62とを有する。内圧解放機構60を構成する固定部61及び破断部62は、容器51よりも硬い金属部材からなる。固定部61は、U字状に形成された部材である。破断部62は、U字状の固定部61の一方の端部61aにて容器51と対向するよう設けられる切刃状の部材である。内圧解放機構60においては、固定部61における破断部62の反対側の端部61bが接着剤等を用いて容器51に固定されている。破断部62は、ガス発生前の未変形の容器51に対して非接触の状態で設けられている。
 具体的には、固定部61は、真鍮等からなる細長い棒状の金属材をU字状にプレス加工することで形成される。また、破断部62は、固定部61の端部61aに対して切削加工や研磨加工を施すことで固定部61と一体的に形成される。なお、固定部61と破断部62とを別体で形成し、固定部61の一方の端部61aに破断部62を溶接接続して内圧解放機構60を構成してもよい。本実施の形態において、固定部61の長さは12mm程度であり、固定部61において一方の端部61aと他方の端部61bとの間隔は4mm程度である。この固定部61の長さや間隔は、容器51のサイズに応じて適宜変更することができる。なお、固定部61における各端部61a,61bの間隔(内圧解放機構60の厚さ)は、積層体収納部53の厚さよりも狭くすることが好ましい。この場合、複数のリチウムイオンキャパシタ10を厚さ方向に積み重ねて収納する際に、積層体収納部53よりも内圧解放機構60が突出することがない。そのため、従来と同様の収納性を確保できる。
 上記のように構成したリチウムイオンキャパシタ10において、過充電等の異常に容器51内でガスが発生すると、図5に示されるように、容器51が膨らむ。このとき、内圧解放機構60のU字状の固定部61を押し広げる方向に容器51が変形し、容器51の外周側の部分が内圧解放機構60に挟まるような形になる。そして、固定部61の先端部に設けられた破断部62が容器51表面に押し付けられる。さらに、容器51の内圧が上昇すると、破断部62の切刃に沿って容器51に亀裂が入り、容器51が破断される。この結果、容器51に穴が開き、容器51内で発生したガスが外部に放出されることで、容器51の内圧が解放される。
 従って、本実施の形態によれば以下の効果を得ることができる。
 (1)本実施の形態のリチウムイオンキャパシタ10では、容器51の外周側の位置に内圧解放機構60が設けられている。内圧解放機構60は、容器51の外周端部を挟みこんだ状態で固定される固定部61と、その容器51を破断させる破断部62とを有する。このような内圧解放機構60を用いると、従来技術のように容器の封止部分において部分的に融着強度を弱くしたり開口部を設けたりする必要がない。つまり、容器51側に変更を加えることなく、内圧解放機構60を設けることができる。従って、容器51の封止部分を均一の強度で融着することができ、通常使用時にて容器51内への水分の浸入を確実に防ぐことができる。また、薄型の容器51であっても、容器51の外周側の部分を固定部61で挟み込むことで固定することができる。よって、ガス発生時に膨らんだ容器51を破断部62で確実に破断させることができる。これにより、ガス発生時に加わる容器51の内圧を確実に解放することができるため、容器51の破裂を未然に防止することができる。
 (2)本実施の形態の内圧解放機構60は、固定部61がU字状の部材であるため、容器51の外周端部を確実に挟み込むことができる。また、U字状の固定部61における一方の端部に破断部62を設けることにより、容器51と対向するよう破断部62を配置させることができる。さらに、破断部62は、切刃状の部材であるため、ガス発生時に変形した容器51に当接して容器51を容易に破断させることができる。
 (3)本実施の形態のリチウムイオンキャパシタ10では、ガスが発生していない通常使用時において、内圧解放機構60の破断部62が容器51に接触していない。このため、振動等により誤って容器51が破断されることがなく、容器51の信頼性を十分に維持することができる。
 (4)本実施の形態の内圧解放機構60は、容器51よりも硬い金属部材からなる。そのため、容器51の変形に追従することなく、容器51を破断させるための十分な力を作用させることができる。
 なお、本発明の第1の実施の形態は以下のように変更してもよい。
 ・上記実施の形態では、内圧解放機構60を金属部材にて構成していたが、これ以外にセラミック部材などを用いて構成してもよい。但し、内圧解放機構60を金属部材で構成する場合、U字状の固定部61や切刃状の破断部62を比較的容易に形成できることに加え、材料コストを抑えることができるので、実用上好ましいものとなる。
 ・上記実施の形態の内圧解放機構60は、切刃状の破断部62を備えるものであったが、これ以外に鋭利に尖った針状の部材を破断部として備えるものでもよい。さらに、複数の破断部62を設け、容器51を確実に破断させるように内圧解放機構を構成してもよい。また、固定部61はU字状の部材であったが、容器51の外周端部を挟みこむ形状であれば、適宜変更することができる。さらに、固定部61は、容器51の外周端部に固定されるものであったが、タブ状の正極用外部端子25や負極用外部端子35を挟み込んだ状態で固定されるものでもよい。
 ・上記実施の形態のリチウムイオンキャパシタ10では、正極用外部端子25及び負極用外部端子35が互いに反対方向に引き出されていたが、これに限定するものではない。同一方向から正極用外部端子25及び負極用外部端子35を引き出す構成としてもよい。
 ・上記実施形態では、本発明をリチウムイオンキャパシタ10に具体化したが、ラミネートフィルムからなる容器を備える蓄電デバイスであれば他の蓄電デバイスに本発明を具体化することができる。例えば、電気二重層キャパシタやリチウムイオン二次電池などに本発明を具体化してもよい。
 次に、請求の範囲に記載された技術的思想のほかに、前述した第1の実施の形態によって把握される技術的思想を以下に列挙する。
(1)手段1において、前記固定部は、前記容器から突出するよう設けられたタブ状の外部端子に固定されることを特徴とする内圧解放機構付き蓄電デバイス。
(2)炭素材料からなる正極材をシート状の集電体に塗布した構造の正極と、リチウムの吸蔵及び放出が可能な材料からなる負極材をシート状の集電体に塗布した構造の負極とをセパレータを介して積層してなる電極積層体を有し、前記電極積層体がリチウム塩を含む電解液とともにラミネートフィルムの容器内に密封封止されたリチウムイオンキャパシタであって、前記容器において前記電極積層体を収納する積層体収納部よりも外周側の部位を挟み込んだ状態で固定される固定部と、前記固定部から延設され、ガス発生時に変形した前記容器に当接してその容器を破断させる破断部とを有する内圧解放機構を備えたことを特徴とする内圧解放機構付きリチウムイオンキャパシタ。
[第2の実施の形態]
 以下、本発明の内圧解放機構付き蓄電モジュールを具体化した第2の実施の形態を図面に基づき詳細に説明する。図6は本実施の形態における蓄電モジュールの概略構成を示す断面図である。また、図7は蓄電モジュールを構成する蓄電デバイスの平面図であり、図8はその蓄電デバイスの断面図である。
 図6に示されるように、本実施の形態の内圧解放機構付き蓄電モジュール110は、リチウムイオンキャパシタの蓄電デバイス111(いわゆる蓄電セル)を複数枚(例えば12枚)積層配置したモジュールである。それら蓄電デバイス111間にはスタックプレート112(スタック部材)が介在されている。
 図7及び図8に示されるように、本実施の形態の蓄電デバイス111は、正極121、負極131及びセパレータ141を積層してなる電極積層体145を備えている。この電極積層体145では、正極121と負極131とをセパレータ141を介して対向配置してなる発電要素を1単位として、複数単位の発電要素を積層している。
 正極121は、リチウムイオンを可逆的に担持可能な材料からなる正極電極122を正極集電体123上に形成した構造を有している。正極集電体123は、正極電極122を支持しつつ集電を行うための部材であって、例えばアルミニウムからなる導電性金属板を用いて形成されている。正極集電体123は平面視矩形状に形成され、その四辺のうちの一辺からタブ124が突出している。このタブ124は、アルミニウムからなる正極外部端子125に接続されている。
 負極131は、リチウムイオンを可逆的に担持可能な材料からなる負極電極132を負極集電体133上に形成した構造を有している。負極集電体133は、負極電極132を支持しつつ集電を行うための部材であって、例えば銅からなる導電性金属板を用いて形成されている。負極集電体133は平面視矩形状に形成され、その四辺のうちの一辺からタブ134が突出している。このタブ134は、銅からなる負極外部端子135に接続されている。
 本実施の形態の蓄電デバイス111では、リチウム塩を含む電解液とともに電極積層体145が容器146内に密封封止されている。この容器146は、アルミ箔を樹脂フィルムにラミネートしてなるアルミニウム・ラミネートフィルム(金属ラミネートフィルム)を用いて矩形袋状に加工したソフト容器である。その開口部は、熱融着によって封止されている。熱融着による封止は、融着部に正極外部端子125及び負極外部端子135を挟み込んだ状態で行われる。
 このようにして容器146内に電極積層体145を収容した場合、容器146における一方の端部(図8では右側の端部)から正極外部端子125が突出する。また、その反対方向となる他方の端部(図8では左側の端部)から負極外部端子135が突出する。なお、アルミ箔以外の他の金属箔からなる金属ラミネートフィルムを用いて、容器146を形成してもよい。
 本実施の形態の蓄電モジュール110では、各蓄電デバイス111の間にスタックプレート112を介在させ、各蓄電デバイス111のデバイス主面(図6では上面111a及び下面111b)同士を重ね合わせた状態で積層配置させている。この配置の結果、各蓄電デバイス111がモジュール化されている。そして、上下に配置される各蓄電デバイス111について一方の蓄電デバイス111の正極外部端子25と他方の蓄電デバイス111の負極外部端子35とを溶接することにより、各蓄電デバイス111が電気的に直列に接続されている。なお、蓄電モジュール110は、同極の外部端子同士を溶接して各蓄電デバイス111を並列に接続した構造のモジュールとしてもよい。
 図6、図9及び図10に示されるように、スタックプレート112は、矩形枠状の部材であり、例えば、難燃性樹脂材料である難燃性ポリプロピレンやガラス入りナイロンなどを用いて成形されている。より詳しくは、スタックプレート112は、中央に開口151を有する平板部152と、平板部152の外周を囲むように設けられる外枠部153とを備える。容器146における電極積層体145の収納部分は、この開口151よりも内側となる位置に配置される。平板部152は外枠部153の内面の略中央部に連結するよう設けられている。その連結部分の断面形状は略T字状となっている。また、本実施の形態では、平板部152において開口151を塞ぐような形で金属板155(例えば、アルミニウム板)が配置されている(図6参照)。金属板155は、隣り合う蓄電デバイス111のデバイス主面111a,111bに面接触するよう、各蓄電デバイス111の間に介在されている。この金属板155は、各蓄電デバイス111で発生した熱を放熱する放熱板として機能する。
 また、図9及び図10に示されるように、スタックプレート112の外枠部153において対角となるコーナ部の内側には、位置決め突起157,158が設けられている。位置決め突起157,158は、他のスタックプレート112に係止して相互の位置決めを図るための構造である。位置決め突起157,158は、スタックプレート112の上方に突出するよう設けられている。上方に配置されるスタックプレート112の外枠部153の内面に係止することで、スタックプレート112同士が位置決めされている。
 さらに、スタックプレート112における平板部152の開口縁には、切刃161が設けられている。本実施の形態では、全てのスタックプレート112に切刃161が設けられるのではなく、一枚おきのスタックプレート112に切刃161が設けられている。具体的には、スタックプレート112の平板部152において、蓄電デバイス111における一方(図6では左側)の外部端子125,135に対応する開口縁であって、スタックプレート112の幅方向の中央部に切刃161が配置されている。図11に示されるように、切刃161は、略Y字状を呈する金属製の部材である。切刃161は、2箇所に刃部162を有する板状部材163(図12参照)を2つに折り曲げることで形成されている。切刃161の先端となる各刃部162は、三角山形に尖った槍先状の刃先形状を有している。また、切刃161において、固定部となる基端側には、円形の固定穴165が設けられている。
 スタックプレート112の平板部152には、円形の突起166が設けられている。この突起166に切刃161の固定穴165が嵌め込まれた状態で熱溶着することにより、切刃161がスタックプレート112に固定されている。なおここで、切刃161の固定方法は熱溶着に限定されるものではない。十分な固定強度が得られる場合には、嵌め込みのみにて切刃161を固定してもよい。さらに、平板部152において、切刃161を固定する突起166と開口151との間には、刃部162を挿通させる貫通穴167が形成されている。また、切刃161における各刃部162は、スタックプレート112の平板部152と直交する方向(図6では上下方向となるスタックプレート112の積層方向)を基準として、スタックプレート112の中心方向に傾斜している。なお、本実施の形態において、平板部152に対する刃部162の傾斜角度は55°程度である。
 このように、本実施の形態の蓄電モジュール110では、2つの刃部162が隣接する2つの蓄電デバイス111のそれぞれを向くように切刃161が配置されている。また、切刃161は、刃部162の先端が開口縁よりも引っ込んだ位置となるよう配置されている。従って、蓄電デバイス111内でガスが発生していない通常時において、刃部162が容器146の表面から離間している。
 過充電や過放電等の異常時において、容器146内でガスが発生すると、内圧が上昇して容器146が膨らむ。このとき、蓄電デバイス111は、デバイス主面111a,111b同士が重なり合っているため、図13に示されるように容器146の外縁部分146aが膨張する。そして、切刃161の先端に設けられた刃部162は、膨張変形した容器146の表面にほぼ直角に当接して、容器146を開裂させる。この結果、容器146内で発生したガスが外部に排出され、容器146の内圧が解放される。
 因みに、カッターナイフの刃先形状のように、1つの工程(打抜加工)からなる刃付け工程を経て形成された切刃171(図14参照)を用いる場合、図15に示されるように、容器146には比較的小さな穴172が形成される。この場合、容器146内で発生したガスが十分に抜け切れず、容器146が破裂する可能性がある。これに対して、本実施の形態の切刃161(図11参照)は、打抜加工及び折曲加工という2つの工程からなる刃付け工程を経て、槍先状の刃先形状となるよう形成されている。このため、図16に示されるように、容器146には幅のある比較的大きな穴172が形成され、容器146内で発生したガスが効率よく排出される。
 従って、本実施の形態によれば以下の効果を得ることができる。
 (1)本実施の形態の蓄電モジュール110では、デバイス主面111a,111b同士を重ね合わせた状態で複数枚の蓄電デバイス111が積層配置されている。よって、この蓄電モジュール110では、従来技術のように蓄電デバイス111間に隙間ができず、それゆえ蓄電モジュール110をコンパクトに構成することができる。またこの場合、各蓄電デバイス111は、電極積層体145が加圧された状態でスタックプレート112間に収納される。そのため、正極121及び負極131の電極間を適正な間隔に保持することができ、蓄電デバイス111の蓄電性能を十分に確保することができる。また、過充電や過放電等の異常時において、蓄電デバイス111の容器146内でガスが発生して容器146が膨張すると、スタックプレート112に設けられている切刃161が機能する。即ち、切刃161がその膨張した容器146の外縁部分46aに接触して、容器146を開裂させる。この結果、容器146に開いた穴172からガスが排出され、容器146の内圧を確実に解放することができる。従って、容器146の破裂を確実に回避すること、言い換えると防爆機能を付与することができる。
 (2)本実施の形態において、切刃161は、金属製の部材であり、強度が強く鋭利な刃先形状となるよう刃部162を形成することができる。そのため、容器146を確実に開裂させることができる。また、金属製の切刃161が樹脂製のスタックプレート112に熱溶着にて固定されている。より詳しくは、切刃161の基端側に固定穴165が形成され、スタックプレート112に設けられた突起166に固定穴165が嵌め込まれた状態で切刃161の基端が熱溶着にて固定される。このようにすると、金属製の切刃161を樹脂製のスタックプレート112に簡単かつ確実に固定することができる。
 (3)本実施の形態において、切刃161は、2箇所に刃部162を有する板状部材163を2つに折り曲げるとともに、2つの刃部162が隣接する2つの蓄電デバイス111のそれぞれを向くように形成されている。このようにすると、1つの切刃161によって隣接する2つの蓄電デバイス111の容器146を効率よく確実に開裂させることができる。また、蓄電デバイス111毎に切刃を設ける場合と比較して、部品数を削減することができる。ゆえに、蓄電モジュール110の部品コストを抑えることができる。
 (4)本実施の形態において、切刃161は、三角山形に尖った槍先状の刃先形状を有するので、容器146に比較的大きな穴172を形成することができる。よって、容器146内で発生したガスを確実に排出することができる。
 (5)本実施の形態において、切刃161の先端は、スタックプレート112の開口縁よりも引っ込んだ位置となるように配置されている。この場合、容器146が膨張していない通常時に、切刃161が容器146に当たってしまうことを防止することができる。
 (6)本実施の形態において、切刃161は、刃部162がスタックプレート112の積層方向を基準としてスタックプレート112の中心方向に傾斜した状態で配置されている。この場合、異常時に膨張変形した容器146の外縁部分146aに対して直角に刃部162を当接させることができる。よって、容器146を確実に開裂させることができる。
 なお、本発明の第2の実施の形態は以下のように変更してもよい。
 ・上記実施の形態の蓄電モジュール110では、容器146にて外部端子125,135が突出している一方の外縁部分146aに対応して、切刃161が設けられていた。しかし、これに限定されるものではない。図17に示される別の実施形態の蓄電モジュール110Aのようにしてもよい。即ち、容器146にて正極外部端子125が突出している側の外縁部分146a及び負極外部端子135が突出している側の外縁部分146aに対応して、それぞれ切刃161を設けてもよい。このようにすると、容器146において、正極外部端子125が突出している側の外縁部分146a及び負極外部端子135が突出している側の外縁部分146aのいずれか一方が先に膨らんだとしても、その膨らんだ外縁部分146aが切刃161に当接して容器146を迅速に開裂させることができる。また、上記実施の形態の蓄電モジュール110では、一枚おきのスタックプレート112に切刃161が設けられていたが、全てのスタックプレート112に切刃161が設けられていてもよい。このようにしても、内圧上昇により膨張した容器146を確実に開裂させることができる。
 ・上記実施の形態の蓄電デバイス111では、正極外部端子125及び負極外部端子135が互いに反対方向に引き出されていた。しかし、これに限定するものではなく、同一方向から正極外部端子125及び負極外部端子135を引き出す構成としてもよい。またこの場合、容器146において、各外部端子125,135が設けられている側の外縁部分146aに対応して、切刃161を設けてもよい。あるいは、各外部端子125,135が設けられている側とは反対側(外部端子125,135が設けられていない側)の外縁部分146aに対応して、切刃161を設けてもよい。勿論、各外部端子125,135が設けられている側の外縁部分146a及びその反対側の外縁部分146aに対応して、スタックプレート112の対向する2辺となる位置に、それぞれ切刃161を設けてもよい。このようにしても、内圧上昇により膨張した容器146を確実に開裂させることができる。
 ・上記実施の形態では、切刃161を金属製の部材にて構成していたが、これ以外にセラミック部材や樹脂部材などを用いて構成してもよい。また、図18に示す蓄電モジュール110Bのように、樹脂材料からなるスタックプレート112Aに一体的に切刃161Aを形成してもよい。このようにすると、スタックプレート112と切刃161とを別部材で構成する場合と比較して、部品数を削減することができる。そのため、蓄電モジュール110Bの部品コストを抑えることができる。
 ・上記実施形態では、本発明をリチウムイオンキャパシタを備える蓄電モジュールとして具体化したが、金属ラミネートフィルムからなる容器146を備えるものであれば他のタイプの蓄電モジュールとして具体化することができる。例えば、電気二重層キャパシタやリチウムイオン二次電池などを備える蓄電モジュールとして本発明を具体化してもよい。
 次に、請求の範囲に記載された技術的思想のほかに、前述した第2の実施の形態によって把握される技術的思想を以下に列挙する。
 (1)手段6乃至11のいずれか1項に記載の手段において、前記切刃は、前記スタック部材において対向する2つの辺にそれぞれ設けられることを特徴とする内圧解放機構付き蓄電モジュール。
 (2)手段6乃至11のいずれか1項に記載の手段において、前記切刃は、前記スタック部材の開口縁に設けられていることを特徴とする内圧解放機構付き蓄電モジュール。
 (3)手段6乃至11のいずれか1項に記載の手段において、前記切刃の先端は、前記スタック部材の開口縁よりも引っ込んだ位置となるように配置されていることを特徴とする内圧解放機構付き蓄電モジュール。
 (4)手段6乃至11のいずれか1項に記載の手段において、前記切刃の刃部は、通常時において前記容器の表面から離間した状態で配置されていることを特徴とする内圧解放機構付き蓄電モジュール。
 (5)手段6乃至11のいずれか1項に記載の手段において、前記切刃は、刃部が前記スタック部材の積層方向を基準としてスタック部材中心方向に傾斜した状態で配置されていることを特徴とする内圧解放機構付き蓄電モジュール。
 (6)手段7において、前記切刃の基端側には固定穴が設けられ、前記スタック部材に設けられた突起に前記固定穴が嵌め込まれた状態で前記切刃が熱溶着により固定されることを特徴とする内圧解放機構付き蓄電モジュール。
 (7)手段8において、前記切刃は略Y字状を呈していることを特徴とする内圧解放機構付き蓄電モジュール。
 (8)手段6乃至11のいずれか1項に記載の手段において、前記スタック部材は、積層配置時において隣接する他のスタック部材に係止して相互の位置決めを図る位置決め突起を有することを特徴とする内圧解放機構付き蓄電モジュール。
 10…内圧解放機構付きリチウムイオンキャパシタ
 11…電極積層体
 21…正極
 31…負極
 41…セパレータ
 51…容器
 53…積層体収納部
 60…内圧解放機構
 61…固定部
 61a…一方の端部
 62…破断部
 110,110A,110B…内圧解放機構付き蓄電モジュール
 111…蓄電デバイス
 111a,111b…セル主面
 112,112A…スタック部材としてのスタックプレート
 121…正極
 125…正極外部端子
 131…負極
 135…負極外部端子
 145…電極積層体
 146…容器
 146a…外縁部分
 161,161A…切刃
 162…刃部
 163…板状部材

Claims (10)

  1.  正極と負極とを積層してなる電極積層体を電解液とともに金属ラミネートフィルムからなる容器内に密封封止してなり、前記正極及び前記負極にそれぞれ連結された外部端子が前記容器から突出して露呈している蓄電デバイスであって、
     前記容器において前記電極積層体を収納する積層体収納部よりも外周側の部位を挟み込んだ状態で固定される固定部と、前記固定部から延設され、ガス発生時に変形した前記容器に当接してその容器を破断させる破断部とを有する内圧解放機構を備えたことを特徴とする内圧解放機構付き蓄電デバイス。
  2.  前記固定部は、前記容器の外周端部を挟み込むU字状の部材であり、前記破断部は、前記U字状の部材における一方の端部にて前記容器と対向するよう設けられる切刃状の部材であることを特徴とする請求項1に記載の内圧解放機構付き蓄電デバイス。
  3.  前記破断部は、ガス発生前の未変形の前記容器に対して非接触の状態で設けられていることを特徴とする請求項1または2に記載の内圧解放機構付き蓄電デバイス。
  4.  前記内圧解放機構は、前記容器よりも硬い部材からなることを特徴とする請求項1乃至3のいずれか1項に記載の内圧解放機構付き蓄電デバイス。
  5.  正極と負極とを積層してなる電極積層体を電解液とともに金属ラミネートフィルムからなる容器内に密封封止してなり、前記正極及び前記負極にそれぞれ連結された外部端子が前記容器から突出して露呈している複数枚の蓄電デバイスと、
     デバイス主面同士を重ね合わせた状態で積層配置した前記蓄電デバイスの間に介在される枠状のスタック部材と
    を備え、前記複数枚の蓄電デバイスが電気的に直列または並列に接続された蓄電モジュールであって、
     内圧上昇により膨張した前記容器の外縁部分に接触して前記容器を開裂させる切刃を、内圧解放機構として前記スタック部材に設けたことを特徴とする内圧解放機構付き蓄電モジュール。
  6.  前記切刃は、金属製の部材であり、樹脂材料からなる前記スタック部材に固定されていることを特徴とする請求項5に記載の内圧解放機構付き蓄電モジュール。
  7.  前記切刃は、2箇所に刃部を有する板状部材を2つに折り曲げるとともに、前記2つの刃部が隣接する2つの蓄電デバイスのそれぞれを向くように形成されていることを特徴とする請求項6に記載の内圧解放機構付き蓄電モジュール。
  8.  前記切刃は、樹脂材料からなる前記スタック部材に一体的に形成されていることを特徴とする請求項5に記載の内圧解放機構付き蓄電モジュール。
  9.  前記正極の外部端子及び前記負極の外部端子は、互いに反対方向に突出しているとともに、前記切刃は、前記正極の外部端子が突出している側の外縁部分及び前記負極の外部端子が突出している側の外縁部分に対応してそれぞれ設けられていることを特徴とする請求項5乃至8のいずれか1項に記載の内圧解放機構付き蓄電モジュール。
  10.  前記切刃は、三角山形に尖った槍先状の刃先形状を有していることを特徴とする請求項5乃至9のいずれか1項に記載の内圧解放機構付き蓄電モジュール。
PCT/JP2011/059772 2010-04-24 2011-04-14 内圧解放機構付きの蓄電デバイス、蓄電モジュール WO2011132723A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010100437A JP5455768B2 (ja) 2010-04-24 2010-04-24 蓄電デバイス
JP2010-100437 2010-04-24
JP2010118822A JP5404527B2 (ja) 2010-05-24 2010-05-24 防爆機能付き蓄電モジュール
JP2010-118822 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011132723A1 true WO2011132723A1 (ja) 2011-10-27

Family

ID=44834239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059772 WO2011132723A1 (ja) 2010-04-24 2011-04-14 内圧解放機構付きの蓄電デバイス、蓄電モジュール

Country Status (1)

Country Link
WO (1) WO2011132723A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200069752A (ko) * 2018-12-07 2020-06-17 주식회사 엘지화학 벤팅 부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
KR20200099392A (ko) * 2019-02-14 2020-08-24 주식회사 엘지화학 이차 전지 및 전지 모듈
EP3872923A1 (en) * 2020-02-25 2021-09-01 SK Innovation Co., Ltd. Battery module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141778A (ja) * 2005-11-22 2007-06-07 Toyota Motor Corp 電池と組電池
EP2131413A1 (en) * 2007-02-21 2009-12-09 NEC Corporation Packaged battery, stacked battery assembly, and film-covered battery
JP2010186786A (ja) * 2009-02-10 2010-08-26 Fdk Corp 蓄電デバイスおよび蓄電デバイスモジュール
JP2010225496A (ja) * 2009-03-25 2010-10-07 Jm Energy Corp ラミネート外装蓄電デバイスの安全機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141778A (ja) * 2005-11-22 2007-06-07 Toyota Motor Corp 電池と組電池
EP2131413A1 (en) * 2007-02-21 2009-12-09 NEC Corporation Packaged battery, stacked battery assembly, and film-covered battery
JP2010186786A (ja) * 2009-02-10 2010-08-26 Fdk Corp 蓄電デバイスおよび蓄電デバイスモジュール
JP2010225496A (ja) * 2009-03-25 2010-10-07 Jm Energy Corp ラミネート外装蓄電デバイスの安全機構

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522249B2 (en) 2018-12-07 2022-12-06 Lg Energy Solution, Ltd. Pouch-type battery cell including venting member and battery pack including the same
EP3739666A4 (en) * 2018-12-07 2021-04-28 Lg Chem, Ltd. BAG BATTERY CELL WITH VENTILATION ELEMENT AND BATTERY PACK WITH IT
CN111684621A (zh) * 2018-12-07 2020-09-18 株式会社Lg化学 包括通气构件的袋型电池单元和包括其的电池组
CN111684621B (zh) * 2018-12-07 2023-05-23 株式会社Lg新能源 包括通气构件的袋型电池单元和包括其的电池模块及电池组
KR20200069752A (ko) * 2018-12-07 2020-06-17 주식회사 엘지화학 벤팅 부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
KR102384308B1 (ko) 2018-12-07 2022-04-07 주식회사 엘지에너지솔루션 벤팅 부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
JP2021516436A (ja) * 2019-02-14 2021-07-01 エルジー・ケム・リミテッド 二次電池及び電池モジュール
KR20200099392A (ko) * 2019-02-14 2020-08-24 주식회사 엘지화학 이차 전지 및 전지 모듈
EP3754749A4 (en) * 2019-02-14 2021-06-23 Lg Chem, Ltd. SECONDARY BATTERY AND BATTERY MODULE
JP7098189B2 (ja) 2019-02-14 2022-07-11 エルジー エナジー ソリューション リミテッド 二次電池及び電池モジュール
CN111837255B (zh) * 2019-02-14 2022-09-02 株式会社Lg新能源 二次电池和电池模块
KR102379765B1 (ko) 2019-02-14 2022-03-29 주식회사 엘지에너지솔루션 이차 전지 및 전지 모듈
US11616269B2 (en) 2019-02-14 2023-03-28 Lg Energy Solution, Ltd. Secondary battery and battery module
CN111837255A (zh) * 2019-02-14 2020-10-27 株式会社Lg化学 二次电池和电池模块
EP3872923A1 (en) * 2020-02-25 2021-09-01 SK Innovation Co., Ltd. Battery module
US11710874B2 (en) 2020-02-25 2023-07-25 Sk On Co., Ltd. Battery module

Similar Documents

Publication Publication Date Title
CN106067525B (zh) 二次电池和具有该二次电池的电池模块
JP5037308B2 (ja) 二次電池モジュール
KR100906253B1 (ko) 과전류의 인가시 파괴되는 파단부가 형성되어 있는전극단자를 포함하고 있는 이차전지
EP2602840B1 (en) Secondary battery pouch having improved stability, pouch-type secondary battery using same, and medium- or large-sized battery pack
EP3276703B1 (en) Pouch-type secondary battery including electrode lead having current limiting function
KR100899281B1 (ko) 안정적인 전극리드-전극 탭 결합부로 이루어진 전극조립체및 이를 포함하고 있는 전기화학 셀
EP3246966B1 (en) Pouch-type secondary battery including electrode lead having electrical current limiting function
CN103069615B (zh) 叠层型电池
US8557420B2 (en) Secondary battery having tab with blowing agent and manufacturing method thereof
KR101156955B1 (ko) 안전성이 향상된 전극조립체 및 이를 포함하는 이차전지
KR101367751B1 (ko) 이차 전지 및 그 제조 방법
KR20080005623A (ko) 이차전지용 안전부재
EP1928045A1 (en) Secondary battery module
JP2010186786A (ja) 蓄電デバイスおよび蓄電デバイスモジュール
US20140127541A1 (en) Cylindrical secondary battery and battery system
KR20140087773A (ko) 안정성이 향상된 파우치형 이차전지
KR20160111614A (ko) 실링부에 벤팅부를 포함하고 있는 전지셀
JP5455768B2 (ja) 蓄電デバイス
KR20210135141A (ko) 소화부가 구비된 전지 모듈
WO2011132723A1 (ja) 内圧解放機構付きの蓄電デバイス、蓄電モジュール
JP5404527B2 (ja) 防爆機能付き蓄電モジュール
KR20160147145A (ko) 이차전지 및 이를 포함하는 배터리 모듈
JP2012156404A (ja) 防爆機能付き蓄電デバイス
KR101752869B1 (ko) 리튬 이차 전지
JP5561697B2 (ja) 防爆機能付き蓄電セル、防爆機能付き蓄電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772055

Country of ref document: EP

Kind code of ref document: A1