WO2011132660A1 - Exhaust gas treatment system having carbon dioxide removal device - Google Patents

Exhaust gas treatment system having carbon dioxide removal device Download PDF

Info

Publication number
WO2011132660A1
WO2011132660A1 PCT/JP2011/059599 JP2011059599W WO2011132660A1 WO 2011132660 A1 WO2011132660 A1 WO 2011132660A1 JP 2011059599 W JP2011059599 W JP 2011059599W WO 2011132660 A1 WO2011132660 A1 WO 2011132660A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption
exhaust gas
tower
amine
boiler
Prior art date
Application number
PCT/JP2011/059599
Other languages
French (fr)
Japanese (ja)
Inventor
島村 潤
祥悟 盛
斎藤 隆行
尾田 直己
一彦 梶川
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Publication of WO2011132660A1 publication Critical patent/WO2011132660A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an exhaust gas treatment system having a carbon dioxide removal device, and more particularly to an exhaust gas treatment system that removes carbon dioxide in combustion exhaust gas using an aqueous solution of amines as an absorbent of carbon dioxide.
  • the de-CO 2 facility consists of a denitration device 2, an air heater 3, an electrostatic precipitator 4, a wet desulfurization device 5, a press clubber 10, a CO 2 absorption tower 20, and a regeneration unit that are sequentially provided along the exhaust gas flow path from the boiler 1. It is composed of a tower 40 and a reboiler 60.
  • the exhaust gas generated by burning coal, etc., in the boiler 1 is introduced into the denitration device 2, and after NOx (nitrogen oxide) contained in the gas is decomposed and removed, the temperature is adjusted to 200 to 160 ° C by the air heater 3.
  • the press clubber 10 is composed of an absorbent 11 to be supplied into the system, a circulation pump 14 for circulating the absorbent, a cooler 15 for cooling the circulating absorbent, and a spray section 16 for spraying the absorbent in countercurrent contact with the exhaust gas. It is configured.
  • the SO 2 contained in the exhaust gas from the wet desulfurizer outlet is contained in an amount of about 40 ppm to 80 ppm, but the press clubber removed SO 2 that is a deterioration factor of the amine absorption liquid as much as possible (about 1 to several ppm at the press clubber outlet). Thereafter, it is introduced into the absorption tower 20 as the outlet gas 18.
  • the absorption tower 20 has a packed bed 21 that absorbs CO 2 in the exhaust gas into the amine absorption liquid, an absorbent spray portion 22 provided above it, and the temperature rises due to exothermic reaction by absorbing the CO 2 in the exhaust gas.
  • a demister 26 is installed in the upper part of the washing unit, and the mist of the absorbing solution that has passed through the washing unit is removed.
  • the process gas 37 discharged from the absorption tower outlet is introduced into a chimney inlet duct for discharge from a chimney (not shown).
  • the amine absorbing liquid that has absorbed CO 2 is sent from the liquid reservoir at the bottom of the absorption tower 20 through the absorption tower extraction pump 33 through the regeneration tower liquid supply pipe 35 and sent to the regeneration tower 40 to be packed in the middle of the regeneration tower 41.
  • CO 2 contained in the amine absorbing liquid is degassed.
  • the degassed CO 2 gas is entrained in the gas by the water washing section 43, and the mist that has passed through the water washing section is collected by the demister 45, and is discharged as CO 2 gas 46 from the upper part of the regeneration tower.
  • the CO 2 gas is cooled by a cooler 47 and separated into gas and condensed water by a CO 2 separator 48.
  • the CO 2 gas is introduced into a CO 2 liquefaction facility (not shown), and the condensed water is drained. It is supplied to the washing spray section 44 by the pump 50.
  • the amine liquid from which CO 2 has been degassed is stored in the regeneration tower liquid reservoir 51 and then sent to the reboiler 60 through the reboiler liquid supply pipe 52. Inside the reboiler 60, heat transfer pipes and the like are installed.
  • the amine solution is indirectly heated by the steam 62 supplied by the steam supply pipe 61, so that the steam generated inside the reboiler 60 passes through the steam supply pipe 65.
  • the absorption liquid extracted from the liquid reservoir at the lower part of the regeneration tower passes through the regeneration tower liquid extraction pipe 66, is cooled by the heat exchanger 34 and the cooler 31, and is then introduced into the absorption tower 20.
  • the steam 62 used in the reboiler 60 becomes steam drain in the heat transfer tube, is discharged to the condensed water drum 67, is mixed with the spray cooling water 68, and is sufficiently cooled to less than 100 ° C.
  • the steam drain 71 that is free from the risk of flushing in the return pipe is returned to the boiler 1 by the condensed water pump 69.
  • the spray cooling water 68 equivalent to the amount of steam is required.
  • An object of the present invention is to maintain a steam balance of the entire power generation system by adopting a new equipment and method for boiler steam cooling in a CO 2 removal equipment, and to efficiently use boiler heat, thereby reducing CO 2.
  • the purpose is to improve the efficiency of the removal equipment and thus the entire power generation system.
  • the present inventor uses the amine absorption liquid supplied to the regeneration tower 40 as a refrigerant without using the spray cooling water 68 to cool the drain of the condensed water drum 67, and generates power.
  • the condenser of the steam turbine equipment attached to the boiler 1 as the cooling water of the cooler 31 of the regeneration tower extraction pipe 66
  • the problem of heat recovery of the heat exchanger 34 was also solved. That is, the invention claimed in the present application is as follows.
  • An exhaust gas treatment system having a heat transfer tube to which steam is supplied and a condensed water drum for condensing the steam discharged from the heat transfer tube and recovering it as a steam drain, the amine absorption extracted from the CO 2 absorption tower
  • a heat transfer tube for circulating a liquid as a refrigerant in the condensed water drum
  • An exhaust gas treatment system provided with a flow rate adjustment valve for absorbing liquid passing through a heat transfer tube.
  • the boiler has steam turbine equipment and its condenser, and uses boiler water at the outlet of the condenser as a refrigerant for a cooler that cools the absorption liquid circulating in the CO 2 absorption tower.
  • the steam balance of the power generation system including the CO 2 removal facility can be maintained and can be stably operated, and the amine absorption discharged from the absorption tower to the refrigerant that cools the steam drain used in the reboiler.
  • the liquid By using the liquid, the sensible heat of the amine absorption liquid in the regeneration tower can be increased, and the amount of steam supplied to the CO 2 removal facility can be reduced.
  • FIG. 1 is an explanatory diagram of an exhaust gas treatment system including a CO 2 removal facility according to an embodiment of the present invention. Explanatory drawing of the waste gas processing system which shows the 2nd Example of this invention. Explanatory drawing of an exhaust gas treatment system including conventional CO 2 removal equipment.
  • FIG. 1 is an explanatory diagram of an exhaust gas treatment system including a CO 2 removal facility showing an embodiment of the present invention.
  • This system consists of a denitration device 2, an air heater 3, an electrostatic precipitator 4, a wet desulfurization device 5, a press clubber 10, a CO 2 absorption tower 20, and a CO 2 absorption tower, which are sequentially installed along the exhaust gas flow path of the boiler 1.
  • It mainly comprises a regeneration tower 40 that desorbs absorbed CO 2 and regenerates the amine absorption liquid, and a reboiler 60 attached to the regeneration tower 40.
  • Exhaust gas generated by burning coal or the like in the boiler 1 is introduced into the denitration device 2, and NOx (nitrogen oxide) contained in the gas is decomposed and removed.
  • NOx nitrogen oxide
  • the temperature of the gas discharged from the denitration device 2 is adjusted to 200 to 160 ° C. by the air heater 3 and then the dust is removed by the electric dust collector 4. Dust gas is supplied to the wet desulfurization system 5 SO 2 is removed, after removed as much as possible the remaining SO 2 in the press scrubber 10, is introduced into the CO 2 absorber 20.
  • the press clubber 10 is contained in the exhaust gas at the outlet of the wet desulfurization unit about 40ppm to 80ppm, and removes SO 2 that causes deterioration of the amine absorption liquid as much as possible to about 1 to several ppm at the outlet of the press clubber.
  • the inside of the absorption tower 20 generates heat when the CO 2 in the exhaust gas is absorbed by the absorbing liquid, the packed bed 21 that absorbs the CO 2 in the exhaust gas into the amine absorption liquid, the absorption liquid spray part 22 that sprays the absorption liquid, and the absorption liquid.
  • the CO 2 gas 23 whose temperature has risen due to the reaction is cooled and washed with water, and the water washing part 24 and the water washing spray part 25 for washing the amine absorbing liquid entrained in the exhaust gas, and the water washing water reservoir part 27 for collecting the water washed with water
  • the cooler 28 cools the circulating flush water and the flush pump 29 circulates the flush water.
  • a demister 26 is installed on the upper part of the washing spray part, and the mist of the absorbing liquid that has passed through the washing part 24 is removed.
  • the processing gas 37 discharged from the top of the absorption tower 20 is discharged out of the system from a chimney not shown in the figure.
  • the amine absorption liquid that has absorbed CO 2 is extracted from the liquid reservoir at the bottom of the absorption tower 20 by the absorption tower extraction pump 33, and part of the condensed water is condensed by the branched heat transfer tube 70 before entering the heat exchanger 34.
  • the heat is exchanged with the drain of the steam 62 through the heat transfer tube 70 after being sent to the drum 67 and then returned to the original pipe through the return heat transfer tube 70.
  • the amine absorption liquid flow rate sent to the condensed water drum 67 is controlled by the flow rate adjusting valve 72 in order to control the temperature of the condensed water drum outlet drain 71.
  • the amine absorption liquid is joined from the heat transfer tube 70 to the regeneration tower liquid supply pipe 35, then passes through the heat exchanger 34, is introduced into the regeneration tower 40, and is sprayed from the spray section 42 above the packed bed 41, and the packed bed 41 CO 2 contained in the amine absorbing liquid is degassed by coming into gas-liquid contact with the vapor rising from the lower part of the gas.
  • the degassed CO 2 gas is entrained in the gas by the water washing section 43, and the mist containing amine that has passed through the water washing section is collected by the demister 45, and is discharged as CO 2 gas 46 from the upper part of the regeneration tower.
  • the CO 2 gas is cooled by a cooler 47 and separated into gas and condensed water by a CO 2 separator 48.
  • the CO 2 gas is introduced into a CO 2 liquefaction facility (not shown), and the condensed water is drained. It is supplied to the washing spray section 44 by the pump 50.
  • the amine absorption liquid from which CO 2 has been degassed is stored in the regeneration tower liquid reservoir 51 and then sent to the reboiler 60 through the reboiler liquid supply pipe 52.
  • a steam supply pipe 61 is arranged as a heat transfer pipe. After the amine absorbing liquid is indirectly heated by the steam passing through the reboiler 60, it is returned from the reboiler 60 to the regeneration tower 40. Further, the absorption liquid extracted from the liquid reservoir at the lower part of the regeneration tower 40 passes through the regeneration tower liquid extraction pipe 66, is cooled by the heat exchanger 34 and the cooler 31, and is then introduced into the absorption tower 20.
  • the steam 62 of the heat transfer tube in the reboiler 60 becomes steam drain and is discharged to the condensed water drum 67. Therefore, the steam drain is sufficiently cooled to less than 100 ° C. by exchanging heat with the amine absorbing liquid passing through the heat transfer tube 70.
  • the outlet drain 71 of the condensed water drum which is free from the risk of flushing, is returned to the boiler 1 by a condensed water pump 69 through a return pipe (not shown).
  • the flow rate of the absorption liquid in the heat transfer tube 70 can be adjusted by the amine flow rate adjustment valve A72 and the amine flow rate adjustment valve B73.
  • the temperature of the condensed water drum outlet drain 71 is detected by a thermometer (not shown),
  • the flow rate control valves 72 and 73 can be adjusted so as to reach a predetermined temperature.
  • the inlet pipe of the heat exchanger 34 is branched into a heat transfer pipe 70, and the heat transfer pipe 70 is used as a heat exchange pipe with the drain water of the condensed water drum 67 of the regeneration tower 40, and then the original heat exchanger.
  • the return pipe returning to the inlet of 34 the temperature of the amine absorbing liquid introduced into the regeneration tower 40 can be increased, and the amount of steam supplied to the regeneration tower can be reduced.
  • the heat transfer pipe 70 is installed in the condensate water drum 67, and the amine absorption liquid is passed as a refrigerant in the condensate water drum 67, thereby cooling the drain of the steam 62 without the spray cooling water 68 (FIG. 3).
  • the use of an absorption liquid of the amine discharged from the absorption tower 20 (absorption tower extraction pump 33) as a refrigerant can contribute to an increase in the temperature of the amine absorption solution in the regeneration tower 40. This also reduces the amount of heat supplied from the reboiler 60, leading to a reduction in the amount of heat in the entire CO 2 absorption system.
  • the steam absorption of about 60 to 60 ° C. discharged from the absorption tower 20 is cooled to about 85 to 90 ° C.
  • the spray cooling water 68 can be reduced to 0, and the recovered heat can be supplied to the regeneration tower 40.
  • FIG. 2 is an explanatory view of an exhaust gas treatment system showing a second embodiment of the present invention adapted to such a demand.
  • 1 is different from the system of FIG. 1 in that a bypass pipe and a bypass valve 68 are provided to connect the upstream side and the downstream side of the heat exchanger 34 provided in the middle of the extraction pipe 66 of the regeneration tower 40.
  • the cooling water of the cooler 31 provided in the amine liquid return pipe 66 to the absorption tower 20 the flow rate of the regenerative amine liquid (lean amine liquid) flowing through is controlled to adjust the heat exchange amount. This is because the outlet boiler water 32 of the condenser 82 of the turbine equipment attached to the boiler 1 is used.
  • This turbine equipment includes a steam turbine 81 and a generator 90 connected to the boiler 1, a condenser 82, a condensate pump 83, a low-pressure feed water heater 84, as shown in a broken-line frame in FIG. 2.
  • the outlet boiler water of the condenser 82 is indicated by reference numeral 32.
  • 85 is seawater
  • 86 and 87 are extracted steam
  • 88 is condensate
  • 89 is water supply.
  • the amine absorbent supplied to the regeneration tower 20 can flow down in a stable state.
  • the temperature can be controlled to 100 ° C or lower.
  • boiler water 32 having a temperature of about 35 ° C. at the outlet of the condenser 82 is used as cooling water for the cooler 31, and the boiler water 32 whose temperature has risen in the cooler 31 has a feed water temperature of 50 to 60 ° C. in the low-pressure feed water heater 84. It is returned to the place where it becomes and is supplied to the boiler.
  • the temperature rise of the cooling water in the cooler 31 of FIG. 1 was 5 ° C. (35 ° C. ⁇ 40 ° C.), but in this embodiment of FIG. Therefore, since this temperature rise can be used as the temperature rise of boiler feed water, an improvement in turbine output can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

The disclosed exhaust gas treatment system having a CO2 removal device maintains the steam balance of the entire generator system by adopting a new device and method for boiler steam cooling in the CO2 removal device, and improves the efficiency of the CO2 removal device, and thus of the entire generator system, by means of the efficient use of boiler heat. The disclosed exhaust gas treatment system is provided with a CO2 absorption tower which brings an amine absorption solution into contact with the exhaust gas containing CO2 emitted from a boiler; an absorption solution regeneration tower which heats the absorption solution which has absorbed said CO2, and detaches the CO2; an absorption solution circulation passage which removes the CO2-detached absorption solution via a regeneration tower removal pipe, and, after cooling with a heat exchanger and a cooler, cycles said solution to the CO2 absorption tower; and a reboiler which, after removing a portion of the aforementioned CO2-detached absorption solution and raising the temperature, returns the same to the aforementioned regeneration tower. The disclosed system is further provided with a heat exchanger tube for cycling inside the condensate drum the amine absorption solution removed from the aforementioned CO2 absorption tower as a coolant, and a flow control valve for the absorption solution flowing through said heat exchanger tube.

Description

二酸化炭素除去装置を有する排ガス処理システムExhaust gas treatment system having carbon dioxide removal device
 本発明は、二酸化炭素除去装置を有する排ガス処理システムに係り、さらに詳しくはアミン類の水溶液を二酸化炭素の吸収剤として使用する、燃焼排ガス中の二酸化炭素を除去する排ガス処理システムに関するものである。 The present invention relates to an exhaust gas treatment system having a carbon dioxide removal device, and more particularly to an exhaust gas treatment system that removes carbon dioxide in combustion exhaust gas using an aqueous solution of amines as an absorbent of carbon dioxide.
 近年、火力発電設備やボイラ設備では、多量の石炭及び重油等を燃料として用いており、大気汚染、地球温暖化の見地から、二酸化炭素(以下、CO2と記す)の大気への大量排出が問題になっており、CO2排出抑制について世界的に検討されている。CO2の分離回収技術のひとつとして、アルカノールアミンのようなアミン類の水溶液(以下、アミン吸収液という)を用いてCO2を吸収除去する化学吸収法が広く知られている。
 従来のCO2除去設備の一例を図3に示す。該脱CO2設備は、ボイラ1からの排ガス流路に沿って順次設けられた脱硝装置2、エアヒータ3、電気集塵装置4、湿式脱硫装置5、プレスクラバー10、CO2吸収塔20、再生塔40およびリボイラ60等から構成される。ボイラ1で石炭等を燃焼することにより発生した排ガスは、脱硝装置2に導入され、ガスに含まれるNOx(窒素酸化物)が分解除去された後、エアヒータ3で200~160℃に温度調整された後、電気集塵装置4で煤塵が除去され、さらに湿式脱硫装置5でSO2を除去後、プレスクラバー10で残りのSO2がガス中濃度1ppm以下になるように高効率脱硫が行われる。プレスクラバーは、系内に供給する吸収剤11、吸収液を循環する循環ポンプ14、循環する吸収液を冷却する冷却器15、吸収液を排ガスと向流接触するようにスプレするスプレ部16から構成されている。湿式脱硫装置出口排ガスに含まれるSO2が40ppm~80ppm程度含まれているが、プレスクラバーでは、アミン吸収液の劣化要因であるSO2を極力除去(プレスクラバー出口で1~数ppm程度)した後、出口ガス18として吸収塔20に導入される。吸収塔20は、排ガス中のCO2をアミン吸収液に吸収する充填層21と、その上方に設けられた吸収液スプレ部22と、排ガス中のCO2を吸収して発熱反応により温度が上昇した脱CO2ガス23を冷却、水洗する水洗部24および水洗スプレ部25と、水洗した水を溜める水洗水溜め部27と、循環する水洗水を冷却する冷却器28と、水洗水を循環する水洗ポンプ29とから主に構成される。また、水洗部上部にはデミスタ26が設置されて、水洗部をくぐり抜けた吸収液のミストが除去される。吸収塔出口から排出される処理ガス37は、図には示していない煙突から排出するために煙突入口ダクトに導入される。
In recent years, thermal power generation facilities and boiler facilities use a large amount of coal, heavy oil, etc. as fuel, and from the viewpoint of air pollution and global warming, a large amount of carbon dioxide (hereinafter referred to as CO 2 ) has been released into the atmosphere. There is a problem, and CO 2 emission control is being studied worldwide. As one of CO 2 separation and recovery techniques, a chemical absorption method in which CO 2 is absorbed and removed using an aqueous solution of an amine such as alkanolamine (hereinafter referred to as an amine absorbing solution) is widely known.
An example of conventional CO 2 removal equipment is shown in FIG. The de-CO 2 facility consists of a denitration device 2, an air heater 3, an electrostatic precipitator 4, a wet desulfurization device 5, a press clubber 10, a CO 2 absorption tower 20, and a regeneration unit that are sequentially provided along the exhaust gas flow path from the boiler 1. It is composed of a tower 40 and a reboiler 60. The exhaust gas generated by burning coal, etc., in the boiler 1 is introduced into the denitration device 2, and after NOx (nitrogen oxide) contained in the gas is decomposed and removed, the temperature is adjusted to 200 to 160 ° C by the air heater 3. After that, dust is removed by the electrostatic precipitator 4, and after removing SO 2 by the wet desulfurizer 5, high-efficiency desulfurization is performed by the press clubber 10 so that the remaining SO 2 has a concentration of 1 ppm or less in the gas. . The press clubber is composed of an absorbent 11 to be supplied into the system, a circulation pump 14 for circulating the absorbent, a cooler 15 for cooling the circulating absorbent, and a spray section 16 for spraying the absorbent in countercurrent contact with the exhaust gas. It is configured. The SO 2 contained in the exhaust gas from the wet desulfurizer outlet is contained in an amount of about 40 ppm to 80 ppm, but the press clubber removed SO 2 that is a deterioration factor of the amine absorption liquid as much as possible (about 1 to several ppm at the press clubber outlet). Thereafter, it is introduced into the absorption tower 20 as the outlet gas 18. The absorption tower 20 has a packed bed 21 that absorbs CO 2 in the exhaust gas into the amine absorption liquid, an absorbent spray portion 22 provided above it, and the temperature rises due to exothermic reaction by absorbing the CO 2 in the exhaust gas. Rinsing unit 24 for cooling and washing the de-CO 2 gas 23, washing spray unit 25, washing water reservoir 27 for storing the washed water, cooler 28 for cooling the circulating washing water, and circulating the washing water Mainly composed of a flush pump 29. In addition, a demister 26 is installed in the upper part of the washing unit, and the mist of the absorbing solution that has passed through the washing unit is removed. The process gas 37 discharged from the absorption tower outlet is introduced into a chimney inlet duct for discharge from a chimney (not shown).
 CO2を吸収したアミン吸収液は、吸収塔20下部の液溜めから吸収塔抜出しポンプ33により再生塔液供給配管35を通り、再生塔40に送液されて再生塔中間部にある充填層41の上部においてスプレ部42から噴霧される吸収液が下部から上昇する蒸気と気液接触することにより、アミン吸収液に含まれたCO2が脱気される。次いで、脱気したCO2ガスは水洗部43によりガスに同伴され、水洗部をすり抜けたミストをデミスタ45で捕集し、CO2ガス46として再生塔上部より排出される。また、CO2ガスは冷却器47によって冷却されてCO2分離器48でガスと凝縮した水に分離され、CO2ガスは図に示していないCO2液化設備へ導入され、凝縮した水はドレンポンプ50によって水洗スプレ部44に供給される。一方、CO2を脱気したアミン液は、再生塔液溜め部51に溜められた後、リボイラ液供給配管52を通ってリボイラ60に送液される。リボイラ60内部には、伝熱管等が設置されており、アミン液が、蒸気供給配管61によって供給される蒸気62で間接加熱されることにより、リボイラ60内部で発生した蒸気が蒸気供給配管65を通って、再生塔40に供給される。また、再生塔下部の液溜めから抜出された吸収液は、再生塔液抜出し配管66を通り、熱交換器34および冷却器31で冷却された後、吸収塔20に導入される。リボイラ60にて使用した蒸気62は伝熱管中で蒸気ドレンとなり、凝縮水ドラム67へと排出され、噴霧冷却水68と混合され100℃未満に十分冷却される。戻り配管中でのフラッシングの恐れのなくなった蒸気ドレン71は凝縮水ポンプ69にてボイラ1へと返送される。 The amine absorbing liquid that has absorbed CO 2 is sent from the liquid reservoir at the bottom of the absorption tower 20 through the absorption tower extraction pump 33 through the regeneration tower liquid supply pipe 35 and sent to the regeneration tower 40 to be packed in the middle of the regeneration tower 41. When the absorbing liquid sprayed from the spray part 42 comes into gas-liquid contact with the vapor rising from the lower part in the upper part of the gas, CO 2 contained in the amine absorbing liquid is degassed. Next, the degassed CO 2 gas is entrained in the gas by the water washing section 43, and the mist that has passed through the water washing section is collected by the demister 45, and is discharged as CO 2 gas 46 from the upper part of the regeneration tower. The CO 2 gas is cooled by a cooler 47 and separated into gas and condensed water by a CO 2 separator 48. The CO 2 gas is introduced into a CO 2 liquefaction facility (not shown), and the condensed water is drained. It is supplied to the washing spray section 44 by the pump 50. On the other hand, the amine liquid from which CO 2 has been degassed is stored in the regeneration tower liquid reservoir 51 and then sent to the reboiler 60 through the reboiler liquid supply pipe 52. Inside the reboiler 60, heat transfer pipes and the like are installed. The amine solution is indirectly heated by the steam 62 supplied by the steam supply pipe 61, so that the steam generated inside the reboiler 60 passes through the steam supply pipe 65. Then, it is supplied to the regeneration tower 40. Further, the absorption liquid extracted from the liquid reservoir at the lower part of the regeneration tower passes through the regeneration tower liquid extraction pipe 66, is cooled by the heat exchanger 34 and the cooler 31, and is then introduced into the absorption tower 20. The steam 62 used in the reboiler 60 becomes steam drain in the heat transfer tube, is discharged to the condensed water drum 67, is mixed with the spray cooling water 68, and is sufficiently cooled to less than 100 ° C. The steam drain 71 that is free from the risk of flushing in the return pipe is returned to the boiler 1 by the condensed water pump 69.
 上記従来技術では、凝縮水ドラム67において、上記で述べた蒸気62のドレンを冷却するために蒸気量に匹敵する噴霧冷却水68が必要であった。具体的には、約140℃の蒸気62のドレン1t/hを85~90℃まで冷却するのに必要な約30℃の噴霧冷却水68の量は以下のようになる。
(140 kcal/kg -85 kcal/kg)/(85 kcal/kg - 30 kcal/kg) x 1 = 1 t/h
 したがって発電システム全体での蒸気バランスを保つため、冷却された蒸気ドレンの一部を廃棄しなければならず、ボイラ水ならびに熱の効率的な利用につき考慮されていなかった。したがって、廃水処理設備を大型化せざるを得ない上に、ボイラ熱を排水とともに廃棄せざるを得なかった。
In the above prior art, in order to cool the drain of the steam 62 described above in the condensate water drum 67, the spray cooling water 68 equivalent to the amount of steam is required. Specifically, the amount of spray cooling water 68 at about 30 ° C. required for cooling 1 t / h of steam 62 at about 140 ° C. to 85 to 90 ° C. is as follows.
(140 kcal / kg -85 kcal / kg) / (85 kcal / kg-30 kcal / kg) x 1 = 1 t / h
Therefore, in order to maintain the steam balance in the entire power generation system, a part of the cooled steam drain had to be discarded, and no consideration was given to the efficient use of boiler water and heat. Therefore, the wastewater treatment facility has to be enlarged and the boiler heat must be discarded together with the waste water.
 本発明の課題は、CO2除去設備でのボイラ蒸気冷却に新たな設備ならびに方法を採ることにより、発電システム全体の蒸気バランスを維持するとともに、ボイラ熱を効率的に利用することにより、CO2除去設備、ひいては発電システム全体の効率を向上することにある。 An object of the present invention is to maintain a steam balance of the entire power generation system by adopting a new equipment and method for boiler steam cooling in a CO 2 removal equipment, and to efficiently use boiler heat, thereby reducing CO 2. The purpose is to improve the efficiency of the removal equipment and thus the entire power generation system.
 上記課題を達成するため、本発明者は、凝縮水ドラム67のドレンを冷却するために、噴霧冷却水68を用いずに、再生塔40に供給されるアミン吸収液を冷媒として使用し、発電システム全体の蒸気バランスを維持することを考えた。さらに、上記システムでは、熱交換器34出口のアミン吸収液の温度が上昇することに鑑み、再生塔抜出し配管66の冷却器31の冷却水として、ボイラ1に付設したスチームタービン設備の復水器出口のボイラ水を使用することにより、上記熱交換器34の熱回収の問題も解決した。すなわち、本願で特許請求される発明は以下のとおりである。
(1)ボイラから排出される二酸化炭素(CO2)を含む排ガスをアミン吸収液と接触させて排ガス中のCO2を吸収するCO2吸収塔と、該CO2を吸収した吸収液を加熱してCO2を離脱させ、吸収液を再生させる再生塔と、CO2離脱後の吸収液を再生塔抜出し配管を介して抜き出し、その途中に設けられた、熱交換器および冷却器で冷却した後、CO2吸収塔に循環する吸収液循環経路と、前記CO2離脱後の吸収液の一部を抜き出して昇温した後、前記再生塔へ戻すリボイラとを備え、該リボイラは、加熱用の蒸気が供給される伝熱管と、該伝熱管を出た蒸気を凝縮させ、蒸気ドレンとして回収する凝縮水ドラムとを有する排ガス処理システムであって、前記CO2吸収塔から抜き出されたアミン吸収液を冷媒として前記凝縮水ドラム内に循環させる伝熱管と、該伝熱管を通る吸収液の流量調節弁を設けたことを特徴とする排ガス処理システム。
(2)前記再生塔抜出し配管の途中に設けられた前記熱交換器の前流側と後流側を接続するバイパス配管を設け、該バイパス配管に前記吸収塔に循環されるアミン吸収液の流量を調節する流量調節弁を設けたことを特徴とする(1)に記載のシステム。
(3)前記ボイラはスチームタービン設備およびその復水器を有し、前記CO2吸収塔に循環する吸収液を冷却する冷却器の冷媒として、前記復水器出口のボイラ水を使用することを特徴とする(1)または(2)に記載のシステム。
In order to achieve the above object, the present inventor uses the amine absorption liquid supplied to the regeneration tower 40 as a refrigerant without using the spray cooling water 68 to cool the drain of the condensed water drum 67, and generates power. We thought about maintaining the vapor balance of the entire system. Further, in the above system, in consideration of the temperature of the amine absorbing liquid at the outlet of the heat exchanger 34 rising, the condenser of the steam turbine equipment attached to the boiler 1 as the cooling water of the cooler 31 of the regeneration tower extraction pipe 66 By using the boiler water at the outlet, the problem of heat recovery of the heat exchanger 34 was also solved. That is, the invention claimed in the present application is as follows.
(1) heating the CO 2 absorption tower for carbon dioxide (CO 2) and the exhaust gas is contacted with the amine absorbing solution containing absorbed CO 2 contained in exhaust gas discharged from the boiler, the absorption liquid which has absorbed the CO 2 After the CO 2 is released and the absorption liquid is regenerated, the absorption liquid after the CO 2 separation is extracted through the regeneration tower extraction pipe, and cooled by a heat exchanger and a cooler provided in the middle. A recirculator that circulates to the CO 2 absorption tower, and a reboiler that draws a part of the absorption liquid after the CO 2 separation and raises the temperature and then returns to the regeneration tower. An exhaust gas treatment system having a heat transfer tube to which steam is supplied and a condensed water drum for condensing the steam discharged from the heat transfer tube and recovering it as a steam drain, the amine absorption extracted from the CO 2 absorption tower A heat transfer tube for circulating a liquid as a refrigerant in the condensed water drum, An exhaust gas treatment system provided with a flow rate adjustment valve for absorbing liquid passing through a heat transfer tube.
(2) A bypass pipe connecting the upstream side and the downstream side of the heat exchanger provided in the middle of the regeneration tower extraction pipe is provided, and the flow rate of the amine absorbing liquid circulated to the absorption tower in the bypass pipe The system according to (1), wherein a flow control valve for adjusting the flow rate is provided.
(3) The boiler has steam turbine equipment and its condenser, and uses boiler water at the outlet of the condenser as a refrigerant for a cooler that cools the absorption liquid circulating in the CO 2 absorption tower. The system according to (1) or (2), which is characterized.
 本発明によれば、CO2除去設備を含む発電システムの蒸気バランスが維持されて安定に運転することができ、また、リボイラに使用する蒸気ドレンを冷却する冷媒に吸収塔から排出されるアミン吸収液を使用することにより、再生塔内のアミン吸収液の顕熱を上昇させることができ、CO2除去設備へ供給する蒸気量を低減させることができる。また脱CO2設備のリボイラに使用する蒸気ドレンの冷却器冷媒に、吸収塔から排出されるアミン吸収液を使用する構成に加え、再生塔から吸収塔へ供給するアミン吸収液の冷却水に、復水器出口のボイラ水を使用することにより、アミン吸収液冷却のための冷却水が不要となると同時に、ボイラに供給する給水の温度を上昇させることが可能となるため、タービン出力の向上を図ることができる。 According to the present invention, the steam balance of the power generation system including the CO 2 removal facility can be maintained and can be stably operated, and the amine absorption discharged from the absorption tower to the refrigerant that cools the steam drain used in the reboiler. By using the liquid, the sensible heat of the amine absorption liquid in the regeneration tower can be increased, and the amount of steam supplied to the CO 2 removal facility can be reduced. In addition to the configuration that uses the amine absorption liquid discharged from the absorption tower as a refrigerant for the vapor drain used in the reboiler of the de-CO 2 facility, in the cooling water of the amine absorption liquid supplied from the regeneration tower to the absorption tower, By using the boiler water at the condenser outlet, the cooling water for cooling the amine absorption liquid becomes unnecessary, and at the same time the temperature of the feed water supplied to the boiler can be raised, so that the turbine output can be improved. Can be planned.
本発明の一実施例を示すCO2除去設備を含む、排ガス処理システムの説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of an exhaust gas treatment system including a CO 2 removal facility according to an embodiment of the present invention. 本発明の第2の実施例を示す排ガス処理システムの説明図。Explanatory drawing of the waste gas processing system which shows the 2nd Example of this invention. 従来のCO2除去設備を含む、排ガス処理システムの説明図。Explanatory drawing of an exhaust gas treatment system including conventional CO 2 removal equipment.
 図1は、本発明の一実施例を示すCO2除去設備を含む、排ガス処理システムの説明図である。このシステムは、ボイラ1の排ガス流路に沿って順次設けられた脱硝装置2、エアヒータ3、電気集塵装置4、湿式脱硫装置5、プレスクラバー10およびCO2吸収塔20、CO2吸収塔で吸収したCO2を脱離すると共にアミン吸収液を再生する再生塔40、および再生塔40に付設されたリボイラ60から主として構成される。ボイラ1で石炭等を燃焼することにより生成した排ガスは、脱硝装置2に導入され、ガスに含まれるNOx(窒素酸化物)が分解除去される。該脱硝装置2から排出されたガスはエアヒータ3で200~160℃に温度調整された後、電気集塵装置4で煤塵を除去される。除塵されたガスは、湿式脱硫装置5に供給されてSO2が除去され、プレスクラバー10で残りのSO2を極力除去した後、CO2吸収塔20に導入される。 FIG. 1 is an explanatory diagram of an exhaust gas treatment system including a CO 2 removal facility showing an embodiment of the present invention. This system consists of a denitration device 2, an air heater 3, an electrostatic precipitator 4, a wet desulfurization device 5, a press clubber 10, a CO 2 absorption tower 20, and a CO 2 absorption tower, which are sequentially installed along the exhaust gas flow path of the boiler 1. It mainly comprises a regeneration tower 40 that desorbs absorbed CO 2 and regenerates the amine absorption liquid, and a reboiler 60 attached to the regeneration tower 40. Exhaust gas generated by burning coal or the like in the boiler 1 is introduced into the denitration device 2, and NOx (nitrogen oxide) contained in the gas is decomposed and removed. The temperature of the gas discharged from the denitration device 2 is adjusted to 200 to 160 ° C. by the air heater 3 and then the dust is removed by the electric dust collector 4. Dust gas is supplied to the wet desulfurization system 5 SO 2 is removed, after removed as much as possible the remaining SO 2 in the press scrubber 10, is introduced into the CO 2 absorber 20.
 プレスクラバー10は、湿式脱硫装置出口排ガスに40ppm~80ppm程度含まれ、アミン吸収液の劣化要因となるSO2をプレスクラバー出口で1~数ppm程度になるように極力除去するもので、系内に供給する吸収液11と、吸収液を循環する循環ポンプ14と、循環する吸収液を冷却する冷却器15と、吸収液を排ガスと向流接触するようにスプレするスプレ部16とから構成される。
 吸収塔20内は、排ガス中のCO2をアミン吸収液に吸収する充填層21と、吸収液をスプレする吸収液スプレ部22と、吸収液により排ガス中のCO2が吸収された際、発熱反応により温度が上昇した脱CO2ガス23を冷却、水洗すると共に、排ガス中に同伴するアミン吸収液を洗浄する水洗部24および水洗スプレ部25と、水洗した水を溜める水洗水溜め部27と、循環する水洗水を冷却する冷却器28と、水洗水を循環する水洗ポンプ29とで構成される。また、水洗スプレ部上部にはデミスタ26が設置され、水洗部24をくぐり抜けた吸収液のミストが除去される。吸収塔20の塔頂から排出される処理ガス37は、図には示していない煙突から系外に排出される。
The press clubber 10 is contained in the exhaust gas at the outlet of the wet desulfurization unit about 40ppm to 80ppm, and removes SO 2 that causes deterioration of the amine absorption liquid as much as possible to about 1 to several ppm at the outlet of the press clubber. The absorption liquid 11 supplied to the refrigerant, the circulation pump 14 that circulates the absorption liquid, the cooler 15 that cools the absorption liquid that circulates, and the spray unit 16 that sprays the absorption liquid so as to make countercurrent contact with the exhaust gas. The
The inside of the absorption tower 20 generates heat when the CO 2 in the exhaust gas is absorbed by the absorbing liquid, the packed bed 21 that absorbs the CO 2 in the exhaust gas into the amine absorption liquid, the absorption liquid spray part 22 that sprays the absorption liquid, and the absorption liquid. The CO 2 gas 23 whose temperature has risen due to the reaction is cooled and washed with water, and the water washing part 24 and the water washing spray part 25 for washing the amine absorbing liquid entrained in the exhaust gas, and the water washing water reservoir part 27 for collecting the water washed with water The cooler 28 cools the circulating flush water and the flush pump 29 circulates the flush water. Further, a demister 26 is installed on the upper part of the washing spray part, and the mist of the absorbing liquid that has passed through the washing part 24 is removed. The processing gas 37 discharged from the top of the absorption tower 20 is discharged out of the system from a chimney not shown in the figure.
 CO2を吸収したアミン吸収液は、吸収塔20下部の液溜めから吸収塔抜出しポンプ33により抜き出され、その一部が熱交換器34に入る前に、分岐した伝熱管70により、凝縮水ドラム67へ送られ、該伝熱管70を介して蒸気62のドレンと熱交換した後、戻りの伝熱管70を通って元の配管に戻される。凝縮水ドラム67へ送られるアミン吸収液流量は、凝縮水ドラム出口ドレン71の温度を制御するため、流量調整弁72によって制御される。次いでアミン吸収液は、伝熱管70から再生塔液供給配管35に合流した後、熱交換器34を通り、再生塔40に導入され、充填層41上部のスプレ部42から噴霧され、充填層41の下部から上昇する蒸気と気液接触することにより、アミン吸収液に含まれるCO2が脱気される。次いで、脱気したCO2ガスは、水洗部43によりガスに同伴され、水洗部をすり抜けたアミンを含むミストがデミスタ45で捕集され、CO2ガス46として再生塔上部より排出される。また、CO2ガスは冷却器47によって冷却されてCO2分離器48でガスと凝縮した水に分離され、CO2ガスは図に示していないCO2液化設備へ導入され、凝縮した水はドレンポンプ50によって水洗スプレ部44に供給される。一方、CO2を脱気したアミン吸収液は、再生塔液溜め部51に溜められた後、リボイラ液供給配管52を通ってリボイラ60に送液される。リボイラ60内には、蒸気供給配管61が伝熱管として配置されており、その中を通る蒸気によりアミン吸収液が間接加熱された後、リボイラ60から再生塔40に戻される。また、再生塔40下部の液溜めから抜き出された吸収液は、再生塔液抜出し配管66を通り、熱交換器34および冷却器31で冷却された後、吸収塔20に導入される。 The amine absorption liquid that has absorbed CO 2 is extracted from the liquid reservoir at the bottom of the absorption tower 20 by the absorption tower extraction pump 33, and part of the condensed water is condensed by the branched heat transfer tube 70 before entering the heat exchanger 34. The heat is exchanged with the drain of the steam 62 through the heat transfer tube 70 after being sent to the drum 67 and then returned to the original pipe through the return heat transfer tube 70. The amine absorption liquid flow rate sent to the condensed water drum 67 is controlled by the flow rate adjusting valve 72 in order to control the temperature of the condensed water drum outlet drain 71. Next, the amine absorption liquid is joined from the heat transfer tube 70 to the regeneration tower liquid supply pipe 35, then passes through the heat exchanger 34, is introduced into the regeneration tower 40, and is sprayed from the spray section 42 above the packed bed 41, and the packed bed 41 CO 2 contained in the amine absorbing liquid is degassed by coming into gas-liquid contact with the vapor rising from the lower part of the gas. Next, the degassed CO 2 gas is entrained in the gas by the water washing section 43, and the mist containing amine that has passed through the water washing section is collected by the demister 45, and is discharged as CO 2 gas 46 from the upper part of the regeneration tower. The CO 2 gas is cooled by a cooler 47 and separated into gas and condensed water by a CO 2 separator 48. The CO 2 gas is introduced into a CO 2 liquefaction facility (not shown), and the condensed water is drained. It is supplied to the washing spray section 44 by the pump 50. On the other hand, the amine absorption liquid from which CO 2 has been degassed is stored in the regeneration tower liquid reservoir 51 and then sent to the reboiler 60 through the reboiler liquid supply pipe 52. In the reboiler 60, a steam supply pipe 61 is arranged as a heat transfer pipe. After the amine absorbing liquid is indirectly heated by the steam passing through the reboiler 60, it is returned from the reboiler 60 to the regeneration tower 40. Further, the absorption liquid extracted from the liquid reservoir at the lower part of the regeneration tower 40 passes through the regeneration tower liquid extraction pipe 66, is cooled by the heat exchanger 34 and the cooler 31, and is then introduced into the absorption tower 20.
 リボイラ60内の伝熱管の蒸気62は、蒸気ドレンとなり、凝縮水ドラム67へと排出される。そこで蒸気ドレンは伝熱管70内を通るアミン吸収液と熱交換することにより、100℃未満に十分冷却される。冷却後、フラッシングの恐れのなくなった凝縮水ドラムの出口ドレン71は凝縮水ポンプ69により、戻り配管(図示せず)を通ってボイラ1へと返送される。
上記伝熱管70の吸収液の流量は、アミン流量調節弁A72およびアミン流量調節弁B73により調節することができ、例えば凝縮水ドラム出口ドレン71の温度を温度計(図示せず)で検出し、所定の温度になるように、前記流量調節弁72および73を調節することができる。このように熱交換器34の入口配管を分岐して伝熱管70とし、この伝熱管70を再生塔40の凝縮水ドラム67のドレン水との熱交換用配管とした後、元の熱交換器34の入口に戻す戻り配管としたことにより、再生塔40に導入されるアミン吸収液の温度を高め、再生塔に供給する蒸気量を低減することができる。
The steam 62 of the heat transfer tube in the reboiler 60 becomes steam drain and is discharged to the condensed water drum 67. Therefore, the steam drain is sufficiently cooled to less than 100 ° C. by exchanging heat with the amine absorbing liquid passing through the heat transfer tube 70. After cooling, the outlet drain 71 of the condensed water drum, which is free from the risk of flushing, is returned to the boiler 1 by a condensed water pump 69 through a return pipe (not shown).
The flow rate of the absorption liquid in the heat transfer tube 70 can be adjusted by the amine flow rate adjustment valve A72 and the amine flow rate adjustment valve B73. For example, the temperature of the condensed water drum outlet drain 71 is detected by a thermometer (not shown), The flow rate control valves 72 and 73 can be adjusted so as to reach a predetermined temperature. In this way, the inlet pipe of the heat exchanger 34 is branched into a heat transfer pipe 70, and the heat transfer pipe 70 is used as a heat exchange pipe with the drain water of the condensed water drum 67 of the regeneration tower 40, and then the original heat exchanger. By using the return pipe returning to the inlet of 34, the temperature of the amine absorbing liquid introduced into the regeneration tower 40 can be increased, and the amount of steam supplied to the regeneration tower can be reduced.
 上記実施例によれば、 凝縮水ドラム67に伝熱管70を設置し、その中にアミン吸収液を冷媒として通すことにより、蒸気62のドレンを噴霧冷却水68(図3)なしで冷却することが可能になり、そのため蒸気ドレンを廃棄する必要がなくなる。また冷媒に吸収塔20(吸収塔抜き出しポンプ33)から排出されるアミンを吸収液を使用することにより、再生塔40におけるアミン吸収溶液の温度上昇に寄与することができる。これはまたリボイラ60から供給する熱量を減らすことにもなり、CO2吸収システム全体の熱量低減につながる。具体的には、約140℃の蒸気62のドレンを吸収塔20(吸収塔抜き出しポンプ33)から排出される約50~60℃のアミン吸収液を冷媒として冷却し、約85~90℃にすることで、噴霧冷却水68を0にするとともに、回収した熱量を再生塔40に供給することができる。 According to the above embodiment, the heat transfer pipe 70 is installed in the condensate water drum 67, and the amine absorption liquid is passed as a refrigerant in the condensate water drum 67, thereby cooling the drain of the steam 62 without the spray cooling water 68 (FIG. 3). Thus eliminating the need to dispose of steam drains. Further, the use of an absorption liquid of the amine discharged from the absorption tower 20 (absorption tower extraction pump 33) as a refrigerant can contribute to an increase in the temperature of the amine absorption solution in the regeneration tower 40. This also reduces the amount of heat supplied from the reboiler 60, leading to a reduction in the amount of heat in the entire CO 2 absorption system. Specifically, the steam absorption of about 60 to 60 ° C. discharged from the absorption tower 20 (absorption tower extraction pump 33) is cooled to about 85 to 90 ° C. Thus, the spray cooling water 68 can be reduced to 0, and the recovered heat can be supplied to the regeneration tower 40.
 上記の本発明においては、発電システム全体の蒸気バランスが維持されることにより安定な運転が可能となるものの、熱交換器34出口のアミン吸収液の温度が上昇するため、熱交換器及びその冷却水量が増加するという問題があった。一方、このような脱CO2設備の設置における不可避の問題として、ボイラに付設したタービン設備における多量の蒸気の抽気、及び脱CO2設備による所要動力の増加、といったことによるプラント効率の低下があり、そのため、脱CO2設備の導入後も、プラント効率を設置以前の水準に極力近づけるようにすることが望ましい。 In the present invention described above, stable operation is possible by maintaining the vapor balance of the entire power generation system. However, since the temperature of the amine absorbent at the outlet of the heat exchanger 34 rises, the heat exchanger and its cooling There was a problem that the amount of water increased. On the other hand, as an inevitable problem in the installation of such a de-CO 2 equipment, there is reduction in plant efficiency due to bleeding of a large amount of steam, and an increase in the power required by the de-CO 2 equipment, such as in the turbine equipment was attached to the boiler , therefore, after the introduction of the de CO 2 facility, it is desirable to close as possible to plant efficiency installed in the previous levels.
 図2は、このような要望に適応した本発明の第2の実施例を示す排ガス処理システムの説明図である。図1のシステムと異なる点は、再生塔40の抜出し配管66の途中に設けられた熱交換器34の前流側と後流側を接続するバイパス配管及びバイパス弁68を設け、熱交換器34を流れる再生アミン液(リーンアミン液)の流量を制御し、熱交換量の調整を行うようにしたこと、および吸収塔20へのアミン液戻り配管66に設けられた冷却器31の冷却水として、ボイラ1に付設されたタービン設備の復水器82の出口ボイラ水32を利用したことである。このタービン設備は、図2の破線の枠内に示されるように、ボイラ1に接続された蒸気タービン81および発電機90と、復水器82と、復水ポンプ83と、低圧給水加熱器84と、高圧給水加熱器91とからなり、復水器82の出口ボイラ水は符号32で示される。なお、85は海水、86および87は抽気蒸気、88は復水、89は給水をそれぞれ示す。上記のように冷却器31における冷却水として、ボイラ1の復水器82出口のボイラ水32を使用することにより、冷却器31のための新たな用水が不要となる。同時に、冷却器31入口のアミン液温度が高くなっているため、ボイラ水の温度を上昇させることが可能となり、タービン出力の向上を図ることができる。 FIG. 2 is an explanatory view of an exhaust gas treatment system showing a second embodiment of the present invention adapted to such a demand. 1 is different from the system of FIG. 1 in that a bypass pipe and a bypass valve 68 are provided to connect the upstream side and the downstream side of the heat exchanger 34 provided in the middle of the extraction pipe 66 of the regeneration tower 40. As the cooling water of the cooler 31 provided in the amine liquid return pipe 66 to the absorption tower 20, the flow rate of the regenerative amine liquid (lean amine liquid) flowing through is controlled to adjust the heat exchange amount. This is because the outlet boiler water 32 of the condenser 82 of the turbine equipment attached to the boiler 1 is used. This turbine equipment includes a steam turbine 81 and a generator 90 connected to the boiler 1, a condenser 82, a condensate pump 83, a low-pressure feed water heater 84, as shown in a broken-line frame in FIG. 2. And the outlet boiler water of the condenser 82 is indicated by reference numeral 32. Note that 85 is seawater, 86 and 87 are extracted steam, 88 is condensate, and 89 is water supply. As described above, by using the boiler water 32 at the outlet of the condenser 82 of the boiler 1 as the cooling water in the cooler 31, no new water for the cooler 31 is required. At the same time, since the amine liquid temperature at the inlet of the cooler 31 is high, the temperature of the boiler water can be raised, and the turbine output can be improved.
 具体的には、熱交換器34に流入するアミン吸収液の流量を制御して交換熱量を調節することにより、再生塔20に供給されるアミン吸収液を安定した状態で流下させることが可能な100℃以下の温度に制御することができる。また冷却器31の冷却水として復水器82出口の約35℃のボイラ水32を用い、冷却器31で温度が上昇したボイラ水32は、低圧給水加熱器84において給水温度が50~60℃となる箇所に戻され、ボイラに供給される。具体的には、図1の冷却器31での冷却水の温度上昇は5℃(35℃→40℃)であったが、図2の本実施例においては約8℃(35℃→43℃)となリ、この温度上昇分をボイラ給水の温度上昇とすることが可能であるため、タービン出力の向上が期待できる。 Specifically, by controlling the flow rate of the amine absorbent flowing into the heat exchanger 34 and adjusting the amount of exchange heat, the amine absorbent supplied to the regeneration tower 20 can flow down in a stable state. The temperature can be controlled to 100 ° C or lower. In addition, boiler water 32 having a temperature of about 35 ° C. at the outlet of the condenser 82 is used as cooling water for the cooler 31, and the boiler water 32 whose temperature has risen in the cooler 31 has a feed water temperature of 50 to 60 ° C. in the low-pressure feed water heater 84. It is returned to the place where it becomes and is supplied to the boiler. Specifically, the temperature rise of the cooling water in the cooler 31 of FIG. 1 was 5 ° C. (35 ° C. → 40 ° C.), but in this embodiment of FIG. Therefore, since this temperature rise can be used as the temperature rise of boiler feed water, an improvement in turbine output can be expected.
1‥ボイラ、20‥吸収塔、40‥再生塔、60‥リボイラ、61‥蒸気供給配管、62‥蒸気、64‥リボイラ液抜出し配管、65‥蒸気供給配管、66‥再生塔液抜出し配管、67‥凝縮水ドラム、70‥伝熱管、71‥凝縮水ドラムドレン、72‥アミン流量調整弁A、73‥アミン流量調整弁B DESCRIPTION OF SYMBOLS 1 ... Boiler, 20 ... Absorption tower, 40 ... Regeneration tower, 60 ... Reboiler, 61 ... Steam supply piping, 62 ... Steam, 64 ... Reboiler liquid extraction piping, 65 ... Steam supply piping, 66 ... Regeneration tower liquid extraction piping, 67 ... Condensate water drum, 70 ... Heat transfer tube, 71 ... Condensate water drum drain, 72 ... Amine flow rate adjustment valve A, 73 ... Amine flow rate adjustment valve B

Claims (3)

  1.  ボイラから排出される二酸化炭素(CO2)を含む排ガスをアミン吸収液と接触させて排ガス中のCO2を吸収するCO2吸収塔と、該CO2を吸収した吸収液を加熱してCO2を離脱させ、吸収液を再生させる再生塔と、CO2離脱後の吸収液を再生塔抜出し配管を介して抜き出し、その途中に設けられた、熱交換器および冷却器で冷却した後、CO2吸収塔に循環する吸収液循環経路と、前記CO2離脱後の吸収液の一部を抜き出して昇温した後、前記再生塔へ戻すリボイラとを備え、該リボイラは、加熱用の蒸気が供給される伝熱管と、該伝熱管を出た蒸気を凝縮させ、蒸気ドレンとして回収する凝縮水ドラムとを有する排ガス処理システムであって、前記CO2吸収塔から抜き出されたアミン吸収液を冷媒として前記凝縮水ドラム内に循環させる伝熱管と、該伝熱管を通る吸収液の流量調節弁を設けたことを特徴とする排ガス処理システム。 And the CO 2 absorber to carbon dioxide exhaust gas containing (CO 2) is contacted with an amine absorption liquid absorbs CO 2 in the exhaust gas discharged from the boiler to heat the absorbing liquid that has absorbed the CO 2 CO 2 And a regeneration tower for regenerating the absorption liquid, and the absorption liquid after the separation of CO 2 is extracted through a regeneration tower extraction pipe and cooled with a heat exchanger and a cooler provided in the middle, and then CO 2 An absorption liquid circulation path that circulates to the absorption tower, and a reboiler that draws a part of the absorption liquid after the CO 2 separation and raises the temperature, and then returns to the regeneration tower. The reboiler is supplied with heating steam. An exhaust gas treatment system having a heat transfer tube and a condensed water drum that condenses the steam discharged from the heat transfer tube and collects it as a steam drain, wherein the amine absorption liquid extracted from the CO 2 absorption tower is used as a refrigerant. A heat transfer tube to be circulated in the condensed water drum, and the heat transfer tube An exhaust gas treatment system, characterized in that a flow rate adjustment valve for absorbing liquid passing through is provided.
  2.  前記再生塔抜出し配管の途中に設けられた前記熱交換器の前流側と後流側を接続するバイパス配管を設け、該バイパス配管に前記吸収塔に循環されるアミン吸収液の流量を調節する流量調節弁を設けたことを特徴とする請求項1に記載のシステム。 A bypass pipe connecting the upstream side and the downstream side of the heat exchanger provided in the middle of the regeneration tower extraction pipe is provided, and the flow rate of the amine absorbing liquid circulated to the absorption tower is adjusted in the bypass pipe. The system according to claim 1, further comprising a flow control valve.
  3.  前記ボイラはスチームタービン設備およびその復水器を有し、前記CO2吸収塔に循環する吸収液を冷却する冷却器の冷媒として、前記復水器出口のボイラ水を使用することを特徴とする請求項1または2に記載のシステム。 The boiler has steam turbine equipment and its condenser, and uses boiler water at the outlet of the condenser as a refrigerant for a cooler that cools the absorption liquid circulating to the CO 2 absorption tower. The system according to claim 1 or 2.
PCT/JP2011/059599 2010-04-20 2011-04-19 Exhaust gas treatment system having carbon dioxide removal device WO2011132660A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010096848 2010-04-20
JP2010-096848 2010-04-20
JP2010178438A JP2011240321A (en) 2010-04-20 2010-08-09 Exhaust gas treatment system having carbon dioxide removal device
JP2010-178438 2010-08-09

Publications (1)

Publication Number Publication Date
WO2011132660A1 true WO2011132660A1 (en) 2011-10-27

Family

ID=44834179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059599 WO2011132660A1 (en) 2010-04-20 2011-04-19 Exhaust gas treatment system having carbon dioxide removal device

Country Status (2)

Country Link
JP (1) JP2011240321A (en)
WO (1) WO2011132660A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2832420A3 (en) * 2013-07-29 2015-06-10 Kabushiki Kaisha Toshiba Carbon dioxide separating and capturing system and method of operating same
AU2013300693B2 (en) * 2012-08-09 2015-11-12 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system
CN115253608A (en) * 2022-08-31 2022-11-01 西安热工研究院有限公司 Flue gas carbon capture system and method for coal-fired power generating unit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582960B2 (en) * 2010-10-22 2014-09-03 株式会社東芝 Carbon dioxide separation and recovery system and reboiler heat input measurement method
US8961665B2 (en) 2012-03-28 2015-02-24 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system
JP2013226487A (en) * 2012-04-24 2013-11-07 Mitsubishi Heavy Ind Ltd Co2 recovery device and co2 recovery method
US10195561B2 (en) * 2012-09-20 2019-02-05 Mitsubishi Heavy Industries Engineering, Ltd. Steam supply system and CO2 recovery unit including the same
JP6361909B2 (en) 2014-03-26 2018-07-25 三菱重工エンジニアリング株式会社 CO2 recovery device and CO2 recovery method
JP2018038979A (en) * 2016-09-08 2018-03-15 株式会社東芝 Separation and recovery device and separation and recovery method of carbon dioxide, and liquid capturing device
CN108499316B (en) * 2018-02-24 2020-04-07 天津普洛仙科技有限公司 Pre-cooling device of washing tower
JP7177734B2 (en) * 2019-03-20 2022-11-24 三菱重工エンジニアリング株式会社 ABSORBENT LIQUID REGENERATION DEVICE, CO2 RECOVERY DEVICE, AND METHOD OF MODIFYING ABSORBENT LIQUID REGENERATION DEVICE
JP2022109656A (en) * 2021-01-15 2022-07-28 株式会社東芝 Carbon dioxide recovery system and operation method for carbon dioxide recovery system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121357U (en) * 1990-03-27 1991-12-12
JPH07232033A (en) * 1994-02-22 1995-09-05 Kansai Electric Power Co Inc:The Method for removing carbon dioxide in combustion exhaust gas
JP2002530187A (en) * 1998-11-23 2002-09-17 フルー・コーポレイシヨン Split process and its equipment
JP2005254212A (en) * 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121357U (en) * 1990-03-27 1991-12-12
JPH07232033A (en) * 1994-02-22 1995-09-05 Kansai Electric Power Co Inc:The Method for removing carbon dioxide in combustion exhaust gas
JP2002530187A (en) * 1998-11-23 2002-09-17 フルー・コーポレイシヨン Split process and its equipment
JP2005254212A (en) * 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013300693B2 (en) * 2012-08-09 2015-11-12 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system
EP2832420A3 (en) * 2013-07-29 2015-06-10 Kabushiki Kaisha Toshiba Carbon dioxide separating and capturing system and method of operating same
US9464842B2 (en) 2013-07-29 2016-10-11 Kabushiki Kaisha Toshiba Carbon dioxide separating and capturing system and method of operating same
CN115253608A (en) * 2022-08-31 2022-11-01 西安热工研究院有限公司 Flue gas carbon capture system and method for coal-fired power generating unit

Also Published As

Publication number Publication date
JP2011240321A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011132660A1 (en) Exhaust gas treatment system having carbon dioxide removal device
US9399939B2 (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
JP5450540B2 (en) Boiler heat recovery system with CO2 recovery device
JP6072055B2 (en) Exhaust gas treatment system and method
JP5639814B2 (en) Thermal power generation system with CO2 removal equipment
US8828130B2 (en) Exhaust gas treatment system equipped with carbon dioxide removal device
WO2013039041A1 (en) Co2 recovery device and co2 recovery method
JP5638262B2 (en) CO2 recovery apparatus and CO2 recovery method
JP5959882B2 (en) Carbon dioxide chemical absorption system in combustion exhaust gas
WO2012014831A1 (en) Discharge gas treatment system having co2 removal equipment
JP5738137B2 (en) CO2 recovery apparatus and CO2 recovery method
JP5478921B2 (en) Smoke exhaust treatment apparatus and method
JP2011194292A (en) Method and apparatus for treating exhaust gas
EA025463B1 (en) Method for capturing cofrom a cocontaining gas
WO2012067101A1 (en) Method and device for controlling system for chemically absorbing carbon dioxide
CA2785287C (en) Heat recovery system and heat recovery method of co2 recovery unit
JP6173734B2 (en) Exhaust gas treatment system
JP6004821B2 (en) CO2 recovery apparatus and CO2 recovery method
AU2021331004A1 (en) Ammonia-based carbon dioxide abatement system and method, and direct contact cooler therefore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771995

Country of ref document: EP

Kind code of ref document: A1