WO2011132572A1 - Power control system and power control method - Google Patents

Power control system and power control method Download PDF

Info

Publication number
WO2011132572A1
WO2011132572A1 PCT/JP2011/059114 JP2011059114W WO2011132572A1 WO 2011132572 A1 WO2011132572 A1 WO 2011132572A1 JP 2011059114 W JP2011059114 W JP 2011059114W WO 2011132572 A1 WO2011132572 A1 WO 2011132572A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
authentication
user
power control
microgrid
Prior art date
Application number
PCT/JP2011/059114
Other languages
French (fr)
Japanese (ja)
Inventor
孝夫 友野
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2011132572A1 publication Critical patent/WO2011132572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a technique for optimizing the power supply / demand balance.
  • Patent Document 1 proposes a technology that makes it possible to trade power in such a microgrid.
  • a smart meter measures, for example, power demand for a customer and transmits it in real time to a business operator that supplies the power. As a result, it becomes possible for the operator side to grasp the amount of electric power for demand that changes from moment to moment.
  • the power supply is self-sufficient with the equipment in the microgrid, but it is also assumed that the supply and demand balance in the microgrid may be disrupted due to climate change etc. Is done.
  • the smart meter as described above is widely connected to an IP (Internet Protocol) network or the like, there is a concern about impersonation or leakage of personal information. Therefore, in such a network, it is desirable that even when the supply-demand balance in the microgrid is lost, the supply-demand balance of the smart grid as a whole is leveled and communication is performed in consideration of security threats.
  • IP Internet Protocol
  • This invention is made
  • the present invention is connected to a plurality of communication terminals of a user who is a power consumer or a user who is a supplier supplying power to the consumer, and the communication terminal via a network.
  • a power control system in which a plurality of microgrids formed including a power control device are connected to each other via a network, and a communication terminal is used for authenticating a user and user identification information for identifying the user
  • An authentication information input unit for inputting authentication information, an authentication unit for performing user authentication processing based on the user identification information and authentication information input to the authentication information input unit, and an authentication result of the authentication processing by the authentication unit
  • the power control unit is configured to supply power from the supplier to the consumer, and the power control device includes the user identification information and the power supplied to the user.
  • the power history storage unit that stores the power history associated with the amount, the power amount used in its own microgrid, and the power state that can be supplied in its own microgrid are stored. Communicates with the power control unit in the other microgrid connected via the network with the power state storage unit that is connected, and compares its own power state with the power state in the other microgrid. And a power control unit that controls power transactions with other microgrids.
  • the present invention is characterized in that the authentication unit of the communication terminal performs an authentication process based on user identification information and authentication information stored in an IC chip or IC card issued in advance to the user.
  • the present invention provides a plurality of communication terminals of a user who is a power consumer or a user who is a supplier supplying power to the consumer, and user identification information which is connected to the communication terminal via a network and identifies the user.
  • a power history storage unit that stores a power history associated with a power amount supplied to the user, a power amount used in its own microgrid, and supplied in its own microgrid Power of a power control system in which a plurality of microgrids formed by including a power control device including a power state storage unit that stores a power state with a possible power amount are connected via a network
  • a control method wherein a communication terminal accepts input of user identification information for identifying a user and authentication information for authenticating the user, and input A step of performing a user authentication process based on the user identification information and the authentication information, a step of allowing a consumer to supply power from a supplier if the authentication result of the authentication process indicates a successful authentication, and a power control
  • the apparatus stores in the
  • the communication terminal includes: When authentication processing is performed by accepting input of user identification information for identifying a user and authentication information for authenticating the user, and the authentication result indicates successful authentication, power is supplied from the supplier to the consumer, and power control is performed.
  • the device stores a power history in which user identification information and the amount of power supplied to the user are associated, communicates with a power control device in another microgrid connected via the network, and Compare the power state of the current and the power state in the other microgrid, and control the power trading with the other microgrid according to the comparison result
  • a power control system that can efficiently balance the power supply-demand balance with a safe network.
  • FIG. 1 It is a block diagram which shows the structural example of the power control system by one Embodiment of this invention. It is a figure which shows the plant
  • FIG. 1 is a diagram illustrating a configuration of a power control system 1 according to the present embodiment.
  • the power control system 1 includes a microgrid A, a microgrid B, a microgrid C,... Divided into power supply and demand areas for a certain area, and a plurality of grid power companies 700 (system power company 700-1, grid power Company 700-2, grid power company 700-3,...), Which are connected via a power network and a communication network.
  • grid power companies 700 system power company 700-1, grid power Company 700-2, grid power company 700-3, etc.
  • three micro grids and three grid power companies 700 are illustrated and described, but any number of one or more may be used.
  • FIG. 2 is a diagram showing facilities and the like provided in the power control system 1.
  • a house that is a customer's facility, a power storage company, a solar power plant, a charging station that charges an electric vehicle, system power, and the like are connected to the microgrid A.
  • Houses of customers are a plurality of electronic devices that operate using electric power, storage batteries that store the power generated by solar power, and electronic meters (smart meters) that measure the power used or generated in these batteries.
  • electronic meters smart meters
  • the symbol a is a smart community center (SCC) in which the power control apparatus 140 according to the present embodiment is installed.
  • SCC smart community center
  • the power bank enables deposits and withdrawals in units of “amount of electric power” instead of “money” handled by ordinary banks.
  • the SCC includes the power generation facility 110, the power storage facility 120, the measuring instrument 130, and the power control device 140. However, the SCC may include only the power storage facility 120 and the power control device 140, or only the power control device 140. It doesn't matter.
  • the management of this SCC is operated according to the security management standard similar to the Internet data center (IDC).
  • the power generation facility 110 is a facility that generates power by, for example, solar power generation or wind power generation.
  • the power storage facility 120 is a facility for accumulating generated power.
  • the measuring device 130 measures the power supplied to and supplied from other facilities via a network (power network).
  • Power control device 140 is a computer device that controls power transactions within its own microgrid and between other microgrids.
  • the power control device 140 includes a communication unit 141, an authentication unit 142, a power state storage unit 143, a power history storage unit 144, a power settlement history unit 145, a cash settlement history storage unit 146, and a power control unit 147. It has.
  • the communication unit 141 communicates with other communication terminals connected via a network (communication network), and the authentication unit 142 receives an authentication request from another communication terminal connected via the network (communication network). Then, the authentication process is performed and the authentication result is transmitted.
  • an IC card in which user information such as a predetermined user ID and a password corresponding to the user ID is stored in advance is issued to a user who makes a power transaction using the power control system 1.
  • the user information stored in the IC card is read to the authentication information input unit 251 of the authentication communication terminal 250 and transmitted to the power control apparatus 140 as an authentication request by the authentication unit 252 of the authentication communication terminal 250.
  • the authentication unit 142 stores predetermined user information in its own storage area, and compares the transmitted authentication request with user information stored in advance in its own storage area. Then, the authentication unit 142 determines that the authentication is successful if user information that matches the user information included in the transmitted authentication request is stored in its own storage area, and determines that the authentication fails if it is not stored. .
  • FIG. 3 shows authentication between the parent IC card 260 and a plurality of child IC cards 261 (child IC card 261-1, child IC card 261-2, child IC card 261-3,...) Performed according to this embodiment.
  • the IC card issued to the user includes a parent card and a plurality of child IC cards corresponding to one parent card.
  • the parent IC card is an IC chip or an IC card that is inserted into the authentication communication terminal 250 or the like, and is a terminal authentication card.
  • the child IC card is an IC card possessed by each of a plurality of users corresponding to the parent IC card, and is a card used by an individual for personal authentication. That is, authentication is performed between the authentication communication terminal 250 and the SCC by the parent IC card 260, and authentication is performed between the individual user and the SCC by the child IC card 261.
  • the power state storage unit 143 stores the power state of the amount of power used in its own microgrid and the amount of power that can be supplied in its own microgrid.
  • the power state stored in the power state storage unit 143 is collected and stored by the power control unit 147.
  • the power history storage unit 144 stores a power history in which user identification information (user ID) for identifying a user is associated with the amount of power supplied to the user.
  • FIG. 4 is a diagram illustrating an example of power history table data stored in the power history storage unit 144.
  • the power history the date and time, the connection destination terminal ID, the connection source terminal ID, the user parent ID, the user child ID, the event type (“buy / sell”, “power consumption / power storage / power generation”), Information on the amount of electric power, power factor, gas data, heat dissipation / heat storage data, power storage balance, power consumption balance, charge balance, and cash settlement balance (here, credit balance) is included.
  • the date and time indicates the date and time when the power transaction was performed.
  • the connection destination terminal ID indicates where the connection is made, and is identification information for identifying the communication terminal installed at the connection destination.
  • the connection source terminal ID indicates where the connection is made, and is identification information for identifying a communication terminal installed at the connection source.
  • the connection destination ID is information for identifying an ID (identification information) stored and stored in the electric vehicle.
  • the connection source terminal ID is information for identifying a charging station of a charging company (for example, charging company e in FIG. 1).
  • the user parent ID is the ID of the parent IC chip or IC card.
  • the user child ID is an ID of the child IC card. For example, it is the ID of this child card that indicates who charged the electric vehicle.
  • the event type indicates the type of event in which the power transaction has been performed, and indicates, for example, “buy (power consumption or power storage)” or “sell (power generation)”.
  • the amount of power is the amount of power traded.
  • the power factor is a power factor when power is distributed. For example, when power is transmitted / distributed by direct current in a microgrid, the power factor is 1, but when power is transmitted / distributed by alternating current between different microgrids, a certain loss occurs.
  • Gas data and heat dissipation / heat storage data are items in which information corresponding to the amount of power, power factor, and the like is stored when a transaction such as energy other than electric power is performed.
  • the electric power consumption balance is an item of the electric power consumption charge balance assuming the settlement at the weekend or the end of the month. For example, a case where it is withdrawn from a bank can be considered.
  • the settlement determination is an item for selecting a payment (for example, charge or credit) different from these.
  • the charge balance is an item indicating the balance of the advance payment deduction from the charged amount.
  • the credit settlement balance is an item indicating a balance when credit payment is made.
  • the value of the electric energy and the electric energy balance is in units of kw ⁇ H (kilowatt hour).
  • the power settlement history unit 145 stores power histories such as a power storage balance and a power consumption balance among the power histories stored in the power history storage unit 144.
  • the cash settlement history storage unit 146 stores the charge balance and the cash settlement balance among the power histories stored in the power history storage unit 144, and stores the charge history information and the cash settlement balance information. .
  • cash settlement for example, credit settlement can be selected.
  • the power control unit 147 communicates with a power control device in another microgrid connected via a network, and own power state stored in the power state storage unit 143 and the power control device of another microgrid Are compared with each other, and power transactions with other microgrids are controlled according to the comparison result.
  • the power control unit 147 performs the power transaction in its own microgrid when the supply and demand balance can be suppressed within a certain range by the power transaction in its own microgrid.
  • the customer's facility indicated by reference sign b includes a general device 210, a power generation device 220, a power storage device 230, a measuring instrument 240, and an authentication communication terminal 250.
  • the customer's facility may be configured to include only the general device 210 or one of the general device 210 and the power generation device 220 or the power storage device 230.
  • the general device 210 is various devices (for example, a television, a personal computer, an air conditioner, etc.) that operate using electric power as shown in the house of FIG.
  • the power generation device 220 is a device that generates power by, for example, solar power generation or wind power generation.
  • the power storage device 230 is a facility for storing generated power.
  • the measuring device 240 measures the power supplied to and supplied from other facilities and the like via a network (power network).
  • the authentication communication terminal 250 is a computer device that communicates with other communication terminals or the like connected via a network (communication network), and includes an authentication information input unit 251, an authentication unit 252, and a power transaction unit 253. ing.
  • the authentication information input unit 251 receives user identification information (user ID) for identifying a user and authentication information for authenticating the user.
  • the authentication information input unit 251 has, for example, an IC reader function, and may read user information stored in an IC card issued in advance to the user.
  • the authentication information input unit 251 may include an input unit such as a keyboard and accept input of a user ID, a password, and the like. Further, for example, input of information for biometric authentication such as a fingerprint or an iris may be accepted.
  • the authentication unit 252 performs user authentication processing based on the user ID and authentication information input to the authentication information input unit 251. For example, the authentication unit 252 transmits an authentication request including the input user ID and authentication information to the power control apparatus 140, and acquires an authentication result returned from the power control apparatus 140 in response to the transmitted authentication request.
  • the authentication information input unit 251 includes an IC card reader and reads information stored in the IC card
  • the authentication unit 252 generates an authentication request based on the read information, and the power control device 140 may be transmitted.
  • the authentication unit 252 may perform authentication by an authentication processing function provided in an IC chip included in the IC card, and acquire an output authentication result.
  • the power trading unit 253 causes the consumer to supply power from the supplier, or causes the consumer to supply power to the supplier.
  • the facility of the power storage company indicated by reference symbol c includes a power storage facility 310, a measuring device 320, and an authentication communication terminal 330.
  • the power storage facility 310 is the same as the power storage facility 120 included in the SCC, and is a facility for storing generated power.
  • the measuring device 320 measures the power supplied to and supplied from other facilities via a network (power network).
  • the authentication communication terminal 330 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of a power storage company.
  • the facility of the power generation company indicated by reference sign d includes a power generation facility 410, a measuring instrument 420, and an authentication communication terminal 430.
  • the power generation facility 410 is the same as the power generation facility 110 included in the SCC, and is a facility that generates power by, for example, solar power generation or wind power generation.
  • the measuring instrument 420 measures the power supplied to and supplied from other facilities via a network (power network).
  • the authentication communication terminal 43 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of the power generation company.
  • the charging company's facility indicated by symbol e includes a power storage facility 510, a measuring instrument 520, and an authentication communication terminal 530.
  • the charging company's facility may or may not have power storage equipment.
  • the electric vehicle may be directly supplied with electric power from the power grid, or may be supplied with electric power from the electric storage facility if the electric vehicle is provided with the electric storage facility.
  • the power storage facility 510 is the same as the power storage facility 120 included in the SCC, and is a facility that accumulates generated power.
  • the measuring device 520 measures the power supplied and supplied to other facilities and the like via a network (power network).
  • the authentication communication terminal 530 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of the charging company.
  • the ISP 600 is a computer device of an Internet service provider connected to a network (communication network).
  • the Internet service provider can provide additional services such as a point service, for example, according to the power storage balance and the power consumption balance value stored in the power history storage unit 144.
  • the grid power company 700 is a so-called general electric utility that performs power transmission, and includes an authentication communication terminal 710.
  • the authentication communication terminal 710 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of the grid power company.
  • FIG. 5 is a sequence diagram illustrating an operation example of power trading by the power control system 1.
  • power control device 140 of microgrid A will be described as power control device 140-1
  • power control device 140 of microgrid B will be described as power control device 140-2.
  • the authentication information input unit 251 of the authentication communication terminal 250 reads user information stored in the user's IC card (step S1).
  • the authentication unit 252 transmits an authentication request including the user information read by the authentication information input unit 251 to the power control apparatus 140-1 (step S2).
  • the authentication unit 142 of the power control apparatus 140-1 receives the authentication request transmitted from the authentication communication terminal 250 via the communication unit 141, and performs an authentication process (step S3).
  • the authentication unit 142 transmits the authentication result to the authentication communication terminal 250 (step S4).
  • the authentication unit 252 of the authentication communication terminal 250 receives the authentication result transmitted from the power control apparatus 140, and determines whether or not the authentication result indicates successful authentication (step S5). If the authentication unit 252 determines that the authentication result indicates an authentication failure (step S5: NO), the process ends. On the other hand, if authentication unit 252 determines that the authentication result indicates successful authentication (step S5: YES), authentication communication terminal 250 transmits the determined transaction request to power control device 140-1 (step S6).
  • the transaction request is, for example, a request for supplying a certain amount of power or a request for selling a certain amount of power.
  • the power control unit 147 refers to the power state stored in the power state storage unit 143 and refers to the power state. It is determined whether or not the grid A is within the range of supply and demand balance (step S7).
  • the power control unit 147 determines that the microgrid A is within the range of supply and demand balance (step S7: YES)
  • the power control device 140-1 performs a transaction in the microgrid A with respect to the authentication communication terminal 250.
  • a transaction permission that permits this is transmitted (step S9).
  • the range of the supply and demand balance is set according to the situation, but is, for example, a range satisfying (demand amount ⁇ supply amount ⁇ demand amount + several%).
  • the power transaction unit 253 of the authentication communication terminal 250 Upon receiving the transaction permission transmitted from the power control device 140-1, the power transaction unit 253 of the authentication communication terminal 250 receives another communication terminal (for example, the authentication communication terminal 330, the authentication communication terminal 430, the authentication communication terminal 530, etc.). To communicate with each other (step S10). In addition, the power transaction unit 253 generates a power history based on the performed power transaction and transmits the power history to the power control device 140-1 (step S11). When the communication unit 141 of the power control apparatus 140-1 receives the transmitted power history, the power control unit 147 stores the power history in its own storage area.
  • another communication terminal for example, the authentication communication terminal 330, the authentication communication terminal 430, the authentication communication terminal 530, etc.
  • step S7 when the power control unit 147 determines in step S7 that the microgrid A is not within the range of supply and demand balance (step S7: NO), the power control unit 147 of the power control device 140-1 uses another microgrid ( For example, a transaction request is transmitted to the microgrid B).
  • the power control unit 147 of the power control device 140-2 receives its own microgrid in the same manner as the processing performed by the power control device 140-1 in step S7. It is determined whether or not B is within the range of supply and demand balance.
  • the power control unit 147 of the power control device 140-2 determines that it is within the range of supply and demand balance and can supply power to the microgrid A, it transmits a transaction permission to the power control device 140-1 (step S12). .
  • the power control apparatus 140-1 transmits a transaction permission to the authentication communication terminal 250 (step S13).
  • the authentication communication terminal 250 Upon receiving the transaction permission transmitted from the power control apparatus 140-2, the authentication communication terminal 250 receives a communication terminal in the microgrid B (for example, the authentication communication terminal 330, the authentication communication terminal 430, and the authentication communication terminal 530 in the microgrid B). Etc.) to conduct power transactions (step S14).
  • the power transaction unit 253 generates a power history based on the performed power transaction and transmits it to the power control device 140-1 (step S15).
  • the power transaction unit 253 may transmit the power history based on the power transaction performed with the microgrid B to the power control device 140-2.
  • FIG. 6 is a flowchart showing an operation example of the supply and demand balance optimization process by the power control device 140.
  • the supply / demand balance optimization process corresponds to the process shown in step S7 of FIG.
  • the power control unit 147 communicates with each communication terminal in the microgrid A, and acquires the power supply state (step S20).
  • the operator storage data is acquired from the authentication communication terminal 330 of the power storage company and the authentication communication terminal 530 of the charging company.
  • the customer storage data is acquired from the authentication communication terminal 250 of the customer.
  • the storage battery 120 stores power storage data stored in the power storage facility 120 from the measuring instrument 130 in its own SCC.
  • the power control unit 147 causes the power state storage unit 143 to store the acquired power storage data.
  • the power control unit 147 acquires the power generation data from the power generation company's authentication communication terminal 430. Also, power company power generation data is acquired from the authentication communication terminal 710 of the grid power company 700. Further, the customer power generation data is acquired from the authentication communication terminal 250 of the customer. Further, the power generation data generated by the power generation facility 110 is acquired from the measuring instrument 130 in its own SCC. The power control unit 147 stores the acquired power generation data in the power state storage unit 143.
  • the power control unit 147 communicates with each communication terminal in the microgrid A, and acquires the power usage state (step S21).
  • the power consumption data is acquired from the authentication communication terminal 250 of the consumer.
  • weather forecast data distributed from the Japan Meteorological Agency or the like via a network is acquired.
  • the power control unit 147 causes the power state storage unit 143 to store the acquired power consumption data. Initially, optimization is performed using real data. Optimize supply and demand balance on a best-effort basis by modeling the entire system. Next, the power control unit 147 performs supply / demand balance prediction and supply / demand balance range setting processing.
  • the power control unit 147 acquires various basic data including information on existing areas such as consumers, business operators, electric power companies, and SCCs, and facilities provided. The power control unit 147 predicts the supply and demand balance based on the basic data acquired in this way, the power supply state acquired in step S20, the power usage state acquired in step S21, the startup prediction data, and the like. The balance range is determined (step S22).
  • step S23 when the power control unit 147 determines that the amount of power used is greater than the amount of power supplied (power supply is insufficient) in the supply and demand balance in the microgrid A (step S23: YES), With reference to the power state stored in the power state storage unit 143 and the power history stored in the power history storage unit 144, prediction calculation of the electric energy is performed (step S24). Further, the power control unit 147 calculates the supply capacity in the microgrid A with reference to the item of the counterpart power state in the power history stored in the power history storage unit 144 (step S25).
  • the power control unit 147 calculates a power charge based on the power generation charge data of the customer, the operator, the power company, and the CSS, the storage charge data of the operator, the consumer, and the SCC (Step S26). Then, the power control unit 147 selects a power supply unit based on the amount of power calculated in step S24, the supply capacity calculated in step S25, and the power charge calculated in step S26 (step S27). Examples of power supply means include requesting power supply to consumers, power companies, and businesses, supplying power from the power generation equipment 110 or the power storage equipment 120 in its own SCC, and requesting power supply to other microgrids. Conceivable.
  • step S23 determines in step S23 that the amount of power used is less than the amount of power supplied (the amount of power supplied is excessive) in the supply and demand balance in the microgrid A (step S23: NO), based on the power generation history data and the power storage history data, a prediction calculation of the electric energy in the microgrid A is performed (step S28). Further, the supply capacity in the microgrid A is calculated (step S29). Moreover, a power charge is calculated (step S30). Then, the power control unit 147 selects a power reduction unit based on the amount of power calculated in step S28, the supply capacity calculated in step S29, and the power charge calculated in step S30 (step S31).
  • the power reduction means for example, a request for reduction to a consumer, a power company, a business operator, or an SCC, or a request for sale of power to another microgrid can be considered. Thereafter, it is determined whether or not to continue (step 32). If you continue, go back to the start again.
  • FIG. 7 is a flowchart illustrating an operation example of the power history storage processing by the power control apparatus 140.
  • the power control unit 147 of the power control device 140 receives the power history transmitted from the authentication communication terminal 250 in step S14 of FIG. 5, the received power history is temporarily stored and stored in its own recording area. To do.
  • the power control unit 147 determines whether or not the accumulation time for accumulating the power history has passed a certain time (for example, 30 minutes) (step S40).
  • the power control unit 147 continues to accumulate the power history transmitted from the authentication communication terminal 250 or the like (step S41) while the accumulation time for accumulating the power history does not elapse for a certain time (step S40: NO).
  • the data stored in the power control unit 147 is, for example, basic data, power consumption data, power generation history data, power storage history data, power storage charge data, power generation charge data of each of the customer, power company, business operator, and SCC. And weather forecast data.
  • step S40 when the power control unit 147 determines that the storage time for storing the power history has passed a certain time (step S40: YES), the power control unit 147 stores the stored data in the power history storage unit 144. It converts into the data format to memorize
  • the settlement system report time is a time that is determined to be settled once a month, for example.
  • the power control unit 147 determines whether or not the current time acquired by the time counting function provided by the power control unit 147 matches a predetermined settlement system report time, and determines that the current time does not match (step S44: NO). Return to S40.
  • step S45 when the power control unit 147 determines that the current time matches the predetermined payment system report time (step S44: YES), it generates payment information (step S45).
  • the settlement here is based on the amount of power.
  • the data is stored in the power settlement history storage unit 145.
  • the supply amount exceeds the usage amount, the amount of power may be left as it is even after cashing. For example, for a consumer whose power consumption exceeds the power supply, the difference is converted into cash (step S46).
  • the data is stored in the cash settlement history storage unit 145.
  • the power control unit 147 causes the power history storage unit 144 to store the power history based on the settlement process and the cashing process (step S47). As in FIG. 6, it is determined whether or not to continue (step 48).
  • FIG. 8 is a model diagram showing the concept of supply and demand balance leveling according to the present embodiment.
  • the electricity supply-demand balance is calculated according to the consumption of electricity by consumers, and electricity supply such as grid power companies, wind power, solar power generation is performed, and storage batteries are used in some cases Furthermore, the electricity supply-demand balance is calculated, and the supply-demand balance is leveled.
  • Case 1 shown in (a) is a case where the consumer A-1 purchases electric power in the microgrid A.
  • the consumer A-1 purchases electric power in the microgrid A.
  • SCC sales commission
  • Case 2 shown in (b) is a case where customer A-1 sells electric power in microgrid A.
  • the electricity generated by the power generation equipment owned by the consumer A-1 is sold through the SCC.
  • the customer A-1 sells electric power to each company in the grid
  • the electric power corresponding to the electric charge is sold to the SCC-A.
  • the SCC-A sells the power purchased from the consumer A-1 to each business operator in the grid with a sales commission added.
  • Case 3 shown in (c) is a case where the consumer A-1 of the microgrid A purchases electric power from the microgrid B.
  • a consumer purchases electric power from the neighboring grid B.
  • the customer A-1 purchases electric power for each business operator in another grid, he / she purchases necessary electric power with the electric charge from the SCC-A which is his grid + the sales fee of the grid A + the sales fee of the grid B.
  • SCC-A purchases power from SCC-B at a power charge + grid B sales fee.
  • SCC-B sells the power purchased from each operator by adding the sales fee of Grid B to SCC-A.
  • Case 4 shown in (d) is a case where the consumer A-1 of the microgrid A sells electric power to the microgrid B.
  • the consumer A-1 of the microgrid A sells electric power to the microgrid B.
  • the customer A-1 sells electric power to each business operator on another grid
  • the electric power corresponding to the electric charge is sold to the SCC-A that is the own grid.
  • SCC-A sells electric power to SCC-B at a power charge purchased from customer A-1 and a sales fee for grid A.
  • SCC-B sells the power purchased from SCC-A to each business operator with the grid B sales commission added. As described above, all information at the time of trading is performed through the SCC.
  • the present embodiment by performing identity authentication using an IC card in a communication terminal, it is possible to transmit and receive data after confirming the identity of the user. .
  • the power history is stored in association with the same user. be able to. This makes it possible to record when, where, and who used or supplied power.
  • by publishing the power history acquired according to the present embodiment so as to be viewable and openable to a predetermined user, for example, the living state of a family member living separately can be seen.
  • the user by providing a predetermined user (for example, a child of the elderly person) the power history acquired by the authentication communication terminal 250 installed in the elderly living alone, the user is away. It becomes possible to grasp the life of the elderly. In addition, it is possible to grasp the living state of a child (student) whose parents live far away, or to grasp the living state of a sick person. Thereby, for example, it is considered that there is a case where the dangerous state can be detected when the life pattern changes suddenly.
  • a predetermined user for example, a child of the elderly person
  • the smart meter having the function of the authentication communication terminal 250 When the smart meter having the function of the authentication communication terminal 250 according to the present embodiment is distributed to each home by a country or a power company, the smart meter is provided with a display, a keyboard, etc., and browsing such as the Internet via a network is possible.
  • a so-called PC (personal computer) function may be provided.
  • the Internet network can be spread in countries and regions where the Internet network is not widespread, and information gaps can be corrected.
  • different charge settings may be made for each microgrid, and different charge settings may be used when a user purchases power in his / her microgrid and when he / she purchases power in another microgrid. You may make it do. For example, as shown in FIG. 11A, when the user of the microgrid A performs charging in the own microgrid, it is assumed that the transfer fee is charged. Thereafter, as shown in FIG. 11B, when the user moves from the microgrid A to the microgrid B and performs charging outside the own microgrid, a fee may be added.
  • renewable energy such as solar power generation and wind power generation may be traded in the same manner as, for example, a variable exchange rate because the amount of power generation varies depending on the climate or the like.
  • a plurality of smart grids for each country are controlled on the same power settlement system platform.
  • the platform for the cash settlement system may be commonly used for a wider range of smart grids.
  • wind power generation is suitable depending on the region
  • solar power generation is suitable, so a microgrid is constructed according to the weather conditions of each region.
  • FIT field interleaving
  • the platform of the cash settlement system may use a wider range, for example, a credit card platform.
  • SCC is not only for credit settlement is because it is public. People on the blacklist cannot have a credit card. Settlement must be made available to all people in consideration of weather conditions and public nature.
  • each microgrid and grid power company 700 in this embodiment are connected by a power network and a communication network. For example, in an area where a communication network or the like is not established, power line communication in the power network is performed. Information communication may be performed by (PLC: Power Line Communication). Of course, even if there is a communication network, PLC may be used.
  • PLC Power Line Communication
  • the power storage business operator, the power generation business operator, the charging business operator, and the consumer have been illustrated and described separately, but these are business enterprises that also serve as a plurality of roles. May be.
  • it may be a business operator that performs both the power storage business and the power generation business.
  • a consumer includes the power generation device 220 and the power storage device 230 is illustrated, but the consumer may not include the power generation device 220, the power storage device 230, and the like.
  • the program for realizing the function of the processing unit in the present invention is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed to control the power.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a WWW system provided with a homepage providing environment (or display environment).
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.
  • RAM volatile memory
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Disclosed is a power control system that efficiently levels the balance of power supply and demand by the use of a safe network. Within the power control system, wherein a plurality of microgrids which are formed by the inclusion of a user communications terminal and a power control device are connected via a network, communications terminals receive input of user identification data which identifies users and verification data which verifies users and performs verification, a supplier is made to supply power to a consumer if the verification results show successful verification, and a power control device records a power history which associates user identification data to power volumes supplied to a user, communicates with power control devices in other microgrids connected via the network, compares the power status of the microgrid to the power status of other microgrids, and controls power transactions with other microgrids in accordance with the comparison results.

Description

電力制御システムおよび電力制御方法Power control system and power control method
  本発明は、電力の需給バランスを最適化する技術に関する。 The present invention relates to a technique for optimizing the power supply / demand balance.
  近年、温室効果ガスの影響で地球の温暖化が急激に進んでいる。地球温暖化が進むと、人類の生態系に与える影響は計り知れない。その温室効果ガスの主要因はCOである。
このCOの多くは、化石燃料の消費によって発生するが、特に火力発電所から発生するCOの占める割合は大きい。このため、火力発電所に頼らないために、再生可能エネルギーの導入が進められている。再生可能エネルギーとして、太陽光発電や風力発電などの研究や電気事業法等の法整備が進んでおり、系統電力に加えてこのような再生可能エネルギーが大量に導入されることが今後予想される。再生可能エネルギーは気候などにより創電量が変動するため、電力を平準化させることが求められる。そこで、電力を創電または使用する設備等に通信端末を設置してネットワーク化し、情報通信を行うことにより電力の需給バランスを最適化しようとするスマートグリッドが研究されている。スマートグリッドを実現する方法として、図14に示すような分散型エネルギーマネージメントが注目されている。ここでは、電力の需給区域を一定地域のクラスタごとに分割し、このようなクラスタをマイクログリッドとして、マイクログリッド内で需給バランスをとるように電力を制御する。このようなマイクログリッドの積み重ねにより、例えば国家規模でのスマートグリッドを実現することができる。特許文献1には、このようなマイクログリッド内で電力の売買を行うことを可能とする技術が提案されている。
  一方、上述したような通信端末として、電子式計量器(スマートメータ)の研究が進められている。スマートメータは、例えば需要家における需用電力を計測し、電力を供給する事業者などにリアルタイムに送信するものである。これにより、事業者側において、時々刻々と変化する需用電力の量を把握することが可能になる。
In recent years, global warming has been rapidly progressing under the influence of greenhouse gases. As global warming progresses, the impact on human ecosystems is immeasurable. The main cause of the greenhouse gas is CO 2 .
Most of this CO 2 is generated by the consumption of fossil fuels, but the proportion of CO 2 generated from thermal power plants is particularly large. For this reason, renewable energy is being introduced in order not to rely on thermal power plants. As renewable energy, research on solar power generation, wind power generation, etc. and development of laws such as the Electricity Business Law are progressing, and it is expected that such renewable energy will be introduced in large quantities in addition to grid power in the future . Since the amount of electricity generated by renewable energy varies depending on the climate, etc., it is necessary to level the power. Therefore, a smart grid that attempts to optimize the power supply / demand balance by installing a communication terminal in a facility or the like that creates or uses electric power to form a network and performing information communication has been studied. As a method of realizing a smart grid, attention is paid to distributed energy management as shown in FIG. Here, the power supply and demand area is divided into clusters in a certain area, and such a cluster is used as a microgrid, and the power is controlled so as to balance the supply and demand within the microgrid. By stacking such microgrids, for example, a smart grid on a national scale can be realized. Patent Document 1 proposes a technology that makes it possible to trade power in such a microgrid.
On the other hand, as a communication terminal as described above, research on an electronic measuring instrument (smart meter) is underway. A smart meter measures, for example, power demand for a customer and transmits it in real time to a business operator that supplies the power. As a result, it becomes possible for the operator side to grasp the amount of electric power for demand that changes from moment to moment.
特開2003-32899号公報Japanese Patent Laid-Open No. 2003-32899
  しかしながら、上述したようなマイクログリッドにおいては、マイクログリッド内の設備により電力の自給自足を行うことが理想的であるが、気候の変動などによりマイクログリッドでの需給バランスが崩れる場合があることも想定される。一方、上述のようなスマートメータはIP(Internet Protocol)ネットワークなどに広く接続されるため、なりすましや個人情報の漏洩などが懸念される。そこで、このようなネットワークでは、マイクログリッド内における需給バランスが崩れた場合にもスマートグリッド全体としての需給バランスを平準化し、かつセキュリティに対する脅威に配慮された通信が行われることが望ましい。 However, in the microgrid as described above, it is ideal that the power supply is self-sufficient with the equipment in the microgrid, but it is also assumed that the supply and demand balance in the microgrid may be disrupted due to climate change etc. Is done. On the other hand, since the smart meter as described above is widely connected to an IP (Internet Protocol) network or the like, there is a concern about impersonation or leakage of personal information. Therefore, in such a network, it is desirable that even when the supply-demand balance in the microgrid is lost, the supply-demand balance of the smart grid as a whole is leveled and communication is performed in consideration of security threats.
  本発明は、このような状況に鑑みてなされたもので、安全なネットワークにより効率よく電力の需給バランスを平準化する電力制御システムおよび電力制御方法を提供する。 This invention is made | formed in view of such a condition, and provides the electric power control system and electric power control method which equalize | balance the power supply-demand balance efficiently with a safe network.
  上述した課題を解決するために、本発明は、電力の需要家であるユーザまたは需要家に電力を供給する供給者であるユーザの複数の通信端末と、通信端末にネットワークを介して接続された電力制御装置とが含まれて形成される複数のマイクログリッド同士がネットワークを介して接続された電力制御システムであって、通信端末は、ユーザを識別するユーザ識別情報と、ユーザを認証するための認証情報とが入力される認証情報入力部と、認証情報入力部に入力されたユーザ識別情報と認証情報とに基づいて、ユーザの認証処理を行う認証部と、認証部による認証処理の認証結果が、認証成功を示す場合、需要家に供給者から電力を供給させる電力取引部と、を備え、電力制御装置は、ユーザ識別情報と、ユーザに対して供給された電力量とが対応付けられた電力履歴が記憶される電力履歴記憶部と、自身のマイクログリッド内において使用されている電力量と、自身のマイクログリッド内において供給可能な電力量との電力状態が記憶されている電力状態記憶部と、ネットワークを介して接続された他のマイクログリッドにおける電力制御装置と通信を行い、自身の電力状態と、他のマイクログリッドにおける電力状態とを比較し、比較結果に応じて他のマイクログリッドとの間での電力取引を制御する電力制御部と、を備えることを特徴とする。 In order to solve the above-described problems, the present invention is connected to a plurality of communication terminals of a user who is a power consumer or a user who is a supplier supplying power to the consumer, and the communication terminal via a network. A power control system in which a plurality of microgrids formed including a power control device are connected to each other via a network, and a communication terminal is used for authenticating a user and user identification information for identifying the user An authentication information input unit for inputting authentication information, an authentication unit for performing user authentication processing based on the user identification information and authentication information input to the authentication information input unit, and an authentication result of the authentication processing by the authentication unit However, when the authentication is successful, the power control unit is configured to supply power from the supplier to the consumer, and the power control device includes the user identification information and the power supplied to the user. The power history storage unit that stores the power history associated with the amount, the power amount used in its own microgrid, and the power state that can be supplied in its own microgrid are stored. Communicates with the power control unit in the other microgrid connected via the network with the power state storage unit that is connected, and compares its own power state with the power state in the other microgrid. And a power control unit that controls power transactions with other microgrids.
  また、本発明は、通信端末の認証部が、ユーザに予め発行されたICチップもしくはICカードに記憶されているユーザ識別情報と認証情報とに基づいて認証処理を行うことを特徴とする。 Further, the present invention is characterized in that the authentication unit of the communication terminal performs an authentication process based on user identification information and authentication information stored in an IC chip or IC card issued in advance to the user.
  また、本発明は、電力の需要家であるユーザまたは需要家に電力を供給する供給者であるユーザの複数の通信端末と、通信端末にネットワークを介して接続され、ユーザを識別するユーザ識別情報と、ユーザに対して供給された電力量とが対応付けられた電力履歴が記憶される電力履歴記憶部と、自身のマイクログリッド内において使用されている電力量と、自身のマイクログリッド内において供給可能な電力量との電力状態が記憶されている電力状態記憶部とを備えた電力制御装置とが含まれて形成される複数のマイクログリッド同士がネットワークを介して接続された電力制御システムの電力制御方法であって、通信端末が、ユーザを識別するユーザ識別情報と、ユーザを認証するための認証情報との入力を受付けるステップと、入力されたユーザ識別情報と認証情報とに基づいて、ユーザの認証処理を行うステップと、認証処理の認証結果が、認証成功を示す場合、需要家に供給者から電力を供給させるステップと、電力制御装置が、ユーザを識別するユーザ識別情報と、ユーザに対して供給された電力量とが対応付けられた電力履歴を、電力履歴記憶部に記憶させるステップと、ネットワークを介して接続された他のマイクログリッドにおける電力制御装置と通信を行い、自身の電力状態と、他のマイクログリッドにおける電力状態とを比較し、比較結果に応じて他のマイクログリッドとの間での電力取引を制御するステップと、を備えることを特徴とする。 In addition, the present invention provides a plurality of communication terminals of a user who is a power consumer or a user who is a supplier supplying power to the consumer, and user identification information which is connected to the communication terminal via a network and identifies the user. A power history storage unit that stores a power history associated with a power amount supplied to the user, a power amount used in its own microgrid, and supplied in its own microgrid Power of a power control system in which a plurality of microgrids formed by including a power control device including a power state storage unit that stores a power state with a possible power amount are connected via a network A control method, wherein a communication terminal accepts input of user identification information for identifying a user and authentication information for authenticating the user, and input A step of performing a user authentication process based on the user identification information and the authentication information, a step of allowing a consumer to supply power from a supplier if the authentication result of the authentication process indicates a successful authentication, and a power control The apparatus stores in the power history storage unit a power history in which user identification information for identifying the user and the amount of power supplied to the user are associated with each other, and other devices connected via the network Communicating with the power control device in the microgrid, comparing its own power state with the power state in another microgrid, and controlling power transactions with other microgrids according to the comparison results; It is characterized by providing.
  以上説明したように、本発明によれば、ユーザの通信端末と電力制御装置とが含まれて形成される複数のマイクログリッド同士がネットワークを介して接続された電力制御システムにおいて、通信端末が、ユーザを識別するユーザ識別情報と、ユーザを認証するための認証情報との入力を受付けて認証処理を行い、認証結果が認証成功を示す場合、需要家に供給者から電力を供給させ、電力制御装置が、ユーザ識別情報と、ユーザに対して供給された電力量とが対応付けられた電力履歴を記憶し、ネットワークを介して接続された他のマイクログリッドにおける電力制御装置と通信を行い、自身の電力状態と、他のマイクログリッドにおける電力状態とを比較し、比較結果に応じて他のマイクログリッドとの間での電力取引を制御するようにしたので、安全なネットワークにより効率よく電力の需給バランスを平準化する電力制御システムを提供することが可能となる。 As described above, according to the present invention, in a power control system in which a plurality of microgrids formed by including a user's communication terminal and a power control device are connected via a network, the communication terminal includes: When authentication processing is performed by accepting input of user identification information for identifying a user and authentication information for authenticating the user, and the authentication result indicates successful authentication, power is supplied from the supplier to the consumer, and power control is performed. The device stores a power history in which user identification information and the amount of power supplied to the user are associated, communicates with a power control device in another microgrid connected via the network, and Compare the power state of the current and the power state in the other microgrid, and control the power trading with the other microgrid according to the comparison result As a result, it is possible to provide a power control system that can efficiently balance the power supply-demand balance with a safe network.
本発明の一実施形態による電力制御システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the power control system by one Embodiment of this invention. 本発明の一実施形態による電力制御システムが備える施設等を示す図である。It is a figure which shows the plant | facility etc. with which the electric power control system by one Embodiment of this invention is provided. 本発明の一実施形態による親ICカードと子ICカードとの認証概念を示す図である。It is a figure which shows the authentication concept of the parent IC card and child IC card by one Embodiment of this invention. 本発明の一実施形態による電力履歴記憶部に記憶されている電力履歴のテーブルデータ例を示す図である。It is a figure which shows the table data example of the power history memorize | stored in the power history memory | storage part by one Embodiment of this invention. 本発明の一実施形態による電力取引の動作例を示すシーケンス図である。It is a sequence diagram which shows the operation example of the electric power transaction by one Embodiment of this invention. 本発明の一実施形態による需給バランス最適化処理の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the supply-and-demand balance optimization process by one Embodiment of this invention. 本発明の一実施形態による電力履歴記憶処理の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the electric power history storage process by one Embodiment of this invention. 本発明の一実施形態による需給バランス平準化の概念を示すモデル図である。It is a model figure which shows the concept of the supply and demand balance leveling by one Embodiment of this invention. 本発明の一実施形態による電力取引の例を示す図である。It is a figure which shows the example of the electric power transaction by one Embodiment of this invention. 本発明の一実施形態による電力取引の例を示す図である。It is a figure which shows the example of the electric power transaction by one Embodiment of this invention. 本発明の一実施形態による電力取引の例を示す図である。It is a figure which shows the example of the electric power transaction by one Embodiment of this invention. 本発明の一実施形態により形成されるスマートグリッドと電力決済システムと換金決済システムとの関係を示す図である。It is a figure which shows the relationship between the smart grid formed by one Embodiment of this invention, an electric power payment system, and a cash payment system. 本発明の一実施形態を電力以外のエネルギー取引に適用する場合の熱エネルギーの需給バランス最適化の例を示す図である。It is a figure which shows the example of the supply-and-demand balance optimization of the thermal energy in the case of applying one Embodiment of this invention to energy transactions other than electric power. 分散型エネルギーマネージメントにおけるマイクログリッドの概念を示す図である。It is a figure which shows the concept of the microgrid in a distributed energy management.
  以下、本発明の一実施形態について、図面を参照して説明する。
  図1は、本実施形態による電力制御システム1の構成を示す図である。電力制御システム1は、電力の需給区域を一定地域毎に分割したマイクログリッドA、マイクログリッドB、マイクログリッドC、・・・と、複数の系統電力会社700(系統電力会社700-1、系統電力会社700-2、系統電力会社700-3、・・・)とを備えており、これらが電力網および通信網を介して接続されている。ここでは、3つのマイクログリッド、3つの系統電力会社700を図示して説明するが、それぞれ1つ以上の任意の数であって良い。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a power control system 1 according to the present embodiment. The power control system 1 includes a microgrid A, a microgrid B, a microgrid C,... Divided into power supply and demand areas for a certain area, and a plurality of grid power companies 700 (system power company 700-1, grid power Company 700-2, grid power company 700-3,...), Which are connected via a power network and a communication network. Here, three micro grids and three grid power companies 700 are illustrated and described, but any number of one or more may be used.
  図2は、電力制御システム1が備える施設等を示す図である。例えば、マイクログリッドAには、需要家の施設であるハウスや、蓄電事業者、太陽光発電所、電気自動車等に充電を行う充電スタンド、系統電力などが接続される。需要家のハウスは、電力を使用して動作する複数の電子機器や、太陽光発電した電力を蓄電する蓄電池、これらにおける使用電力または発電された電力等を計測する電子式計量器(スマートメータ)などを備えている。 FIG. 2 is a diagram showing facilities and the like provided in the power control system 1. For example, a house that is a customer's facility, a power storage company, a solar power plant, a charging station that charges an electric vehicle, system power, and the like are connected to the microgrid A. Houses of customers are a plurality of electronic devices that operate using electric power, storage batteries that store the power generated by solar power, and electronic meters (smart meters) that measure the power used or generated in these batteries. Etc.
  図1に戻り、符号aは、本実施形態による電力制御装置140が設置されるスマートコミュニティセンター(SCC)である。このSCCは一種の電力銀行と考えることができる。電力銀行とは、通常の銀行で取り扱う「貨幣」に代えて、「電力量」を単位とした預け入れ、引き出しを可能とするものである。SCCは、発電設備110と、蓄電設備120と、計量器130と、電力制御装置140とを備えているが、SCCは蓄電設備120と、電力制御装置140のみでも構わないし、電力制御装置140のみでも構わない。このSCCの管理はインターネットデータセンター(IDC)と同様のセキュリティの管理基準で運用される。発電設備110は、例えば太陽光発電や風力発電などにより発電する設備である。蓄電設備120は、発電された電力を蓄積する設備である。計量器130は、ネットワーク(電力網)を介して他の施設等と需給する電力を計測する。 Returning to FIG. 1, the symbol a is a smart community center (SCC) in which the power control apparatus 140 according to the present embodiment is installed. This SCC can be considered as a kind of power bank. The power bank enables deposits and withdrawals in units of “amount of electric power” instead of “money” handled by ordinary banks. The SCC includes the power generation facility 110, the power storage facility 120, the measuring instrument 130, and the power control device 140. However, the SCC may include only the power storage facility 120 and the power control device 140, or only the power control device 140. It doesn't matter. The management of this SCC is operated according to the security management standard similar to the Internet data center (IDC). The power generation facility 110 is a facility that generates power by, for example, solar power generation or wind power generation. The power storage facility 120 is a facility for accumulating generated power. The measuring device 130 measures the power supplied to and supplied from other facilities via a network (power network).
  電力制御装置140は、自身のマイクログリッド内、および他のマイクログリッド間での電力取引を制御するコンピュータ装置である。電力制御装置140は、通信部141と、認証部142と、電力状態記憶部143と、電力履歴記憶部144と、電力決済履歴部145と、換金決済履歴記憶部146と、電力制御部147とを備えている。 Power control device 140 is a computer device that controls power transactions within its own microgrid and between other microgrids. The power control device 140 includes a communication unit 141, an authentication unit 142, a power state storage unit 143, a power history storage unit 144, a power settlement history unit 145, a cash settlement history storage unit 146, and a power control unit 147. It has.
  通信部141は、ネットワーク(通信網)を介して接続された他の通信端末等と通信を行う認証部142は、ネットワーク(通信網)を介して接続された他の通信端末から認証要求を受信し、認証処理を行って認証結果を送信する。ここでは、例えば、電力制御システム1を用いて電力取引を行うユーザには、予め定められたユーザIDと、ユーザIDに対応するパスワードなどのユーザ情報が記憶されたICカードが予め発行される。このようなICカードに記憶されたユーザ情報は、例えば認証通信端末250の認証情報入力部251に読み出され、認証通信端末250の認証部252によって認証要求として電力制御装置140に送信される。認証部142は、予め定められたユーザ情報を自身の記憶領域に記憶しておき、送信された認証要求と、自身の記憶領域に予め記憶されているユーザ情報とを比較する。そして、認証部142は、送信された認証要求に含まれるユーザ情報に一致するユーザ情報が自身の記憶領域に記憶されていれば認証成功と判定し、記憶されていなければ、認証失敗と判定する。 The communication unit 141 communicates with other communication terminals connected via a network (communication network), and the authentication unit 142 receives an authentication request from another communication terminal connected via the network (communication network). Then, the authentication process is performed and the authentication result is transmitted. Here, for example, an IC card in which user information such as a predetermined user ID and a password corresponding to the user ID is stored in advance is issued to a user who makes a power transaction using the power control system 1. For example, the user information stored in the IC card is read to the authentication information input unit 251 of the authentication communication terminal 250 and transmitted to the power control apparatus 140 as an authentication request by the authentication unit 252 of the authentication communication terminal 250. The authentication unit 142 stores predetermined user information in its own storage area, and compares the transmitted authentication request with user information stored in advance in its own storage area. Then, the authentication unit 142 determines that the authentication is successful if user information that matches the user information included in the transmitted authentication request is stored in its own storage area, and determines that the authentication fails if it is not stored. .
  図3は、本実施形態によって行われる親ICカード260と複数の子ICカード261(子ICカード261-1、子ICカード261-2、子ICカード261-3、・・・)との認証概念を示す図である。ここで、ユーザに発行されるICカードには、親カードと、1枚の親カードに対応する複数の子ICカードとが存在する。例えば、親ICカードは、認証通信端末250等に挿入したままにしておくICチップもしくはICカードであり、端末認証用カードである。子ICカードは、親ICカードに対応する複数のユーザがそれぞれ所持するICカードであり、個人が個人認証用に使用するカードである。すなわち、親ICカード260によって、認証通信端末250とSCCとの間での認証が行われ、子ICカード261によって、ユーザ個人とSCCとの間で認証が行われる。 FIG. 3 shows authentication between the parent IC card 260 and a plurality of child IC cards 261 (child IC card 261-1, child IC card 261-2, child IC card 261-3,...) Performed according to this embodiment. It is a figure which shows a concept. Here, the IC card issued to the user includes a parent card and a plurality of child IC cards corresponding to one parent card. For example, the parent IC card is an IC chip or an IC card that is inserted into the authentication communication terminal 250 or the like, and is a terminal authentication card. The child IC card is an IC card possessed by each of a plurality of users corresponding to the parent IC card, and is a card used by an individual for personal authentication. That is, authentication is performed between the authentication communication terminal 250 and the SCC by the parent IC card 260, and authentication is performed between the individual user and the SCC by the child IC card 261.
  電力状態記憶部143には、自身のマイクログリッド内において使用されている電力量と、自身のマイクログリッド内において供給可能な電力量との電力状態が記憶されている。電力状態記憶部143に記憶されている電力状態は、電力制御部147によって収集され、記憶される。 The power state storage unit 143 stores the power state of the amount of power used in its own microgrid and the amount of power that can be supplied in its own microgrid. The power state stored in the power state storage unit 143 is collected and stored by the power control unit 147.
  電力履歴記憶部144には、ユーザを識別するユーザ識別情報(ユーザID)と、そのユーザに対して供給された電力量とが対応付けられた電力履歴が記憶される。図4は、電力履歴記憶部144に記憶されている電力履歴のテーブルデータの例を示す図である。電力履歴には、日時と、接続先端末IDと、接続元端末IDと、ユーザ親IDと、ユーザ子IDと、イベント種別(「買う・売る」、「消電・蓄電・発電」)と、電力量と、力率と、ガスデータと、消熱/蓄熱データと、蓄電残高と、電力消費残高と、チャージ残高と、換金決済残高(ここでは、クレジット残高)との情報が含まれる。 The power history storage unit 144 stores a power history in which user identification information (user ID) for identifying a user is associated with the amount of power supplied to the user. FIG. 4 is a diagram illustrating an example of power history table data stored in the power history storage unit 144. In the power history, the date and time, the connection destination terminal ID, the connection source terminal ID, the user parent ID, the user child ID, the event type (“buy / sell”, “power consumption / power storage / power generation”), Information on the amount of electric power, power factor, gas data, heat dissipation / heat storage data, power storage balance, power consumption balance, charge balance, and cash settlement balance (here, credit balance) is included.
  日時は、電力取引が行われた日時を示す。接続先端末IDは、どこへ接続されるかを示しており、接続先に設置されている通信端末を識別する識別情報である。接続元端末IDは、どこから接続されるかを示し、接続元に設置されている通信端末を識別する識別情報である。例えば、電気自動車の場合、接続先IDは、電気自動車に内蔵、記憶されているID(識別情報)を識別する情報である。接続元端末IDは、充電事業者(例えば、図1における充電事業者e)の充電スタンドを識別する情報である。ユーザ親IDは、親ICチップもしくはICカードのIDである。ユーザ子IDは、子ICカードのIDである。例えば、誰が電気自動車に充電したかを示すのはこの子カードのIDである。 The date and time indicates the date and time when the power transaction was performed. The connection destination terminal ID indicates where the connection is made, and is identification information for identifying the communication terminal installed at the connection destination. The connection source terminal ID indicates where the connection is made, and is identification information for identifying a communication terminal installed at the connection source. For example, in the case of an electric vehicle, the connection destination ID is information for identifying an ID (identification information) stored and stored in the electric vehicle. The connection source terminal ID is information for identifying a charging station of a charging company (for example, charging company e in FIG. 1). The user parent ID is the ID of the parent IC chip or IC card. The user child ID is an ID of the child IC card. For example, it is the ID of this child card that indicates who charged the electric vehicle.
  イベント種別は、電力取引が行われたイベントの種別を示し、例えば、「買う(消電または蓄電)」または「売る(発電)」などを示す。電力量は、取引された電力の量である。力率は、配電等された場合の力率である。例えば、マイクログリッド内において直流で送配電された場合、力率は1であるが、異なるマイクログリッド間で交流により送配電されている場合、一定のロスが生じることとなる。ガスデータ、消熱/蓄熱データは、電力以外のエネルギー等の取引を行う場合に、電力量や力率などに相当する情報が記憶される項目である。ここで、電気使用量と電力の種別(蓄電事業者、系統電力会社1、2等)に応じて、料金が異なる。電力消費残高は、週末もしくは月末の精算を想定した電力消費の料金残高の項目である。例えば、銀行から引落しされるケースが考えられる。決済判断は、これらとは異なる支払い(例えば、チャージまたはクレジット)の選択の項目である。チャージ残高は、チャージされた金額からの前払い引き落としの残高を示す項目である。クレジット決済残高は、クレジット支払いにした場合の残高を示す項目である。ここで、電力量や電力量残高の値は、kw・H(キロワットアワー)を単位とする。 The event type indicates the type of event in which the power transaction has been performed, and indicates, for example, “buy (power consumption or power storage)” or “sell (power generation)”. The amount of power is the amount of power traded. The power factor is a power factor when power is distributed. For example, when power is transmitted / distributed by direct current in a microgrid, the power factor is 1, but when power is transmitted / distributed by alternating current between different microgrids, a certain loss occurs. Gas data and heat dissipation / heat storage data are items in which information corresponding to the amount of power, power factor, and the like is stored when a transaction such as energy other than electric power is performed. Here, the charge varies depending on the amount of electricity used and the type of power (power storage company, grid power company 1, 2, etc.). The electric power consumption balance is an item of the electric power consumption charge balance assuming the settlement at the weekend or the end of the month. For example, a case where it is withdrawn from a bank can be considered. The settlement determination is an item for selecting a payment (for example, charge or credit) different from these. The charge balance is an item indicating the balance of the advance payment deduction from the charged amount. The credit settlement balance is an item indicating a balance when credit payment is made. Here, the value of the electric energy and the electric energy balance is in units of kw · H (kilowatt hour).
  電力決済履歴部145には、電力履歴記憶部144に記憶されている電力履歴のうち、蓄電残高、電力消費残高等の電力履歴が記憶される。
  換金決済履歴記憶部146には、電力履歴記憶部144に記憶されている電力履歴のうち、チャージ残高と、換金決済残高とが記憶され、チャージ履歴情報と、換金決済残高情報とが記憶される。換金決済では、例えばクレジット決済を選択することができる。
The power settlement history unit 145 stores power histories such as a power storage balance and a power consumption balance among the power histories stored in the power history storage unit 144.
The cash settlement history storage unit 146 stores the charge balance and the cash settlement balance among the power histories stored in the power history storage unit 144, and stores the charge history information and the cash settlement balance information. . In cash settlement, for example, credit settlement can be selected.
  電力制御部147は、ネットワークを介して接続された他のマイクログリッドにおける電力制御装置と通信を行い、電力状態記憶部143に記憶されている自身の電力状態と、他のマイクログリッドの電力制御装置の電力状態とを比較し、比較結果に応じて他のマイクログリッドとの間での電力取引を制御する。ここで、電力制御部147は、自身のマイクログリッド内での電力取引により需給バランスを一定の範囲内に抑えることが可能である場合には、自身のマイクログリッド内での電力取引を行う。 The power control unit 147 communicates with a power control device in another microgrid connected via a network, and own power state stored in the power state storage unit 143 and the power control device of another microgrid Are compared with each other, and power transactions with other microgrids are controlled according to the comparison result. Here, the power control unit 147 performs the power transaction in its own microgrid when the supply and demand balance can be suppressed within a certain range by the power transaction in its own microgrid.
  符号bに示す需要家の施設は、一般機器210と、発電機器220と、蓄電機器230と、計量器240と、認証通信端末250とを備えている。ただし、需要家の施設は、一般機器210のみ、または一般機器210と発電機器220もしくは蓄電機器230のどちらか1つとを備えた構成でも良い。
  一般機器210は、図2のハウス内に示したような、電力を使用して動作する各種機器(例えば、テレビ、パソコン、エアコン等)である。発電機器220は、例えば太陽光発電や風力発電などにより発電する機器である。蓄電機器230は、発電された電力を蓄積する設備である。
  計量器240は、ネットワーク(電力網)を介して他の施設等と需給する電力を計測する。
The customer's facility indicated by reference sign b includes a general device 210, a power generation device 220, a power storage device 230, a measuring instrument 240, and an authentication communication terminal 250. However, the customer's facility may be configured to include only the general device 210 or one of the general device 210 and the power generation device 220 or the power storage device 230.
The general device 210 is various devices (for example, a television, a personal computer, an air conditioner, etc.) that operate using electric power as shown in the house of FIG. The power generation device 220 is a device that generates power by, for example, solar power generation or wind power generation. The power storage device 230 is a facility for storing generated power.
The measuring device 240 measures the power supplied to and supplied from other facilities and the like via a network (power network).
  認証通信端末250は、ネットワーク(通信網)を介して接続された他の通信端末等と通信を行うコンピュータ装置であり、認証情報入力部251と、認証部252と、電力取引部253とを備えている。
  認証情報入力部251は、ユーザを識別するユーザ識別情報(ユーザID)と、ユーザを認証するための認証情報とが入力される。ここで、認証情報入力部251は、例えば、ICリーダの機能を備えており、ユーザに予め発行されたICカードに記憶されているユーザ情報を読み出すようにしても良い。また、認証情報入力部251は、キーボードなどの入力部を備え、ユーザIDやパスワードなどの入力を受付けるようにしても良い。また、例えば、指紋や虹彩などの生体認証のための情報の入力を受付けるようにしても良い。
The authentication communication terminal 250 is a computer device that communicates with other communication terminals or the like connected via a network (communication network), and includes an authentication information input unit 251, an authentication unit 252, and a power transaction unit 253. ing.
The authentication information input unit 251 receives user identification information (user ID) for identifying a user and authentication information for authenticating the user. Here, the authentication information input unit 251 has, for example, an IC reader function, and may read user information stored in an IC card issued in advance to the user. Further, the authentication information input unit 251 may include an input unit such as a keyboard and accept input of a user ID, a password, and the like. Further, for example, input of information for biometric authentication such as a fingerprint or an iris may be accepted.
  認証部252は、認証情報入力部251に入力されたユーザIDと認証情報とに基づいて、ユーザの認証処理を行う。例えば、認証部252は、入力されたユーザIDと認証情報とが含まれる認証要求を電力制御装置140に送信し、送信した認証要求に応じて電力制御装置140から応答される認証結果を取得する。ここで、認証部252は、認証情報入力部251がICカードリーダを備えておりICカードに記憶された情報を読み取った場合には、読み取った情報に基づいて認証要求を生成し、電力制御装置140に送信するようにしても良い。あるいは、認証部252は、ICカードが有するICチップに備えられた認証処理機能により認証を行わせ、出力される認証結果を取得するようにしても良い。
  電力取引部253は、認証部252による認証処理の認証結果が、認証成功を示す場合、需要家に供給者から電力を供給させる、もしくは需要家から供給者に電力を供給させる。
The authentication unit 252 performs user authentication processing based on the user ID and authentication information input to the authentication information input unit 251. For example, the authentication unit 252 transmits an authentication request including the input user ID and authentication information to the power control apparatus 140, and acquires an authentication result returned from the power control apparatus 140 in response to the transmitted authentication request. . Here, when the authentication information input unit 251 includes an IC card reader and reads information stored in the IC card, the authentication unit 252 generates an authentication request based on the read information, and the power control device 140 may be transmitted. Alternatively, the authentication unit 252 may perform authentication by an authentication processing function provided in an IC chip included in the IC card, and acquire an output authentication result.
When the authentication result of the authentication process by the authentication unit 252 indicates that the authentication is successful, the power trading unit 253 causes the consumer to supply power from the supplier, or causes the consumer to supply power to the supplier.
  符号cに示す蓄電事業者の施設は、蓄電設備310と、計量器320と、認証通信端末330とを備えている。
  蓄電設備310は、SCCが備える蓄電設備120と同様であり、発電された電力を蓄積する設備である。
  計量器320は、ネットワーク(電力網)を介して他の施設等と需給する電力を計測する。
  認証通信端末330は、需要家の認証通信端末250と同様の機能を備えたコンピュータ装置であり、蓄電事業者の認証等の処理を行う。
The facility of the power storage company indicated by reference symbol c includes a power storage facility 310, a measuring device 320, and an authentication communication terminal 330.
The power storage facility 310 is the same as the power storage facility 120 included in the SCC, and is a facility for storing generated power.
The measuring device 320 measures the power supplied to and supplied from other facilities via a network (power network).
The authentication communication terminal 330 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of a power storage company.
  符号dに示す発電事業者の施設は、発電設備410と、計量器420と、認証通信端末430とを備えている。
  発電設備410は、SCCが備える発電設備110と同様であり、例えば太陽光発電や風力発電などにより発電する設備である。
  計量器420は、ネットワーク(電力網)を介して他の施設等と需給する電力を計測する。
  認証通信端末43は、需要家の認証通信端末250と同様の機能を備えたコンピュータ装置であり、発電事業者の認証等の処理を行う。
The facility of the power generation company indicated by reference sign d includes a power generation facility 410, a measuring instrument 420, and an authentication communication terminal 430.
The power generation facility 410 is the same as the power generation facility 110 included in the SCC, and is a facility that generates power by, for example, solar power generation or wind power generation.
The measuring instrument 420 measures the power supplied to and supplied from other facilities via a network (power network).
The authentication communication terminal 43 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of the power generation company.
  符号eに示す充電事業者の施設は、蓄電設備510と、計量器520と、認証通信端末530とを備えている。ただし、充電事業者の施設には、蓄電設備はあってもなくても良い。例えば、電気自動車には電力網からの電力を直接供給しても良いし、蓄電設備を備えている場合であれば、蓄電設備からの電力を供給しても良い。
  蓄電設備510は、SCCが備える蓄電設備120と同様であり、発電された電力を蓄積する設備である。
  計量器520は、ネットワーク(電力網)を介して他の施設等と需給する電力を計測する。
  認証通信端末530は、需要家の認証通信端末250と同様の機能を備えたコンピュータ装置であり、充電事業者の認証等の処理を行う。
The charging company's facility indicated by symbol e includes a power storage facility 510, a measuring instrument 520, and an authentication communication terminal 530. However, the charging company's facility may or may not have power storage equipment. For example, the electric vehicle may be directly supplied with electric power from the power grid, or may be supplied with electric power from the electric storage facility if the electric vehicle is provided with the electric storage facility.
The power storage facility 510 is the same as the power storage facility 120 included in the SCC, and is a facility that accumulates generated power.
The measuring device 520 measures the power supplied and supplied to other facilities and the like via a network (power network).
The authentication communication terminal 530 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of the charging company.
  ISP600は、ネットワーク(通信網)に接続されたインターネットサービスプロバイダのコンピュータ装置である。インターネットサービスプロバイダは、例えば、電力履歴記憶部144に記憶されている蓄電残高、電力消費残高の値等に応じて、例えばポイントサービスなどの付加的なサービスを提供することができる。
  系統電力会社700は、送電を行ういわゆる一般電気事業者であり、認証通信端末710を備えている。
  認証通信端末710は、需要家の認証通信端末250と同様の機能を備えたコンピュータ装置であり、系統電力会社の認証等の処理を行う。
The ISP 600 is a computer device of an Internet service provider connected to a network (communication network). The Internet service provider can provide additional services such as a point service, for example, according to the power storage balance and the power consumption balance value stored in the power history storage unit 144.
The grid power company 700 is a so-called general electric utility that performs power transmission, and includes an authentication communication terminal 710.
The authentication communication terminal 710 is a computer device having the same function as the customer authentication communication terminal 250, and performs processing such as authentication of the grid power company.
  次に、図面を参照して、電力制御システム1の動作例を説明する。図5は、電力制御システム1による電力取引の動作例を示すシーケンス図である。ここでは、マイクログリッドAの電力制御装置140を電力制御装置140-1とし、マイクログリッドBの電力制御装置140を電力制御装置140-2として説明する。
  認証通信端末250の認証情報入力部251は、ユーザのICカードに記憶されたユーザ情報を読み取る(ステップS1)。認証部252は、認証情報入力部251が読み取ったユーザ情報が含まれる認証要求を、電力制御装置140-1に送信する(ステップS2)。電力制御装置140-1の認証部142は、通信部141を介して認証通信端末250から送信された認証要求を受信し、認証処理を行う(ステップS3)。認証部142は、認証結果を認証通信端末250に送信する(ステップS4)。
Next, an operation example of the power control system 1 will be described with reference to the drawings. FIG. 5 is a sequence diagram illustrating an operation example of power trading by the power control system 1. Here, power control device 140 of microgrid A will be described as power control device 140-1, and power control device 140 of microgrid B will be described as power control device 140-2.
The authentication information input unit 251 of the authentication communication terminal 250 reads user information stored in the user's IC card (step S1). The authentication unit 252 transmits an authentication request including the user information read by the authentication information input unit 251 to the power control apparatus 140-1 (step S2). The authentication unit 142 of the power control apparatus 140-1 receives the authentication request transmitted from the authentication communication terminal 250 via the communication unit 141, and performs an authentication process (step S3). The authentication unit 142 transmits the authentication result to the authentication communication terminal 250 (step S4).
  認証通信端末250の認証部252は、電力制御装置140から送信された認証結果を受信し、認証結果が認証成功を示すか否かを判定する(ステップS5)。認証部252が、認証結果が認証失敗を示すと判定すれば(ステップS5:NO)、処理を終了する。一方、認証部252が、認証結果が認証成功を示すと判定すれば(ステップS5:YES)、認証通信端末250は、定められた取引要求を電力制御装置140-1に送信する(ステップS6)。ここで、取引要求とは、例えば、一定量の電力の供給要求や、一定量の電力の売却要求などである。 The authentication unit 252 of the authentication communication terminal 250 receives the authentication result transmitted from the power control apparatus 140, and determines whether or not the authentication result indicates successful authentication (step S5). If the authentication unit 252 determines that the authentication result indicates an authentication failure (step S5: NO), the process ends. On the other hand, if authentication unit 252 determines that the authentication result indicates successful authentication (step S5: YES), authentication communication terminal 250 transmits the determined transaction request to power control device 140-1 (step S6). . Here, the transaction request is, for example, a request for supplying a certain amount of power or a request for selling a certain amount of power.
  電力制御装置140-1の通信部141が、認証通信端末250から送信された取引要求を受信すると、電力制御部147は、電力状態記憶部143に記憶されている電力状態を参照して、マイクログリッドAが需給バランスの範囲内であるか否かを判定する(ステップS7)。電力制御部147が、マイクログリッドAが需給バランスの範囲内であると判定すると(ステップS7:YES)、電力制御装置140-1は、認証通信端末250に対してマイクログリッドA内で取引を行うことを許可する取引許可を送信する(ステップS9)。需給バランスの範囲とは、その状況に応じて設定されるが、例えば、(需要量<供給量<需要量+数%)を満たす範囲である。認証通信端末250の電力取引部253は、電力制御装置140-1から送信された取引許可を受信すると、他の通信端末(例えば、認証通信端末330、認証通信端末430、認証通信端末530など)と通信を行い、電力取引を行う(ステップS10)。また、電力取引部253は、行った電力取引に基づく電力履歴を生成し、電力制御装置140-1に送信する(ステップS11)。電力制御装置140-1の通信部141が、送信された電力履歴を受信すると、電力制御部147は、自身の記憶領域に電力履歴を記憶させる。 When the communication unit 141 of the power control device 140-1 receives the transaction request transmitted from the authentication communication terminal 250, the power control unit 147 refers to the power state stored in the power state storage unit 143 and refers to the power state. It is determined whether or not the grid A is within the range of supply and demand balance (step S7). When the power control unit 147 determines that the microgrid A is within the range of supply and demand balance (step S7: YES), the power control device 140-1 performs a transaction in the microgrid A with respect to the authentication communication terminal 250. A transaction permission that permits this is transmitted (step S9). The range of the supply and demand balance is set according to the situation, but is, for example, a range satisfying (demand amount <supply amount <demand amount + several%). Upon receiving the transaction permission transmitted from the power control device 140-1, the power transaction unit 253 of the authentication communication terminal 250 receives another communication terminal (for example, the authentication communication terminal 330, the authentication communication terminal 430, the authentication communication terminal 530, etc.). To communicate with each other (step S10). In addition, the power transaction unit 253 generates a power history based on the performed power transaction and transmits the power history to the power control device 140-1 (step S11). When the communication unit 141 of the power control apparatus 140-1 receives the transmitted power history, the power control unit 147 stores the power history in its own storage area.
  一方、ステップS7において、電力制御部147が、マイクログリッドAが需給バランスの範囲内はないと判定すると(ステップS7:NO)電力制御装置140-1の電力制御部147は、他のマイクログリッド(例えば、マイクログリッドB)に、取引要求を送信する。電力制御装置140-2の電力制御部147は、電力制御装置140-1から送信された取引要求を受信すると、電力制御装置140-1がステップS7において行った処理と同様に、自身のマイクログリッドBが需給バランスの範囲内であるか否かを判定する。電力制御装置140-2の電力制御部147は、需給バランスの範囲内でありマイクログリッドAに電力を供給可能であると判定すると、電力制御装置140-1に取引許可を送信する(ステップS12)。電力制御装置140-1は、認証通信端末250に取引許可を送信する(ステップS13)。認証通信端末250は、電力制御装置140-2から送信された取引許可を受信すると、マイクログリッドB内の通信端末(例えば、マイクログリッドBにおける認証通信端末330、認証通信端末430、認証通信端末530など)と通信を行い、電力取引を行う(ステップS14)。また、電力取引部253は、行った電力取引に基づく電力履歴を生成し、電力制御装置140-1に送信する(ステップS15)。ここでは、電力取引部253は、マイクログリッドBとの間で行った電力取引に基づく電力履歴を、電力制御装置140-2にも送信するようにして良い。 On the other hand, when the power control unit 147 determines in step S7 that the microgrid A is not within the range of supply and demand balance (step S7: NO), the power control unit 147 of the power control device 140-1 uses another microgrid ( For example, a transaction request is transmitted to the microgrid B). When receiving the transaction request transmitted from the power control device 140-1, the power control unit 147 of the power control device 140-2 receives its own microgrid in the same manner as the processing performed by the power control device 140-1 in step S7. It is determined whether or not B is within the range of supply and demand balance. If the power control unit 147 of the power control device 140-2 determines that it is within the range of supply and demand balance and can supply power to the microgrid A, it transmits a transaction permission to the power control device 140-1 (step S12). . The power control apparatus 140-1 transmits a transaction permission to the authentication communication terminal 250 (step S13). Upon receiving the transaction permission transmitted from the power control apparatus 140-2, the authentication communication terminal 250 receives a communication terminal in the microgrid B (for example, the authentication communication terminal 330, the authentication communication terminal 430, and the authentication communication terminal 530 in the microgrid B). Etc.) to conduct power transactions (step S14). In addition, the power transaction unit 253 generates a power history based on the performed power transaction and transmits it to the power control device 140-1 (step S15). Here, the power transaction unit 253 may transmit the power history based on the power transaction performed with the microgrid B to the power control device 140-2.
  図6は、電力制御装置140による需給バランス最適化処理の動作例を示すフローチャートである。需給バランスの最適化処理は、図5のステップS7において示した処理に相当する。ここでは、電力制御部147は、マイクログリッドA内の各通信端末と通信し、電力供給状態を取得する(ステップS20)。ここでは、例えば、蓄電事業者の認証通信端末330と、充電事業者の認証通信端末530とから、事業者蓄電データを取得する。また、需要家の認証通信端末250から、需要家蓄電データを取得する。また、自身のSCC内における計量器130から、蓄電設備120に蓄電された蓄電データを取得する。電力制御部147は、取得した蓄電データを電力状態記憶部143に記憶させる。 FIG. 6 is a flowchart showing an operation example of the supply and demand balance optimization process by the power control device 140. The supply / demand balance optimization process corresponds to the process shown in step S7 of FIG. Here, the power control unit 147 communicates with each communication terminal in the microgrid A, and acquires the power supply state (step S20). Here, for example, the operator storage data is acquired from the authentication communication terminal 330 of the power storage company and the authentication communication terminal 530 of the charging company. Further, the customer storage data is acquired from the authentication communication terminal 250 of the customer. Further, the storage battery 120 stores power storage data stored in the power storage facility 120 from the measuring instrument 130 in its own SCC. The power control unit 147 causes the power state storage unit 143 to store the acquired power storage data.
  また、電力制御部147は、発電事業者の認証通信端末430から、事業者発電データを取得する。また、系統電力会社700の認証通信端末710から、電力会社発電データを取得する。また、需要家の認証通信端末250から、需要家発電データを取得する。また、自身のSCC内における計量器130から、発電設備110が発電した発電データを取得する。電力制御部147は、取得した発電データを電力状態記憶部143に記憶させる。 Moreover, the power control unit 147 acquires the power generation data from the power generation company's authentication communication terminal 430. Also, power company power generation data is acquired from the authentication communication terminal 710 of the grid power company 700. Further, the customer power generation data is acquired from the authentication communication terminal 250 of the customer. Further, the power generation data generated by the power generation facility 110 is acquired from the measuring instrument 130 in its own SCC. The power control unit 147 stores the acquired power generation data in the power state storage unit 143.
  また、電力制御部147は、マイクログリッドA内の各通信端末と通信し、電力使用状態を取得する(ステップS21)。例えば、需要家の認証通信端末250から、電力消費データを取得する。さらに、例えば気象庁などからネットワークを介して配信される気象予測データなどを取得する。電力制御部147は、取得した電力消費データを、電力状態記憶部143に記憶させる。最初は実データを用いて、最適化を図る。全体システムのモデリング等により、ベストエフォート的に需給バランスの最適化を図る。次に、電力制御部147は、需給バランス予測と、需給バランス範囲の設定処理を行う。例えば、電力制御部147は、需要家、事業者、電力会社、SCCなどの、存在する地域や、備える設備等の情報が含まれる各種基礎データを取得する。電力制御部147は、このように取得した基礎データと、ステップS20において取得した電力供給状態と、ステップS21において取得した電力使用状態と、起動予測データ等に基づいて、需給バランスを予測し、需給バランス範囲を判定する(ステップS22)。 電力 Moreover, the power control unit 147 communicates with each communication terminal in the microgrid A, and acquires the power usage state (step S21). For example, the power consumption data is acquired from the authentication communication terminal 250 of the consumer. Further, for example, weather forecast data distributed from the Japan Meteorological Agency or the like via a network is acquired. The power control unit 147 causes the power state storage unit 143 to store the acquired power consumption data. Initially, optimization is performed using real data. Optimize supply and demand balance on a best-effort basis by modeling the entire system. Next, the power control unit 147 performs supply / demand balance prediction and supply / demand balance range setting processing. For example, the power control unit 147 acquires various basic data including information on existing areas such as consumers, business operators, electric power companies, and SCCs, and facilities provided. The power control unit 147 predicts the supply and demand balance based on the basic data acquired in this way, the power supply state acquired in step S20, the power usage state acquired in step S21, the startup prediction data, and the like. The balance range is determined (step S22).
  ここで、電力制御部147は、マイクログリッドA内の需給バランスにおいて、電力の使用量が電力の供給量よりも多い(電力の供給が不足している)と判定すると(ステップS23:YES)、電力状態記憶部143に記憶された電力状態や、電力履歴記憶部144に記憶された電力履歴を参照して、電力量の予測計算を行う(ステップS24)。また、電力制御部147は、電力履歴記憶部144に記憶された電力履歴のうち、相手先電力状態の項目を参照して、マイクログリッドA内の供給能力を算定する(ステップS25)。また、電力制御部147は、需要家、事業者、電力会社、CSSの発電料金データや、事業者、需要家、SCCの蓄電料金データなどに基づいて、電力料金を算出する(ステップS26)。そして、電力制御部147は、ステップS24において算出した電力量と、ステップS25において算出した供給能力と、ステップS26において算出した電力料金とに基づいて、電力補給手段を選択する(ステップS27)。電力補給手段としては、例えば、需要家、電力会社、事業者に給電要請すること、自身のSCC内の発電設備110または蓄電設備120から給電すること、他のマイクログリッドに給電要請することなどが考えられる。 Here, when the power control unit 147 determines that the amount of power used is greater than the amount of power supplied (power supply is insufficient) in the supply and demand balance in the microgrid A (step S23: YES), With reference to the power state stored in the power state storage unit 143 and the power history stored in the power history storage unit 144, prediction calculation of the electric energy is performed (step S24). Further, the power control unit 147 calculates the supply capacity in the microgrid A with reference to the item of the counterpart power state in the power history stored in the power history storage unit 144 (step S25). In addition, the power control unit 147 calculates a power charge based on the power generation charge data of the customer, the operator, the power company, and the CSS, the storage charge data of the operator, the consumer, and the SCC (Step S26). Then, the power control unit 147 selects a power supply unit based on the amount of power calculated in step S24, the supply capacity calculated in step S25, and the power charge calculated in step S26 (step S27). Examples of power supply means include requesting power supply to consumers, power companies, and businesses, supplying power from the power generation equipment 110 or the power storage equipment 120 in its own SCC, and requesting power supply to other microgrids. Conceivable.
  一方、ステップS23において、電力制御部147が、マイクログリッドA内の需給バランスにおいて、電力の使用量が電力の供給量よりも少ない(電力の供給量が過剰である)と判定すると(ステップS23:NO)、発電履歴データや蓄電履歴データに基づいて、マイクログリッドA内の電力量の予測計算を行う(ステップS28)。また、マイクログリッドA内の供給能力を算定する(ステップS29)。また、電力料金を算出する(ステップS30)。そして、電力制御部147は、ステップS28において算出した電力量と、ステップS29において算出した供給能力と、ステップS30において算出した電力料金とに基づいて、電力削減手段を選択する(ステップS31)。電力削減手段としては、例えば、需要家、電力会社、事業者、SCCに削減要請すること、他のマイクログリッドに電力の売却を要請することなどが考えられる。その後、継続するか、否かを判断する(ステップ32)。継続する場合、再度スタートに戻る。 On the other hand, when the power control unit 147 determines in step S23 that the amount of power used is less than the amount of power supplied (the amount of power supplied is excessive) in the supply and demand balance in the microgrid A (step S23: NO), based on the power generation history data and the power storage history data, a prediction calculation of the electric energy in the microgrid A is performed (step S28). Further, the supply capacity in the microgrid A is calculated (step S29). Moreover, a power charge is calculated (step S30). Then, the power control unit 147 selects a power reduction unit based on the amount of power calculated in step S28, the supply capacity calculated in step S29, and the power charge calculated in step S30 (step S31). As the power reduction means, for example, a request for reduction to a consumer, a power company, a business operator, or an SCC, or a request for sale of power to another microgrid can be considered. Thereafter, it is determined whether or not to continue (step 32). If you continue, go back to the start again.
  図7は、電力制御装置140による電力履歴記憶処理の動作例を示すフローチャートである。
  電力制御装置140の電力制御部147は、例えば図5のステップS14において認証通信端末250から送信された電力履歴を受信すると、受信した電力履歴を、自身の記録領域に一時的に記憶させて蓄積する。電力制御部147は、このように電力履歴を蓄積した蓄積時間が、一定時間(例えば、30分)を経過したか否かを判定する(ステップS40)。電力制御部147は、電力履歴を蓄積した蓄積時間が、一定時間を経過しない間は(ステップS40:NO)、認証通信端末250等から送信される電力履歴等の蓄積を続ける(ステップS41)。ここで、電力制御部147が蓄積するデータは、例えば、需要家、電力会社、事業者、SCCのそれぞれの基礎データ、電力消費データ、発電履歴データ、蓄電履歴データ、蓄電料金データ、発電料金データ、気象予測データなどがある。
FIG. 7 is a flowchart illustrating an operation example of the power history storage processing by the power control apparatus 140.
For example, when the power control unit 147 of the power control device 140 receives the power history transmitted from the authentication communication terminal 250 in step S14 of FIG. 5, the received power history is temporarily stored and stored in its own recording area. To do. The power control unit 147 determines whether or not the accumulation time for accumulating the power history has passed a certain time (for example, 30 minutes) (step S40). The power control unit 147 continues to accumulate the power history transmitted from the authentication communication terminal 250 or the like (step S41) while the accumulation time for accumulating the power history does not elapse for a certain time (step S40: NO). Here, the data stored in the power control unit 147 is, for example, basic data, power consumption data, power generation history data, power storage history data, power storage charge data, power generation charge data of each of the customer, power company, business operator, and SCC. And weather forecast data.
  ステップS40において、電力制御部147が、電力履歴を蓄積した蓄積時間が一定時間を経過したと判定すると(ステップS40:YES)、電力制御部147は、蓄積したデータを、電力履歴記憶部144に記憶させるデータフォーマットに変換し、履歴テーブルを生成する(ステップS42)。また、電力制御部147は、生成した履歴テーブルを、電力履歴記憶部144に記憶させる。そして、電力制御部147は、予め定められた決済システム報告時間であるか否かを判定する(ステップS44)。決済システム報告時間は、例えば月に一度などに決済を行なうことを定めた時間である。電力制御部147は、自身が備える計時機能により取得する現在時間と、予め定められた決済システム報告時間とが一致するか否かを判定し、一致しないと判定すると(ステップS44:NO)、ステップS40に戻る。 In step S40, when the power control unit 147 determines that the storage time for storing the power history has passed a certain time (step S40: YES), the power control unit 147 stores the stored data in the power history storage unit 144. It converts into the data format to memorize | store and produces | generates a history table (step S42). In addition, the power control unit 147 stores the generated history table in the power history storage unit 144. Then, the power control unit 147 determines whether or not it is a predetermined settlement system report time (step S44). The settlement system report time is a time that is determined to be settled once a month, for example. The power control unit 147 determines whether or not the current time acquired by the time counting function provided by the power control unit 147 matches a predetermined settlement system report time, and determines that the current time does not match (step S44: NO). Return to S40.
  一方、電力制御部147が、現在時間と、予め定められた決済システム報告時間とが一致すると判定すると(ステップS44:YES)、決済情報を生成する(ステップS45)。ここでの決済は電力量に基づき行われる。そのデータは電力決済履歴記憶部145に記憶される。供給量が使用量を超える場合、換金処理をしても、電力量のまま残しても良い。例えば、電力の使用量が電力の供給量を上回る需要家などについては、その差分の換金処理を行う(ステップS46)。そのデータは換金決済履歴記憶部145に記憶される。電力制御部147は、このような決済処理、換金処理に基づいた電力履歴を、電力履歴記憶部144に記憶させる(ステップS47)。図6と同様に継続するか否かを判断し(ステップ48)、継続する場合、再度スタートに戻る。 On the other hand, when the power control unit 147 determines that the current time matches the predetermined payment system report time (step S44: YES), it generates payment information (step S45). The settlement here is based on the amount of power. The data is stored in the power settlement history storage unit 145. When the supply amount exceeds the usage amount, the amount of power may be left as it is even after cashing. For example, for a consumer whose power consumption exceeds the power supply, the difference is converted into cash (step S46). The data is stored in the cash settlement history storage unit 145. The power control unit 147 causes the power history storage unit 144 to store the power history based on the settlement process and the cashing process (step S47). As in FIG. 6, it is determined whether or not to continue (step 48).
  図8は、本実施形態による需給バランス平準化の概念を示すモデル図である。以上説明したような処理により、需要家による電気の消費に応じて、電気の需給バランスが算出され、系統電力会社や風力、太陽光発電などの電気供給が行われ、場合により蓄電池が利用されて、さらに電気の需給バランスが算出され、需給バランスの平準化が行われる。 FIG. 8 is a model diagram showing the concept of supply and demand balance leveling according to the present embodiment. Through the processing as described above, the electricity supply-demand balance is calculated according to the consumption of electricity by consumers, and electricity supply such as grid power companies, wind power, solar power generation is performed, and storage batteries are used in some cases Furthermore, the electricity supply-demand balance is calculated, and the supply-demand balance is leveled.
  ここで、図9を参照して、本実施形態の電力制御システム1による電力制御が行われる4つのケースについて、具体的な金額を例示して説明する。  (a)に示すケース1は、マイクログリッドA内で需要家A-1が電力を購入する場合である。例えば、5月の連休に家族で遠方に旅行する計画があるとする。電気自動車に充電したいときはSCCを通して電力を購入する。需要家A-1がグリッド内の各事業者から電力を購入する場合、SCC-Aからの電力料金+販売手数料で必要な電力を購入する。SCC-Aは、各事業者から購入した電力を需要家A-1に販売手数料を加算して販売する。 Here, with reference to FIG. 9, four cases where power control is performed by the power control system 1 of the present embodiment will be described by illustrating specific amounts. Case 1 shown in (a) is a case where the consumer A-1 purchases electric power in the microgrid A. For example, suppose you have a plan to travel far away with your family on May holidays. When you want to charge an electric vehicle, you purchase power through SCC. When the customer A-1 purchases electric power from each company in the grid, he / she purchases necessary electric power by the electric power charge from the SCC-A + sales commission. SCC-A sells electric power purchased from each business operator to consumer A-1 with a sales commission added.
  (b)に示すケース2は、マイクログリッドA内で需要家A-1が電力を販売する場合である。例えば、需要家A-1が保有する発電機器により発電した電気を、SCCを通して売却する例である。需要家A-1がグリッド内の各事業者に電力を販売する場合、SCC-Aに対して電力料金に相当する電力を販売する。SCC-Aは、需要家A-1から購入した電力をグリッド内の各事業者に販売手数料を加算して販売する。 Case 2 shown in (b) is a case where customer A-1 sells electric power in microgrid A. For example, the electricity generated by the power generation equipment owned by the consumer A-1 is sold through the SCC. When the customer A-1 sells electric power to each company in the grid, the electric power corresponding to the electric charge is sold to the SCC-A. The SCC-A sells the power purchased from the consumer A-1 to each business operator in the grid with a sales commission added.
  (c)に示すケース3は、マイクログリッドBからマイクログリッドAの需要家A-1が電力を購入する場合である。例えば、自分のグリッドで地震がおきた場合、グリッド内の発電機器および蓄電機器の故障により発電も蓄電もできないので、グリッド内もSCC-Aも余剰電力がない。その場合、近隣のグリッドBから需要家が電力を購入する。需要家A-1が別グリッドの各事業者に電力を購入する場合、自グリッドであるSCC-Aからの電力料金+グリッドAの販売手数料+グリッドBの販売手数料で必要な電力を購入する。SCC-Aは、SCC-Bから電力料金+グリッドBの販売手数料で電力を購入する。SCC-Bは、各事業者から購入した電力をSCC-AにグリッドBの販売手数料を加算して販売する。 Case 3 shown in (c) is a case where the consumer A-1 of the microgrid A purchases electric power from the microgrid B. For example, when an earthquake occurs in one's own grid, neither power generation nor power storage is possible due to a failure of the power generation equipment and power storage equipment in the grid, so neither the grid nor SCC-A has surplus power. In that case, a consumer purchases electric power from the neighboring grid B. When the customer A-1 purchases electric power for each business operator in another grid, he / she purchases necessary electric power with the electric charge from the SCC-A which is his grid + the sales fee of the grid A + the sales fee of the grid B. SCC-A purchases power from SCC-B at a power charge + grid B sales fee. SCC-B sells the power purchased from each operator by adding the sales fee of Grid B to SCC-A.
  (d)に示すケース4は、マイクログリッドAの需要家A-1がマイクログリッドBへ電力を販売する場合である。例えば、隣のグリッドBで地震がおきたとする。電力が極端に足りないニュースを聞いたので、発電機器により発生した電力をマイクログリッドBへ販売したい。需要家A-1が別グリッドの各事業者に電力を販売する場合、自グリッドであるSCC-Aに電力料金に相当する電力を販売する。SCC-Aは、SCC-Bに需要家A-1から購入した電力料金+グリッドAの販売手数料で電力を販売する。SCC-Bは、SCC-Aから購入した電力を各事業者にグリッドBの販売手数料を加算して販売する。以上示したように、売買取引時の情報はすべてSCCを通して行われる。 Case 4 shown in (d) is a case where the consumer A-1 of the microgrid A sells electric power to the microgrid B. For example, suppose that an earthquake occurred in the adjacent grid B. I heard the news that the power is extremely short, so I want to sell the power generated by the generator to the microgrid B. When the customer A-1 sells electric power to each business operator on another grid, the electric power corresponding to the electric charge is sold to the SCC-A that is the own grid. SCC-A sells electric power to SCC-B at a power charge purchased from customer A-1 and a sales fee for grid A. SCC-B sells the power purchased from SCC-A to each business operator with the grid B sales commission added. As described above, all information at the time of trading is performed through the SCC.
  また、本実施形態によれば、図10に示すように、通信端末においてICカードを用いた本人認証を行うことにより、ユーザの本人性を確認した上でデータの送受信を行うことが可能となる。これにより、あるユーザが、自身のICカード(子ICカード)を用いて、・BR>[電事業者からの充電を利用するような場合にも、同一ユーザに紐付けて電力履歴を記憶することができる。これにより、いつ、どこで、誰が、どの程度の電力を使用または給電したかを記録することができる。また、本実施形態により取得された電力履歴を、定められたユーザに閲覧公開可能に公開することで、例えば別居中の家族などの生活状態をみることができる。例えば、一人暮らしの老人宅に設置された認証通信端末250によって取得される電力履歴を、予め定められたユーザ(例えば、その老人の子供など)に閲覧可能に提供することで、ユーザが離れていても老人の生活を把握することなどが可能になる。また、親が遠く離れて暮らす子供(学生)の生活状態を把握したり、病人の生活状態を把握したりすることが可能になる。これにより、例えば、生活パターンが急激に変化した場合などに危険状態を察知できる場合もあると考えられる。 Further, according to the present embodiment, as shown in FIG. 10, by performing identity authentication using an IC card in a communication terminal, it is possible to transmit and receive data after confirming the identity of the user. . As a result, even when a certain user uses his own IC card (child IC card) and BR> [charging from a power company is used, the power history is stored in association with the same user. be able to. This makes it possible to record when, where, and who used or supplied power. In addition, by publishing the power history acquired according to the present embodiment so as to be viewable and openable to a predetermined user, for example, the living state of a family member living separately can be seen. For example, by providing a predetermined user (for example, a child of the elderly person) the power history acquired by the authentication communication terminal 250 installed in the elderly living alone, the user is away. It becomes possible to grasp the life of the elderly. In addition, it is possible to grasp the living state of a child (student) whose parents live far away, or to grasp the living state of a sick person. Thereby, for example, it is considered that there is a case where the dangerous state can be detected when the life pattern changes suddenly.
  また、本実施形態による認証通信端末250の機能を備えるスマートメータを、国や電力会社が各家庭に配布する場合、スマートメータにディスプレイやキーボードなどを設け、ネットワークを介したインターネット等のブラウジングが可能ないわゆるPC(パーソナルコンピュータ)の機能を持たせるようにしても良い。このようにすれば、例えばインターネット網が普及していない国や地域などに、インターネット網を普及させ、情報格差などを是正することができる。 When the smart meter having the function of the authentication communication terminal 250 according to the present embodiment is distributed to each home by a country or a power company, the smart meter is provided with a display, a keyboard, etc., and browsing such as the Internet via a network is possible. A so-called PC (personal computer) function may be provided. In this way, for example, the Internet network can be spread in countries and regions where the Internet network is not widespread, and information gaps can be corrected.
  また、マイクログリッド毎に異なる料金設定を行うようにしても良いし、ユーザが自身のマイクログリッド内で電力を購入するときと、他のマイクログリッド内で電力を購入するときとで異なる料金設定を行うようにしても良い。例えば、図11の(a)に示すように、マイクログリッドAのユーザが、自マイクログリッド内で充電を行うときは、転学の料金とする。その後、図11の(b)に示すように、ユーザがマイクログリッドAからマイクログリッドBに移動し、自マイクログリッド外で充電を行うときは、手数料が加算されるようにしても良い。また、太陽光発電や風力発電などの再生可能エネルギーは、気候等によりその発電量が変化するので、例えば、変動為替と同様に取引されるようにしても良い。 Also, different charge settings may be made for each microgrid, and different charge settings may be used when a user purchases power in his / her microgrid and when he / she purchases power in another microgrid. You may make it do. For example, as shown in FIG. 11A, when the user of the microgrid A performs charging in the own microgrid, it is assumed that the transfer fee is charged. Thereafter, as shown in FIG. 11B, when the user moves from the microgrid A to the microgrid B and performs charging outside the own microgrid, a fee may be added. In addition, renewable energy such as solar power generation and wind power generation may be traded in the same manner as, for example, a variable exchange rate because the amount of power generation varies depending on the climate or the like.
  また、図12に示すように、例えば、複数の国家毎のスマートグリッド(スマートグリッドPa、スマートグリッドb)を、同一の電力決済システムのプラットホーム上で制御する。換金決済システムのプラットホームについては、さらに広範囲のスマートグリッドに共通に利用するようにしても良い。例えば、同じ国でも、地域により、風力発電が適している場所もあれば、太陽光発電が適している場所もあるので、それぞれの地域の気象条件にあわせて、マイクログリッドが組まれる。また、ヨーロッパでは国家を超えて、電力網が伸びている場所もあり、フィールドインタリフ(FIT)は国家もしくは複数の国家で共通している場合もあるし、単独の場合もある。これらの共通の国家間で、電力決済システムを築いてもよい。また、換金決済システムのプラットホームは、より広範囲に、例えばクレジットカードのプラットホームを用いてもよい。SCCがクレジット決済のみでないのは、公共性があるためである。ブラックリストに記載されている人はクレジットカードを持つことが出来ない。決済は気象条件とともに、公共性を考えて、全ての人が利用できるように考える必要がある。 Also, as shown in FIG. 12, for example, a plurality of smart grids (smart grid Pa, smart grid b) for each country are controlled on the same power settlement system platform. The platform for the cash settlement system may be commonly used for a wider range of smart grids. For example, even in the same country, there are places where wind power generation is suitable depending on the region, and there are places where solar power generation is suitable, so a microgrid is constructed according to the weather conditions of each region. In Europe, there are places where the electric power network extends beyond the country, and the field interleaving (FIT) may be common in the country or a plurality of countries, or may be independent. An electricity payment system may be established between these common nations. Further, the platform of the cash settlement system may use a wider range, for example, a credit card platform. The reason why SCC is not only for credit settlement is because it is public. People on the blacklist cannot have a credit card. Settlement must be made available to all people in consideration of weather conditions and public nature.
  また、本実施形態による電力制御システム1は、電力の取引システムとして説明したが、図13に示すように、ガスや熱などを数値化してエネルギー取引を行うシステムに適用しても良い。
  また、異なるマイクログリッド間で電力の取引を行う場合には、直流送配電網を設けてもよい。太陽光発電、蓄電池などは直流のため、場合により直流伝送の方が好ましい。直交変換を行ってから電力の送電を行うようにして良い。
  また、本実施形態における各マイクログリッドと系統電力会社700などとは、電力網と通信網とによって接続されることとしたが、例えば通信網などが整備されていない地域などにおいては、電力網における電力線通信(PLC:Power Line Communication)により情報通信を行うようにしても良い。もちろん、通信網があっても、PLCを用いてもよい。
Moreover, although the electric power control system 1 by this embodiment was demonstrated as an electric power transaction system, as shown in FIG. 13, you may apply to the system which digitizes gas, heat, etc. and performs an energy transaction.
In addition, when power is traded between different microgrids, a DC transmission / distribution network may be provided. Since solar power generation, storage batteries, and the like are direct current, direct current transmission is preferable in some cases. Electric power may be transmitted after performing orthogonal transformation.
In addition, each microgrid and grid power company 700 in this embodiment are connected by a power network and a communication network. For example, in an area where a communication network or the like is not established, power line communication in the power network is performed. Information communication may be performed by (PLC: Power Line Communication). Of course, even if there is a communication network, PLC may be used.
  また、本実施形態では、蓄電事業者と、発電事業者と、充電事業者と、需要家とを区別して図示して説明したが、これらは、複数の役割を兼ねている事業者等であっても良い。
例えば、蓄電事業と発電事業との双方を行う事業者であっても良い。また、本実施形態では、需要家が、発電機器220と、蓄電機器230とを備える例を図示したが、需要家は発電機器220や蓄電機器230などを備えなくても良い。
Further, in the present embodiment, the power storage business operator, the power generation business operator, the charging business operator, and the consumer have been illustrated and described separately, but these are business enterprises that also serve as a plurality of roles. May be.
For example, it may be a business operator that performs both the power storage business and the power generation business. Further, in the present embodiment, an example in which a consumer includes the power generation device 220 and the power storage device 230 is illustrated, but the consumer may not include the power generation device 220, the power storage device 230, and the like.
  なお、本発明における処理部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより電力の制御を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。 Note that the program for realizing the function of the processing unit in the present invention is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed to control the power. You may go. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer system” includes a WWW system provided with a homepage providing environment (or display environment). The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.
  また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。 In addition, the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.
  1  電力制御システム
  110  発電設備
  120  蓄電設備
  130  計量器
  140  電力制御装置
  141  通信部
  142  認証部
  143  電力状態記憶部
  144  電力履歴記憶部
  145  電力決済履歴部
  146  換金決済履歴記憶部
  147  電力制御部
  210  一般機器
  220  発電機器
  230  蓄電機器
  240  計量器
  250  認証通信端末
  251  認証情報入力部
  252  認証部
  253  電力取引部
  260  親ICカード
  261  子ICカード
  310  蓄電設備
  320  計量器
  330  認証通信端末
  410  発電設備
  420  計量器
  430  認証通信端末
  510  蓄電設備
  520  計量器
  530  認証通信端末
  600  ISP
  700  系統電力会社
  710  認証通信端末
DESCRIPTION OF SYMBOLS 1 Power control system 110 Power generation equipment 120 Power storage equipment 130 Metering device 140 Power control apparatus 141 Communication part 142 Authentication part 143 Power state memory | storage part 144 Power history memory | storage part 145 Electricity settlement history part 146 Cash settlement history memory part 147 Power control part 210 General Device 220 Power generation device 230 Power storage device 240 Metering device 250 Authentication communication terminal 251 Authentication information input unit 252 Authentication unit 253 Power transaction unit 260 Parent IC card 261 Child IC card 310 Power storage facility 320 Metering device 330 Authentication communication terminal 410 Power generation facility 420 Meter 430 Authentication communication terminal 510 Power storage facility 520 Meter 530 Authentication communication terminal 600 ISP
700 Grid power company 710 Authentication communication terminal

Claims (3)

  1.   電力の需要家であるユーザまたは前記需要家に電力を供給する供給者であるユーザの複数の通信端末と、当該通信端末にネットワークを介して接続された電力制御装置とが含まれて形成される複数のマイクログリッド同士がネットワークを介して接続された電力制御システムであって、
      前記通信端末は、
      前記ユーザを識別するユーザ識別情報と、前記ユーザを認証するための認証情報とが入力される認証情報入力部と、
      前記認証情報入力部に入力された前記ユーザ識別情報と前記認証情報とに基づいて、前記ユーザの認証処理を行う認証部と、
      前記認証部による前記認証処理の認証結果が、認証成功を示す場合、前記需要家に前記供給者から電力を供給させる電力取引部と、を備え、
      前記電力制御装置は、
      前記ユーザ識別情報と、前記ユーザに対して供給された電力量とが対応付けられた電力履歴が記憶される電力履歴記憶部と、
      自身のマイクログリッド内において使用されている電力量と、自身のマイクログリッド内において供給可能な電力量との電力状態が記憶されている電力状態記憶部と、
      ネットワークを介して接続された他の前記マイクログリッドにおける電力制御装置と通信を行い、自身の前記電力状態と、当該他のマイクログリッドにおける前記電力状態とを比較し、比較結果に応じて前記他のマイクログリッドとの間での電力取引を制御する電力制御部と、
      を備えることを特徴とする電力制御システム。
    A plurality of communication terminals of a user who is a power consumer or a user who is a supplier supplying power to the consumer, and a power control device connected to the communication terminal via a network are included. A power control system in which a plurality of microgrids are connected via a network,
    The communication terminal is
    An authentication information input unit for inputting user identification information for identifying the user and authentication information for authenticating the user;
    An authentication unit that performs an authentication process of the user based on the user identification information and the authentication information input to the authentication information input unit;
    When the authentication result of the authentication process by the authentication unit indicates authentication success, the power transaction unit for supplying power from the supplier to the consumer,
    The power control device
    A power history storage unit that stores a power history in which the user identification information is associated with the amount of power supplied to the user;
    A power state storage unit in which the power state of the amount of power used in its own microgrid and the amount of power that can be supplied in its own microgrid is stored;
    It communicates with the power control device in the other microgrid connected through the network, compares its power state with the power state in the other microgrid, and according to the comparison result A power control unit that controls power transactions with the microgrid;
    A power control system comprising:
  2.   前記通信端末の前記認証部は、前記ユーザに予め発行されたICチップもしくはICカードに記憶されている前記ユーザ識別情報と前記認証情報とに基づいて前記認証処理を行う
      ことを特徴とする請求項1に記載の電力制御システム。
    The authentication unit of the communication terminal performs the authentication process based on the user identification information and the authentication information stored in an IC chip or IC card issued in advance to the user. The power control system according to 1.
  3.   電力の需要家であるユーザまたは前記需要家に電力を供給する供給者であるユーザの複数の通信端末と、当該通信端末にネットワークを介して接続され、前記ユーザを識別するユーザ識別情報と、前記ユーザに対して供給された電力量とが対応付けられた電力履歴が記憶される電力履歴記憶部と、自身のマイクログリッド内において使用されている電力量と、自身のマイクログリッド内において供給可能な電力量との電力状態が記憶されている電力状態記憶部とを備えた電力制御装置とが含まれて形成される複数のマイクログリッド同士がネットワークを介して接続された電力制御システムの電力制御方法であって、
      前記通信端末が、
      前記ユーザ識別情報と、前記ユーザを認証するための認証情報との入力を受付けるステップと、
      入力された前記ユーザ識別情報と前記認証情報とに基づいて、前記ユーザの認証処理を行うステップと、
      前記認証処理の認証結果が、認証成功を示す場合、前記需要家に前記供給者から電力を供給させるステップと、
      前記電力制御装置が、
      前記ユーザ識別情報と、前記ユーザに対して供給された電力量とが対応付けられた電力履歴を、前記電力履歴記憶部に記憶させるステップと、
      ネットワークを介して接続された他の前記マイクログリッドにおける電力制御装置と通信を行い、自身の前記電力状態と、当該他のマイクログリッドにおける前記電力状態とを比較し、比較結果に応じて前記他のマイクログリッドとの間での電力取引を制御するステップと、
      を備えることを特徴とする電力制御方法。
    A plurality of communication terminals of a user who is a consumer of power or a user who is a supplier supplying power to the consumer, user identification information which is connected to the communication terminal via a network and identifies the user, A power history storage unit that stores a power history associated with a power amount supplied to a user, a power amount used in its own microgrid, and can be supplied in its own microgrid A power control method for a power control system in which a plurality of microgrids formed by including a power control device including a power state storage unit in which a power state and a power state are stored are connected via a network Because
    The communication terminal is
    Receiving input of the user identification information and authentication information for authenticating the user;
    Performing the user authentication process based on the input user identification information and the authentication information;
    If the authentication result of the authentication process indicates authentication success, the step of causing the consumer to supply power from the supplier;
    The power control device is
    Storing the power history in which the user identification information and the amount of power supplied to the user are associated with each other in the power history storage unit;
    It communicates with the power control device in the other microgrid connected through the network, compares its power state with the power state in the other microgrid, and according to the comparison result Controlling power trading with the microgrid;
    A power control method comprising:
PCT/JP2011/059114 2010-04-19 2011-04-12 Power control system and power control method WO2011132572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-096283 2010-04-19
JP2010096283A JP2011229268A (en) 2010-04-19 2010-04-19 Power control system and power control method

Publications (1)

Publication Number Publication Date
WO2011132572A1 true WO2011132572A1 (en) 2011-10-27

Family

ID=44834096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059114 WO2011132572A1 (en) 2010-04-19 2011-04-12 Power control system and power control method

Country Status (2)

Country Link
JP (1) JP2011229268A (en)
WO (1) WO2011132572A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174844A1 (en) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 Price setting device and power regulation device
CN105553103A (en) * 2016-01-21 2016-05-04 中国农业大学 Energy management system and method for regional active distribution network
US10176539B2 (en) * 2013-02-27 2019-01-08 Softbank Corp. Power supply system
US20220337061A1 (en) * 2021-04-20 2022-10-20 Electronics And Telecommunications Research Institute Artificial intelligence based p2p power trading method and apparatus

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629638B2 (en) * 2011-05-06 2014-11-26 株式会社エヌ・ティ・ティ・データ Power simulation apparatus and power simulation method
JP5917292B2 (en) * 2012-05-28 2016-05-11 株式会社日立製作所 Power management apparatus, power management system, and power management method
JP5196387B1 (en) * 2012-09-14 2013-05-15 株式会社ライフネット Power management system and power management method
JP2014096867A (en) * 2012-11-07 2014-05-22 Mitsubishi Electric Corp Smart community system
JP2014164699A (en) * 2013-02-27 2014-09-08 Softbank Mobile Corp Power supply system
JP5886333B2 (en) * 2014-02-04 2016-03-16 ソフトバンク株式会社 Power supply system
KR101569144B1 (en) * 2013-10-30 2015-11-13 한전케이디엔주식회사 Management apparatus and method for distributed generations
KR101602916B1 (en) * 2014-05-26 2016-03-14 재단법인대구경북과학기술원 Apparatus for managing smart microgrid and method thereof
JP6505460B2 (en) * 2015-02-18 2019-04-24 積水化学工業株式会社 Power management system, power management method and program
JP6235061B2 (en) * 2015-03-27 2017-11-22 株式会社九電工 Power supply system using renewable energy-based power generation facilities
WO2016158777A1 (en) * 2015-03-27 2016-10-06 株式会社九電工 Power supply system in which renewable energy-utilizing power generation facility is used
CN106532774B (en) * 2016-12-07 2019-03-12 湖南铁路科技职业技术学院 A kind of electric vehicle accesses more micro-capacitance sensor electric power distribution systems and method
DE102016125947A1 (en) * 2016-12-30 2018-07-05 Wobben Properties Gmbh Method for controlling an electrical distribution network
KR102406067B1 (en) 2017-10-25 2022-06-08 현대자동차주식회사 Variable air vent
KR102440509B1 (en) 2017-11-07 2022-09-06 현대자동차주식회사 Cooling drag reduction method
KR102394868B1 (en) 2017-12-12 2022-05-06 현대자동차주식회사 Centrifugal casting apparatus, centrifugal casting method and casting
KR102370944B1 (en) 2017-12-12 2022-03-07 현대자동차주식회사 Method for preventing takeoff of motor velocity for hybrid electric vehicle
KR20200036988A (en) 2018-09-28 2020-04-08 현대 파워텍 주식회사 Method for cleaning a solenoid valve of a auto transmission and auto transmission
KR102464533B1 (en) * 2018-11-26 2022-11-09 한국전자기술연구원 Discrete Current Micro-grid System for distribution of load and operating method thereof
KR102634406B1 (en) 2018-12-11 2024-02-06 현대자동차주식회사 Apparatus for emergency disconnect of a battery charge inlet of an electric vehicle
JP7173439B2 (en) * 2019-01-10 2022-11-16 三菱自動車工業株式会社 power management system
KR20200093883A (en) 2019-01-29 2020-08-06 현대자동차주식회사 Test specimen of carbon fiber reinforced plastics and manufacturing method thereof
KR101991745B1 (en) * 2019-02-25 2019-06-21 주식회사 상림이씨엠 Control Method for Energy Trading in Smart-grid
KR101991759B1 (en) * 2019-02-25 2019-06-21 주식회사 상림이씨엠 Control Method for Energy Trading in Smart-grid
KR101996882B1 (en) * 2019-02-25 2019-07-05 주식회사 상림이씨엠 Control Method for Energy Trading in Smart-grid
JP7364067B2 (en) * 2020-05-25 2023-10-18 日本電信電話株式会社 Power trading control device, power trading control method, and program
JP7067651B1 (en) * 2021-03-22 2022-05-16 株式会社リコー Control servers, consumption controls, trading systems, communication methods, and programs
KR102655968B1 (en) 2021-07-01 2024-04-11 국방과학연구소 Fuel cell system
KR20230078240A (en) 2021-11-26 2023-06-02 현대자동차주식회사 Camshaft manufacturing method for cvvd and alloy steel for manufacturing camshaft
KR20240022836A (en) 2022-08-12 2024-02-20 국방과학연구소 Dual field of view optical system for aircraft-mounted optical equipment
KR20240034017A (en) 2022-09-06 2024-03-13 국방과학연구소 Apparatus for investigation the heating charateristics of halogen quartz lamp
KR102588748B1 (en) 2023-03-22 2023-10-13 국방과학연구소 Path change control method and control system for unmanned air vehicle
KR102698927B1 (en) 2024-01-30 2024-08-26 국방과학연구소 Shock wave characteristic measurement system and method for a transparent window

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324850A (en) * 2002-04-26 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> Power demand/supply adjusting system and customer controller
JP2004219181A (en) * 2003-01-10 2004-08-05 Yukihisa Kasashige Power management system and power management method
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
JP2007143364A (en) * 2005-11-22 2007-06-07 Osaka Gas Co Ltd Power grid system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3980541B2 (en) * 2003-09-22 2007-09-26 日本電信電話株式会社 Distributed energy community control system, central controller, distributed controller, and control method thereof
JP2005164561A (en) * 2003-12-02 2005-06-23 Ipb:Kk Method for measuring electric power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324850A (en) * 2002-04-26 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> Power demand/supply adjusting system and customer controller
JP2004219181A (en) * 2003-01-10 2004-08-05 Yukihisa Kasashige Power management system and power management method
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
JP2007143364A (en) * 2005-11-22 2007-06-07 Osaka Gas Co Ltd Power grid system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10176539B2 (en) * 2013-02-27 2019-01-08 Softbank Corp. Power supply system
WO2014174844A1 (en) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 Price setting device and power regulation device
CN105553103A (en) * 2016-01-21 2016-05-04 中国农业大学 Energy management system and method for regional active distribution network
CN105553103B (en) * 2016-01-21 2018-04-13 中国农业大学 A kind of region active distribution network Energy Management System and method
US20220337061A1 (en) * 2021-04-20 2022-10-20 Electronics And Telecommunications Research Institute Artificial intelligence based p2p power trading method and apparatus

Also Published As

Publication number Publication date
JP2011229268A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011132572A1 (en) Power control system and power control method
US20220237712A1 (en) Exergy token
US20200076198A1 (en) Microgrid energy reservoir transaction verification via secure, distributed ledger
JP5487994B2 (en) Power management apparatus and display method
CN102136762B (en) Eletric watermark generates equipment and method, eletric watermark Authentication devices and method
EP2562729A2 (en) System and method for use when charging an electrically powered vehicle
CN102810874A (en) Power control device, power management device and power management system
JP2019153275A (en) Control method, controller, data structure and power transaction system
JP2012243321A (en) System and method for reservation of charging station for electric vehicle
CN102148821A (en) Power management apparatus, electronic appliance, and method of registering electronic appliances
CN102136099A (en) Analysis server and data analyzing method
CN102136100A (en) Power Management Apparatus, Electronic Appliance, and Method of Managing Power
CN102194188A (en) Power transaction server, green market management server and management method
JP2012243312A (en) Systems and methods for auctioning charging times for electric vehicles
US20210295615A1 (en) Electric vehicle energy balance crediting and debiting system and a method thereof
WO2020138514A1 (en) Power trading system
KR101856007B1 (en) Energy Harvesting Fintech Service System by self generation electricity and method thereof
JP2022183219A (en) Control method
WO2020231288A1 (en) Information system for buying and selling electrical energy
JP5196387B1 (en) Power management system and power management method
JP2020107201A (en) Power transaction system
KR101020746B1 (en) Method of electricity management using smart card and apparatus thereof
Ryssdal Blockchain technology implementation for electric vehicle charging within the smart grid architecture model
CN110874722A (en) Electric power transaction platform and method
JP7429897B2 (en) Certification methods, certification systems and programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771907

Country of ref document: EP

Kind code of ref document: A1