WO2011132588A1 - 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール - Google Patents

太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール Download PDF

Info

Publication number
WO2011132588A1
WO2011132588A1 PCT/JP2011/059210 JP2011059210W WO2011132588A1 WO 2011132588 A1 WO2011132588 A1 WO 2011132588A1 JP 2011059210 W JP2011059210 W JP 2011059210W WO 2011132588 A1 WO2011132588 A1 WO 2011132588A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin layer
resin
solar cell
protective film
Prior art date
Application number
PCT/JP2011/059210
Other languages
English (en)
French (fr)
Inventor
篤史 渡邉
橋本 昌典
Original Assignee
テクノポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノポリマー株式会社 filed Critical テクノポリマー株式会社
Publication of WO2011132588A1 publication Critical patent/WO2011132588A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is excellent in adhesion to a filler part containing an ethylene / vinyl acetate copolymer composition, etc., embedding a solar cell element, heat resistance, flexibility, light reflectivity, and durability against a cooling cycle.
  • the present invention relates to a solar cell back surface protective film, a method for producing the same, and a solar cell module.
  • the solar cell module is a unit in which a large number of plate-like solar cell elements are arranged, these are wired in series and in parallel, and packaged to protect these elements. And this solar cell module usually uses a composition containing an ethylene / vinyl acetate copolymer having a high transparency and excellent moisture resistance by covering the surface of the solar cell element that is exposed to sunlight with a glass plate. Thus, the gap between the solar cell elements is filled to form a filler portion, and the back surface (the lower surface of the filler portion) is sealed with a solar cell back surface protective film.
  • back sheet for solar cells a polyester sheet containing titanium oxide is known in order to increase the reflectance of sunlight and increase the power generation efficiency of the solar cell (patent) Reference 1).
  • back surface protection sheet for solar cells excellent in light reflectivity using polyolefin resin is known (refer patent document 2).
  • the present invention has high light reflectivity, excellent heat resistance with suppressed thermal deformation, and embeds a solar cell element, adhesion to a filler part containing an ethylene / vinyl acetate copolymer composition, It aims at providing the back surface protection film for solar cells excellent in durability with respect to a heat cycle, flexibility, workability, and workability, its manufacturing method, and a solar cell module.
  • the present invention is shown below. 1.
  • the first resin layer contains a rubber-containing aromatic vinyl resin having a maximum glass transition temperature of 90 ° C. to 120 ° C. measured according to JIS K 7121, and a white colorant, and has a thickness.
  • the second resin layer contains a saturated polyester resin, has a thickness of 10 to 300 ⁇ m, and when left at 135 ° C. for 30 minutes, the rate of change in dimensions before and after that is ⁇ 0.5% or less.
  • a back protective film for solar cells which is a resin layer made of a certain film. 2.
  • the back surface protective film for solar cells as described in 2. 5.
  • a back surface protection for a solar cell comprising: a step of forming two films; and a step of bonding the first film containing the rubber-containing aromatic vinyl resin and the white colorant to the second film.
  • a method for producing a film 9.
  • a solar cell module comprising the solar cell back surface protective film according to any one of 1 to 7 above.
  • the reflectance of light on the surface of the first resin layer is high, the thermal deformation is suppressed, the heat resistance is excellent, the durability against the cold cycle is excellent, and the flexibility is further improved. And excellent adhesion to a member containing an ethylene / vinyl acetate copolymer, and good workability and handleability.
  • the surface of the first resin layer includes an ethylene / vinyl acetate copolymer, for example, by adhering it to a filler part that fills the gap between the solar cell elements, a photovoltaic module is improved. be able to.
  • the reflectance of the light can be further increased, and in the case of a solar cell module, the photoelectric conversion efficiency can be reliably improved.
  • light having a wavelength of 400 to 1,400 nm is radiated to the surface of the first resin layer in the back surface protective film for solar cells, when the reflectance with respect to this light is 50% or more, it is particularly excellent in reflectivity, It can be set as the back surface protection film for solar cells excellent in power generation efficiency.
  • a water vapor barrier layer is provided between the first resin layer and the second resin layer, the back surface for solar cells is excellent in water vapor barrier properties from the surface on the second resin layer side to the first resin layer side. It can be a protective film.
  • the water vapor barrier layer is made of a vapor deposition film having a film containing a metal and / or metal oxide formed on the surface thereof, the heat resistance (dimensional stability) in the back protective film for solar cell of the present invention. And it can have the outstanding water vapor
  • the thickness of the back surface protective film for solar cells of the present invention is 30 to 600 ⁇ m, it is easy to suppress heat, impact, etc. from the back surface and is excellent in flexibility.
  • multilayer film which have a specific structure and property can be manufactured efficiently. Since the solar cell module of the present invention comprises the solar cell back surface protective film of the present invention, it is suitable for outdoor use exposed to sunlight or wind and rain for a long period of time, and is excellent in power generation efficiency in the solar cell.
  • (co) polymerization means homopolymerization and copolymerization.
  • (meth) acryl means acryl and methacryl, and “(meth) acrylate” means acrylate and methacrylate.
  • the back surface protective film for solar cells of the present invention is a back surface protective film for solar cells comprising a first resin layer and a second resin layer disposed on the one surface side of the first resin layer. Illustrated in FIG. That is, the solar cell back surface protective film 1 of FIG. 1 is a laminated film including a first resin layer 11 and a second resin layer 12. Moreover, in the back surface protective film for solar cells of this invention, the schematic cross section in the case of providing a water vapor
  • the first resin layer includes a rubber-containing aromatic vinyl resin having a maximum glass transition temperature (hereinafter referred to as “Tg”) measured in accordance with JIS K 7121 of 90 ° C. to 120 ° C., and a white resin It is a resin layer containing a colorant, and is a layer that mainly reflects visible light. And since the said 1st resin layer contains a rubber-containing aromatic vinyl-type resin at least, the 1st resin layer and the filler containing an ethylene-vinyl acetate copolymer composition etc. which embed a solar cell element etc. Excellent adhesion to parts.
  • Tg maximum glass transition temperature
  • the rubber-containing aromatic vinyl resin is a rubber-reinforced aromatic vinyl resin obtained by polymerizing a vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubbery polymer ( Hereinafter referred to as “resin (A1)”), a copolymer comprising this resin (A1), a structural unit derived from an aromatic vinyl compound, and a structural unit derived from a vinyl cyanide compound (Hereinafter referred to as “copolymer (A2)”).
  • the content of the rubbery polymer contained in the rubber-containing aromatic vinyl resin is preferably 5 to 40% by mass, more preferably 8 to 30% by mass from the viewpoint of impact resistance and heat resistance in the molded product. %, More preferably 10 to 20% by mass, particularly preferably 12 to 18% by mass.
  • the composition constituting the first resin layer will be described as a first thermoplastic resin composition. That is, the first thermoplastic resin composition is a composition containing a rubber-containing aromatic vinyl resin and a white colorant, and if necessary, other resins or polymers (hereinafter, both) May also be referred to as “other resins”), additives, and the like.
  • first thermoplastic resin composition is a composition containing a rubber-containing aromatic vinyl resin and a white colorant, and if necessary, other resins or polymers (hereinafter, both) May also be referred to as “other resins”), additives, and the like.
  • the rubber-containing aromatic vinyl resin is composed of the resin (A1) or a combination of the resin (A1) and the copolymer (A2).
  • Each of the resin (A1) and the copolymer (A2) may contain one kind or two or more kinds.
  • all the resins (A1) or a mixture composed of all the resins (A1) and all the copolymers (A2) are subjected to thermal analysis using a differential scanning calorimeter or the like according to JIS K7121. Tg can be obtained.
  • the maximum temperature is 90 ° C. to 120 ° C., preferably 92 ° C. to 118 ° C.
  • the maximum temperature of the Tg is in the above range, not only is the adhesive property with the filler part embedding the solar cell element excellent, but the solar cell can be used for a long period of time in an environment where there is a great difference in temperature, for example. Even if used, deformation and the like are suppressed, and the durability is excellent.
  • the said temperature exceeds 120 degreeC, the durability in the heat cycle of the back surface protective film for solar cells will become inadequate.
  • heat resistance is inadequate when the said temperature is less than 90 degreeC.
  • This property relating to the rubber-containing aromatic vinyl resin is important in combination with the configuration of the second resin layer. "Durability in cooling cycle" is the result of the cooling cycle test described in [Example].
  • the back surface protective film for solar cells does not tear or the length is less than 1 mm. It means that there is.
  • the rubber-containing aromatic vinyl resin having the maximum Tg temperature all of the resin (A1) and the copolymer (A2) contained may have a Tg of 90 ° C. to 120 ° C. alone.
  • the resin or heavy resin having a Tg of less than 90 ° C. or more than 120 ° C. when measured alone. Coalescence may be included.
  • the resin (A1) is a vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubber polymer (hereinafter referred to as “rubber polymer (a1-1)”).
  • rubber polymer (a1-1) a rubber-reinforced aromatic vinyl resin obtained by polymerizing “vinyl monomer (a1-2)”, which is usually a vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound.
  • a copolymer resin obtained by graft copolymerization of the monomer (a1-2) with the rubbery polymer (a1-1), and an ungrafted component not grafted with the rubbery polymer (a1-1), that is, the remaining vinyl And (co) polymers based on the monomer (a1-2).
  • the rubbery polymer (a1-1) used for forming the resin (A1) is not particularly limited as long as it is rubbery at room temperature, and may be either a homopolymer or a copolymer.
  • the rubbery polymer (a1-1) may be a crosslinked polymer or a non-crosslinked polymer.
  • the rubbery polymer (a1-1) is not particularly limited, but conjugated diene rubber, hydrogenated conjugated diene rubber, ethylene / ⁇ -olefin copolymer rubber, acrylic rubber, silicone rubber, silicone rubber, Examples include acrylic composite rubber. These can be used alone or in combination of two or more. From the viewpoint of weather resistance, acrylic rubber, silicone rubber, silicone / acrylic composite rubber, ethylene / ⁇ -olefin copolymer rubber, hydrogenated conjugated diene rubber and the like are preferable.
  • the shape of the rubber polymer (a1-1) is not particularly limited, and may be particulate (spherical or substantially spherical), linear, curved or the like.
  • the volume average particle diameter is preferably 5 to 2,000 nm, more preferably 10 to 1,800 nm, and still more preferably 50 to 1,500 nm. If the volume average particle diameter is in the above range, the processability of the first thermoplastic resin composition and the impact resistance of the obtained first resin layer are excellent.
  • the volume average particle diameter can be measured by image analysis using an electron micrograph, a laser diffraction method, a light scattering method, or the like.
  • conjugated diene rubber examples include polybutadiene, butadiene / styrene random copolymer, butadiene / styrene block copolymer, butadiene / acrylonitrile copolymer, and the like. These can be used alone or in combination of two or more.
  • the conjugated diene rubber preferably has a Tg of ⁇ 20 ° C. or less from the viewpoints of flexibility, low temperature impact property and the like.
  • the acrylic rubber contains 80% by mass or more of structural units derived from an alkyl acrylate ester having an alkyl group with 2 to 8 carbon atoms based on the total amount of structural units constituting the acrylic rubber (co-). Polymers are preferred.
  • alkyl acrylate ester having 2 to 8 carbon atoms in the alkyl group examples include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, n-octyl acrylate, and 2-ethylhexyl acrylate. Etc. These may be used alone or in combination of two or more.
  • Preferred alkyl acrylates are n-butyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate.
  • acrylic rubber contains a structural unit derived from another monomer
  • other monomers include vinyl chloride, vinylidene chloride, acrylonitrile, vinyl ester, methacrylic acid alkyl ester, (meth) acrylic acid, Monofunctional monomers such as styrene; mono- or polyethylene glycol di (such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate ( Di- or triallyl compounds such as (meth) acrylate, divinylbenzene, diallyl phthalate, diallyl maleate, diallyl succinate, triallyl triazine, allyl compounds such as allyl (meth) acrylate, conjugated dienes such as 1,3-butadiene Crosslinkable monomer such as a compound, and the like.
  • the acrylic rubber preferably has a Tg of ⁇ 10 ° C. or less from the viewpoints of flexibility, low temperature impact resistance and the like.
  • the acrylic rubber having Tg is usually a copolymer containing a structural unit derived from the crosslinkable monomer.
  • the content of the structural unit derived from the crosslinkable monomer constituting the preferable acrylic rubber is preferably 0.01 to 10% by mass, more preferably 0.05 to 8% by mass with respect to the total amount of the structural unit. %, More preferably 0.1 to 5% by mass.
  • the volume average particle diameter of the acrylic rubber is preferably 5 to 500 nm, more preferably 10 to 450 nm, and still more preferably 20 to 400 nm from the viewpoints of flexibility, low-temperature impact properties, and the like.
  • the acrylic rubber is produced by a known method, but a preferred production method is an emulsion polymerization method.
  • the silicone rubber is preferably a rubber contained in latex in order to facilitate emulsion polymerization, which is a suitable method for producing a rubber-reinforced aromatic vinyl resin. Therefore, the silicone rubber is, for example, a polyorganosiloxane rubber produced by the method described in US Pat. Nos. 2,891,920, 3,294,725, etc. Can do.
  • the polyorganosiloxane rubber is obtained by, for example, shear-mixing organosiloxane and water in the presence of a sulfonic acid-based emulsifier such as alkylbenzene sulfonic acid or alkyl sulfonic acid using a homomixer or an ultrasonic mixer.
  • a sulfonic acid-based emulsifier such as alkylbenzene sulfonic acid or alkyl sulfonic acid using a homomixer or an ultrasonic mixer.
  • the silicone rubber contained in the latex obtained by the condensation method is preferable.
  • Alkylbenzenesulfonic acid is suitable because it acts as an emulsifier for organosiloxane and also as a polymerization initiator.
  • an alkylbenzene sulfonic acid metal salt, an alkyl sulfonic acid metal salt, or the like in combination because it has an effect of stably maintaining the silicone rubber when producing a rubber-reinforced aromatic vinyl resin.
  • the polymer end of the polyorganosiloxane rubber may be sealed with, for example, a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
  • a graft crossing agent and / or a crosslinking agent may be co-condensed within a range not impairing the target performance of the present invention. By using these, impact resistance can be improved.
  • the organosiloxane used in the above reaction is, for example, the general formula [R 1 m SiO (4-m) / 2 ] (wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group, and m is from 0 to 3 represents an integer of 3.).
  • the structure of this compound is linear, branched or cyclic, but is preferably an organosiloxane having a cyclic structure.
  • R 1 possessed by the organosiloxane that is, monovalent hydrocarbon groups include alkyl groups such as methyl group, ethyl group, propyl group and butyl group; aryl groups such as phenyl group and tolyl group; vinyl groups and allyl groups
  • alkenyl group such as: a group in which a part of hydrogen atoms bonded to carbon atoms in these hydrocarbon groups is substituted with a halogen atom, a cyano group, or the like; and at least one hydrogen atom in an alkyl group is substituted with a mercapto group Group and the like.
  • organosiloxane examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, and octaphenylcyclotetrasiloxane.
  • a cyclic compound such as a linear or branched organosiloxane. These can be used alone or in combination of two or more.
  • the organosiloxane may be a polyorganosiloxane condensed in advance, for example, having an Mw of about 500 to 10,000.
  • the organosiloxane is a polyorganosiloxane
  • the molecular chain terminal may be sealed with a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
  • the graft crossing agent is usually a compound having a carbon-carbon unsaturated bond and an alkoxysilyl group.
  • a compound having a carbon-carbon unsaturated bond and an alkoxysilyl group for example, p-vinylphenylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane, 3- (P-Vinylbenzoyloxy) propylmethyldimethoxysilane and the like.
  • the amount of the grafting agent used is usually 10 parts by mass or less, preferably 0.2 to 10 parts by mass, and more preferably 0.000 parts by mass when the total of the organosiloxane, the grafting agent and the crosslinking agent is 100 parts by mass. 5 to 5 parts by mass.
  • a polyorganosiloxane rubber obtained by using the graft crossing agent in an amount exceeding 10 parts by mass is used, the molecular weight of the copolymer resin after graft copolymerization is lowered, and as a result, sufficient impact resistance is obtained. It may not be obtained.
  • the oxidative deterioration is more likely to proceed than the double bond of the polyorganosiloxane rubber after grafting, and a resin (A1) having good weather resistance may not be obtained.
  • crosslinking agent examples include trifunctional crosslinking agents such as methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, and ethyltriethoxysilane, and tetrafunctional crosslinking agents such as tetraethoxysilane.
  • trifunctional crosslinking agents such as methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, and ethyltriethoxysilane
  • tetrafunctional crosslinking agents such as tetraethoxysilane.
  • a crosslinkable prepolymer obtained by condensation polymerization of these compounds in advance may be used. These may be used alone or in combination of two or more.
  • the amount of the crosslinking agent used is usually 10 parts by mass or less, preferably 5 parts by mass or less, more preferably 0.01 to 5 parts by mass, when the total of the organosiloxane, the grafting agent and the crosslinking agent is 100 parts by mass. Part.
  • gum obtained will be impaired and the flexibility of a film may fall.
  • the volume average particle diameter of the silicone rubber is usually 5 to 500 nm, preferably 10 to 400 nm, and more preferably 50 to 400 nm. This volume average particle diameter can be easily controlled by the amount of emulsifier and water used during production, the degree of dispersion when mixed using a homomixer or an ultrasonic mixer, or the method of charging the organosiloxane. If the volume average particle diameter exceeds 500 nm, the appearance may be inferior, such as a decrease in gloss.
  • the silicone / acrylic composite rubber is a rubbery polymer containing a polyorganosiloxane rubber and a polyalkyl (meth) acrylate rubber.
  • a preferable silicone-acrylic composite rubber is a composite rubber having a structure in which a polyorganosiloxane rubber and a polyalkyl (meth) acrylate rubber are intertwined with each other so that they cannot be separated.
  • the polyorganosiloxane rubber a copolymer obtained by copolymerizing an organosiloxane can be preferably used.
  • the organosiloxane include various reduced products having three or more members, such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, Tetramethyltetraphenylcyclotetrasiloxane and octaphenylcyclotetrasiloxane are preferred.
  • organosiloxanes can be used alone or in combination of two or more.
  • the content of the structural unit derived from the organosiloxane constituting the polyorganosiloxane rubber is preferably 50% by mass or more, more preferably 70% by mass or more based on the total amount of the structural unit.
  • the polyalkyl (meth) acrylate rubber is preferably methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, ethoxyethoxyethyl acrylate, methoxytripropylene glycol acrylate, 4-hydroxy It is a rubber obtained by (co) polymerizing a monomer containing a (meth) acrylic acid alkyl ester compound such as butyl acrylate, lauryl methacrylate, stearyl methacrylate and the like. These (meth) acrylic acid alkyl ester compounds can be used alone or in combination of two or more.
  • the monomers include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; vinyl cyanide compounds such as acrylonitrile and methacrylonitrile; methacrylic acid
  • vinyl monomers such as modified silicone and fluorine-containing vinyl compound may be contained in the range of 30% by mass or less.
  • the polyalkyl (meth) acrylate rubber is preferably a copolymer having two or more Tg since it can impart sufficient flexibility to the film.
  • silicone-acrylic composite rubber for example, those produced by the methods described in JP-A-4-239010, JP-A-4-100812, etc. can be used.
  • the volume average particle diameter of the silicone / acrylic composite rubber is preferably 5 to 500 nm, more preferably 10 to 450 nm, and still more preferably 20 to 400 nm from the viewpoints of flexibility, low-temperature impact properties, and the like.
  • the ethylene / ⁇ -olefin copolymer rubber is a copolymer containing an ethylene unit and a structural unit composed of an ⁇ -olefin having 3 or more carbon atoms, and the ethylene / ⁇ -olefin copolymer, ethylene / ⁇ -Olefin / non-conjugated diene copolymer.
  • Examples of the ethylene / ⁇ -olefin copolymer include an ethylene / propylene copolymer and an ethylene / butene-1 copolymer.
  • Examples of the ethylene / ⁇ -olefin / non-conjugated diene copolymer include an ethylene / propylene / non-conjugated diene copolymer and an ethylene / butene-1 / non-conjugated diene copolymer.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 20 carbon atoms, specifically, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1 -Heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1-eicosene and the like.
  • a more preferable carbon number is 3 to 12, and further preferably 3 to 8.
  • the proportion of ethylene units and ⁇ -olefin units constituting the ethylene / ⁇ -olefin copolymer rubber is preferably 5 to 95% by mass and 5 to 95%, respectively, when the total of these is 100% by mass. More preferably, it is 50 to 90% by mass and 10 to 50% by mass, still more preferably 60 to 88% by mass and 12 to 40% by mass, and particularly preferably 70 to 85% by mass and 15 to 30% by mass. If the content ratio of the ⁇ -olefin unit is too large, flexibility may be lowered.
  • the ethylene / ⁇ -olefin copolymer rubber is an ethylene / ⁇ -olefin / non-conjugated diene copolymer
  • examples of the non-conjugated diene include alkenyl norbornene such as 5-ethylidene-2-norbornene; dicyclopentadiene Cyclic dienes such as aliphatic diene and the like. These compounds can be used alone or in combination of two or more.
  • the content of the structural unit derived from the non-conjugated diene is preferably 1 to 30% by mass, more preferably 2%, based on the total amount of the structural units constituting the ethylene / ⁇ -olefin / non-conjugated diene copolymer. ⁇ 20% by weight.
  • molding external appearance property and weather resistance may fall.
  • the amount of unsaturated groups in the ethylene / ⁇ -olefin copolymer rubber is preferably 4 to 40 in terms of iodine value.
  • the Mooney viscosity (ML1 + 4, 100 ° C .; conforming to JIS K6300) of the ethylene / ⁇ -olefin copolymer rubber is preferably 5 to 80, more preferably 10 to 65, and still more preferably 15 to 45. . When the Mooney viscosity is in the above range, the impact resistance and flexibility are excellent.
  • the hydrogenated conjugated diene rubber is not particularly limited as long as it is a (co) polymer obtained by hydrogenating a (co) polymer containing a structural unit derived from a conjugated diene compound.
  • the hydrogenated conjugated diene rubber include hydrogenated conjugated diene block copolymers having the following structure. That is, a polymer block A composed of a structural unit derived from an aromatic vinyl compound; a double bond portion of a polymer composed of a structural unit derived from a conjugated diene compound having a 1,2-vinyl bond content exceeding 25 mol%.
  • Polymer block B formed by hydrogenation of 95 mol% or more; 95 mol% or more of a double bond portion of a polymer composed of a structural unit derived from a conjugated diene compound having a 1,2-vinyl bond content of 25 mol% or less Hydrogenated polymer block C formed by hydrogenation; and 95 mol% or more of a double bond portion of a copolymer composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from a conjugated diene compound. It is a block copolymer which consists of what combined 2 or more types among the polymer blocks D formed.
  • the molecular structure of the block copolymer may be branched, radial, or a combination thereof.
  • the block structure may be a diblock, triblock, multiblock, or a combination thereof.
  • the structure of the block copolymer includes A- (BA) n, (AB) n, A- (BC) n, C- (BC) n, and (BC) n. , A- (DA) n, (AD) n, A- (DC) n, C- (DC) n, (DC) n, A- (BCD) ) N, (ABCDD) n [n is an integer of 1 or more. Preferred are ABA, ABAB, ABC, ADC, and CBC.
  • the aromatic vinyl compound used for forming the polymer blocks A and D constituting the block copolymer is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring.
  • examples thereof include styrene, ⁇ -methylstyrene, methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene, p-tert-butylstyrene, ethylstyrene, vinylnaphthalene, and the like. .
  • These compounds can be used alone or in combination of two or more. Of these, styrene is preferred.
  • the content of the polymer block A constituting the block copolymer is preferably 0 to 65% by mass, more preferably 10 to 40% by mass, based on the entire polymer. When there is too much content of the polymer block A, impact resistance may not be enough.
  • the polymer blocks B, C and D are formed by hydrogenating a pre-hydrogenation block copolymer obtained using a conjugated diene compound and an aromatic vinyl compound.
  • the conjugated diene compound used for forming the polymer blocks B, C, and D include 1,3-butadiene, isoprene, 1,3-pentadiene, chloroprene, and the like. These compounds can be used alone or in combination of two or more. Of these, 1,3-butadiene and isoprene are preferred because they can be used industrially and have excellent physical properties.
  • the hydrogenation rates of the polymer blocks B, C and D are all 95 mol% or more, preferably 96 mol% or more.
  • the 1,2-vinyl bond content in the polymer block B is preferably more than 25 mol% and 90 mol% or less, more preferably 30 to 80 mol%. If the 1,2-vinyl bond content is 25 mol% or less, the rubbery properties are lost and the impact resistance may not be sufficient. On the other hand, when it exceeds 90 mol%, chemical resistance may not be sufficient.
  • the 1,2-vinyl bond content in the polymer block C is preferably 25% mol or less, more preferably 20 mol% or less.
  • the 1,2-vinyl bond content in the polymer block D is preferably 25 to 90 mol%, more preferably 30 to 80 mol%. If the 1,2-vinyl bond content is less than 25 mol%, the rubbery properties are lost and the impact resistance may not be sufficient. On the other hand, when it exceeds 90 mol%, chemical resistance may not be sufficient.
  • the amount of the aromatic vinyl compound unit in the polymer block D is preferably 25% by mass or less, more preferably 20% by mass or less. If the amount of the aromatic vinyl compound unit exceeds 25% by mass, rubber properties may be lost and impact resistance may not be sufficient.
  • hydrogenated conjugated diene rubber examples include hydrogenated polybutadiene, hydrogenated styrene / butadiene rubber, styrene / ethylene butylene / olefin crystal block polymer, olefin crystal / ethylene butylene / olefin crystal block polymer, styrene / ethylene butylene / styrene block polymer. And a hydrogenated product of a butadiene / acrylonitrile copolymer.
  • the weight average molecular weight (Mw) of the hydrogenated conjugated diene rubber is preferably 10,000 to 1,000,000, more preferably 30,000 to 800,000, and still more preferably 50,000 to 500,000. When Mw is in the above range, the flexibility is excellent.
  • the vinyl monomer (a1-2) used for forming the resin (A1) includes an aromatic vinyl compound and a vinyl cyanide compound. That is, the vinyl monomer (a1-2) may be composed only of an aromatic vinyl compound and a vinyl cyanide compound, an aromatic vinyl compound and a vinyl cyanide compound, and further these compounds and It may consist of other monomers that can be copolymerized.
  • Other monomers include (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, carboxyl group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, epoxy group-containing unsaturated compounds, oxazoline group-containing And unsaturated compounds. These can be used alone or in combination of two or more.
  • the aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring.
  • examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, monochlorostyrene, dichloromethane.
  • Examples thereof include styrene, monobromostyrene, dibromostyrene, tribromostyrene, and fluorostyrene. These compounds can be used alone or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferable, and styrene is particularly preferable.
  • vinyl cyanide compound examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -fluoroacrylonitrile and the like. These compounds can be used alone or in combination of two or more. Of these, acrylonitrile is preferred.
  • Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Examples include cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, and the like. These compounds can be used alone or in combination of two or more.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-dodecylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-methyl Phenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2,6-diethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N- (4-hydroxyphenyl) ) Maleimide, N-naphthylmaleimide, N-cyclohexylmaleimide and the like.
  • N-phenylmaleimide is preferred.
  • these compounds can be used individually or in combination of 2 or more.
  • a method of introducing a structural unit derived from a maleimide compound into the resin (A1) for example, a method of copolymerizing an unsaturated dicarboxylic anhydride of maleic anhydride and then imidizing may be used. .
  • Examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These compounds can be used alone or in combination of two or more.
  • Examples of the carboxyl group-containing unsaturated compound include (meth) acrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, cinnamic acid and the like. These compounds can be used alone or in combination of two or more.
  • hydroxyl group-containing unsaturated compound examples include 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (Meth) acrylic acid 2-hydroxybutyl, (meth) acrylic acid 3-hydroxybutyl, (meth) acrylic acid 4-hydroxybutyl, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, (meth) acrylic (Meth) acrylic acid ester having a hydroxyl group such as a compound obtained by adding ⁇ -caprolactone to 2-hydroxyethyl acid; o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, o-hydroxy- ⁇ -Methylstyrene M-hydroxy- ⁇ -methylstyrene, p-hydroxy- ⁇ -methylstyrene, 2-hydroxymethyl- ⁇ -methyls
  • Examples of the epoxy group-containing unsaturated compound include glycidyl (meth) acrylate, 3,4-oxycyclohexyl (meth) acrylate, vinyl glycidyl ether, allyl glycidyl ether, and methallyl glycidyl ether. These compounds can be used alone or in combination of two or more.
  • Examples of the oxazoline group-containing unsaturated compound include vinyl oxazoline.
  • the total content of the aromatic vinyl compound and the vinyl cyanide compound contained in the vinyl monomer (a1-2) is the moldability, chemical resistance, hydrolysis resistance, dimensional stability. From the viewpoint of molding appearance and the like, it is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, based on the total amount of the vinyl monomer (a1-2).
  • the use ratio of the aromatic vinyl compound and the vinyl cyanide compound was 100% by mass in total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In this case, they are preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 50 to 95% by mass and 5 to 50% by mass, still more preferably 60 to 95% by mass and 5 to 40% by mass, respectively.
  • resin (A1) preferred resins are as follows. [1-1] A rubber-reinforced aromatic obtained by polymerizing a vinyl monomer (a1-2) comprising an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubbery polymer (a1-1). A vinyl monomer (a1-2) composed of an aromatic vinyl compound, a vinyl cyanide compound and a maleimide compound is polymerized in the presence of the aromatic vinyl resin [1-2] rubber polymer (a1-1). In the presence of the rubber-reinforced aromatic vinyl resin [1-3] rubber-like polymer (a1-1) obtained in this manner, a vinyl-based monomer comprising an aromatic vinyl compound, a vinyl cyanide compound and a methacrylic ester compound is prepared. Rubber-reinforced aromatic vinyl resin obtained by polymerizing monomer (a1-2)
  • the resin (A1) can be produced by polymerizing the vinyl monomer (a1-2) in the presence of the rubber polymer (a1-1).
  • a polymerization method emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, or a combination of these can be used.
  • the rubber polymer (a1-1) and the vinyl monomer (a1-2) are mixed in the reaction system with the rubber polymer (a1-1).
  • the above-mentioned vinyl monomer (a1-2) may be added all at once to initiate the polymerization, or the polymerization may be carried out separately or continuously.
  • the vinyl monomer (a1-2) may be added all at once in the presence or absence of the rubbery polymer (a1-1) to initiate polymerization, Or may be added continuously. At this time, the remainder of the rubbery polymer (a1-1) may be added all at once in the course of the reaction, divided or continuously.
  • the resin (A1) is produced by emulsion polymerization
  • a polymerization initiator emulsion polymerization
  • a chain transfer agent molecular weight regulator
  • an emulsifier emulsifier, water and the like
  • the polymerization initiator a redox in which an organic peroxide such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide, or the like and a reducing agent such as a sugar-containing pyrophosphate formulation or a sulfoxylate formulation are combined.
  • BPO benzoyl peroxide
  • the amount of the polymerization initiator used is usually 0.1 to 1.5% by mass with respect to the total amount of the vinyl monomer (a1-2).
  • the polymerization initiator can be added to the reaction system all at once or continuously.
  • chain transfer agent examples include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, tert-tetradecyl mercaptan; and ⁇ -methylstyrene dimer. These can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is usually 0.05 to 2.0% by mass with respect to the total amount of the vinyl monomer (a1-2).
  • the chain transfer agent can be added to the reaction system all at once or continuously.
  • Examples of the emulsifier include anionic surfactants and nonionic surfactants.
  • Anionic surfactants include higher alcohol sulfates; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; aliphatic sulfonates such as sodium lauryl sulfate; higher aliphatic carboxylates; aliphatic phosphates, etc. Is mentioned.
  • Examples of nonionic surfactants include polyethylene glycol alkyl ester compounds and alkyl ether compounds. These can be used alone or in combination of two or more. The amount of the emulsifier used is usually 0.3 to 5.0% by mass with respect to the total amount of the vinyl monomer (a1-2).
  • Emulsion polymerization can be carried out under known conditions depending on the type of vinyl monomer (a1-2), polymerization initiator and the like.
  • the latex obtained by this emulsion polymerization is usually coagulated with a coagulant to make the resin component powdery, and then washed with water and dried to obtain a purified resin.
  • the coagulant include inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid and lactic acid.
  • the first thermoplastic resin composition contains two or more of the resins (A1)
  • a resin coagulated from one latex (A1-a) and a resin coagulated from another latex (A1) -B) and a method of coagulating after preparing a mixture of one latex and another latex can be applied.
  • strengthening aromatic vinyl resin can be used.
  • the resin (A1) using a silicone / acrylic composite rubber as the rubber polymer (a1-1) for example, Mitsubishi Rayon, which is a commercially available product by the method described in JP-A-4-239010, can be used. “Metablene SX-006” (trade name) manufactured by KK
  • the graft ratio of the resin (A1) is preferably 20 to 170%, more preferably 30 to 170%, still more preferably 40 to 150%. If this graft ratio is too low, the flexibility of the first resin layer may not be sufficient. On the other hand, when the graft ratio is too high, the viscosity of the resin (A1) tends to increase, and it may be difficult to reduce the thickness with the first thermoplastic resin composition.
  • S represents 1 gram of the resin (A1) in 20 ml of acetone (acetonitrile when the rubbery polymer (a1-1) is an acrylic rubber) and is shaken under a temperature condition of 25 ° C. After shaking for 2 hours, the mixture is centrifuged for 60 minutes in a centrifuge (rotation speed: 23,000 rpm) under a temperature condition of 5 ° C., and the mass of the insoluble matter obtained by separating the insoluble matter and the soluble matter.
  • T is the mass (g) of the rubbery polymer (a1-1) contained in 1 gram of the resin (A1).
  • the mass of the rubber-like polymer (a1-1) can be obtained by a method of calculating from the polymerization prescription and polymerization conversion rate, a method of obtaining from the infrared absorption spectrum (IR), and the like.
  • the graft ratio can be easily adjusted by adjusting the kind and amount of the polymerization initiator, chain transfer agent, emulsifier, solvent, etc. used in producing the resin (A1), and further the polymerization time, polymerization temperature, etc. Can be controlled.
  • the resin (A1) can be used alone or in combination of two or more.
  • the copolymer (A2) constituting the rubber-containing aromatic vinyl resin together with the resin (A1) has a structural unit derived from an aromatic vinyl compound (hereinafter referred to as “structural unit (sa-1)”) and cyan.
  • Copolymer containing a structural unit derived from a vinyl fluoride compound hereinafter referred to as “structural unit (sa-2)”.
  • This copolymer (A2) may be derived from an ungrafted copolymer of the vinyl monomer (a1-2) produced during the production of the resin (A1). It may be derived from a copolymer obtained by polymerizing a vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound.
  • the copolymer (A2) may be composed only of the structural units (sa-1) and (sa-2), the structural units (sa-1) and (sa-2), and an aromatic group. It may be composed of a structural unit derived from another monomer copolymerizable with a vinyl compound and a vinyl cyanide compound (hereinafter referred to as “structural unit (sa-3)”).
  • Other monomers include (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, carboxyl group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, epoxy group-containing unsaturated compounds, oxazoline group-containing And unsaturated compounds.
  • the compounds exemplified in the vinyl monomer (a1-2) are applied to the above compounds.
  • the structural unit (sa-3) may be a structural unit derived from one type of monomer, or may be two or more types of structural units derived from two or more types of monomers.
  • the structural unit (sa-3) is preferably a structural unit derived from a maleimide compound.
  • the total content of the structural units (sa-1) and (sa-2) contained in the copolymer (A2) is the sum of the structural units (sa-1), (sa-2) and (sa-3). Is preferably 40 to 100% by mass, more preferably 50 to 100% by mass. Further, the content ratio of the structural units (sa-1) and (sa-2) is 100% of the total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In the case of mass%, it is preferably 5 to 95 mass% and 5 to 95 mass%, more preferably 40 to 95 mass% and 5 to 60 mass%, still more preferably 50 to 90 mass% and 10 to 50 mass%, respectively. %.
  • the first resin layer has a heat resistant property. Sex can be imparted.
  • copolymer (A2) preferred polymers are as follows. [1-5] Copolymers composed of structural units (sa-1) and (sa-2) [1-6] structural units (sa-1) and (sa-2) and structures derived from maleimide compounds A copolymer comprising units (hereinafter referred to as “structural units (sa-3m)”)
  • the content ratio of the structural units (sa-1) and (sa-2) is determined by molding processability, chemical resistance, hydrolysis resistance, From the viewpoints of dimensional stability, molding appearance, etc., when these totals are 100% by mass, preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 40 to 95% by mass and 5 to 5%, respectively. 60% by mass, more preferably 50 to 90% by mass and 10 to 50% by mass.
  • Examples of the copolymer of the above embodiment [1-5] include styrene / acrylonitrile copolymer, ⁇ -methylstyrene / acrylonitrile copolymer, styrene / ⁇ -methylstyrene / acrylonitrile copolymer, and the like.
  • the content ratio of the structural units (sa-1), (sa-2), and (sa-3m) is determined by molding processability, heat resistance, From the viewpoint of chemical resistance, hydrolysis resistance, dimensional stability, flexibility, etc., when these totals are 100% by mass, preferably 10 to 90% by mass, 9.5 to 70% by mass, and 0.5 to 30% by weight, more preferably 20 to 85% by weight, 14 to 60% by weight and 1 to 20% by weight, more preferably 30 to 80% by weight, 18 to 50% by weight and 2 to 15% by weight. is there.
  • the copolymer of the above embodiment [1-6] include styrene / acrylonitrile / N-phenylmaleimide copolymer.
  • copolymer (A2) a styrene / acrylonitrile / methyl methacrylate copolymer or the like may be used.
  • the copolymer (A2) is a vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence or absence of a polymerization initiator (hereinafter referred to as “vinyl monomer (a2)”). It can be produced by polymerizing.
  • a polymerization initiator used as the polymerization method, solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like are suitable, and these polymerization methods may be used in combination.
  • it can be set as thermal polymerization.
  • the compound illustrated by description of the manufacturing method of the said resin (A1) can be used individually or in combination of 2 or more.
  • the amount of the polymerization initiator used is usually 0.1 to 1.5% by mass with respect to the total amount of the vinyl monomer (a2).
  • chain transfer agents, emulsifiers and the like that can be used during the production of the resin (A1) can be used.
  • the polymerization may be started with the total amount of the vinyl monomer (a2) contained in the reaction system, and the arbitrarily selected monomer component is divided. You may superpose
  • the copolymer (A2) can be used alone or in combination of two or more.
  • the intrinsic viscosity [ ⁇ ] (measured in methyl ethyl ketone at 30 ° C.) of the rubber-containing aromatic vinyl resin-soluble component is preferably 0.1 to 2.5 dl / g, more preferably 0.2. It is ⁇ 1.5 dl / g, more preferably 0.25 to 1.2 dl / g.
  • the intrinsic viscosity [ ⁇ ] is within the above range, the moldability of the first thermoplastic resin composition is excellent, and the thickness accuracy of the first resin layer is also excellent.
  • the intrinsic viscosity [ ⁇ ] can be obtained in the following manner.
  • acetone-soluble components recovered after centrifugation are dissolved in methyl ethyl ketone, and five different concentrations are prepared, and each is obtained at 30 ° C. using an Ubbelohde viscosity tube.
  • the intrinsic viscosity [ ⁇ ] is determined by measuring the reduced viscosity of the concentration.
  • the intrinsic viscosity [ ⁇ ] is the type and amount of a polymerization initiator, a chain transfer agent, an emulsifier, a solvent, etc. used when producing the resin (A1) and the copolymer (A2), and further the polymerization time, It can be easily controlled by adjusting the polymerization temperature and the like.
  • the intrinsic viscosity [ ⁇ ] can also be adjusted by appropriately selecting a resin (A1) and a copolymer (A2) having different intrinsic viscosities [ ⁇ ].
  • the first thermoplastic resin composition may be composed of only a rubber-containing aromatic vinyl resin, or may be composed of a rubber-containing aromatic vinyl resin and another resin. May be.
  • Other resins include acrylic resins containing structural units derived from (meth) acrylic acid ester compounds; saturated polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate; polyolefin resins; polyvinyl chloride resins; polyvinylidene chloride Resin; Polyvinyl acetate resin; Polycarbonate resin; Fluororesin; Ethylene / vinyl acetate resin and the like. These can be used alone or in combination of two or more.
  • the content thereof is preferably less than 50% by mass, more preferably 40% by mass or less, still more preferably with respect to the rubber-containing aromatic vinyl resin. Is 30% by mass or less.
  • the content ratio of the other resin is too high, the effect of using the resin (A1) according to the present invention is reduced.
  • the resin (A1) and the copolymer (A2) in the first thermoplastic resin composition, and the content ratio of other resins used in combination as necessary are the rubber properties derived from the resin (A1).
  • the content of the polymer (a1-1) is preferably 5 to 40% by mass, more preferably 8 to 30% by mass, still more preferably 10 to 20% by mass, and particularly preferably 12 to 18% by mass. Adjusted. If the content of the rubbery polymer (a1-1) contained in the first thermoplastic resin composition exceeds 40% by mass, the heat resistance may not be sufficient. On the other hand, when the content is less than 5% by mass, the impact resistance may not be sufficient.
  • the first thermoplastic resin composition contains a white colorant.
  • the white colorant include titanium oxide, zinc oxide, calcium carbonate, barium sulfate, calcium sulfate, alumina, silica, 2PbCO 3 .Pb (OH) 2 , [ZnS + BaSO 4 ], talc, and gypsum. These may be used alone or in combination of two or more.
  • the content of the white colorant is preferably 1 to 45% by mass, more preferably 3 to 40% by mass, and still more preferably 5 to 30% by mass with respect to the rubber-containing aromatic vinyl resin.
  • the content of the white colorant is in the above range, when sunlight leaks from the gap between adjacent solar cell elements toward the solar cell back surface protective film (first resin layer side), The power generation efficiency can be improved by reflecting the light from one resin layer and making the reflected light incident on the solar cell element.
  • the flexibility of the back surface protective film for solar cells of this invention may fall.
  • the improvement rate of the photoelectric conversion efficiency of the back surface protective film for solar cells of this invention may not be enough.
  • the first thermoplastic resin composition may contain an additive depending on the purpose and application.
  • an additive depending on the purpose and application.
  • this additive other colorants other than white colorants, antioxidants, ultraviolet absorbers, anti-aging agents, plasticizers, fluorescent whitening agents, weathering agents, fillers, antistatic agents, flame retardants, Antifogging agents, antibacterial agents, fungicides, antifouling agents, tackifiers, silane coupling agents and the like can be mentioned. Specific compounds in these additives and their contents will be described later.
  • the thickness of the first resin layer is 10 to 300 ⁇ m, preferably 15 to 250 ⁇ m, more preferably 20 to 200 ⁇ m.
  • strength of the back surface protective film for solar cells of this invention is inadequate, and flexibility is inadequate when it is too thick.
  • the second resin layer contains a saturated polyester resin, and the dimensional change rate after standing at 135 ° C. for 30 minutes is ⁇ 0.5% or less, preferably ⁇ 0.4% or less, more preferably ⁇ 0.3. % Or less of the resin layer, which is a layer mainly imparting durability of the back surface protective film for solar cell of the present invention. That is, in the back surface protective film for solar cells of the present invention provided with the second resin layer having such properties, thermal deformation due to use of the solar cells is suppressed, and heat resistance is excellent.
  • the second resin layer contains a white colorant, the light transmitted through the first resin layer can be reflected to the first resin layer side.
  • the composition constituting the second resin layer will be described as a second thermoplastic resin composition. That is, the second thermoplastic resin composition has a dimensional change rate of ⁇ 0.5% or less after leaving a film of a predetermined size (thickness 10 to 300 ⁇ m) made of the composition at 135 ° C. for 30 minutes. It is a composition that fills and contains a saturated polyester resin, and may contain additives such as other resins or polymers and colorants such as white colorants, if necessary.
  • the saturated polyester resin is preferably a resin obtained by polycondensation reaction of a dicarboxylic acid component and a glycol component.
  • Dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid and other aromatic dicarboxylic acids Alicyclic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid and fumaric acid; alicyclic dicarboxylic acids such as cyclohexyne dicarboxylic acid; oxycarboxylic acids such as p-oxybenzoic acid; Etc.
  • glycol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-butanediol, and 1,6-hexane.
  • Aliphatic glycols such as diol and neopentyl glycol; polyoxyalkylene glycols such as diethylene glycol, polyethylene glycol, polypropylene glycol and polytetramethylene glycol; alicyclic glycols such as 1,4-cyclohexanedimethanol; bisphenol A, bisphenol S, etc.
  • Aromatic glycols, and the like Each of these dicarboxylic acid components and glycol components may be used alone or in combination of two or more.
  • the saturated polyester resin is preferably a saturated polyester resin containing ethylene terephthalate as a main constituent unit obtained by a polycondensation reaction using terephthalic acid or dimethyl terephthalate and ethylene glycol using an esterification reaction or an ester exchange reaction.
  • the second thermoplastic resin contains one or more of saturated polyester resins containing ethylene terephthalate as a main constituent unit, a second resin layer excellent in mechanical strength, workability, thermal characteristics, etc. can get.
  • the “main structural unit” means that the content of ethylene terephthalate constituting one saturated polyester resin is 30 mol% or more.
  • polyethylene-2,6-naphthalate resin is also preferably used from the viewpoint of strength and heat stability.
  • the other resin includes an acrylic resin containing a structural unit derived from a (meth) acrylic acid ester compound; a structural unit derived from an aromatic vinyl compound Examples thereof include aromatic vinyl resins; polyolefin resins; polyvinyl chloride resins; polyvinylidene chloride resins; polyvinyl acetate resins; polycarbonate resins; fluororesins; These can be used alone or in combination of two or more.
  • the content thereof is preferably less than 50% by mass, more preferably 40% by mass or less, still more preferably 30% by mass or less, based on the saturated polyester resin. It is. If the content ratio of the other resin is too high, the physical properties of the second resin layer according to the present invention may not be maintained, and the effect of the saturated polyester resin tends to be reduced.
  • the second resin layer may be a colored resin layer or an uncolored resin layer. Accordingly, the second thermoplastic resin composition may or may not contain a colorant.
  • the second thermoplastic resin composition preferably contains a white colorant.
  • the white colorant include titanium oxide, zinc oxide, calcium carbonate, barium sulfate, calcium sulfate, alumina, silica, 2PbCO 3 .Pb (OH) 2 , [ZnS + BaSO 4 ], talc, and gypsum. These may be used alone or in combination of two or more.
  • the content of the white colorant is preferably 1 to 45% by mass, more preferably 3 to 40% by mass, and further preferably 5 to 30% by mass with respect to the saturated polyester resin.
  • the flexibility of the back surface protective film for solar cells of this invention may fall.
  • the back surface protective film for solar cells of the present invention emits light having a wavelength of 400 to 1,400 nm to the surface of the first resin layer in the back surface protective film for solar cells.
  • the second thermoplastic resin composition preferably contains a white colorant.
  • the second thermoplastic resin composition may contain an additive depending on the purpose and application.
  • an additive depending on the purpose and application.
  • this additive other colorants other than white colorants, antioxidants, ultraviolet absorbers, anti-aging agents, plasticizers, fluorescent whitening agents, weathering agents, fillers, antistatic agents, flame retardants, Antifogging agents, antibacterial agents, fungicides, antifouling agents, tackifiers, silane coupling agents and the like can be mentioned. Specific compounds in these additives and their contents will be described later.
  • the second resin layer is formed using a heat-treated product of a film containing the saturated polyester resin. That is, after forming a film by extrusion molding, inflation molding, calender molding, etc., using the above-mentioned saturated polyester resin-containing resin composition for film formation, the temperature is about 100 ° C. to 150 ° C. for about 5 to 120 minutes.
  • the heat treatment film may be used to form a heat treatment film, and this heat treatment film may constitute the second resin layer.
  • a commercially available saturated polyester resin film is heat-treated at a temperature of about 100 ° C. to 150 ° C. for a time of about 5 to 120 minutes to form a heat treated film, and this heat treated film constitutes the second resin layer. May be.
  • the thickness of the second resin layer is 10 to 300 ⁇ m, preferably 15 to 250 ⁇ m, more preferably 20 to 300 ⁇ m.
  • the protective effect in the 2nd resin layer side surface of the back surface protective film for solar cells of this invention is inadequate, and when too thick, the flexibility of the back surface protective film for solar cells is inadequate. It is.
  • additives contained in the first resin layer (first thermoplastic resin composition) and the second resin layer (second thermoplastic resin composition) Agent, anti-aging agent, plasticizer, flame retardant).
  • colorants are not particularly limited as long as they do not significantly reduce the reflectance with respect to the light on the first resin layer side surface of the solar cell back surface protective film of the present invention.
  • yellow colorants, blue A system colorant etc. can be used.
  • the content thereof is usually 10% by mass or less based on the first thermoplastic resin composition and / or the second thermoplastic resin composition.
  • antioxidants examples include hindered amine compounds, hydroquinone compounds, hindered phenol compounds, sulfur-containing compounds, and phosphorus-containing compounds. These can be used alone or in combination of two or more.
  • the content of the antioxidant is preferably 0.05 to 10% by mass with respect to the first thermoplastic resin composition and / or the second thermoplastic resin composition.
  • the ultraviolet absorber examples include benzophenone compounds, benzotriazole compounds, and triazine compounds. These can be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is preferably 0.05 to 10% by mass with respect to the first thermoplastic resin composition and / or the second thermoplastic resin composition.
  • the anti-aging agent examples include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds, thiols. Examples thereof include bisphenol compounds, hindered phenol compounds, phosphite compounds, imidazole compounds, nickel dithiocarbamate salts, phosphoric compounds, and the like. These can be used alone or in combination of two or more.
  • the content of the anti-aging agent is preferably 0.05 to 10% by mass with respect to the first thermoplastic resin composition and / or the second thermoplastic resin composition.
  • plasticizer examples include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, butyl octyl phthalate, di- (2-ethylhexyl) phthalate, diisooctyl phthalate, and diisodecyl phthalate; dimethyl adipate , Diisobutyl adipate, di- (2-ethylhexyl) adipate, diisooctyl adipate, diisodecyl adipate, octyl decyl adipate, di- (2-ethylhexyl) azelate, diisooctyl azelate, diisobutyl azelate, dibutyl sebacate, di- Fatty acid esters such as (2-ethylhexyl) se,
  • Examples of the flame retardant include organic flame retardants, inorganic flame retardants, and reactive flame retardants. These can be used alone or in combination of two or more.
  • Organic flame retardants include brominated epoxy compounds, brominated alkyltriazine compounds, brominated bisphenol epoxy resins, brominated bisphenol phenoxy resins, brominated bisphenol polycarbonate resins, brominated polystyrene resins, brominated crosslinked polystyrene resins Halogenated flame retardants such as brominated bisphenol cyanurate resin, brominated polyphenylene ether, decabromodiphenyl oxide, tetrabromobisphenol A and oligomers thereof; trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, tripentyl phosphate Hexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresy
  • inorganic flame retardant examples include aluminum hydroxide, antimony oxide, magnesium hydroxide, zinc borate, zirconium compound, molybdenum compound, and zinc stannate. These can be used alone or in combination of two or more.
  • Reactive flame retardants include tetrabromobisphenol A, dibromophenol glycidyl ether, brominated aromatic triazine, tribromophenol, tetrabromophthalate, tetrachlorophthalic anhydride, dibromoneopentyl glycol, poly (pentabromobenzyl polyacrylate) , Chlorendic acid (hett acid), chlorendic anhydride (hett acid anhydride), brominated phenol glycidyl ether, dibromocresyl glycidyl ether and the like. These can be used alone or in combination of two or more.
  • the content of the flame retardant is preferably 10% by mass or less with respect to the first thermoplastic resin composition and / or the second thermoplastic resin composition.
  • a flame retardant aid As this flame retardant aid, antimony trioxide, antimony tetroxide, antimony pentoxide, sodium antimonate, antimony tartrate and other antimony compounds, zinc borate, barium metaborate, hydrated alumina, zirconium oxide, Examples include ammonium polyphosphate and tin oxide. These may be used alone or in combination of two or more.
  • the first resin layer 11 and the second resin layer 12 may be in a continuously laminated state (see FIG. 1), the first resin layer, and the first resin layer.
  • You may have a structure where 2 resin layers are joined through an adhesive layer (not shown). In the latter case, the configuration of the adhesive layer can be a polyurethane resin composition or the like.
  • the preferable aspect in the back surface protection film for solar cells of this invention is shown below.
  • the first resin layer is a white resin layer
  • the second resin layer is a non-colored or colored resin layer other than white film
  • the first resin layer is a white resin layer
  • the L value of the surface at the side of the 1st resin layer in the back surface protective film for solar cells of this invention is the degree of the coloring in the said 1st resin layer (white system resin layer). , Preferably 60 or more, more preferably 65 or more, still more preferably 70 or more.
  • the degree of coloring in the first resin layer and the second resin layer, both of which are white resin layers, is the surface on the first resin layer side in the solar cell back surface protective film of the present invention, and
  • the L value of the surface on the second resin layer side is preferably 60 or more, more preferably 65 or more, and still more preferably 70 or more.
  • the L value on the surface on the first resin layer side and the L value on the surface on the second resin layer side may be the same or different.
  • a film containing a saturated polyester resin is heat-treated at a temperature of 100 ° C. to 150 ° C. in the atmosphere.
  • a step of forming a second film having a dimensional change rate of ⁇ 0.5% or less (hereinafter referred to as “first step”) when left at 30 ° C. for 30 minutes, and the rubber-containing aromatic vinyl Characterized in that it comprises a step of joining the first film containing a base resin and the white colorant and the second film (hereinafter referred to as “second step”).
  • the said 1st process is a process of heat-processing the film containing saturated polyester resin, and setting it as a 2nd film.
  • the film containing a saturated polyester resin which is subjected to heat treatment, is composed of a second thermoplastic resin composition containing a saturated polyester resin.
  • a commercially available saturated polyester resin film may be used. In this case, coloring degree, transparency, etc. are not particularly limited.
  • Commercially available products include, for example, “Lumirror E20” (trade name) manufactured by Toray, “PET film U2” (trade name) manufactured by Teijin DuPont Films, “Lumirror X10P” (trade name), “Lumirror X10S” manufactured by Toray.
  • the flame retardancy of the flame retardant film is preferably UL94VTM-2 class or higher.
  • the heat treatment temperature is 100 ° C. to 150 ° C., preferably 110 ° C. to 140 ° C. If the heat treatment temperature is too high, the film may shrink significantly. On the other hand, if the heat treatment temperature is too low, the dimensional change rate may exceed ⁇ 0.5%.
  • the heat treatment time is usually 5 to 120 minutes, preferably 15 to 90 minutes.
  • the second step is a step of joining the first film containing the rubber-containing aromatic vinyl resin and the white colorant and the second film.
  • the first film is a film containing a rubber-containing aromatic vinyl resin and a white colorant, which is formed using the first thermoplastic resin composition. Examples of a method for joining the first film and the second film include use of an adhesive, heat fusion, dry lamination, and the like.
  • the back surface protective film for solar cells provided with the said 1st resin layer and the 2nd resin layer one by one, a 1st thermoplastic resin composition and a 2nd thermoplastic resin composition (as mentioned above heat processing) And a co-extrusion method (T-die cast film molding method, etc.) using a composition capable of forming a film having a dimensional change rate of ⁇ 0.5% or less after standing at 135 ° C. for 30 minutes Thereby, the back surface protective film for solar cells with which the 1st resin layer and the 2nd resin layer were joined can be manufactured.
  • the back surface protective film for solar cell of the present invention can be configured to include the water vapor barrier layer 13 between the first resin layer 11 and the second resin layer 12 (see FIG. 2).
  • the water vapor barrier layer has a moisture permeability (also referred to as “water vapor permeability”) measured under conditions of a temperature of 40 ° C. and a humidity of 90% RH in accordance with JIS K7129, preferably 3 g / (m 2 ⁇ day) or less. More preferably, the layer has a performance of 1 g / (m 2 ⁇ day) or less, and further preferably 0.7 g / (m 2 ⁇ day) or less.
  • the water vapor barrier layer is preferably a layer made of an electrically insulating material.
  • the water vapor barrier layer may have a single layer structure or a multilayer structure made of one kind of material, or a multilayer structure made of two or more kinds of materials.
  • Examples of the metal include aluminum.
  • Examples of the metal compound include oxides of elements such as silicon, aluminum, magnesium, calcium, potassium, tin, sodium, boron, titanium, lead, zirconium, and yttrium. Of these, silicon oxide, aluminum oxide, and the like are particularly preferable from the viewpoint of water vapor barrier properties.
  • the film made of the metal and / or metal oxide may be formed by a method such as plating, vacuum deposition, ion plating, sputtering, plasma CVD, or microwave CVD. Two or more of these methods may be combined.
  • polyester films such as polyethylene terephthalate film and polyethylene naphthalate; polyolefin films such as polyethylene and polypropylene; polyvinylidene chloride film, polyvinyl chloride film, fluororesin film, polysulfone film, polystyrene film, polyamide Examples thereof include a film, a polycarbonate film, a polyacrylonitrile film, and a polyimide film.
  • the thickness of this resin film is preferably 5 to 50 ⁇ m, more preferably 8 to 20 ⁇ m.
  • the water vapor barrier layer may be formed using a commercially available product.
  • “Tech Barrier AX” (trade name) manufactured by Mitsubishi Plastics
  • “Tech Barrier LX” (trade name)
  • “GX Film” (trade name) manufactured by Toppan Printing Co., Ltd.
  • “Ecosia VE500” (trade name) manufactured by Toyobo Co., Ltd.
  • the arrangement of the water vapor barrier layer between the first resin layer and the second resin layer is not particularly limited.
  • the film made of metal and / or metal oxide may face either the first resin layer or the second resin layer.
  • the water vapor barrier layer may be formed of a three-layer film in which a film made of a metal and / or a metal oxide is disposed between an upper layer side resin part and a lower layer side resin part.
  • the thickness of the water vapor barrier layer is preferably 5 to 300 ⁇ m, more preferably 8 to 250 ⁇ m, and still more preferably 10 to 200 ⁇ m. If the water vapor barrier layer is too thin, the water vapor barrier property may be insufficient. If it is too thick, the flexibility as the back surface protective film for solar cell of the present invention may not be sufficient.
  • an adhesive layer can be provided between the first resin layer and / or the second resin layer and the water vapor barrier layer.
  • the configuration of the adhesive layer can be a polyurethane resin composition, an epoxy resin composition, an acrylic resin composition, or the like.
  • the 1st film and 2nd film which were used at the 2nd process in the manufacturing method of the above-mentioned back surface protective film for solar cells for example, water vapor
  • a barrier layer forming sheet (or film) can be used. That is, the first resin layer and the water vapor barrier layer are provided by bonding one surface side of the first film and one surface side of the water vapor barrier layer forming sheet (or film) by heat fusion, dry lamination, or an adhesive. A method of forming a laminate and then bonding the second film to the surface of the water vapor barrier layer in the laminate with an adhesive or the like can be used.
  • the thickness of the back surface protective film for solar cells of the present invention is preferably 30 to 600 ⁇ m, more preferably 50 to 500 ⁇ m, from the viewpoints of flexibility, shape followability when disposed on other articles, workability, and the like. More preferably, it is 60 to 400 ⁇ m.
  • a decoration layer, a coating layer, the recycling which arises at the time of manufacture depending on necessity Other layers such as a resin layer may be provided.
  • the reflectance with respect to this light is preferably 50% or more, more preferably 60%. More preferably, it is 70% or more.
  • the reflectance of light is as high as 50% or more, when the solar cell module is formed by adhering to a filler material that fills the gap between the solar cell elements, for example, an ethylene / vinyl acetate copolymer is used. The light can be reflected from the resin layer toward the solar cell element, and the photoelectric conversion efficiency can be improved.
  • Reflectance for light with a wavelength of 400 to 1,400 nm is 50% or more
  • the reflectance of light in the wavelength region from 400 nm to 1,400 nm is measured every 400 nm or every 1,400 nm to 20 nm.
  • the average value calculated using each reflectance is 50% or more, and it does not require that all the reflectances of light in the wavelength range are 50% or more.
  • the light emitted to the surface of the first resin layer can be sufficiently reflected, and the occurrence of thermal deformation due to the light. Can also be suppressed.
  • the back surface protective film for solar cells of this invention is equipped with a water vapor
  • the water vapor transmission rate of the back surface protective film for solar cells is measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH according to JIS K7129, it is preferably 3 g / (m 2 ⁇ day) or less, more preferably 1 g / (m 2 ⁇ day) or less.
  • the back surface protective film for solar cells of the present invention is excellent in heat resistance.
  • the dimensional change after standing at 135 ° C. for 30 minutes is preferably ⁇ 1.5% or less, more preferably ⁇ 1.2% or less. More preferably, it is ⁇ 1.0% or less.
  • FIG. 3 A schematic diagram of the solar cell module of the present invention comprising the back surface protective film for solar cell of the present invention is shown in FIG.
  • the solar cell module 2 in FIG. 3 includes, from the sunlight receiving surface side (upper side in the drawing), the front surface side transparent protective member 21, the front surface side sealing film (front surface side filler portion) 23, the solar cell element 25, and the back surface side.
  • the sealing film (back surface side filler portion) 27 and the solar cell back surface protective film 1 (1 ′) of the present invention are arranged in this order.
  • the solar cell module of this invention can also be suitably equipped with various members other than the said component as needed (not shown).
  • the transparent substrate which consists of glass, resin, etc. is used normally.
  • glass is excellent in transparency and weather resistance, since impact resistance is not enough and it is heavy, when it is set as the solar cell mounted on the roof of a house, it is preferable to use a weather resistant transparent resin.
  • the transparent resin include a fluorine-based resin.
  • the thickness of the surface side transparent protective member 21 is usually about 1 to 5 mm when glass is used, and is usually about 0.1 to 5 mm when transparent resin is used.
  • the solar cell element 25 has a power generation function by receiving sunlight.
  • a solar cell element if it has a function as a photovoltaic power, it will not be specifically limited, A well-known thing can be used.
  • a crystalline silicon solar cell element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element; an amorphous silicon solar cell element composed of a single bond type or a tandem structure type; gallium arsenide (GaAs) or indium phosphorus ( III-V compound semiconductor solar cell elements such as InP); II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ).
  • GaAs gallium arsenide
  • III-V compound semiconductor solar cell elements such as InP
  • II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ).
  • a crystalline silicon solar cell element is preferable, and a polycrystalline silicon solar cell element is particularly preferable.
  • a thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can be used.
  • the solar cell element 25 usually includes a wiring electrode and a take-out electrode.
  • the wiring electrode has an action of collecting electrons generated in a plurality of solar cell elements by receiving sunlight, for example, a solar cell element on the surface side sealing film (surface side filler part) 23 side, It connects so that the solar cell element by the side of the back surface side sealing film (back surface side filler material part) 27 side may be connected.
  • the take-out electrode has an action of taking out electrons collected by the wiring electrode or the like as a current.
  • the front-side sealing film (front-side filler part) 23 and the back-side sealing film (back-side filler part) 27 are usually identical to each other.
  • the sealing film is usually about 100 ⁇ m to 4 mm, preferably about 200 ⁇ m to 3 mm, more preferably about 300 ⁇ m to 2 mm. If the thickness is too thin, the solar cell element 25 may be damaged. On the other hand, if the thickness is too thick, the manufacturing cost increases, which is not preferable.
  • the sealing film forming material is usually a resin composition or a rubber composition.
  • the resin include an olefin resin, an epoxy resin, a polyvinyl butyral resin, and the like.
  • the rubber include silicone rubber and hydrogenated conjugated diene rubber. Of these, olefin resins and hydrogenated conjugated diene rubbers are preferred.
  • olefin resins examples include olefins such as ethylene, propylene, butadiene, and isoprene, or polymers obtained by polymerizing diolefins, and ethylene and other monomers such as vinyl acetate and acrylate esters. Copolymers, ionomers and the like can be used. Specific examples include polyethylene, polypropylene, polymethylpentene, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid ester copolymer, ethylene / vinyl alcohol copolymer, chlorine. Examples thereof include chlorinated polyethylene and chlorinated polypropylene. Among these, an ethylene / vinyl acetate copolymer and an ethylene / (meth) acrylic acid ester copolymer are preferable, and an ethylene / vinyl acetate copolymer is particularly preferable.
  • hydrogenated conjugated diene rubber examples include hydrogenated styrene / butadiene rubber, styrene / ethylene butylene / olefin crystal block polymer, olefin crystal / ethylene butylene / olefin crystal block polymer, styrene / ethylene butylene / styrene block polymer, and the like. It is done.
  • a hydrogenated conjugated diene block copolymer having the following structure, that is, a polymer block A containing an aromatic vinyl compound unit; a conjugated diene compound having a 1,2-vinyl bond content exceeding 25 mol%
  • Polymer block B obtained by hydrogenating at least 80 mol% of a double bond portion of a polymer containing units; Polymer double containing a conjugated diene compound unit having a 1,2-vinyl bond content of 25 mol% or less
  • Polymer block C obtained by hydrogenating 80 mol% or more of the bonded portion; and a polymer block C obtained by hydrogenating 80 mol% or more of the double bond portion of the copolymer containing the aromatic vinyl compound unit and the conjugated diene compound unit.
  • It is a block copolymer having at least two selected from the combined block D.
  • the sealing film-forming material may contain a crosslinking agent, a crosslinking aid, a silane coupling agent, an ultraviolet absorber, a hindered phenol-based or phosphite-based antioxidant, a hindered amine-based light stabilizer, a light as necessary. Additives such as diffusing agents, flame retardants, and anti-discoloring agents can be contained.
  • the material forming the front surface side sealing film (front surface side filler part) 23 and the material forming the back surface side sealing film (back surface side filler part) 27 are the same or different. However, the same is preferable from the viewpoint of adhesiveness.
  • the solar cell module of the present invention for example, after arranging the surface side transparent protective member, the surface side sealing film, the solar cell element, the back surface side sealing film and the solar cell back surface protective film of the present invention in this order, These can be manufactured as one body by a lamination method or the like in which heat pressure bonding is performed while vacuum suction is performed.
  • the lamination temperature in this lamination method is usually about 100 ° C. to 250 ° C. from the viewpoint of adhesion of the solar cell back surface protective film of the present invention.
  • the laminating time is usually about 3 to 30 minutes.
  • Reflectance (%) for light with a wavelength of 400 to 1,400 nm Using a back protection film for solar cells (50 mm x 50 mm, thickness shown in the table) as a measurement sample, reflectivity is measured with an ultraviolet-visible near-infrared spectrophotometer "V-670" (model name) manufactured by JASCO Corporation did. That is, light was emitted to the surface of the first resin layer of the measurement sample, the reflectance in the wavelength region from 400 nm to 1,400 nm was measured every 20 nm, and the average value thereof was calculated.
  • V-670 ultraviolet-visible near-infrared spectrophotometer
  • the film includes the surface of the first resin layer and the solar cell included in the solar cell module. It is used for adhering to the back side sealing film formed by embedding the element. Since the ethylene / vinyl acetate copolymer composition is widely used as a material for forming the back surface side sealing film, the adhesion between the surface of the first resin layer in the back surface protective film for solar cells and the following EVA film: Evaluated.
  • the back surface protective film for solar cells was cut into a strip shape (200 mm ⁇ 15 mm, thickness is shown in the table) to obtain two evaluation films.
  • An EVA film (trade name “Ultra Pearl”, manufactured by Sanvik) made of an ethylene / vinyl acetate copolymer having a length of 100 mm, a width of 15 mm and a thickness of 400 ⁇ m is interposed between the first resin layers of the two evaluation films. They were placed so that they were positioned and placed in a laminator in a laminated state. Thereafter, the upper and lower parts of the laminate were evacuated and heated at 150 ° C. for 5 minutes. Next, the upper part was returned to atmospheric pressure and pressed for 15 minutes to obtain a sample for measuring peel strength. In the obtained peel strength measurement sample, the peel strength was measured by T-peeling from the portion where the evaluation film was not adhered to the EVA film. Further, the peeled state was visually observed and judged according to the following criteria. “2”: The EVA film was broken. “1”: Peeled at the interface between the EVA film and the evaluation film.
  • Photoelectric conversion efficiency improvement rate In a room adjusted to a temperature of 25 ° C. ⁇ 2 ° C. and a humidity of 50 ⁇ 5% RH, a cell is previously prepared using Peccell Technologies' Solar Simulator “PEC-11” (model name). Silicon glass with a thickness of 3 mm on the surface of a 1/4 polycrystalline silicon cell (50 mm ⁇ 50 mm) whose photoelectric conversion efficiency was measured, and a back surface protective film for solar cells on the back surface. The cell was sandwiched, EVA was introduced between the glass plate and the film, and placed in a laminator in a laminated state. Thereafter, the upper and lower parts of the laminate were evacuated and heated at 150 ° C. for 5 minutes.
  • Photoelectric conversion efficiency improvement rate (%) ⁇ (Photoelectric conversion efficiency of module ⁇ Photoelectric conversion efficiency of single cell) ⁇ (Photoelectric conversion efficiency of single cell) ⁇ ⁇ 100
  • the back protective film for solar cells is cut into a square (230 mm ⁇ 230 mm, thickness is listed in the table), and further, a cut (length 100 mm) is formed in the center as shown in FIG. did.
  • a cut length 100 mm
  • two 230 mm ⁇ 230 mm ⁇ 400 ⁇ m EVA films (trade name “Ultra Pearl”, manufactured by Sanvic Co., Ltd.) and the above-mentioned back surface protective film for solar cells are sequentially added. , Superimposed (see FIG. 5).
  • the back surface protective film for solar cells was disposed so that the surface of the first resin layer faces the EVA film.
  • This laminate was put in a laminator, and the upper and lower portions were put in a vacuum state and heated at 150 ° C. for 5 minutes. Next, the upper part was returned to the atmospheric pressure and integrated by pressing for 15 minutes.
  • This integrated product was used as a test specimen for evaluation and subjected to a thermal cycle test.
  • the thermal cycle test was conducted in a thermal shock chamber “TSA-101S-W” (model name) manufactured by Espec. Specifically, the test specimen for evaluation was repeatedly exposed (200 times) under high temperature (100 ° C. for 30 minutes) and low temperature ( ⁇ 40 ° C. for 30 minutes) to protect the back surface for solar cells. The state of occurrence of tears from the cuts in the film was visually observed. “4”: no tearing occurred. “3”: The length of the tear was less than 1 mm. “2”: The length of the tear was 1 mm or more. “1”: tearing occurred on the entire surface of the film.
  • Water vapor barrier property According to JIS K7129B, the water vapor permeability was measured with a water vapor permeability measuring device "PERMATRAN W3 / 31" (model name) manufactured by MOCON. The measurement conditions were a temperature of 40 ° C. and a humidity of 90% RH, and the surface on the second resin layer side was disposed on the water vapor side as the transmission surface.
  • Silicone rubber reinforced aromatic vinyl resin (rubber reinforced resin (A1-2)) 1.3 parts of p-vinylphenylmethyldimethoxysilane and 98.7 parts of octamethylcyclotetrasiloxane are mixed, and this is put into 300 parts of distilled water in which 2.0 parts of dodecylbenzenesulfonic acid is dissolved, and 3 parts by a homogenizer. The mixture was stirred and dispersed for emulsification. This emulsified dispersion was transferred to a separable flask equipped with a condenser, a nitrogen inlet and a stirrer, and heated at 90 ° C. for 6 hours while stirring.
  • the condensation rate was 93%. Thereafter, the latex was neutralized to pH 7 using an aqueous sodium carbonate solution.
  • the obtained polyorganosiloxane rubber had a volume average particle size of 300 nm.
  • a glass flask equipped with a stirrer and having an internal volume of 7 liters was charged with 100 parts of ion exchange water, 1.5 parts of potassium oleate, 0.01 parts of potassium hydroxide, 0.1 part of tert-dodecyl mercaptan, A batch polymerization component consisting of a latex adjusted to pH 7 containing 40 parts of an organosiloxane rubber, 15 parts of styrene and 5 parts of acrylonitrile was added, and the temperature was raised while stirring.
  • the activity comprises 0.1 part of sodium ethylenediaminetetraacetate, 0.003 part of ferrous sulfate, 0.2 part of sodium formaldehyde sulfoxylate dihydrate and 15 parts of ion-exchanged water.
  • Aqueous agent aqueous solution and 0.1 part of diisopropylbenzene hydroperoxide were added and polymerization was carried out for 1 hour.
  • Acrylic rubber reinforced aromatic vinyl resin (rubber reinforced resin (A1-3))
  • the reactor contains an acrylic rubbery polymer (volume average particle size: 100 nm, gel content: 90%) obtained by emulsion polymerization of 99 parts of n-butyl acrylate and 1 part of allyl methacrylate. 50 parts of latex having a solid content concentration of 40% (in terms of solid content) was added, and further diluted with 1 part of sodium dodecylbenzenesulfonate and 150 parts of ion-exchanged water.
  • an acrylic rubber reinforced aromatic vinyl resin (rubber reinforced resin A1-3).
  • the content of the acrylic rubbery polymer is 50%, the graft ratio is 93%, the intrinsic viscosity [ ⁇ ] (30 ° C. in methyl ethyl ketone) of the acetone-soluble component is 0.30 dl / g, and the glass transition temperature (Tg) is It was 108 ° C.
  • Silicone rubber reinforced aromatic vinyl resin (Rubber reinforced resin (A1-4)) 1.3 parts of p-vinylphenylmethyldimethoxysilane and 98.7 parts of octamethylcyclotetrasiloxane are mixed, and this is put into 300 parts of distilled water in which 2.0 parts of dodecylbenzenesulfonic acid is dissolved, and 3 parts by a homogenizer. The mixture was stirred and dispersed for emulsification. This emulsified dispersion was transferred to a separable flask equipped with a condenser, a nitrogen inlet and a stirrer, and heated at 90 ° C. for 6 hours while stirring.
  • Rubber reinforced resin A1-4
  • the condensation rate was 93%. Thereafter, the latex was neutralized to pH 7 using an aqueous sodium carbonate solution.
  • the obtained polyorganosiloxane rubber had a volume average particle size of 300 nm.
  • a glass flask equipped with a stirrer and having an internal volume of 7 liters was charged with 100 parts of ion exchange water, 1.5 parts of potassium oleate, 0.01 parts of potassium hydroxide, 0.3 part of tert-dodecyl mercaptan, A batch polymerization component consisting of a latex adjusted to pH 7 containing 18 parts of an organosiloxane rubber, 18 parts of styrene and 6 parts of acrylonitrile was added, and the temperature was raised while stirring.
  • the activity comprises 0.1 part of sodium ethylenediaminetetraacetate, 0.003 part of ferrous sulfate, 0.2 part of sodium formaldehyde sulfoxylate dihydrate and 15 parts of ion-exchanged water.
  • Aqueous agent aqueous solution and 0.03 part of diisopropylbenzene hydroperoxide were added and polymerization was carried out for 1.5 hours.
  • Titanium oxide “Taipeku CR-60-2” (trade name) manufactured by Ishihara Sangyo Co., Ltd. was used.
  • Second resin layer forming film (II-1) A film obtained by placing a white highly concealed PET film “Lumirror E20” (trade name) manufactured by Toray Industries, Inc. in a thermostatic bath and heat-treated at 130 ° C. for 30 minutes was used. The thickness is 50 ⁇ m. The glass transition temperature (Tg) is 70 ° C. The dimensional change rate (MD) is 0.1%. 2-9.
  • Second resin layer forming film (II-2) A film obtained by placing a white highly concealed PET film “Lumirror E20” (trade name) manufactured by Toray Industries, Inc. in a thermostatic bath and heat-treated at 130 ° C. for 30 minutes was used. The thickness is 100 ⁇ m.
  • the glass transition temperature (Tg) is 70 ° C.
  • the dimensional change rate (MD) is 0.1%. 2-10.
  • Second resin layer forming film (II-3) A PET film “Lumirror X10S” (trade name) manufactured by Toray Industries, Inc. was placed in a thermostat and heat-treated at 130 ° C. for 30 minutes. The thickness is 50 ⁇ m.
  • the glass transition temperature (Tg) is 70 ° C.
  • the dimensional change rate (MD) is 0.2%.
  • Second resin layer forming film (II-4) A white highly concealed PET film “Lumirror E20” (trade name) manufactured by Toray Industries, Inc. was used. The thickness is 50 ⁇ m. The glass transition temperature (Tg) is 70 ° C. The dimensional change rate (MD) is 1.1%. 2-12. Second resin layer forming film (II-5) A white highly concealed PET film “Lumirror E20” (trade name) manufactured by Toray Industries, Inc. was used. The thickness is 100 ⁇ m. The glass transition temperature (Tg) is 70 ° C. The dimensional change rate (MD) is 0.9%. 2-13.
  • Second resin layer forming film (II-6) A white highly concealed PET film “Lumirror E20” (trade name) manufactured by Toray Industries, Inc. was used in a thermostat and heat-treated at 95 ° C. for 30 minutes. The thickness is 100 ⁇ m. The glass transition temperature (Tg) is 70 ° C. The dimensional change rate (MD) is 0.8%.
  • Water vapor barrier layer forming film (R-1) A transparent vapor deposition film “Tech Barrier LX” (trade name) manufactured by Mitsubishi Plastics, Inc. was used. This film is a transparent film having a silica vapor deposition film on one side of a PET film, and has a thickness of 12 ⁇ m and a water vapor transmission rate (JIS K7129) of 0.2 g / (m 2 ⁇ day). 2-15.
  • Water vapor barrier layer forming film (R-2) An inorganic binary vapor barrier film “Ecosia VE500” (trade name) manufactured by Toyobo Co., Ltd. was used.
  • This film is a transparent film obtained by vapor-depositing (silica / alumina) on one side of a PET film, and has a thickness of 12 ⁇ m and a water vapor permeability of 0.5 g / (m 2 ⁇ day).
  • thermoplastic resin composition Production Example 1
  • the rubber-reinforced resin (A1-1), the acrylonitrile / styrene copolymer (A2-1), and the colorant (titanium oxide) were mixed at a ratio shown in Table 1 using a Henschel mixer. Thereafter, using a twin-screw extruder “TEX44” (model name) manufactured by Nippon Steel Works, the mixture was melt-kneaded at a barrel temperature of 240 ° C. to obtain a pellet-shaped first thermoplastic resin composition (I-1) (Table 1). 1).
  • Production Examples 7-8 The pellet-shaped first thermoplastic resin composition (I) was used in the same manner as in Production Example 1 except that the raw materials shown in Table 1 were used in the proportions shown in Table 1 and the barrel temperature in melt kneading was 270 ° C. -7) and (I-8) were obtained (see Table 1).
  • Example 1 The first thermoplastic resin composition (I-1) for forming the first resin layer is melt-kneaded at 240 ° C., a T die having a die width of 1,400 mm and a lip interval of 0.4 mm, an extruder having a screw diameter of 65 mm, A thin film was formed using a film forming machine provided with a surface, and the air roll was brought into close contact with a cast roll whose surface temperature was controlled at 65 ° C. to cool and solidify, thereby obtaining a white film having a thickness of 32 ⁇ m. Thickness gauge "ID-C1112C" (model name) manufactured by Mitutoyo Co., Ltd.
  • the second resin layer forming film (II-1) shown in Table 2 was adhered to the surface of the white film using a polyurethane-based adhesive, and the back surface protective film for solar cells having a thickness of 92 ⁇ m. Got. And about this back surface protective film for solar cells, various evaluation was performed and the result was written together in Table 2.
  • “PU” shown as the material of the “adhesive layer” in the table indicates polyurethane.
  • Examples 2-6 and 9 Using the 1st thermoplastic resin composition etc. which were shown in Table 2, it carried out similarly to Example 1, and obtained the back surface protective film for solar cells. And about this back surface protective film for solar cells, various evaluation was performed and the result was written together in Table 2.
  • Examples 7-8 Using the 1st thermoplastic resin composition etc. which were shown in Table 2, it carried out similarly to Example 1, and obtained the back surface protective film for solar cells.
  • the melt kneading temperature of the first thermoplastic resin composition was 270 ° C.
  • the surface temperature of the cast roll was 95 ° C.
  • various evaluation was performed and the result was written together in Table 2.
  • Comparative Examples 1-2 and 9 Using the 1st thermoplastic resin composition etc. which were shown in Table 3, it carried out similarly to Example 1, and obtained the back surface protective film for solar cells. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 3.
  • Comparative Examples 3-7 Using the 1st thermoplastic resin composition etc. which were shown in Table 3, it carried out similarly to Example 1, and obtained the back surface protective film for solar cells.
  • the melt kneading temperature of the first thermoplastic resin composition was 270 ° C.
  • the surface temperature of the cast roll was 95 ° C.
  • various evaluation was performed and the result was written together in Table 3.
  • Comparative Example 8 Using the first thermoplastic resin composition (I-2) for forming the first resin layer, two white films having a thickness of 62 ⁇ m were obtained in the same manner as in Example 1. Of these, one was used as the first resin layer forming film and the other was used as the second resin layer forming film (I-2f). Next, the second resin layer forming film (I-2f) is adhered to the surface of the first resin layer forming film by using a polyurethane-based adhesive, and the back surface protective film for solar cells having a thickness of 132 ⁇ m. Got. And about this back surface protective film for solar cells, various evaluation was performed and the result was written together in Table 2.
  • Example 10 The first thermoplastic resin composition (I-1) for forming the first resin layer is melt-kneaded at 240 ° C., and a T die having a die width of 1,400 mm and a lip interval of 0.4 mm and an extruder having a screw of 65 mm are provided. Using a film forming machine, a thin-walled body was made, and with an air knife, the film was brought into close contact with a cast roll whose surface temperature was controlled at 65 ° C. and cooled and solidified to obtain a white film having a thickness of 50 ⁇ m.
  • the water vapor barrier layer-forming film (R-1) was adhered to the surface of the white film using a polyurethane-based adhesive so that the deposited film became the outer surface. Further, the second resin layer forming film (II-1) was adhered to the surface of the vapor deposition film in the water vapor barrier layer using a polyurethane-based adhesive to obtain a back protective film for a solar cell. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 4.
  • Example 11 Using the first thermoplastic resin composition (I-1) for forming the first resin layer, a white film was obtained in the same manner as in Example 10, and then the white film, the second resin layer forming film ( II-2) and a water vapor barrier layer forming film (R-2) were used in the same manner as in Example 10 to obtain a back protective film for a solar cell. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 4.
  • the light reflectivity is excellent when light is emitted to the first resin layer. And it is excellent in heat resistance in the high temperature environment and the thermal deformation by light reception etc., and is excellent in the durability with respect to a thermal cycle. Furthermore, the adhesion between the surface of the first resin layer and a member containing an ethylene / vinyl acetate copolymer is excellent. Moreover, workability and its handleability are good.
  • a member containing an ethylene / vinyl acetate copolymer joined to the first resin layer side surface for example, for a long time in sunlight or wind and rain It is suitable for applications that are exposed and require shape stability over a long period of time.
  • a structural member of the solar cell module which comprises the solar cell arrange
  • the back surface protective film for a solar cell which sequentially includes the first resin layer, the water vapor barrier layer, and the second resin layer, which is another aspect of the present invention
  • the first resin layer when light is emitted to the first resin layer, It has excellent reflectivity and excellent photoelectric conversion efficiency improvement rate. And it is excellent in heat resistance in the high temperature environment and the thermal deformation by light reception etc., and is excellent in the durability with respect to a thermal cycle.
  • it is excellent in adhesiveness between the surface of the first resin layer and the member containing the ethylene / vinyl acetate copolymer, and the water vapor barrier is present on both the surface on the first resin layer side and the surface on the second resin layer side. Excellent in properties.
  • workability and its handleability are good.
  • a member containing an ethylene / vinyl acetate copolymer joined to the first resin layer side surface for example, for a long time in sunlight or wind and rain It is suitable for applications that are exposed and require shape stability over a long period of time.
  • a structural member of the solar cell module which comprises the solar cell arrange

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の太陽電池用裏面保護フィルム(1)は、第1樹脂層(11)と、この第1樹脂層の一面側に配された第2樹脂層(12)とを備え、第1樹脂層は、ガラス転移温度の最高温度が90℃~120℃であるゴム含有芳香族ビニル系樹脂及び白色系着色剤を含有する、厚さが10~300μmの樹脂層であり、第2樹脂層は、飽和ポリエステル樹脂を含有する、厚さが10~300μmの樹脂層であり、且つ、135℃で30分間放置した場合に、その前後の寸法の変化率が±0.5%以下であるフィルムからなる樹脂層である。

Description

太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
 本発明は、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性、可撓性、光反射性及び冷熱サイクルに対する耐久性に優れた太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュールに関する。
 近年、地球温暖化の原因となる石油に代わるエネルギー供給手段として、太陽電池が注目を浴びており、その需要が高まっている。太陽電池の需要増に伴い、太陽電池に含まれる太陽電池モジュールを構成する各種部材、例えば、太陽電池用裏面保護フィルム(厚さにより、太陽電池用バックシートともいわれる。)等の部品の安定供給が求められている。また、低コストで、太陽電池の発電効率を向上させる手段が広く検討されている。
 太陽電池モジュールは、板状の太陽電池素子を多数配置するとともに、これらを、直列、並列に配線し、この素子を保護するためにパッケージして、ユニット化させたものである。そして、この太陽電池モジュールは、通常、太陽電池素子における、太陽光が当たる面をガラス板で覆い、例えば、透明性が高く耐湿性に優れるエチレン・酢酸ビニル共重合体等を含む組成物を用いて、太陽電池素子の間隙を充填して充填材部とし、裏面(充填材部の下面)を、太陽電池用裏面保護フィルムで封止させた構造となっている。
 従来、太陽電池用裏面保護フィルム(太陽電池用バックシート)としては、太陽光の反射率を高めて太陽電池の発電効率を高めるために、酸化チタンを含有するポリエステルシートが知られている(特許文献1参照)。また、ポリオレフィン系樹脂を用い光反射性に優れた太陽電池用裏面保護シートが知られている(特許文献2参照)。
特開2006-270025号公報 特開2010-56280号公報
 本発明は、光の反射率が高く、熱変形が抑制されて耐熱性に優れ、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、冷熱サイクルに対する耐久性、可撓性、加工性及び作業性に優れた太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュールを提供することを目的とする。
 本発明は以下に示される。
1.第1樹脂層と、該第1樹脂層の一面側に配された第2樹脂層とを備える太陽電池用裏面保護フィルムにおいて、
 上記第1樹脂層は、JIS K 7121に準じて測定されたガラス転移温度の最高温度が90℃~120℃であるゴム含有芳香族ビニル系樹脂と、白色系着色剤とを含有し、厚さが10~300μmである樹脂層であり、
 上記第2樹脂層は、飽和ポリエステル樹脂を含有し、厚さが10~300μmであり、且つ、135℃で30分間放置した場合に、その前後の寸法の変化率が±0.5%以下であるフィルムからなる樹脂層であることを特徴とする太陽電池用裏面保護フィルム。
2.上記第2樹脂層が、上記飽和ポリエステル樹脂を含有するフィルムの熱処理物を用いて形成されている上記1に記載の太陽電池用裏面保護フィルム。
3.上記第2樹脂層が白色系着色剤を含有する上記1又は2に記載の太陽電池用裏面保護フィルム。
4.波長400~1,400nmの光を、上記太陽電池用裏面保護フィルムにおける上記第1樹脂層の表面に放射した場合、該光に対する反射率が50%以上である上記1乃至3のいずれか1項に記載の太陽電池用裏面保護フィルム。
5.上記第1樹脂層及び上記第2樹脂層の間に、水蒸気バリア層を備える上記1乃至4のいずれか1項に記載の太陽電池用裏面保護フィルム。
6.上記水蒸気バリア層が、その表面に、金属及び/又は金属酸化物を含む膜が形成されてなる蒸着フィルムからなる上記5に記載の太陽電池用裏面保護フィルム。
7.厚さが30~600μmである上記1乃至6のいずれか1項に記載の太陽電池用裏面保護フィルム。
8.上記1に記載の太陽電池用裏面保護フィルムの製造方法であって、
 飽和ポリエステル樹脂を含むフィルムを、大気中、100℃~150℃の温度で熱処理して、135℃で30分間放置した場合に、その前後の寸法の変化率が±0.5%以下である第2フィルムとする工程、及び、上記ゴム含有芳香族ビニル系樹脂及び上記白色系着色剤を含む第1フィルムと、上記第2フィルムとを接合する工程を備えることを特徴とする太陽電池用裏面保護フィルムの製造方法。
9.上記1乃至7のいずれかに記載の太陽電池用裏面保護フィルムを備えることを特徴とする太陽電池モジュール。
 本発明の太陽電池用裏面保護フィルムによれば、第1樹脂層表面における光の反射率が高く、熱変形が抑制されて耐熱性に優れ、しかも冷熱サイクルに対する耐久性に優れ、更に、可撓性、エチレン・酢酸ビニル共重合体を含む部材との接着性に優れ、加工性及びその取扱い性が良好である。また、第1樹脂層表面を、エチレン・酢酸ビニル共重合体を含む、例えば、太陽電池素子の間隙を充填する充填材部に接着させて太陽電池モジュールとした場合に、光電変換効率を改良することができる。
 上記第2樹脂層が白色系樹脂層である場合には、上記光の反射率を更に高くすることができ、太陽電池モジュールとした場合に、光電変換効率を確実に改良することができる。
 波長400~1,400nmの光を、上記太陽電池用裏面保護フィルムにおける上記第1樹脂層の表面に放射した場合、この光に対する反射率が50%以上である場合は、反射性に特に優れ、発電効率に極めて優れた太陽電池用裏面保護フィルムとすることができる。
 上記第1樹脂層及び上記第2樹脂層の間に、水蒸気バリア層を備える場合には、上記第2樹脂層側の表面から第1樹脂層側への水蒸気バリア性に優れた太陽電池用裏面保護フィルムとすることができる。
 上記水蒸気バリア層が、その表面に、金属及び/又は金属酸化物を含む膜が形成されてなる蒸着フィルムからなる場合には、本発明の太陽電池用裏面保護フィルムにおける耐熱性(寸法安定性)及び可撓性のバランスを低下させることなく、優れた水蒸気バリア性を有することができる。
 本発明の太陽電池用裏面保護フィルムの厚さが30~600μmである場合には、裏面からの熱や衝撃等を抑制しやすく、可撓性にも優れる。
 本発明の太陽電池用裏面保護フィルムの製造方法によれば、特定の構成及び性質を有する積層フィルムを効率よく製造することができる。
 本発明の太陽電池モジュールは、本発明の太陽電池用裏面保護フィルムを備えることから、太陽光や風雨に長期間曝される屋外での使用に好適であり、太陽電池における発電効率に優れる。
太陽電池用裏面保護フィルムの一例を示す概略断面図である。 太陽電池用裏面保護フィルムの他の例を示す概略断面図である。 太陽電池モジュールの一例を示す概略断面図である。 実施例において、冷熱サイクル試験に用いる太陽電池用裏面保護フィルムの形態を示す平面図である。 実施例において、冷熱サイクル試験に用いるサンプル構造を示す概略断面図である。
 以下、本発明を詳しく説明する。本明細書において、「(共)重合」とは、単独重合及び共重合を意味する。また、「(メタ)アクリル」とは、アクリル及びメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味する。
 本発明の太陽電池用裏面保護フィルムは、第1樹脂層と、この第1樹脂層の一面側に配された第2樹脂層とを備える太陽電池用裏面保護フィルムであり、その概略断面は、図1に例示される。即ち、図1の太陽電池用裏面保護フィルム1は、第1樹脂層11及び第2樹脂層12を備える積層型フィルムである。また、本発明の太陽電池用裏面保護フィルムにおいて、上記第1樹脂層及び上記第2樹脂層の間に、水蒸気バリア層を備える場合の概略断面は、図2に例示される。即ち、図2の太陽電池用裏面保護フィルム1’は、第1樹脂層11、水蒸気バリア層13及び第2樹脂層12を、順次、備える積層型フィルムである。
 以下、各層を順に説明する。
 上記第1樹脂層は、JIS K 7121に準じて測定されたガラス転移温度(以下、「Tg」という。)の最高温度が90℃~120℃であるゴム含有芳香族ビニル系樹脂と、白色系着色剤とを含有する樹脂層であり、主として、可視光を反射する層である。そして、上記第1樹脂層は、少なくともゴム含有芳香族ビニル系樹脂を含むことから、第1樹脂層と、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性に優れる。
 上記ゴム含有芳香族ビニル系樹脂は、ゴム質重合体の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物を含むビニル系単量体を重合して得られたゴム強化芳香族ビニル系樹脂(以下、「樹脂(A1)」という。)を少なくとも含有する樹脂であり、この樹脂(A1)と、芳香族ビニル化合物に由来する構造単位及びシアン化ビニル化合物に由来する構造単位を含む共重合体(以下、「共重合体(A2)」という。)とからなる樹脂であってもよい。
 尚、上記ゴム含有芳香族ビニル系樹脂に含まれるゴム質重合体の含有量は、成形品における耐衝撃性及び耐熱性の観点から、好ましくは5~40質量%、より好ましくは8~30質量%、更に好ましくは10~20質量%、特に好ましくは12~18質量%である。
 上記第1樹脂層を構成する組成物を、第1熱可塑性樹脂組成物として説明する。即ち、この第1熱可塑性樹脂組成物は、ゴム含有芳香族ビニル系樹脂及び白色系着色剤を含有する組成物であり、必要に応じて、後述する、他の樹脂又は重合体(以下、両者を併せて「他の樹脂」という。)、添加剤等を含有してもよい。
 上記ゴム含有芳香族ビニル系樹脂は、上記のように、樹脂(A1)又は、樹脂(A1)及び共重合体(A2)の組み合わせ、からなるものである。樹脂(A1)及び共重合体(A2)は、いずれも1種ずつ含むものであってよいし、2種以上含むものであってもよい。そして、全ての樹脂(A1)、又は、全ての樹脂(A1)及び全ての共重合体(A2)からなる混合物を、JIS K 7121に準じて、示差走査熱量計等を用いた熱分析に供してTgを得ることができる。その最高温度は90℃~120℃であり、好ましくは92℃~118℃である。上記Tgの最高温度が上記範囲にあると、太陽電池素子を包埋する充填材部との接着性に優れるだけでなく、太陽電池を、例えば、寒暖の差が激しい環境下において、長期に亘って使用しても、変形等が抑制され、耐久性に優れたものとなる。上記温度が120℃を超えると、太陽電池用裏面保護フィルムの冷熱サイクルにおける耐久性が不十分となる。一方、上記温度が90℃未満であると、耐熱性が不十分である。上記ゴム含有芳香族ビニル系樹脂に係るこの性質は、第2樹脂層における構成との組み合わせにおいて、重要なものである。「冷熱サイクルにおける耐久性」は、〔実施例〕に記載の冷熱サイクル試験を行った結果、太陽電池用裏面保護フィルムに裂けが発生しない、又は、裂けが生じてもその長さが1mm未満であることを意味する。
 尚、上記Tgの最高温度を有するゴム含有芳香族ビニル系樹脂は、含まれる樹脂(A1)及び共重合体(A2)の全てが、単独で90℃~120℃のTgを有してよいし、ゴム含有芳香族ビニル系樹脂全体として、Tgの最高温度が90℃~120℃となるものであれば、単独で測定したときのTgが90℃未満又は120℃を超える温度である樹脂又は重合体を含んでもよい。
 上記樹脂(A1)は、ゴム質重合体(以下、「ゴム質重合体(a1-1)」という。)の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物を含むビニル系単量体(以下、「ビニル系単量体(a1-2)」という。)を重合して得られたゴム強化芳香族ビニル系樹脂であり、通常、芳香族ビニル化合物及びシアン化ビニル化合物を含むビニル系単量体(a1-2)がゴム質重合体(a1-1)にグラフト共重合した共重合樹脂と、ゴム質重合体(a1-1)にグラフトしていない未グラフト成分、即ち、残部のビニル系単量体(a1-2)による(共)重合体とが含まれる。
 上記樹脂(A1)の形成に用いられるゴム質重合体(a1-1)は、室温でゴム質であれば、特に限定されず、単独重合体及び共重合体のいずれでもよい。また、このゴム質重合体(a1-1)は、架橋重合体及び非架橋重合体のいずれでもよい。
 上記ゴム質重合体(a1-1)としては、特に限定されないが、共役ジエン系ゴム、水添共役ジエン系ゴム、エチレン・α-オレフィン系共重合体ゴム、アクリル系ゴム、シリコーンゴム、シリコーン・アクリル複合ゴム等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。耐候性の観点からは、アクリル系ゴム、シリコーンゴム、シリコーン・アクリル複合ゴム、エチレン・α-オレフィン系共重合体ゴム及び水添共役ジエン系ゴム等が好ましい。
 上記ゴム質重合体(a1-1)の形状は、特に限定されず、粒子状(球状、略球状)、直線状、曲線状等とすることができる。粒子状である場合、その体積平均粒子径は、好ましくは5~2,000nmであり、より好ましくは10~1,800nmであり、更に好ましくは50~1,500nmである。体積平均粒子径が上記の範囲にあれば、第1熱可塑性樹脂組成物の加工性及び得られる第1樹脂層の耐衝撃性等に優れる。尚、上記体積平均粒子径は、電子顕微鏡写真を用いた画像解析、レーザー回折法、光散乱法等により測定することができる。
 上記共役ジエン系ゴムとしては、ポリブタジエン、ブタジエン・スチレンランダム共重合体、ブタジエン・スチレンブロック共重合体、ブタジエン・アクリロニトリル共重合体等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 本発明においては、上記共役ジエン系ゴムは、可撓性、低温衝撃性等の観点から、そのTgが-20℃以下であることが好ましい。
 上記アクリル系ゴムとしては、アルキル基の炭素数が2~8のアクリル酸アルキルエステルに由来する構造単位を、上記アクリル系ゴムを構成する構造単位の全量に対して80質量%以上含む(共)重合体が好ましい。
 アルキル基の炭素数が2~8のアクリル酸アルキルエステルとしては、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル等が挙げられる。これらは単独で又は2つ以上を用いることができる。好ましいアクリル酸アルキルエステルは、アクリル酸n-ブチル、アクリル酸イソブチル及びアクリル酸2-エチルヘキシルである。
 上記アクリル系ゴムが、他の単量体に由来する構造単位を含む場合、他の単量体としては、塩化ビニル、塩化ビニリデン、アクリロニトリル、ビニルエステル、メタクリル酸アルキルエステル、(メタ)アクリル酸、スチレン等の単官能性単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のモノ又はポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート、ジアリルマレエート、ジアリルサクシネート、トリアリルトリアジン等のジ又はトリアリル化合物、アリル(メタ)アクリレート等のアリル化合物、1,3-ブタジエン等の共役ジエン系化合物等の架橋性単量体等が挙げられる。
 本発明においては、上記アクリル系ゴムは、可撓性、低温衝撃性等の観点から、そのTgが-10℃以下であることが好ましい。上記Tgを有するアクリル系ゴムは、通常、上記架橋性単量体に由来する構造単位を含む共重合体である。
 好ましいアクリル系ゴムを構成する、架橋性単量体に由来する構造単位の含有量は、構造単位の全量に対して、好ましくは0.01~10質量%、より好ましくは0.05~8質量%、更に好ましくは0.1~5質量%である。
 上記アクリル系ゴムの体積平均粒子径は、可撓性、低温衝撃性等の観点から、好ましくは5~500nm、より好ましくは10~450nm、更に好ましくは20~400nmである。
 上記アクリル系ゴムは、公知の方法で製造されるが、好ましい製造方法は、乳化重合法である。
 上記シリコーンゴムとしては、ゴム強化芳香族ビニル系樹脂の製造に好適な方法である乳化重合を容易なものとするために、ラテックスに含まれるゴムであることが好ましい。従って、このシリコーンゴムは、例えば、米国特許第2,891,920号明細書、同第3,294,725号明細書等に記載された方法により製造されたポリオルガノシロキサン系ゴム等とすることができる。
 上記ポリオルガノシロキサン系ゴムは、例えば、ホモミキサー又は超音波混合機を使用し、アルキルベンゼンスルホン酸、アルキルスルホン酸等のスルホン酸系乳化剤の存在下に、オルガノシロキサンと水とを剪断混合し、その後、縮合する方法により得られたラテックスに含まれるシリコーンゴムであることが好ましい。アルキルベンゼンスルホン酸は、オルガノシロキサンの乳化剤として作用するとともに、重合開始剤としても作用するので好適である。この際、アルキルベンゼンスルホン酸金属塩、アルキルスルホン酸金属塩等を併用すると、ゴム強化芳香族ビニル系樹脂を製造する際に、シリコーンゴムを安定に維持する効果があるので好ましい。尚、上記ポリオルガノシロキサン系ゴムの重合体末端は、例えば、ヒドロキシル基、アルコキシ基、トリメチルシリル基、メチルジフェニルシリル基等で封止されていてもよい。また、必要により、本発明の目的の性能を損なわない範囲で、グラフト交叉剤及び/又は架橋剤を共縮合させてもよい。これらを用いることにより、耐衝撃性を改良することができる。
 上記反応に用いるオルガノシロキサンは、例えば、一般式〔R SiO(4-m)/2〕(式中、Rは置換又は非置換の1価の炭化水素基であり、mは0~3の整数を示す。)で表される構造単位を有する化合物である。この化合物の構造は、直鎖状、分岐状又は環状であるが、好ましくは環状構造を有するオルガノシロキサンである。このオルガノシロキサンが有するR、即ち、1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;フェニル基、トリル基等のアリール基;ビニル基、アリル基等のアルケニル基;及び、これら炭化水素基における炭素原子に結合した水素原子の一部がハロゲン原子、シアノ基等で置換された基;並びにアルキル基の水素原子の少なくとも1個がメルカプト基で置換された基等が挙げられる。
 上記オルガノシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン等の環状化合物の他に、直鎖状又は分岐状のオルガノシロキサンを用いることができる。これらは、単独であるいは2つ以上を組み合わせて用いることができる。
 尚、上記オルガノシロキサンは、予め縮合された、例えば、Mwが500~10,000程度のポリオルガノシロキサンであってもよい。また、オルガノシロキサンがポリオルガノシロキサンである場合、その分子鎖末端は、ヒドロキシル基、アルコキシ基、トリメチルシリル基、メチルジフェニルシリル基等で封止されていてもよい。
 上記グラフト交叉剤は、通常、炭素-炭素不飽和結合とアルコキシシリル基とを有する化合物であり、例えば、p-ビニルフェニルメチルジメトキシシラン、2-(p-ビニルフェニル)エチルメチルジメトキシシラン、3-(p-ビニルベンゾイロキシ)プロピルメチルジメトキシシラン等が挙げられる。
 上記グラフト交叉剤の使用量は、オルガノシロキサン、グラフト交叉剤及び架橋剤の合計を100質量部とした場合、通常、10質量部以下、好ましくは0.2~10質量部、更に好ましくは0.5~5質量部である。上記グラフト交叉剤の使用量を、10質量部を超えて得られたポリオルガノシロキサン系ゴムを用いると、グラフト共重合後の共重合樹脂の分子量が低下し、その結果、十分な耐衝撃性が得られない場合がある。また、グラフト化後のポリオルガノシロキサン系ゴムの二重結合より酸化劣化が進行し易く、耐候性の良好な樹脂(A1)が得られない場合がある。
 上記架橋剤としては、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、エチルトリエトキシシラン等の3官能性架橋剤、テトラエトキシシラン等の4官能性架橋剤等が挙げられる。尚、これらの化合物を予め縮重合させてなる架橋性プレポリマーを使用してもよい。これらは、単独で用いてよいし、2つ以上を組み合わせて用いることができる。
 上記架橋剤の使用量は、オルガノシロキサン、グラフト交叉剤及び架橋剤の合計を100質量部とした場合、通常、10質量部以下、好ましくは5質量部以下、更に好ましくは0.01~5質量部である。上記架橋剤の使用量が多すぎると、得られるポリオルガノシロキサン系ゴムの柔軟性が損なわれ、フィルムの可撓性が低下する場合がある。
 上記シリコーンゴムの体積平均粒子径は、通常、5~500nm、好ましくは10~400nm、更に好ましくは50~400nmである。この体積平均粒子径は、製造時に用いる乳化剤及び水の量、ホモミキサー又は超音波混合機を使用して混合したときの分散の程度又はオルガノシロキサンのチャージ方法によって、容易に制御することができる。体積平均粒子径が500nmを超えると、光沢が低下する等、外観性が劣る場合がある。
 上記シリコーン・アクリル複合ゴムは、ポリオルガノシロキサン系ゴムとポリアルキル(メタ)アクリレート系ゴムを含有するゴム質重合体である。好ましいシリコーン・アクリル複合ゴムは、ポリオルガノシロキサン系ゴム及びポリアルキル(メタ)アクリレート系ゴムが分離できないように相互に絡み合った構造を有する複合ゴムである。
 上記ポリオルガノシロキサン系ゴムとしては、好ましくは、オルガノシロキサンを共重合したものを用いることができる。上記オルガノシロキサンとしては、3員環以上の各種の還元体が挙げられ、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン等が好ましい。そして、これらのオルガノシロキサンは、単独であるいは2つ以上を組み合せて用いることができる。
 上記ポリオルガノシロキサン系ゴムを構成する、オルガノシロキサンに由来する構造単位の含有量は、構造単位の全量に対して、好ましくは50質量%以上、より好ましくは70質量%以上である。
 上記ポリアルキル(メタ)アクリレート系ゴムとしては、好ましくは、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート、エトキシエトキシエチルアクリレート、メトキシトリプロピレングリコールアクリレート、4-ヒドロキシブチルアクリレート、ラウリルメタクリレート、ステアリルメタクリレート等の(メタ)アクリル酸アルキルエステル系化合物を含む単量体を(共)重合して得られたゴムである。これらの(メタ)アクリル酸アルキルエステル系化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 また、上記単量体は、(メタ)アクリル酸アルキルエステル系化合物以外に、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;メタクリル酸変性シリコーン、フッ素含有ビニル化合物等の各種のビニル系単量体を30質量%以下の範囲で含んでいてもよい。
 上記ポリアルキル(メタ)アクリレート系ゴムは、フィルムに十分な可撓性を付与することができることから、2つ以上のTgを有する共重合体であることが好ましい。
 上記シリコーン・アクリル複合ゴムは、例えば、特開平4-239010号公報、特開平4-100812号公報等に記載された方法により製造されたものを用いることができる。
 上記シリコーン・アクリル複合ゴムの体積平均粒子径は、可撓性、低温衝撃性等の観点から、好ましくは5~500nm、より好ましくは10~450nm、更に好ましくは20~400nmである。
 上記エチレン・α-オレフィン系共重合体ゴムは、エチレン単位と、炭素数3以上のα-オレフィンからなる構造単位とを含む共重合体であり、エチレン・α-オレフィン共重合体、エチレン・α-オレフィン・非共役ジエン共重合体等が挙げられる。
 上記エチレン・α-オレフィン共重合体としては、エチレン・プロピレン共重合体、エチレン・ブテン-1共重合体等が挙げられる。また、上記エチレン・α-オレフィン・非共役ジエン共重合体としては、エチレン・プロピレン・非共役ジエン共重合体、エチレン・ブテン-1・非共役ジエン共重合体等が挙げられる。
 上記α-オレフィンとしては、好ましくは、炭素数3~20のα-オレフィンであり、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、1-エイコセン等が挙げられる。上記α-オレフィンにおいて、より好ましい炭素数は3~12であり、更に好ましくは3~8である。
 上記エチレン・α-オレフィン系共重合体ゴムを構成する、エチレン単位及びα-オレフィン単位の割合は、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは50~90質量%及び10~50質量%、更に好ましくは60~88質量%及び12~40質量%、特に好ましくは70~85質量%及び15~30質量%である。上記α-オレフィン単位の含有割合が多すぎると、可撓性が低下する場合がある。
 上記エチレン・α-オレフィン系共重合体ゴムが、エチレン・α-オレフィン・非共役ジエン共重合体である場合、非共役ジエンとしては、5-エチリデン-2-ノルボルネン等のアルケニルノルボルネン;ジシクロペンタジエン等の環状ジエン;脂肪族ジエン等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記非共役ジエンに由来する構造単位の含有量は、上記エチレン・α-オレフィン・非共役ジエン共重合体を構成する構造単位の全量に対して、好ましくは1~30質量%、より好ましくは2~20質量%である。非共役ジエン単位の含有割合が多すぎると、成形外観性及び耐侯性が低下する場合がある。
 上記エチレン・α-オレフィン系共重合体ゴムにおける不飽和基量は、ヨウ素価に換算して4~40であることが好ましい。
 また、上記エチレン・α-オレフィン系共重合体ゴムのムーニー粘度(ML1+4、100℃;JIS K6300に準拠)は、好ましくは5~80、より好ましくは10~65、更に好ましくは15~45である。ムーニー粘度が上記範囲にあると、耐衝撃性及び可撓性に優れる。
 上記水添共役ジエン系ゴムは、共役ジエン系化合物に由来する構造単位を含む(共)重合体を水素添加してなる(共)重合体であれば、特に限定されない。
 上記水添共役ジエン系ゴムとしては、下記の構造を有する共役ジエンブロック共重合体の水素添加物が挙げられる。即ち、芳香族ビニル化合物に由来する構造単位からなる重合体ブロックA;1,2-ビニル結合含量が25モル%を超える共役ジエン系化合物に由来する構造単位からなる重合体の二重結合部分を95モル%以上水素添加してなる重合体ブロックB;1,2-ビニル結合含量が25モル%以下の共役ジエン系化合物に由来する構造単位からなる重合体の二重結合部分を95モル%以上水素添加してなる重合体ブロックC;並びに、芳香族ビニル化合物に由来する構造単位と共役ジエン系化合物に由来する構造単位とからなる共重合体の二重結合部分を95モル%以上水素添加してなる重合体ブロックDのうち、2種以上を組み合わせたものからなるブロック共重合体である。
 上記ブロック共重合体の分子構造は、分岐状、放射状又はこれらの組み合わせでもよい。また、ブロック構造は、ジブロック、トリブロックもしくはマルチブロック又はこれらの組み合わせでもよい。
 上記ブロック共重合体の構造としては、A-(B-A)n、(A-B)n、A-(B-C)n、C-(B-C)n、(B-C)n、A-(D-A)n、(A-D)n、A-(D-C)n、C-(D-C)n、(D-C)n、A-(B-C-D)n、(A-B-C-D)n〔但し、nは1以上の整数である。〕等が挙げられ、好ましくは、A-B-A、A-B-A-B、A-B-C、A-D-C、C-B-Cである。
 上記ブロック共重合体を構成する重合体ブロックA及びDの形成に用いられる芳香族ビニル化合物としては、少なくとも1つのビニル結合と、少なくとも1つの芳香族環とを有する化合物であれば、特に限定されない。その例としては、スチレン、α-メチルスチレン、メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン、p-tert-ブチルスチレン、エチルスチレン、ビニルナフタレン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、スチレンが好ましい。
 上記ブロック共重合体を構成する重合体ブロックAの含有割合は、重合体の全体に対して、好ましくは0~65質量%、より好ましくは10~40質量%である。重合体ブロックAの含有量が多すぎると、耐衝撃性が十分でない場合がある。
 上記重合体ブロックB、C及びDは、共役ジエン系化合物及び芳香族ビニル化合物を用いて得られた水素添加前ブロック共重合体を水素添加することにより形成される。上記重合体ブロックB、C及びDの形成に用いられる共役ジエン系化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、クロロプレン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、工業的に利用でき、物性に優れることから、1,3-ブタジエン及びイソプレンが好ましい。
 上記重合体ブロックB、C及びDの水素添加率は、いずれも95モル%以上であり、好ましくは96モル%以上である。
 上記重合体ブロックBにおける1,2-ビニル結合含量は、好ましくは25モル%を超え90モル%以下、より好ましくは30~80モル%である。この1,2-ビニル結合含量が25モル%以下であると、ゴム的性質が失われ、耐衝撃性が十分でない場合がある。一方、90モル%を超えると、耐薬品性が十分でない場合がある。
 また、上記重合体ブロックCにおける1,2-ビニル結合含量は、好ましくは25%モル以下、より好ましくは20モル%以下である。
 上記重合体ブロックDにおける1,2-ビニル結合含量は、好ましくは25~90モル%、より好ましくは30~80モル%である。この1,2-ビニル結合含量が25モル%未満であると、ゴム的性質が失われ、耐衝撃性が十分でない場合がある。一方、90モル%を超えると、耐薬品性が十分でない場合がある。
 また、上記重合体ブロックDにおける芳香族ビニル化合物単位量は、好ましくは25質量%以下、より好ましくは20質量%以下である。この芳香族ビニル化合物単位量が25質量%を超えると、ゴム的性質が失われ耐衝撃性が十分でない場合がある。
 上記水添共役ジエン系ゴムとしては、水添ポリブタジエン、水添スチレン・ブタジエンゴム、スチレン・エチレンブチレン・オレフィン結晶ブロックポリマー、オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー、スチレン・エチレンブチレン・スチレンブロックポリマー、ブタジエン・アクリロニトリル共重合体の水素添加物等が挙げられる。
 上記水添共役ジエン系ゴムの重量平均分子量(Mw)は、好ましくは1万~100万、より好ましくは3万~80万、更に好ましくは5万~50万である。Mwが上記範囲にあると、可撓性に優れる。
 次に、上記樹脂(A1)の形成に用いられるビニル系単量体(a1-2)は、芳香族ビニル化合物及びシアン化ビニル化合物を含む。即ち、このビニル系単量体(a1-2)は、芳香族ビニル化合物及びシアン化ビニル化合物のみからなるものであってよいし、芳香族ビニル化合物及びシアン化ビニル化合物と、更にこれらの化合物と共重合可能な他の単量体とからなるものであってもよい。他の単量体としては、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記芳香族ビニル化合物は、少なくとも1つのビニル結合と、少なくとも1つの芳香族環とを有する化合物であれば、特に限定されない。その例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、トリブロモスチレン、フルオロスチレン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、スチレン及びα-メチルスチレンが好ましく、スチレンが特に好ましい。
 上記シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、アクリロニトリルが好ましい。
 上記(メタ)アクリル酸エステル化合物としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記マレイミド系化合物としては、マレイミド、N-メチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ドデシルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(2、6-ジメチルフェニル)マレイミド、N-(2、6-ジエチルフェニル)マレイミド、N-(2-メトキシフェニル)マレイミド、N-ベンジルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-ナフチルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらのうち、N-フェニルマレイミドが好ましい。また、これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。尚、上記樹脂(A1)に、マレイミド系化合物に由来する構造単位を導入する他の方法としては、例えば、無水マレイン酸の不飽和ジカルボン酸無水物を共重合し、その後イミド化する方法でもよい。
 上記不飽和酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記カルボキシル基含有不飽和化合物としては、(メタ)アクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記ヒドロキシル基含有不飽和化合物としては、(メタ)アクリル酸2-ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、(メタ)アクリル酸2-ヒドロキシエチルにε-カプロラクトンを付加して得られた化合物等のヒドロキシル基を有する(メタ)アクリル酸エステル;o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、o-ヒドロキシ-α-メチルスチレン、m-ヒドロキシ-α-メチルスチレン、p-ヒドロキシ-α-メチルスチレン、2-ヒドロキシメチル-α-メチルスチレン、3-ヒドロキシメチル-α-メチルスチレン、4-ヒドロキシメチル-α-メチルスチレン、4-ヒドロキシメチル-1-ビニルナフタレン、7-ヒドロキシメチル-1-ビニルナフタレン、8-ヒドロキシメチル-1-ビニルナフタレン、4-ヒドロキシメチル-1-イソプロペニルナフタレン、7-ヒドロキシメチル-1-イソプロペニルナフタレン、8-ヒドロキシメチル-1-イソプロペニルナフタレン、p-ビニルベンジルアルコール、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記エポキシ基含有不飽和化合物としては、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-オキシシクロヘキシル、ビニルグリシジルエーテル、アリルグリシジルエーテル、メタリルグリシジルエーテル等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記オキサゾリン基含有不飽和化合物としては、ビニルオキサゾリン等が挙げられる。
 本発明において、上記ビニル系単量体(a1-2)に含まれる、芳香族ビニル化合物及びシアン化ビニル化合物の合計含有量は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、ビニル系単量体(a1-2)全量に対し、好ましくは70~100質量%、より好ましくは80~100質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは50~95質量%及び5~50質量%、更に好ましくは60~95質量%及び5~40質量%である。
 上記樹脂(A1)として、好ましい樹脂は、以下の通りである。
[1-1]ゴム質重合体(a1-1)の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物からなるビニル系単量体(a1-2)を重合して得られたゴム強化芳香族ビニル系樹脂
[1-2]ゴム質重合体(a1-1)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びマレイミド系化合物からなるビニル系単量体(a1-2)を重合して得られたゴム強化芳香族ビニル系樹脂
[1-3]ゴム質重合体(a1-1)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びメタクリル酸エステル化合物からなるビニル系単量体(a1-2)を重合して得られたゴム強化芳香族ビニル系樹脂
 上記樹脂(A1)は、上記ゴム質重合体(a1-1)の存在下に、上記ビニル系単量体(a1-2)を重合することにより製造することができる。重合方法としては、乳化重合、懸濁重合、溶液重合、塊状重合、又は、これらを組み合わせた重合法とすることができる。
 尚、上記樹脂(A1)の製造の際には、ゴム質重合体(a1-1)及び上記ビニル系単量体(a1-2)は、反応系において、上記ゴム質重合体(a1-1)全量の存在下に、上記ビニル系単量体(a1-2)を一括添加して重合を開始してよいし、分割して又は連続的に添加しながら重合を行ってもよい。また、上記ゴム質重合体(a1-1)の一部存在下、又は、非存在下に、上記ビニル系単量体(a1-2)を一括添加して重合を開始してよいし、分割して又は連続的に添加してもよい。このとき、上記ゴム質重合体(a1-1)の残部は、反応の途中で、一括して、分割して又は連続的に添加してもよい。
 乳化重合により樹脂(A1)を製造する場合には、重合開始剤、連鎖移動剤(分子量調節剤)、乳化剤、水等が用いられる。
 上記重合開始剤としては、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の有機過酸化物と、含糖ピロリン酸処方、スルホキシレート処方等の還元剤とを組み合わせたレドックス系開始剤;過硫酸カリウム等の過硫酸塩;ベンゾイルパーオキサイド(BPO)、ラウロイルパーオキサイド、tert-ブチルパーオキシラウレイト、tert-ブチルパーオキシモノカーボネート等の過酸化物等が挙げられる。これらは、単独であるいは2つ以上を組み合わせて用いることができる。また、上記重合開始剤の使用量は、上記ビニル系単量体(a1-2)全量に対し、通常、0.1~1.5質量%である。
 尚、上記重合開始剤は、反応系に一括して、又は、連続的に添加することができる。
 上記連鎖移動剤としては、オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ヘキシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、tert-テトラデシルメルカプタン等のメルカプタン類;ターピノーレン類、α-メチルスチレンのダイマー等が挙げられる。これらは、単独であるいは2つ以上を組み合わせて用いることができる。上記連鎖移動剤の使用量は、上記ビニル系単量体(a1-2)全量に対し、通常、0.05~2.0質量%である。
 尚、上記連鎖移動剤は、反応系に一括して、又は、連続的に添加することができる。
 上記乳化剤としては、アニオン系界面活性剤及びノニオン系界面活性剤が挙げられる。アニオン系界面活性剤としては、高級アルコールの硫酸エステル;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウム等の脂肪族スルホン酸塩;高級脂肪族カルボン酸塩;脂肪族リン酸塩等が挙げられる。また、ノニオン系界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、アルキルエーテル型化合物等が挙げられる。これらは、単独であるいは2つ以上を組み合わせて用いることができる。上記乳化剤の使用量は、上記ビニル系単量体(a1-2)全量に対し、通常、0.3~5.0質量%である。
 乳化重合は、ビニル系単量体(a1-2)、重合開始剤等の種類に応じ、公知の条件で行うことができる。この乳化重合により得られたラテックスは、通常、凝固剤により凝固させ、樹脂成分を粉末状とし、その後、これを水洗、乾燥することによって、精製された樹脂が得られる。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化ナトリウム等の無機塩;硫酸、塩酸等の無機酸;酢酸、乳酸等の有機酸等が用いられる。
 尚、上記第1熱可塑性樹脂組成物に、上記樹脂(A1)を2種以上含有させる場合には、1のラテックスから凝固した樹脂(A1-a)と、他のラテックスから凝固した樹脂(A1-b)とを混合する方法、1のラテックスと、他のラテックスとからなる混合物を調製した後、凝固する方法等を適用することができる。
 溶液重合、塊状重合及び塊状-懸濁重合による樹脂(A1)の製造方法は、公知の方法を適用することができる。
 尚、上記樹脂(A1)としては、シリコーンゴム強化芳香族ビニル系樹脂、シリコーン・アクリル複合ゴム強化芳香族ビニル系樹脂等の構成を有する市販品を用いることができる。例えば、ゴム質重合体(a1-1)としてシリコーン・アクリル複合ゴムを用いてなる樹脂(A1)としては、例えば、特開平4-239010号公報に記載された方法による市販品である、三菱レイヨン社製「メタブレンSX-006」(商品名)等が挙げられる。
 上記樹脂(A1)のグラフト率は、好ましくは20~170%であり、より好ましくは30~170%、更に好ましくは40~150%である。このグラフト率が低すぎると、第1樹脂層の可撓性が十分でない場合がある。一方、グラフト率が高すぎると、この樹脂(A1)の粘度が高くなる傾向にあり、第1熱可塑性樹脂組成物による薄肉化が困難になる場合がある。
 上記グラフト率は、下記式により求めることができる。
  グラフト率(%)={(S-T)/T}×100
 上記式中、Sは樹脂(A1)1グラムをアセトン(ゴム質重合体(a1-1)がアクリル系ゴムの場合、アセトニトリル)20mlに投入し、25℃の温度条件下で、振とう機により2時間振とうした後、5℃の温度条件下で、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分と可溶分とを分離して得られる不溶分の質量(g)であり、Tは樹脂(A1)1グラムに含まれるゴム質重合体(a1-1)の質量(g)である。このゴム質重合体(a1-1)の質量は、重合処方及び重合転化率から算出する方法、赤外線吸収スペクトル(IR)により求める方法等により得ることができる。
 上記グラフト率は、上記樹脂(A1)を製造する際に用いる、重合開始剤、連鎖移動剤、乳化剤、溶剤等の種類や量、更には重合時間、重合温度等を調整することにより、容易に制御することができる。
 上記樹脂(A1)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記樹脂(A1)とともにゴム含有芳香族ビニル系樹脂を構成する共重合体(A2)は、芳香族ビニル化合物に由来する構造単位(以下、「構造単位(sa-1)」という。)及びシアン化ビニル化合物に由来する構造単位(以下、「構造単位(sa-2)」という。)を含む共重合体である。この共重合体(A2)は、上記樹脂(A1)の製造時に生成した、ビニル系単量体(a1-2)による未グラフトの共重合体に由来するものであってよいし、別途、芳香族ビニル化合物及びシアン化ビニル化合物を含むビニル系単量体を重合して得られた共重合体に由来するものであってもよい。
 上記共重合体(A2)は、構造単位(sa-1)及び(sa-2)のみからなるものであってよいし、構造単位(sa-1)及び(sa-2)と、更に芳香族ビニル化合物及びシアン化ビニル化合物と共重合可能な他の単量体に由来する構造単位(以下、「構造単位(sa-3)」という。)とからなるものであってもよい。他の単量体としては、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。上記の各化合物は、上記ビニル系単量体(a1-2)において例示した化合物が適用される。上記構造単位(sa-3)は、1種の単量体に由来する構造単位であってよいし、2種以上の単量体に由来する2種以上の構造単位であってもよい。また、上記構造単位(sa-3)としては、マレイミド系化合物に由来する構造単位等が好ましい。
 上記共重合体(A2)に含まれる構造単位(sa-1)及び(sa-2)の合計含有量は、構造単位(sa-1)、(sa-2)及び(sa-3)の合計を100質量%とした場合に、好ましくは40~100質量%、より好ましくは50~100質量%である。また、構造単位(sa-1)及び(sa-2)の含有割合は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは40~95質量%及び5~60質量%、更に好ましくは50~90質量%及び10~50質量%である。
 上記共重合体(A2)が、構造単位(sa-3)を含み、この構造単位(sa-3)が、マレイミド系化合物に由来する構造単位である場合には、第1樹脂層に、耐熱性を付与することができる。
 上記共重合体(A2)として、好ましい重合体は、以下の通りである。
[1-5]構造単位(sa-1)及び(sa-2)からなる共重合体
[1-6]構造単位(sa-1)及び(sa-2)と、マレイミド系化合物に由来する構造単位(以下、「構造単位(sa-3m)」という。)とからなる共重合体
 上記共重合体(A2)が、上記態様[1-5]の場合、構造単位(sa-1)及び(sa-2)の含有割合は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは40~95質量%及び5~60質量%、更に好ましくは50~90質量%及び10~50質量%である。
 上記態様[1-5]の共重合体としては、スチレン・アクリロニトリル共重合体、α-メチルスチレン・アクリロニトリル共重合体、スチレン・α-メチルスチレン・アクリロニトリル共重合体等が挙げられる。
 上記共重合体(A2)が、上記態様[1-6]の場合、構造単位(sa-1)、(sa-2)及び(sa-3m)の含有割合は、成形加工性、耐熱性、耐薬品性、耐加水分解性、寸法安定性、可撓性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは10~90質量%、9.5~70質量%及び0.5~30質量%、より好ましくは20~85質量%、14~60質量%及び1~20質量%、より好ましくは30~80質量%、18~50質量%及び2~15質量%である。
 上記態様[1-6]の共重合体としては、スチレン・アクリロニトリル・N-フェニルマレイミド共重合体等が挙げられる。
 上記共重合体(A2)としては、スチレン・アクリロニトリル・メタクリル酸メチル共重合体等を用いることもできる。
 上記共重合体(A2)は、重合開始剤の存在下又は非存在下に、芳香族ビニル化合物及びシアン化ビニル化合物を含むビニル系単量体(以下、「ビニル系単量体(a2)」という。)を重合することにより製造することができる。重合方法は、重合開始剤を用いる場合には、溶液重合、塊状重合、乳化重合、懸濁重合等が好適であり、これらの重合方法を組み合わせて用いてもよい。また、重合開始剤を用いない場合は、熱重合とすることができる。
 上記重合開始剤としては、上記樹脂(A1)の製造方法の説明にて例示した化合物を、単独であるいは2つ以上を組み合わせて用いることができる。上記重合開始剤の使用量は、上記ビニル系単量体(a2)全量に対し、通常、0.1~1.5質量%である。
 尚、重合方法に応じて、上記樹脂(A1)の製造時に使用可能な連鎖移動剤、乳化剤等を用いることができる。
 上記共重合体(A2)の製造の際には、ビニル系単量体(a2)の全量を反応系に収容した状態で重合を開始してよいし、任意に選択した単量体成分を分割添加又は連続添加して重合を行ってもよい。更に、上記重合開始剤を用いる場合には、反応系に一括して又は連続的に添加することができる。
 上記共重合体(A2)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記ゴム含有芳香族ビニル系樹脂のアセトンに可溶な成分の極限粘度[η](メチルエチルケトン中、30℃で測定)は、好ましくは0.1~2.5dl/g、より好ましくは0.2~1.5dl/g、更に好ましくは0.25~1.2dl/gである。この極限粘度[η]が上記範囲内であると、上記第1熱可塑性樹脂組成物の成形加工性に優れ、第1樹脂層の肉厚精度にも優れる。
 ここで、極限粘度[η]は、以下の要領で求めることができる。
 上記樹脂(A1)におけるグラフト率を求める際に、遠心分離後に回収されたアセトン可溶分をメチルエチルケトンに溶解させ、濃度の異なるものを5点調製し、ウベローデ粘度管を用いて、30℃で各濃度の還元粘度を測定することにより、極限粘度[η]が求められる。
 上記極限粘度[η]は、上記樹脂(A1)及び上記共重合体(A2)を製造する際に用いる、重合開始剤、連鎖移動剤、乳化剤、溶剤等の種類や量、更には重合時間、重合温度等を調整することにより、容易に制御することができる。
 また、上記極限粘度[η]は、極限粘度[η]が互いに異なる樹脂(A1)及び共重合体(A2)を、適宜、選択することにより調整することもできる。
 前述のように、上記第1熱可塑性樹脂組成物は、ゴム含有芳香族ビニル系樹脂のみからなるものであってよいし、ゴム含有芳香族ビニル系樹脂と、他の樹脂とからなるものであってもよい。
 他の樹脂としては、(メタ)アクリル酸エステル化合物に由来する構造単位を含むアクリル樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の飽和ポリエステル樹脂;ポリオレフィン樹脂;ポリ塩化ビニル樹脂;ポリ塩化ビニリデン樹脂;ポリ酢酸ビニル樹脂;ポリカーボネート樹脂;フッ素樹脂;エチレン・酢酸ビニル系樹脂等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記第1熱可塑性樹脂組成物が、他の樹脂を含む場合、その含有量は、ゴム含有芳香族ビニル系樹脂に対して、好ましくは50質量%未満、より好ましくは40質量%以下、更に好ましくは30質量%以下である。他の樹脂の含有割合が高すぎると、本発明に係る樹脂(A1)を用いる効果が小さくなる。
 尚、上記第1熱可塑性樹脂組成物における樹脂(A1)及び共重合体(A2)、並びに、必要に応じて併用される他の樹脂の含有割合は、上記樹脂(A1)に由来するゴム質重合体(a1-1)の含有量が、好ましくは5~40質量%、より好ましくは8~30質量%、更に好ましくは10~20質量%、特に好ましくは12~18質量%となるように調整される。
 上記第1熱可塑性樹脂組成物に含まれるゴム質重合体(a1-1)の含有量が40質量%を超えると、耐熱性が十分でない場合がある。一方、上記含有量が5質量%未満となると、耐衝撃性が十分でない場合がある。
 上記第1熱可塑性樹脂組成物は、白色系着色剤を含有する。この白色系着色剤としては、酸化チタン、酸化亜鉛、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、アルミナ、シリカ、2PbCO・Pb(OH)、[ZnS+BaSO]、タルク、石膏等が挙げられる。これらは、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。
 上記白色系着色剤の含有量は、上記ゴム含有芳香族ビニル系樹脂に対して、好ましくは1~45質量%、より好ましくは3~40質量%、更に好ましくは5~30質量%である。この白色系着色剤の含有量が上記範囲にあると、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用裏面保護フィルム(第1樹脂層側)の方へ漏れたときに、第1樹脂層から反射させて、反射光を太陽電池素子に入射させ、発電効率を向上させることができる。尚、上記含有量が多すぎると、本発明の太陽電池用裏面保護フィルムの可撓性が低下する場合がある。一方、上記含有量が少なすぎると、本発明の太陽電池用裏面保護フィルムの光電変換効率の向上率が十分でない場合がある。
 上記第1熱可塑性樹脂組成物は、目的、用途等に応じて、添加剤を含有したものとすることができる。この添加剤としては、白色系着色剤以外の他の着色剤、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、蛍光増白剤、耐候剤、充填剤、帯電防止剤、難燃剤、防曇剤、抗菌剤、防かび剤、防汚剤、粘着付与剤、シランカップリング剤等が挙げられる。これらの添加剤における具体的な化合物及びその含有量は、後述する。
 上記第1樹脂層の厚さは、10~300μmであり、好ましくは15~250μm、より好ましくは20~200μmである。上記厚さが薄すぎると、本発明の太陽電池用裏面保護フィルムの強度が不十分であり、厚すぎると可撓性が不十分である。
 上記第2樹脂層は、飽和ポリエステル樹脂を含有し、135℃で30分間放置した後の寸法変化率が±0.5%以下、好ましくは±0.4%以下、より好ましくは±0.3%以下の樹脂層であり、主として、本発明の太陽電池用裏面保護フィルムの耐久性を付与する層である。即ち、このような性質を有する第2樹脂層を備える本発明の太陽電池用裏面保護フィルムにおいては、太陽電池の使用による熱変形が抑制され、耐熱性が優れる。この第2樹脂層が白色系着色剤を含有する場合には、第1樹脂層を透過した光を、第1樹脂層側へ反射させることができる。
 上記第2樹脂層を構成する組成物を、第2熱可塑性樹脂組成物として説明する。即ち、この第2熱可塑性樹脂組成物は、この組成物からなる所定サイズのフィルム(厚さ10~300μm)を、135℃で30分間放置した後の寸法変化率が±0.5%以下を満たし、且つ、飽和ポリエステル樹脂を含有する組成物であり、必要に応じて、他の樹脂又は重合体や、白色系着色剤等の着色剤をはじめとする添加剤を含有してもよい。
 上記飽和ポリエステル樹脂は、好ましくは、ジカルボン酸成分とグリコール成分とを重縮合反応させることによって得られた樹脂である。
 ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸;シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸;シクロヘキシンジカルボン酸等の脂環族ジカルボン酸;p-オキシ安息香酸等のオキシカルボン酸等が挙げられる。
 また、グリコール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等の脂肪族グリコール;ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリオキシアルキレングリコール;1,4-シクロヘキサンジメタノール等の脂環族グリコール;ビスフェノールA、ビスフェノールS等の芳香族グリコール等が挙げられる。
 これらの、ジカルボン酸成分及びグリコール成分は、それぞれ、1種のみ用いてよいし、2種以上を組み合わせて用いてもよい。
 上記飽和ポリエステル樹脂としては、テレフタル酸あるいはテレフタル酸ジメチルと、エチレングリコールとをエステル化反応もしくはエステル交換反応を利用した重縮合反応によって得られた、エチレンテレフタレートを主たる構成単位として含む飽和ポリエステル樹脂が好ましい。上記第2熱可塑性樹脂が、このエチレンテレフタレートを主たる構成単位として含む飽和ポリエステル樹脂の1種又は2種以上を含有することにより、機械強度、加工性、熱特性等に優れた第2樹脂層が得られる。尚、「主たる構成単位」とは、1の飽和ポリエステル樹脂を構成するエチレンテレフタレートの含有量が30モル%以上であることを意味する。上記飽和ポリエステル樹脂としては、強度及び耐熱安定性の観点から、ポリエチレン-2,6-ナフタレート樹脂も好ましく用いられる。
 上記第2熱可塑性樹脂組成物が他の樹脂を含む場合、他の樹脂としては、(メタ)アクリル酸エステル化合物に由来する構造単位を含むアクリル樹脂;芳香族ビニル化合物に由来する構造単位を含む芳香族ビニル系樹脂;ポリオレフィン樹脂;ポリ塩化ビニル樹脂;ポリ塩化ビニリデン樹脂;ポリ酢酸ビニル樹脂;ポリカーボネート樹脂;フッ素樹脂;エチレン・酢酸ビニル系樹脂等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記第2熱可塑性樹脂組成物が他の樹脂を含む場合、その含有量は、飽和ポリエステル樹脂に対して、好ましくは50質量%未満、より好ましくは40質量%以下、更に好ましくは30質量%以下である。他の樹脂の含有割合が高すぎると、本発明に係る第2樹脂層の物性が維持できなくなる場合があり、飽和ポリエステル樹脂の効果が低下する傾向にある。
 上記第2樹脂層は、着色樹脂層であってよいし、無着色樹脂層であってもよい。従って、上記第2熱可塑性樹脂組成物は、着色剤を含有してもよいし、含有しなくてもよい。
 上記第2樹脂層が、光反射性を有する場合には、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用裏面保護フィルム(第1樹脂層側)の方へ漏れたときに、第1樹脂層を透過した光を、第2樹脂層から反射させることができ、反射光を太陽電池素子に入射させ、発電効率を向上させることができる。
 光反射性を有する第2樹脂層とする場合には、上記第2熱可塑性樹脂組成物は、白色系着色剤を含有することが好ましい。この白色系着色剤としては、酸化チタン、酸化亜鉛、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、アルミナ、シリカ、2PbCO・Pb(OH)、[ZnS+BaSO]、タルク、石膏等が挙げられる。これらは、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。
 上記白色系着色剤の含有量は、上記飽和ポリエステル樹脂に対して、好ましくは1~45質量%、より好ましくは3~40質量%、更に好ましくは5~30質量%である。この白色系着色剤の含有量が多すぎると、本発明の太陽電池用裏面保護フィルムの可撓性が低下する場合がある。
 本発明の太陽電池用裏面保護フィルムは、後述するように、波長400~1,400nmの光を、太陽電池用裏面保護フィルムにおける上記第1樹脂層の表面に放射した場合、この光に対する反射率が50%以上であるものとすることができるが、この性能を有するものとするために、上記第2熱可塑性樹脂組成物は、白色系着色剤を含有することが好ましい。
 上記第2熱可塑性樹脂組成物は、目的、用途等に応じて、添加剤を含有したものとすることができる。この添加剤としては、白色系着色剤以外の他の着色剤、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、蛍光増白剤、耐候剤、充填剤、帯電防止剤、難燃剤、防曇剤、抗菌剤、防かび剤、防汚剤、粘着付与剤、シランカップリング剤等が挙げられる。これらの添加剤における具体的な化合物及びその含有量は、後述する。
 本発明においては、上記第2樹脂層が、上記飽和ポリエステル樹脂を含有するフィルムの熱処理物を用いて形成されていることが好ましい。即ち、上記飽和ポリエステル樹脂を含有するフィルム形成用樹脂組成物を用いて、押出成形、インフレーション成形、カレンダー成形等によりフィルムを形成した後、100℃~150℃程度の温度で、5~120分程度の時間で熱処理することにより、熱処理フィルムとし、この熱処理フィルムが、第2樹脂層を構成していてもよい。また、市販の飽和ポリエステル樹脂フィルムを、100℃~150℃程度の温度で、5~120分程度の時間で熱処理することにより、熱処理フィルムとし、この熱処理フィルムが、第2樹脂層を構成していてもよい。
 上記第2樹脂層の厚さは、10~300μmであり、好ましくは15~250μm、より好ましくは20~300μmである。上記厚さが薄すぎると、本発明の太陽電池用裏面保護フィルムの第2樹脂層側表面における保護作用が不十分であり、厚すぎると、太陽電池用裏面保護フィルムの可撓性が不十分である。
 次に、上記第1樹脂層(第1熱可塑性樹脂組成物)及び上記第2樹脂層(第2熱可塑性樹脂組成物)に含有される添加剤(他の着色剤、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、難燃剤)について説明する。
 他の着色剤としては、本発明の太陽電池用裏面保護フィルムの第1樹脂層側表面における光に対する反射率を大きく低下させるものでなければ、特に限定されず、例えば、黄色系着色剤、青色系着色剤等を用いることができる。他の着色剤を用いる場合、その含有量は、上記第1熱可塑性樹脂組成物及び/又は上記第2熱可塑性樹脂組成物に対して、通常、10質量%以下である。
 上記酸化防止剤としては、ヒンダードアミン系化合物、ハイドロキノン系化合物、ヒンダードフェノール系化合物、含硫黄化合物、含リン化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記酸化防止剤の含有量は、上記第1熱可塑性樹脂組成物及び/又は上記第2熱可塑性樹脂組成物に対して、好ましくは0.05~10質量%である。
 上記紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記紫外線吸収剤の含有量は、上記第1熱可塑性樹脂組成物及び/又は上記第2熱可塑性樹脂組成物に対して、好ましくは0.05~10質量%である。
 上記老化防止剤としては、ナフチルアミン系化合物、ジフェニルアミン系化合物、p-フェニレンジアミン系化合物、キノリン系化合物、ヒドロキノン誘導体系化合物、モノフェノール系化合物、ビスフェノール系化合物、トリスフェノール系化合物、ポリフェノール系化合物、チオビスフェノール系化合物、ヒンダードフェノール系化合物、亜リン酸エステル系化合物、イミダゾール系化合物、ジチオカルバミン酸ニッケル塩系化合物、リン酸系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記老化防止剤の含有量は、上記第1熱可塑性樹脂組成物及び/又は上記第2熱可塑性樹脂組成物に対して、好ましくは0.05~10質量%である。
 上記可塑剤としては、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジオクチルフタレート、ブチルオクチルフタレート、ジ-(2-エチルヘキシル)フタレート、ジイソオクチルフタレート、ジイソデシルフタレート等のフタル酸エステル類;ジメチルアジペート、ジイソブチルアジペート、ジ-(2-エチルヘキシル)アジペート、ジイソオクチルアジペート、ジイソデシルアジペート、オクチルデシルアジペート、ジ-(2-エチルヘキシル)アゼレート、ジイソオクチルアゼレート、ジイソブチルアゼレート、ジブチルセバケート、ジ-(2-エチルヘキシル)セバケート、ジイソオクチルセバケート等の脂肪酸エステル類;トリメリット酸イソデシルエステル、トリメリット酸オクチルエステル、トリメリット酸n-オクチルエステル、トリメリット酸イソノニルエステル等のトリメリット酸エステル類;ジ-(2-エチルヘキシル)フマレート、ジエチレングリコールモノオレート、グリセリルモノリシノレート、トリラウリルホスフェート、トリステアリルホスフェート、トリ-(2-エチルヘキシル)ホスフェート、エポキシ化大豆油等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記可塑剤の含有量は、上記第1熱可塑性樹脂組成物及び/又は上記第2熱可塑性樹脂組成物に対して、好ましくは0.05~10質量%である。
 上記難燃剤としては、有機系難燃剤、無機系難燃剤、反応系難燃剤等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 有機系難燃剤としては、臭素化エポキシ系化合物、臭素化アルキルトリアジン化合物、臭素化ビスフェノール系エポキシ樹脂、臭素化ビスフェノール系フェノキシ樹脂、臭素化ビスフェノール系ポリカーボネート樹脂、臭素化ポリスチレン樹脂、臭素化架橋ポリスチレン樹脂、臭素化ビスフェノールシアヌレート樹脂、臭素化ポリフェニレンエーテル、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA及びそのオリゴマー等のハロゲン系難燃剤;トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェート等のリン酸エステルやこれらを各種置換基で変性した化合物、各種の縮合型のリン酸エステル化合物、リン元素及び窒素元素を含むホスファゼン誘導体等のリン系難燃剤;ポリテトラフルオロエチレン、グアニジン塩、シリコーン系化合物、ホスファゼン系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 無機系難燃剤としては、水酸化アルミニウム、酸化アンチモン、水酸化マグネシウム、ホウ酸亜鉛、ジルコニウム系化合物、モリブデン系化合物、スズ酸亜鉛等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 反応系難燃剤としては、テトラブロモビスフェノールA、ジブロモフェノールグリシジルエーテル、臭素化芳香族トリアジン、トリブロモフェノール、テトラブロモフタレート、テトラクロロ無水フタル酸、ジブロモネオペンチルグリコール、ポリ(ペンタブロモベンジルポリアクリレート)、クロレンド酸(ヘット酸)、無水クロレンド酸(無水ヘット酸)、臭素化フェノールグリシジルエーテル、ジブロモクレジルグリシジルエーテル等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記難燃剤の含有量は、上記第1熱可塑性樹脂組成物及び/又は上記第2熱可塑性樹脂組成物に対して、好ましくは10質量%以下である。
 尚、熱可塑性樹脂組成物に難燃剤を含有させる場合には、難燃助剤を用いることが好ましい。この難燃助剤としては、三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモン、アンチモン酸ナトリウム、酒石酸アンチモン等のアンチモン化合物や、ホウ酸亜鉛、メタホウ酸バリウム、水和アルミナ、酸化ジルコニウム、ポリリン酸アンモニウム、酸化スズ等が挙げられる。これらは、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。
 本発明の太陽電池用裏面保護フィルムにおいて、上記第1樹脂層11及び上記第2樹脂層12は、連続的な積層状態であってよいし(図1参照)、上記第1樹脂層及び上記第2樹脂層が接着層を介して接合されてなる構造を有してもよい(図示せず)。後者の場合、接着層の構成は、ポリウレタン樹脂組成物等とすることができる。
 本発明の太陽電池用裏面保護フィルムにおける好ましい態様は、以下に示される。
(I)第1樹脂層が白色系樹脂層であり、第2樹脂層が、無着色又は白色以外に着色された樹脂層であるフィルム
(II)第1樹脂層が白色系樹脂層であり、第2樹脂層が、白色系着色剤を含む白色系樹脂層であるフィルム
 上記態様(I)及び(II)において、上記第1樹脂層(白色系樹脂層)におけるその着色の程度は、本発明の太陽電池用裏面保護フィルムにおける第1樹脂層側の表面のL値が、好ましくは60以上、より好ましくは65以上、更に好ましくは70以上である。
 上記態様(II)において、いずれも白色系樹脂層である第1樹脂層及び第2樹脂層における着色の程度は、本発明の太陽電池用裏面保護フィルムにおける第1樹脂層側の表面、及び、第2樹脂層側の表面のL値が、いずれも、好ましくは60以上、より好ましくは65以上、更に好ましくは70以上である。第1樹脂層側の表面のL値、及び、第2樹脂層側の表面のL値は、互いに同一であってよいし、異なってもよい。
 上記第1樹脂層及び第2樹脂層を備える本発明の太陽電池用裏面保護フィルムの製造方法は、飽和ポリエステル樹脂を含むフィルムを、大気中、100℃~150℃の温度で熱処理して、135℃で30分間放置した場合に、その前後の寸法変化率が±0.5%以下である第2フィルムとする工程(以下、「第1工程」という。)、及び、上記ゴム含有芳香族ビニル系樹脂及び上記白色系着色剤を含む第1フィルムと、上記第2フィルムとを接合する工程(以下、「第2工程」という。)を備えることを特徴とする。
 上記第1工程は、飽和ポリエステル樹脂を含むフィルムを熱処理して、第2フィルムとする工程である。
 熱処理に供される、飽和ポリエステル樹脂を含むフィルムは、飽和ポリエステル樹脂を含有する第2熱可塑性樹脂組成物からなるものである。そして、市販の飽和ポリエステル樹脂フィルムを用いてもよい。この場合、着色度、透明性等は、特に限定されない。市販品としては、例えば、東レ社製「ルミラーE20」(商品名)、帝人デュポンフィルム社製「PETフィルムU2」(商品名)、東レ社製「ルミラーX10P」(商品名)、「ルミラーX10S」(商品名)、帝人デュポンフィルム社製「Melinex238」(商品名)、SKC社製「SR55」(商品名)等を用いることができる。
 上記飽和ポリエステル樹脂を含むフィルムとして、難燃性を有するフィルムを用いると、太陽電池用裏面保護フィルムの第2樹脂層側表面からの耐火性を高めることができ、好ましい。尚、難燃性を有するフィルムの難燃性は、UL94VTM-2クラスか、それ以上のクラスであることが好ましい。
 上記第1工程において、熱処理温度は、100℃~150℃であり、好ましくは110℃~140℃である。熱処理温度が高すぎると、フィルムが著しく収縮する場合がある。一方、熱処理温度が低すぎると、上記寸法変化率が±0.5%を超える場合がある。
 また、熱処理時間は、通常、5~120分であり、好ましくは15~90分である。
 上記第2工程は、ゴム含有芳香族ビニル系樹脂及び白色系着色剤を含む第1フィルムと、上記第2フィルムとを接合する工程である。
 上記第1フィルムは、上記第1熱可塑性樹脂組成物を用いて形成された、ゴム含有芳香族ビニル系樹脂及び白色系着色剤を含むフィルムである。この第1フィルムと、第2フィルムとを接合する方法としては、接着剤の使用、熱融着、ドライラミネート等が挙げられる。
 上記第1樹脂層及び第2樹脂層を、順次、備える太陽電池用裏面保護フィルムを製造する場合には、第1熱可塑性樹脂組成物と、第2熱可塑性樹脂組成物(上記のような熱処理を行うことなく、135℃で30分間放置した後の寸法変化率が±0.5%以下であるフィルムを形成可能な組成物)とを用いた共押出法(Tダイキャストフィルム成形法等)により、第1樹脂層及び第2樹脂層が接合された太陽電池用裏面保護フィルムを製造することができる。
 本発明の太陽電池用裏面保護フィルムは、上記のように、第1樹脂層11及び第2樹脂層12の間に、水蒸気バリア層13を備える態様とすることができる(図2参照)。
 上記水蒸気バリア層は、JIS K7129に準じて、温度40℃及び湿度90%RHの条件で測定した透湿度(「水蒸気透湿度」ともいう。)が、好ましくは3g/(m・day)以下、より好ましくは1g/(m・day)以下、更に好ましくは0.7g/(m・day)以下である性能を有する層である。
 上記水蒸気バリア層は、好ましくは、電気絶縁性を有する材料からなる層である。
 上記水蒸気バリア層は、1種の材料からなる単層構造又は多層構造であってよいし、2種以上の材料からなる多層構造であってもよい。本発明においては、樹脂層の表面に金属及び/又は金属酸化物からなる膜が形成されてなる蒸着フィルムであることが好ましい。金属及び金属酸化物は、いずれも、単一物質であってよいし、2種以上であってもよい。
 上記金属としては、アルミニウム等が挙げられる。
 また、上記金属化合物としては、ケイ素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウム、ホウ素、チタン、鉛、ジルコニウム、イットリウム等の元素の酸化物が挙げられる。これらのうち、水蒸気バリア性の観点から、酸化珪素、酸化アルミニウム等が特に好ましい。
 上記金属及び/又は金属酸化物からなる膜は、メッキ、真空蒸着、イオンプレーティング、スパッタリング、プラズマCVD、マイクロウェーブCVD等の方法により形成されたものとすることができる。これらのうちの2つ以上の方法を組み合わせてもよい。
 上記蒸着フィルムにおける樹脂層としては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート等のポリエステルフィルム;ポリエチレン、ポリプロピレン等のポリオレフィンフィルム;ポリ塩化ビニリデンフィルム、ポリ塩化ビニルフィルム、フッ素樹脂フィルム、ポリスルホンフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリカーボネートフィルム、ポリアクリロニトリルフィルム、ポリイミドフィルム等が挙げられる。この樹脂膜の厚さは、好ましくは5~50μm、より好ましくは8~20μmである。
 上記水蒸気バリア層は、市販品を用いて形成されたものとすることができる。例えば、三菱樹脂社製「テックバリアAX」(商品名)、「テックバリアLX」(商品名)、凸版印刷社製「GXフィルム」(商品名)、東洋紡社製「エコシアールVE500」(商品名)等を、水蒸気バリア層形成用シート(又はフィルム)として用いることができる。
 上記第1樹脂層及び上記第2樹脂層の間における水蒸気バリア層の配置は、特に限定されない。水蒸気バリア層形成用材料として蒸着フィルムを用いた場合、金属及び/又は金属酸化物からなる膜が、第1樹脂層及び第2樹脂層のいずれに面してもよい。
 上記水蒸気バリア層は、金属及び/又は金属酸化物からなる膜が、上層側樹脂部と、下層側樹脂部との間に配された3層型フィルムから形成されたものであってもよい。
 上記水蒸気バリア層の厚さは、好ましくは5~300μm、より好ましくは8~250μm、更に好ましくは10~200μmである。上記水蒸気バリア層が薄すぎると、水蒸気バリア性が不十分になる場合があり、厚すぎると、本発明の太陽電池用裏面保護フィルムとしての柔軟性が十分でない場合がある。
 本発明の太陽電池用裏面保護フィルムが、水蒸気バリア層を備える場合、上記第1樹脂層及び/又は上記第2樹脂層と、上記水蒸気バリア層との間に、接着層を備えることができる。接着層の構成は、ポリウレタン樹脂組成物、エポキシ樹脂組成物、アクリル系樹脂組成物等とすることができる。
 上記水蒸気バリア層を備える太陽電池用裏面保護フィルムを製造する場合には、例えば、前述の太陽電池用裏面保護フィルムの製造方法における第2工程で用いた、第1フィルム及び第2フィルムと、水蒸気バリア層形成用シート(又はフィルム)とを用いることができる。即ち、上記第1フィルムにおける一面側と、水蒸気バリア層形成用シート(又はフィルム)の一面側と、を熱融着又はドライラミネート若しくは接着剤により接合させて第1樹脂層及び水蒸気バリア層を備える積層物を形成し、次いで、第2フィルムを、上記積層物における水蒸気バリア層の表面に接着剤により接合させる方法等とすることができる。
 本発明の太陽電池用裏面保護フィルムの厚さは、可撓性、他の物品に配設する際の形状追随性、作業性等の観点から、好ましくは30~600μm、より好ましくは50~500μm、更に好ましくは60~400μmである。
 尚、本発明の太陽電池用裏面保護フィルムおける第1樹脂層及び第2樹脂層の間には、本発明の効果を損なわない範囲で、所望により、可飾層、塗布層、製造時に生じるリサイクル樹脂からなる層等の他の層を配設することもできる。
 本発明において、波長400~1,400nmの光を、太陽電池用裏面保護フィルムにおける第1樹脂層の表面に放射した場合、この光に対する反射率は、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上である。光の反射率が50%以上と高いと、エチレン・酢酸ビニル共重合体を含む、例えば、太陽電池素子の間隙を充填する充填材部に接着させて太陽電池モジュールとした場合に、上記第1樹脂層から太陽電池素子の方へ上記光を反射させ、光電変換効率を改良することができる。尚、「波長400~1,400nmの光に対する反射率が50%以上である」とは、400nmから1,400nmまでの波長域における光の反射率を、400nm又は1,400nmから20nm毎に測定し、各反射率を用いて算出される平均値が50%以上であることを意味し、上記波長域における光の反射率が全て50%以上であることを要求するものではない。
 これらの好ましい性能を備えることにより、本発明の太陽電池用裏面保護フィルムにおいては、第1樹脂層の表面に放射された光を十分に反射させることができ、また、その光による熱変形の発生を抑制することもできる。
 また、本発明の太陽電池用裏面保護フィルムが、第1樹脂層及び第2樹脂層の間に水蒸気バリア層を備える場合、第2樹脂層側から第1樹脂層への水蒸気バリア性に優れる。そして、太陽電池用裏面保護フィルムの水蒸気透湿度を、JIS K7129に準じて、温度40℃及び湿度90%RHの条件で測定した場合、好ましくは3g/(m・day)以下、より好ましくは1g/(m・day)以下とすることができる。上記性能を有することから、本発明の太陽電池用裏面保護フィルムを用いて、太陽電池モジュールを作製した場合、水、水蒸気等の侵入に伴う太陽電池素子の劣化、更には、発電効率の低下を抑制することができ、その耐久性に優れる。
 本発明の太陽電池用裏面保護フィルムは、耐熱性に優れ、例えば、135℃で30分間放置した後の寸法変化率は、好ましくは±1.5%以下、より好ましくは±1.2%以下、更に好ましくは±1.0%以下である。
 本発明の太陽電池用裏面保護フィルムを備える、本発明の太陽電池モジュールの概略図は、図3に示される。
 図3の太陽電池モジュール2は、太陽光の受光面側(図面で上側)から、表面側透明保護部材21、表面側封止膜(表面側充填材部)23、太陽電池素子25、裏面側封止膜(裏面側充填材部)27、及び上記本発明の太陽電池用裏面保護フィルム1(1’)が、この順で配設されてなる。尚、本発明の太陽電池モジュールは、必要に応じて、上記構成要素以外に、適宜、各種部材を備えることもできる(図示せず)。
 上記表面側透明保護部材21としては、水蒸気バリア性に優れた材料からなるものが好ましく、通常、ガラス、樹脂等からなる透明基板が使用される。尚、ガラスは、透明性及び耐候性に優れるが、耐衝撃性が十分ではなく、重いため、家屋の屋根に載せる太陽電池とする場合には、耐候性の透明樹脂を用いることが好ましい。透明樹脂としては、フッ素系樹脂等が挙げられる。
 上記表面側透明保護部材21の厚さは、ガラスを使用した場合は、通常、1~5mm程度であり、透明樹脂を使用した場合は、通常、0.1~5mm程度である。
 上記太陽電池素子25は、太陽光の受光により発電機能を有するものである。このような太陽電池素子としては、光起電力としての機能を有するものであれば、特に限定されることなく、公知のものを用いることができる。例えば、単結晶シリコン型太陽電池素子、多結晶シリコン型太陽電池素子等の結晶シリコン太陽電池素子;シングル結合型若しくはタンデム構造型等からなるアモルファスシリコン太陽電池素子;ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池素子;カドミウムテルル(CdTe)や銅インジウムセレナイド(CuInSe)等のII-VI族化合物半導体太陽電池素子等が挙げられる。これらのうち、結晶シリコン太陽電池素子が好ましく、多結晶シリコン型太陽電池素子が特に好ましい。尚、薄膜多結晶性シリコン太陽電池素子、薄膜微結晶性シリコン太陽電池素子、薄膜結晶シリコン太陽電池素子とアモルファスシリコン太陽電池素子とのハイブリッド素子等を用いることができる。
 図3において、図示していないが、上記太陽電池素子25は、通常、配線電極及び取り出し電極を備える。配線電極は、太陽光の受光により、複数の太陽電池素子において生じた電子を集める作用を有するものであり、例えば、表面側封止膜(表面側充填材部)23側の太陽電池素子と、裏面側封止膜(裏面側充填材部)27側の太陽電池素子とを連結するように接続される。また、取り出し電極は、上記配線電極等により集められた電子を電流として取り出す作用を有するものである。
 上記表面側封止膜(表面側充填材部)23及び上記裏面側封止膜(裏面側充填材部)27(以下、これらを併せて「封止膜」という。)は、通常、互いに同一又は異なる封止膜形成材料を用いて、予め、シート状又はフィルム状の封止膜とした後、上記表面側透明保護部材21及び太陽電池用裏面保護フィルム1の間において、太陽電池素子25等を熱圧着して形成される。
 各封止膜(充填材部)の厚さは、通常、100μm~4mm程度、好ましくは200μm~3mm程度、より好ましくは300μm~2mm程度である。厚さが薄すぎると、太陽電池素子25が損傷する場合があり、一方、厚さが厚すぎると、製造コストが高くなり好ましくない。
 上記封止膜形成材料は、通常、樹脂組成物又はゴム組成物である。樹脂としては、オレフィン系樹脂、エポキシ樹脂、ポリビニルブチラール樹脂等が挙げられる。また、ゴムとしては、シリコーンゴム、水添共役ジエン系ゴム等が挙げられる。これらのうち、オレフィン系樹脂及び水添共役ジエン系ゴムが好ましい。
 オレフィン系樹脂としては、エチレン、プロピレン、ブタジエン、イソプレン等のオレフィン、又は、ジオレフィンを重合して得られた重合体等のほか、エチレンと、酢酸ビニル、アクリル酸エステル等の他のモノマーとの共重合体、アイオノマー等を用いることができる。具体例としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、エチレン・塩化ビニル共重合体、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸エステル共重合体、エチレン・ビニルアルコール共重合体、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。これらのうち、エチレン・酢酸ビニル共重合体及びエチレン・(メタ)アクリル酸エステル共重合体が好ましく、エチレン・酢酸ビニル共重合体が特に好ましい。
 また、水添共役ジエン系ゴムとしては、水添スチレン・ブタジエンゴム、スチレン・エチレンブチレン・オレフィン結晶ブロックポリマー、オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー、スチレン・エチレンブチレン・スチレンブロックポリマー等が挙げられる。好ましくは、下記の構造を有する共役ジエンブロック共重合体の水素添加物、即ち、芳香族ビニル化合物単位を含む重合体ブロックA;1,2-ビニル結合含量が25モル%を超える共役ジエン系化合物単位を含む重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックB;1,2-ビニル結合含量が25モル%以下の共役ジエン系化合物単位を含む重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックC;並びに芳香族ビニル化合物単位及び共役ジエン系化合物単位を含む共重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックD、から選ばれた少なくとも2種を有するブロック共重合体である。
 上記封止膜形成材料は、必要に応じて、架橋剤、架橋助剤、シランカップリング剤、紫外線吸収剤、ヒンダードフェノール系やホスファイト系の酸化防止剤、ヒンダードアミン系の光安定剤、光拡散剤、難燃剤、変色防止剤等の添加剤を含有することができる。
 上記のように、表面側封止膜(表面側充填材部)23を形成する材料と、裏面側封止膜(裏面側充填材部)27を形成する材料は、同一であっても異なってもよいが、接着性の点から同じであることが好ましい。
 本発明の太陽電池モジュールは、例えば、表面側透明保護部材、表面側封止膜、太陽電池素子、裏面側封止膜及び上記本発明の太陽電池用裏面保護フィルムを、この順に配置した後、これらを一体として、真空吸引しながら加熱圧着する、ラミネーション法等により製造することができる。
 このラミネーション法におけるラミネート温度は、上記本発明の太陽電池用裏面保護フィルムの接着性の観点から、通常、100℃~250℃程度である。また、ラミネート時間は、通常、3~30分程度である。
 以下に、実施例を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えない限り、本発明はかかる実施例に限定されるものではない。尚、下記において、部及び%は、特に断らない限り、質量基準である。
1.評価方法
 各種評価項目の測定方法を以下に示す。
1-1.ゴム含有芳香族ビニル系樹脂中のゴム含有率
 ゴム含有芳香族ビニル系樹脂の全量に対する、全てのゴム成分の合計量の割合を計算した。
1-2.ゴム含有芳香族ビニル系樹脂中のN-フェニルマレイミド単位含有量
 ゴム含有芳香族ビニル系樹脂を構成する構造単位の全量に対する、N-フェニルマレイミド単位量の割合を算出した。
1-3.熱可塑性樹脂のガラス転移温度(Tg)
 JIS K 7121に準じて、TA Instruments社製示差走査熱量計「DSC2910」(型式名)により、熱可塑性樹脂(ゴム含有芳香族ビニル系樹脂等)のTgを測定した。尚、測定試料に、熱可塑性樹脂が2種以上含まれて、DSC曲線で複数のTgが得られた場合、より高い方のTgを採用した。
1-4.波長400~1,400nmの光に対する反射率(%)
 太陽電池用裏面保護フィルム(50mm×50mm、厚さは表に記載)を測定試料とし、日本分光社製紫外可視近赤外分光光度計「V-670」(型式名)により、反射率を測定した。即ち、測定試料の第1樹脂層表面に、光を放射し、400nmから1,400nmまでの波長域における反射率を、20nm毎に測定し、これらの平均値を算出した。
1-5.L値
 東洋精機製作所社製分光光度計「TCS-II」(型式名)を用いて、太陽電池用裏面保護フィルム(50mm×50mm、厚さは表に記載)における第1樹脂層表面のL値を測定した。
1-6.耐熱性
 太陽電池用裏面保護フィルム(厚さは表に記載)を切削加工し、120mm(MD;樹脂押出方向)×120mm(TD;MDに対して直交方向)の大きさの試験片を作製した。次いで、この試験片の中央に、100mm(MD)×100mm(TD)の正方形の標線を引き、恒温槽中、135℃で30分間放置した。その後、冷却して、上記標線における長さを測定し、寸法変化率を下記式(11)より算出した。
Figure JPOXMLDOC01-appb-M000001
 また、処理後の試験片の形状を目視観察し、下記基準で判定した。
「3」:変形がなかった。
「2」:ごくわずかに変形していた。
「1」:変形があった。
1-7.可撓性
 太陽電池用裏面保護フィルム(厚さは表に記載)を切削加工し、100mm(MD)×100mm(TD)の大きさの試験片を作製した。次いで、MD方向の対称軸に沿って折り曲げた後、TD方向の対称軸に沿って折り曲げた。折り曲げた試験片を、JIS Z0237に準拠し手動式圧着ロール(2,000g)を用い、5mm/秒の速度で各折り目上を2往復させた。その後、折り目を広げて元の状態に戻し、試験片を目視にて観察し、下記基準で判定した。折り目が割れていないものが可撓性に優れる。
「3」:折り目が割れておらず、再度、折り曲げても広げても折り目が割れなかった。
「2」:折り目が割れていないが、再度折り曲げて広げたら折り目が割れた。
「1」:折り目が割れた。
1-8.EVAフィルムとの接着性
 上記のように、太陽電池用裏面保護フィルムを、太陽電池モジュールを構成する部材として用いる場合、このフィルムは、第1樹脂層の表面と、太陽電池モジュールに含まれる太陽電池素子を包埋して形成された裏面側封止膜とを接着させるために用いられる。裏面側封止膜の形成材料として、エチレン・酢酸ビニル共重合体組成物が広く用いられていることから、太陽電池用裏面保護フィルムにおける第1樹脂層表面と、下記のEVAフィルムとの接着性を評価した。
 太陽電池用裏面保護フィルムを切削加工して、短冊状(200mm×15mm、厚さは表に記載)とし、2枚の評価用フィルムを得た。エチレン・酢酸ビニル共重合体からなる長さ100mm、幅15mm及び厚さ400μmのEVAフィルム(商品名「ウルトラパール」、サンビック社製)を、2枚の評価用フィルムにおける第1樹脂層の間に位置するように配置し、積層状態でラミネーターに入れた。その後、積層物の上部及び下部を真空状態とし、150℃で5分間加熱した。次いで、上部を大気圧に戻して15分間プレスし、剥離強度測定用試料を得た。得られた剥離強度測定用試料において、評価用フィルムがEVAフィルムと接着していない部分からT字剥離することにより剥離強度を測定した。また剥離状態を目視にて観察し、下記基準で判定した。
「2」:EVAフィルムが破壊された。
「1」:EVAフィルムと評価用フィルムの界面で剥離した。
1-9.光電変換効率向上率
 温度25℃±2℃、及び、湿度50±5%RHに調整された室において、ペクセル・テクノロジーズ社製Solar Simulator「PEC-11」(型式名)を用いて、予め、セル単体の光電変換効率を測定した1/4多結晶シリコンセル(50mm×50mm)の表面に、厚さ3mmのガラス板を、裏面に、太陽電池用裏面保護フィルムを、それぞれ、配置して、シリコンセルを挟み、ガラス板及びフィルムの間にEVAを導入し、積層状態にてラミネーターに入れた。その後、積層物の上部及び下部を真空状態とし、150℃で5分間加熱した。次いで、上部を大気圧に戻して、15分間プレスすることにより、シリコンセルが封止された太陽電池モジュールを作製した。その後、温度の影響を低減させるために、光を照射後すぐに光電変換効率を測定した。得られた光電変換効率と、セル単体の光電変換効率とを用いて、光電変換効率向上率を求めた。
 光電変換効率向上率(%)={(モジュールの光電変換効率-セル単体の光電変換効率)÷(セル単体の光電変換効率)}×100
1-10.冷熱サイクル試験
 太陽電池用裏面保護フィルムを切削加工して、正方形(230mm×230mm、厚さは表に記載)とし、更に、図4に示すように、中央部に切り込み(長さ100mm)を形成した。
 次に、230mm×230mm×3mmのガラス板の上に、230mm×230mm×400μmのEVAフィルム(商品名「ウルトラパール」、サンビック社製)2枚、及び、上記太陽電池用裏面保護フィルムを、順次、重ねた(図5参照)。太陽電池用裏面保護フィルムは、第1樹脂層表面が、EVAフィルムに面するように配設した。その後、この積層物を、ラミネーターに入れ、その上部及び下部を真空状態とし、150℃で5分間加熱した。次いで、上部を大気圧に戻して、15分間プレスすることにより、一体化させた。この一体化物を評価用試験体とし、冷熱サイクル試験に供した。
 冷熱サイクル試験は、エスペック社製サーマルショックチャンバー「TSA-101S-W」(型式名)により行った。具体的には、評価用試験体を、高温下(100℃で30分間)及び低温下(-40℃で30分間)に、交互に、曝すことを繰り返し(200回)、太陽電池用裏面保護フィルムにおける切り込み部からの裂けの発生状態を目視にて観察した。
「4」:裂けの発生がなかった。
「3」:裂けの長さが1mm未満であった。
「2」:裂けの長さが1mm以上であった。
「1」:裂けがフィルムの全面に発生した。
1-11.水蒸気バリア性
 JIS K7129Bに準じて、MOCON社製水蒸気透過率測定装置「PERMATRAN W3/31」(型式名)により、水蒸気透湿度を測定した。尚、測定条件は、温度40℃、及び、湿度90%RHであり、透過面として、第2樹脂層側の表面を水蒸気側に配置した。
1-12.第2樹脂層に用いるフィルムの寸法変化率(MD方向)
 第2樹脂層の形成に用いる飽和ポリエステルフィルムを切削加工し、120mm(MD;樹脂押出方向)×120mm(TD;MDに対して直交方向)の大きさの試験片を作製した。次いで、この試験片の中央に、100mm(MD)×100mm(TD)の正方形の標線を引き、恒温槽中、135℃で30分間放置した。その後、冷却して、上記標線における長さを測定し、寸法変化率を下記式(11)より算出した。
Figure JPOXMLDOC01-appb-M000002
 また、処理後の試験片の形状を目視観察し、下記基準で判定した。
「3」:変形がなかった。
「2」:ごくわずかに変形していた。
「1」:変形があった。
2.太陽電池用裏面保護フィルムの製造原料
2-1.シリコーン・アクリル複合ゴム強化芳香族ビニル系樹脂(ゴム強化樹脂(A1-1))
 三菱レイヨン社製「メタブレン SX-006」(商品名)を用いた。これは、シリコーン・アクリル複合ゴムにアクリロニトリル・スチレン共重合体をグラフトさせてなる樹脂である。シリコーン・アクリル複合ゴムの含有量は50%、グラフト率は80%、アセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)は0.38dl/g、ガラス転移温度(Tg)は135℃である。
2-2.シリコーンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂(A1-2))
 p-ビニルフェニルメチルジメトキシシラン1.3部及びオクタメチルシクロテトラシロキサン98.7部を混合し、これを、ドデシルベンゼンスルホン酸2.0部を溶解した蒸留水300部中に入れ、ホモジナイザーにより3分間攪拌して乳化分散させた。この乳化分散液を、コンデンサー、窒素導入口及び攪拌機を備えたセパラブルフラスコに移し、攪拌しながら、90℃で6時間加熱した。次いで、5℃で24時間保持し、縮合を完結させ、ポリオルガノシロキサン系ゴムを含むラテックスを得た。縮合率は93%であった。その後、このラテックスを、炭酸ナトリウム水溶液を用いてpH7に中和した。得られたポリオルガノシロキサン系ゴムの体積平均粒子径は300nmであった。
 次に、攪拌機を備えた内容積7リットルのガラス製フラスコに、イオン交換水100部、オレイン酸カリウム1.5部、水酸化カリウム0.01部、tert-ドデシルメルカプタン0.1部、上記ポリオルガノシロキサン系ゴム40部を含む、pH7に調製されたラテックス、スチレン15部及びアクリロニトリル5部からなるバッチ重合成分を加え、攪拌しながら昇温した。温度が45℃に達した時点で、エチレンジアミン四酢酸ナトリウム0.1部、硫酸第1鉄0.003部、ホルムアルデヒドナトリウムスルホキシラート・二水塩0.2部及びイオン交換水15部よりなる活性剤水溶液、並びにジイソプロピルベンゼンハイドロパーオキサイド0.1部を添加し、1時間重合を行った。
 その後、上記反応系に、イオン交換水50部、オレイン酸カリウム1部、水酸化カリウム0.02部、tert-ドデシルメルカプタン0.1部、ジイソプロピルベンゼンハイドロパーオキサイド0.2部、スチレン30部及びアクリロニトリル10部よりなるインクレメント重合成分を、3時間に渡って連続的に添加し、重合を続けた。添加終了後、更に攪拌を継続した。1時間後、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加し、重合を終了し、シリコーンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A1-2)を含むラテックスを得た。次いで、上記ラテックスに、硫酸1.5部を加えて、樹脂成分を90℃で凝固させ、その後、樹脂成分の水洗、脱水及び乾燥を行って、シリコーンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A1-2)を得た。ガラス転移温度(Tg)は108℃、ポリオルガノシロキサン系ゴムの含有量は40%、グラフト率は84%、アセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)は0.60dl/gであった。
2-3.アクリル系ゴム強化芳香族ビニル系樹脂(ゴム強化樹脂(A1-3))
 反応器に、アクリル酸n-ブチル99部と、アリルメタアクリレート1部とを乳化重合して得られたアクリル系ゴム質重合体(体積平均粒子径:100nm、ゲル含率:90%)を含む固形分濃度40%のラテックス50部(固形分換算)を入れ、更に、ドデシルベンゼンスルホン酸ナトリウム1部及びイオン交換水150部を入れて希釈した。その後、反応器内を窒素ガスで置換し、エチレンジアミン四酢酸二ナトリウム0.02部、硫酸第一鉄0.005部及びホルムアルデヒドスルホキシル酸ナトリウム0.3部を加え、撹拌しながら、60℃まで昇温した。
 一方、容器に、スチレン37.5部及びアクリロニトリル12.5部の混合物50部と、ターピノーレン1.0部及びクメンハイドロパーオキサイド0.2部とを入れ、容器内を窒素ガスで置換し、単量体組成物を得た。
 次いで、上記単量体組成物を、5時間かけて、一定流量で上記反応器に添加し、70℃で重合を行い、ラテックスを得た。このラテックスに、硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、水洗、乾燥することにより、アクリル系ゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A1-3)を得た。アクリル系ゴム質重合体の含有量は50%、グラフト率は93%、アセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)は0.30dl/g、ガラス転移温度(Tg)は108℃であった。
2-4.シリコーンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂(A1-4))
 p-ビニルフェニルメチルジメトキシシラン1.3部及びオクタメチルシクロテトラシロキサン98.7部を混合し、これを、ドデシルベンゼンスルホン酸2.0部を溶解した蒸留水300部中に入れ、ホモジナイザーにより3分間攪拌して乳化分散させた。この乳化分散液を、コンデンサー、窒素導入口及び攪拌機を備えたセパラブルフラスコに移し、攪拌しながら、90℃で6時間加熱した。次いで、5℃で24時間保持し、縮合を完結させ、ポリオルガノシロキサン系ゴムを含むラテックスを得た。縮合率は93%であった。その後、このラテックスを、炭酸ナトリウム水溶液を用いてpH7に中和した。得られたポリオルガノシロキサン系ゴムの体積平均粒子径は300nmであった。
 次に、攪拌機を備えた内容積7リットルのガラス製フラスコに、イオン交換水100部、オレイン酸カリウム1.5部、水酸化カリウム0.01部、tert-ドデシルメルカプタン0.3部、上記ポリオルガノシロキサン系ゴム15部を含む、pH7に調製されたラテックス、スチレン18部及びアクリロニトリル6部からなるバッチ重合成分を加え、攪拌しながら昇温した。温度が45℃に達した時点で、エチレンジアミン四酢酸ナトリウム0.1部、硫酸第1鉄0.003部、ホルムアルデヒドナトリウムスルホキシラート・二水塩0.2部及びイオン交換水15部よりなる活性剤水溶液、並びにジイソプロピルベンゼンハイドロパーオキサイド0.03部を添加し、1.5時間重合を行った。
 その後、上記反応系に、イオン交換水50部、オレイン酸カリウム1部、水酸化カリウム0.02部、tert-ドデシルメルカプタン0.3部、ジイソプロピルベンゼンハイドロパーオキサイド0.08部、スチレン45.5部及びアクリロニトリル15.5部よりなるインクレメント重合成分を、3時間に渡って連続的に添加し、重合を続けた。添加終了後、更に攪拌を継続した。1時間後、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加し、重合を終了し、シリコーンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A1-4)を含むラテックスを得た。次いで、上記ラテックスに、硫酸1.5部を加えて、樹脂成分を90℃で凝固させ、その後、樹脂成分の水洗、脱水及び乾燥を行って、シリコーンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A1-4)を得た。ガラス転移温度(Tg)は108℃、ポリオルガノシロキサン系ゴムの含有量は40%、グラフト率は40%、アセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)は0.40dl/gであった。
2-5.アクリロニトリル・スチレン共重合体(A2-1)
 テクノポリマー社製AS樹脂「SAN-H」(商品名)を用いた。ガラス転移温度(Tg)は108℃である。
2-6.アクリロニトリル・スチレン・N-フェニルマレイミド共重合体(A2-2)
 日本触媒社製アクリロニトリル・スチレン・N-フェニルマレイミド共重合体「ポリイミレックス PAS1460」(商品名)を用いた。N-フェニルマレイミド単位量は40%、アクリロニトリル単位量9%、スチレン単位量は51%、GPCによるポリスチレン換算のMwは120,000である。ガラス転移温度(Tg)は173℃である。
2-7.着色剤(白色系着色剤)
 石原産業社製酸化チタン「タイペークCR-60-2」(商品名)を用いた。
2-8.第2樹脂層形成用フィルム(II-1)
 東レ社製白色高隠蔽PETフィルム「ルミラーE20」(商品名)を、恒温槽に入れて、130℃で30分間熱処理したフィルムを用いた。厚さは50μmである。ガラス転移温度(Tg)は70℃である。寸法変化率(MD)は0.1%である。
2-9.第2樹脂層形成用フィルム(II-2)
 東レ社製白色高隠蔽PETフィルム「ルミラーE20」(商品名)を、恒温槽に入れて、130℃で30分間熱処理したフィルムを用いた。厚さは100μmである。ガラス転移温度(Tg)は70℃である。寸法変化率(MD)は0.1%である。
2-10.第2樹脂層形成用フィルム(II-3)
 東レ社製PETフィルム「ルミラーX10S」(商品名)を、恒温槽に入れて、130℃で30分間熱処理したフィルムを用いた。厚さは50μmである。ガラス転移温度(Tg)は70℃である。寸法変化率(MD)は0.2%である。
2-11.第2樹脂層形成用フィルム(II-4)
 東レ社製白色高隠蔽PETフィルム「ルミラーE20」(商品名)を用いた。厚さは50μmである。ガラス転移温度(Tg)は70℃である。寸法変化率(MD)は1.1%である。
2-12.第2樹脂層形成用フィルム(II-5)
 東レ社製白色高隠蔽PETフィルム「ルミラーE20」(商品名)を用いた。厚さは100μmである。ガラス転移温度(Tg)は70℃である。寸法変化率(MD)は0.9%である。
2-13.第2樹脂層形成用フィルム(II-6)
 東レ社製白色高隠蔽PETフィルム「ルミラーE20」(商品名)を、恒温槽に入れて、95℃で30分間熱処理したフィルムを用いた。厚さは100μmである。ガラス転移温度(Tg)は70℃である。寸法変化率(MD)は0.8%である。
2-14.水蒸気バリア層形成用フィルム(R-1)
 三菱樹脂社製透明蒸着フィルム「テックバリアLX」(商品名)を用いた。このフィルムは、PETフィルムの片面にシリカ蒸着膜を有する透明フィルムであり、厚さは12μm、水蒸気透湿度(JIS K7129)は0.2g/(m・day)である。
2-15.水蒸気バリア層形成用フィルム(R-2)
 東洋紡社製無機2元蒸着バリアフィルム「エコシアールVE500」(商品名)を用いた。このフィルムは、PETフィルムの片面に(シリカ/アルミナ)の蒸着を施した透明フィルムであり、厚さは12μm、水蒸気透湿度は0.5g/(m・day)である。
3.第1熱可塑性樹脂組成物の調製
  製造例1
 ゴム強化樹脂(A1-1)と、アクリロニトリル・スチレン共重合体(A2-1)と、着色剤(酸化チタン)とを、表1に示す割合で、ヘンシェルミキサーにより混合した。その後、日本製鋼所製二軸押出機「TEX44」(型式名)を用いて、バレル温度240℃で溶融混練し、ペレット状の第1熱可塑性樹脂組成物(I-1)を得た(表1参照)。
  製造例2~6及び9
 表1に示す各原料を、表1に示す割合で用いた以外は、製造例1と同様にして、ペレット状の第1熱可塑性樹脂組成物(I-2)~(I-6)及び(I-9)を得た(表1参照)。
  製造例7~8
 表1に示す各原料を、表1に示す割合で用い、溶融混練におけるバレル温度を270℃とすること以外は、製造例1と同様にして、ペレット状の第1熱可塑性樹脂組成物(I-7)及び(I-8)を得た(表1参照)。
Figure JPOXMLDOC01-appb-T000003
4.太陽電池用裏面保護フィルムの製造及び評価(1)
  実施例1
 第1樹脂層形成用の第1熱可塑性樹脂組成物(I-1)を240℃で溶融混練し、ダイ幅1,400mm及びリップ間隔0.4mmのTダイと、スクリュー径65mmの押出機とを備えるフィルム成形機を用いて、薄肉体とし、エアーナイフにより、表面温度が65℃に制御されたキャストロールに面密着させて冷却固化させ、厚さ32μmの白色フィルムを得た。フィルムの厚さは、ミツトヨ社製シックネスゲージ「ID-C1112C」(型式名)を用い、フィルムの製造開始から1時間経過後のフィルムを切り取り、フィルム幅方向の中心、及び、中心より両端に向けて、10mm間隔で厚さを測定し(n=107)、その平均値とした。フィルムの端部から20mmの範囲にある測定点の値は、上記平均値の計算から除去した。
 次に、上記白色フィルムの表面に、表2に記載の第2樹脂層形成用フィルム(II-1)を、ポリウレタン系の接着剤を用いて接着させ、厚さ92μmの太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表2に併記した。表における「接着層」の材質として示した「PU」は、ポリウレタンを示す。
  実施例2~6及び9
 表2に示した第1熱可塑性樹脂組成物等を用い、実施例1と同様にして、太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表2に併記した。
  実施例7~8
 表2に示した第1熱可塑性樹脂組成物等を用い、実施例1と同様にして、太陽電池用裏面保護フィルムを得た。尚、第1熱可塑性樹脂組成物の溶融混練温度を270℃、キャストロールの表面温度を95℃とした。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表2に併記した。
Figure JPOXMLDOC01-appb-T000004
  比較例1~2及び9
 表3に示した第1熱可塑性樹脂組成物等を用い、実施例1と同様にして、太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表3に併記した。
  比較例3~7
 表3に示した第1熱可塑性樹脂組成物等を用い、実施例1と同様にして、太陽電池用裏面保護フィルムを得た。尚、第1熱可塑性樹脂組成物の溶融混練温度を270℃、キャストロールの表面温度を95℃とした。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表3に併記した。
  比較例8
 第1樹脂層形成用の第1熱可塑性樹脂組成物(I-2)を用いて、実施例1と同様にして、厚さ62μmの白色フィルムを2枚得た。このうち、一方を、第1樹脂層形成用フィルムとして、他方を、第2樹脂層形成用フィルム(I-2f)として用いた。
 次に、上記第1樹脂層形成用フィルムの表面に、第2樹脂層形成用フィルム(I-2f)を、ポリウレタン系の接着剤を用いて接着させ、厚さ132μmの太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表2に併記した。
Figure JPOXMLDOC01-appb-T000005
5.太陽電池用裏面保護フィルムの製造及び評価(2)
  実施例10
 第1樹脂層形成用の第1熱可塑性樹脂組成物(I-1)を240℃で溶融混練し、ダイ幅1,400mm及びリップ間隔0.4mmのTダイと、スクリュー65mmの押出機とを備えるフィルム成形機を用いて、薄肉体とし、エアーナイフにより、表面温度が65℃に制御されたキャストロールに面密着させて冷却固化させ、厚さ50μmの白色フィルムを得た。
 次に、上記白色フィルムの表面に、水蒸気バリア層形成用フィルム(R-1)を、蒸着膜が外表面となるようにして、ポリウレタン系の接着剤を用いて接着させた。更に、水蒸気バリア層における蒸着膜の表面に、第2樹脂層形成用フィルム(II-1)をポリウレタン系の接着剤を用いて接着させ、太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表4に併記した。
  実施例11
 第1樹脂層形成用の第1熱可塑性樹脂組成物(I-1)を用いて、実施例10と同様にして、白色フィルムを得た後、この白色フィルム、第2樹脂層形成用フィルム(II-2)及び水蒸気バリア層形成用フィルム(R-2)を用い、実施例10と同様にして、太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表4に併記した。
Figure JPOXMLDOC01-appb-T000006
 本発明の一態様である、第1樹脂層及び第2樹脂層を備える太陽電池用裏面保護フィルムにおいて、第1樹脂層に光が放射された場合に、光の反射性に優れる。そして、高温環境下や、受光等による熱変形が抑制されて耐熱性に優れ、且つ冷熱サイクルに対する耐久性に優れる。更に、第1樹脂層表面と、エチレン・酢酸ビニル共重合体を含む部材との接着性に優れる。また、加工性やその取扱い性が良好である。従って、第2樹脂層側に支持部等を備える物品、エチレン・酢酸ビニル共重合体を含む部材が、第1樹脂層側表面に接合された物品等として、例えば、太陽光や風雨に長時間曝され、長期に渡って形状安定性等が求められる用途に好適である。なかでも、家屋、建物等の屋根等に配設される太陽電池を構成する太陽電池モジュールの構成部材として有用である。この太陽電池用裏面保護フィルムは、可撓性に優れるので、太陽電池モジュールの形状に依存することなく、即ち、太陽電池モジュールに含まれる太陽電池素子の間隙を充填する充填材部の表面形状に応じて配設することができ、太陽電池素子の保護に好適である。
 また、本発明の他態様である、第1樹脂層、水蒸気バリア層及び第2樹脂層を、順次、備える太陽電池用裏面保護フィルムにおいて、第1樹脂層に光が放射された場合に、光の反射性に優れ、光電変換効率向上率に優れる。そして、高温環境下や、受光等による熱変形が抑制されて耐熱性に優れ、且つ冷熱サイクルに対する耐久性に優れる。また、第1樹脂層表面と、エチレン・酢酸ビニル共重合体を含む部材との接着性に優れ、第1樹脂層側の表面、及び、第2樹脂層側の表面のいずれにおいても、水蒸気バリア性に優れる。また、加工性やその取扱い性が良好である。従って、第2樹脂層側に支持部等を備える物品、エチレン・酢酸ビニル共重合体を含む部材が、第1樹脂層側表面に接合された物品等として、例えば、太陽光や風雨に長時間曝され、長期に渡って形状安定性等が求められる用途に好適である。なかでも、家屋、建物等の屋根等に配設される太陽電池を構成する太陽電池モジュールの構成部材として有用である。この太陽電池用裏面保護フィルムは、可撓性に優れるので、太陽電池モジュールの形状に依存することなく、即ち、太陽電池モジュールに含まれる太陽電池素子の間隙を充填する充填材部の表面形状に応じて配設することができ、太陽電池素子の保護に好適である。
1及び1’:太陽電池用裏面保護フィルム
11:第1樹脂層
12:第2樹脂層
13:水蒸気バリア層
2:太陽電池モジュール
21:表面側透明保護部材
23:表面側封止膜
25:太陽電池素子
27:裏面側封止膜
3:切り込み
5:EVAフィルム
7:ガラス板

Claims (9)

  1.  第1樹脂層と、該第1樹脂層の一面側に配された第2樹脂層とを備える太陽電池用裏面保護フィルムにおいて、
     上記第1樹脂層は、JIS K 7121に準じて測定されたガラス転移温度の最高温度が90℃~120℃であるゴム含有芳香族ビニル系樹脂と、白色系着色剤とを含有し、厚さが10~300μmである樹脂層であり、
     上記第2樹脂層は、飽和ポリエステル樹脂を含有し、厚さが10~300μmであり、且つ、135℃で30分間放置した場合に、その前後の寸法の変化率が±0.5%以下であるフィルムからなる樹脂層であることを特徴とする太陽電池用裏面保護フィルム。
  2.  上記第2樹脂層が、上記飽和ポリエステル樹脂を含有するフィルムの熱処理物を用いて形成されている請求項1に記載の太陽電池用裏面保護フィルム。
  3.  上記第2樹脂層が白色系着色剤を含有する請求項1又は2に記載の太陽電池用裏面保護フィルム。
  4.  波長400~1,400nmの光を、上記太陽電池用裏面保護フィルムにおける上記第1樹脂層の表面に放射した場合、該光に対する反射率が50%以上である請求項1乃至3のいずれか1項に記載の太陽電池用裏面保護フィルム。
  5.  上記第1樹脂層及び上記第2樹脂層の間に、水蒸気バリア層を備える請求項1乃至4のいずれか1項に記載の太陽電池用裏面保護フィルム。
  6.  上記水蒸気バリア層が、その表面に、金属及び/又は金属酸化物を含む膜が形成されてなる蒸着フィルムからなる請求項5に記載の太陽電池用裏面保護フィルム。
  7.  厚さが30~600μmである請求項1乃至6のいずれか1項に記載の太陽電池用裏面保護フィルム。
  8.  請求項1に記載の太陽電池用裏面保護フィルムの製造方法であって、
     飽和ポリエステル樹脂を含むフィルムを、大気中、100℃~150℃の温度で熱処理して、135℃で30分間放置した場合に、その前後の寸法の変化率が±0.5%以下である第2フィルムとする工程、及び、上記ゴム含有芳香族ビニル系樹脂及び上記白色系着色剤を含む第1フィルムと、上記第2フィルムとを接合する工程を備えることを特徴とする太陽電池用裏面保護フィルムの製造方法。
  9.  請求項1乃至7のいずれか1項に記載の太陽電池用裏面保護フィルムを備えることを特徴とする太陽電池モジュール。
PCT/JP2011/059210 2010-04-19 2011-04-13 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール WO2011132588A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010096376A JP5276042B2 (ja) 2010-04-19 2010-04-19 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
JP2010-096376 2010-04-19

Publications (1)

Publication Number Publication Date
WO2011132588A1 true WO2011132588A1 (ja) 2011-10-27

Family

ID=44834111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059210 WO2011132588A1 (ja) 2010-04-19 2011-04-13 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP5276042B2 (ja)
WO (1) WO2011132588A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958196B (zh) * 2011-12-15 2016-04-20 大金工业株式会社 太阳能电池背板、太阳能电池组件以及太阳能电池面板
CN103247701B (zh) * 2012-02-03 2015-09-09 中电电气(上海)太阳能科技有限公司 一种玻璃开孔无边框组件及其制造方法
KR101929101B1 (ko) 2012-02-14 2018-12-13 미쓰이 가가쿠 토세로 가부시키가이샤 태양 전지 밀봉재 및 태양 전지 모듈

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119864A (ja) * 2007-10-25 2009-06-04 Techno Polymer Co Ltd 赤外線反射性積層体
JP2009181989A (ja) * 2008-01-29 2009-08-13 Techno Polymer Co Ltd 太陽電池用バックシート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119864A (ja) * 2007-10-25 2009-06-04 Techno Polymer Co Ltd 赤外線反射性積層体
JP2009181989A (ja) * 2008-01-29 2009-08-13 Techno Polymer Co Ltd 太陽電池用バックシート

Also Published As

Publication number Publication date
JP2011228454A (ja) 2011-11-10
JP5276042B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2010071032A1 (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
WO2010087085A1 (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP5276052B2 (ja) 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
JP5276049B2 (ja) 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
WO2010087452A1 (ja) 積層体
JP5173911B2 (ja) 積層シート及びそれを備える太陽電池モジュール
JP5385640B2 (ja) 積層シート及びそれを備える太陽電池モジュール
JP2010199552A (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP2010177386A (ja) 太陽電池用バックシート
WO2010087086A1 (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP5276042B2 (ja) 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
JP2010177384A (ja) 太陽電池用バックシート
JP2010195028A (ja) 積層体
JP2010199551A (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP2010234573A (ja) 積層シート及びそれを備える太陽電池モジュール
JP2013201385A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2012174929A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2010208157A (ja) 積層シート及びそれを備える太陽電池モジュール
JP2013201384A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2013201383A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2012227273A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2012174990A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2010177385A (ja) 太陽電池用バックシート
JP2012151279A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2012174928A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771923

Country of ref document: EP

Kind code of ref document: A1