WO2011131884A1 - Method for controlling an egr valve that is resistant to dispersion - Google Patents

Method for controlling an egr valve that is resistant to dispersion Download PDF

Info

Publication number
WO2011131884A1
WO2011131884A1 PCT/FR2011/050718 FR2011050718W WO2011131884A1 WO 2011131884 A1 WO2011131884 A1 WO 2011131884A1 FR 2011050718 W FR2011050718 W FR 2011050718W WO 2011131884 A1 WO2011131884 A1 WO 2011131884A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
valve
shutter
control
internal combustion
Prior art date
Application number
PCT/FR2011/050718
Other languages
French (fr)
Inventor
Mohammed Jerouane
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Publication of WO2011131884A1 publication Critical patent/WO2011131884A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/102Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2048Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit said control involving a limitation, e.g. applying current or voltage limits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to the admission of air into an internal combustion engine, and in particular the intake air distribution devices introducing fresh air and air from the exhaust system. in the combustion chamber of the engine.
  • the recycling of exhaust gas is controlled via a valve.
  • the valve allows to take a variable amount of exhaust gas to mix with fresh air to be introduced into the combustion chamber.
  • the valve regulates the exhaust gas recirculation flow to the engine inlet at each combustion cycle.
  • This recycling requires to slave the flow of exhaust gas reinjected, and thus the position of the shutter of the EGR valve to a set value that varies over time.
  • the setpoint is supplied by the engine control unit to control an electric motor operating the shutter.
  • the valves generally include return springs bringing the shutter to a position of equilibrium intermediate between the opening and the total closure. The action of these springs disrupts the dynamic operation of the valve. In addition, the operation of the shutter is strongly non-linear.
  • Servo imperfections generally have the following consequences: an increase in the shutter response time inducing a degradation of the performance of the engine, or the generation of large oscillations of the shutter inducing its inefficiency. These consequences generally result in an increase in fuel consumption and the production of nitrogen oxides.
  • PID Proportional, Integral, Derived
  • the method of synthesis consists mainly in determining the error between the measured position of the shutter and the set position (proportional action), in calculating the speed of change of the error (derivative action) and the time integral of the error (integral action) and to develop a position control signal sum of these three actions.
  • Document FR2881536 describes a servo-control process having increased robustness, that is to say a lower sensitivity to external disturbances. This document proposes to perform a prepositioning of the EGR valve in open loop, as a function of a set point value, a pressure variation between the upstream and downstream and properties of the return spring.
  • the invention aims to solve one or more of these disadvantages.
  • the invention thus relates to a method of controlling an electric motor for driving a rotary shutter of an exhaust gas recycling valve of an internal combustion engine, comprising the steps of:
  • Ks a constant strictly greater than 0
  • J the rotational inertia of the movable elements of the valve
  • Km the torque of the electric motor
  • Kr a value modeling the operating dispersions of the valve.
  • a return spring which remembers the shutter towards a rest position closing the flow of recycled exhaust gas in the absence of excitation of the electric motor.
  • said supply setpoint is calculated by transforming said reference control intensity into a pulse width modulation signal applied to a control input of the electric motor.
  • the transformation comprises a clipping of the reference control intensity.
  • the transformation comprises the multiplication of the clipped signal by the engine torque Km.
  • Ks is a gain value for adjusting the operation of the valve.
  • the invention also relates to an internal combustion engine, comprising:
  • an exhaust gas recirculation circuit comprising a controlled valve for regulating the flow of recycled exhaust gas therethrough, the valve comprising a shutter element rotatably mounted in an exhaust passage and comprising an engine electric driving the shutter element;
  • control module of the electric motor adapted to:
  • Ks a constant strictly greater than 0
  • J the rotational inertia of the movable elements of the valve
  • Km the torque of the electric motor
  • Kr a value modeling the operating dispersions of the valve.
  • the engine comprises a return spring reminding the shutter to a position of interruption of the flow of exhaust gas through the valve.
  • control module generates a power supply command of the electric motor by transforming said reference control intensity into a pulse width modulation signal, and the control module applies the modulation signal. pulse width on a control input of the electric motor.
  • Figure 1 illustrates the principle of determination of the set position of the EGR valve depending on the support on an accelerator pedal
  • FIG. 2 is a schematic representation of an EGR valve
  • FIG. 3 represents a processing diagram generating a motor intensity reference of the EGR valve
  • FIG. 4 is a diagram illustrating the intensity conversion for controlling the motor of the EGR valve in pulse width modulation or pulse width modulation.
  • Figure 1 illustrates the principle of determining a set position of an EGR valve.
  • the user applies an acceleration command, for example via a pedal.
  • This control is measured as a depression level of an accelerator pedal identified by a value Ac and translates a torque demand to the internal combustion engine.
  • a first engine control map 21 converts this value into a fuel flow setpoint. inject Qinj for a given engine speed Nmot.
  • a second map 22 converts this setpoint value into an intake air flow setpoint Qac.
  • FIG. 2 schematically illustrates an EGR valve 10.
  • the EGR valve comprises a valve body 1 1 defining a fluid passage.
  • a sealing member 13 is disposed in this fluid passage for regulating the flow rate of the recycled exhaust gas.
  • the closure member 13 is pivotally mounted about an axis 15 in the fluid passage. The angular position of this shutter element in the passage makes it possible to close or open the passage, partially or completely.
  • the shutter member may be a valve having a head cooperating with a seat in the fluid passage and attached to a drive shaft.
  • the drive shaft 12 of an electric motor 14 drives the shutter element 13 in rotation about the axis 15.
  • the electric motor 14 and its shaft 12 thus constitute means for positioning the shutter element 13.
  • the electric motor 14 is powered by a signal of variable intensity in time, delivered by a servo system .
  • the servo system is for example integrated in an engine control computer.
  • the servo system comprises an angular position sensor 16 detecting the angular position of the shaft 12 and generating a corresponding signal sur on its output 18.
  • Reminder springs urge the closure member to a rest position.
  • the return torque exerted by the spring is opposite to the torque exerted by the electric motor during operation.
  • the rest position of the return element corresponds to a total closure of the fluid passage therewith.
  • valve 10 The electrical and mechanical behavior of the valve 10 can generally be modeled by means of the following equations
  • Equation 1 corresponds to an electrical modeling of the electric motor 14 of the valve.
  • Equation 2 corresponds to a mechanical modeling of the shutter element of the valve.
  • U corresponds to the voltage at the terminals of the electric motor
  • R corresponds to its electrical resistance
  • I corresponds to the intensity therethrough
  • L corresponds to its inductance
  • J corresponds to the overall rotational inertia of the valve
  • corresponds to the angular position of the motor shaft (measured by the sensor 16, or determined numerically by a computer)
  • Km corresponds to the engine torque
  • Kr corresponds to the resistive torque (including in particular the viscous torque, the spring return torque, the pair of abutments, etc.) and also represents a set of dispersions on the system formed by the valve (friction, noise, estimation of model error ).
  • Ks a constant strictly greater than 0, corresponding to a calibrated gain value.
  • This gain value is calibrated to adjust the control applied to the motor 14. If the dynamic variable S is 0 or tends to zero, then the tracking error er tends to 0, which is the goal for the regulation of the angular position of the drive shaft.
  • E0 being a constant and t the time.
  • the tracking error converges to 0 in time. Moreover, this convergence is obtained independently of the parameter Kr of resistant torque. Thus, the control with the determined intensity Iref is robust with respect to this parameter Kr.
  • the parameter Kr can be determined by tests on the valve 10.
  • such a control can be generated with a reduced number of sensors, increasing the reliability and lowering the cost of the exhaust gas recirculation loop. Moreover, such a control can be used for the entire race of the closing element, without requiring the use of a multiplicity of models. In addition, such a command may be implemented with relatively short calibration methods and easy to develop via a single parameter Ks.
  • FIG. 3 is a diagram illustrating the parameters and the operations implemented for the calculation of the control intensity Iref of the motor 14.
  • the module 31 calculates the difference between ⁇ and 9c.
  • the module 32 calculates the time derivative of the output signal of the module 31.
  • the module 33 multiplies the output signal of the module 32 not a factor (-Ks).
  • the module 38 calculates the second time derivative of 9c.
  • the module 34 adds the output signals of the modules 33 and 38.
  • the module 35 multiplies the output signal of the module 34 by the factor J.
  • the module 36 adds the output signal of the module 35 to the value Kr.
  • the module 37 multiplies the output signal of the module 36 by a factor (1 / Km) to generate the intensity control signal Iref.
  • FIG. 4 is a diagram illustrating the transformation of the intensity control Iref into a pulse width modulation control, to apply a cyclic voltage ratio between the power supply terminals of the motor 14, and thus dispose of a simplified order adapted to the CMM HW.
  • the module 41 achieves a saturation of the calculated Iref value.
  • the module 42 multiplies the output signal of the module 41 by the factor Km to convert the intensity into voltage
  • the module 43 multiplies the output of the module 42 by a value UBat corresponding to a battery voltage (for example 12V corresponding to a voltage connected to the on-board network)
  • the module 44 multiplies the output of the module 43 by a gradation value (for example 1/100) of the control signal, to generate the control signal Upwm.

Abstract

The invention relates to a method for controlling an electric motor (14) driving a rotating stopper (13) of an exhaust-gas recycling valve (10) of an internal combustion engine, which includes the steps of: determining the angular position Θ of the stopper (13); generating an angular position setting 9c of the stopper (13) according to the activation of an accelerator control of the internal combustion engine; generating a supply setting for the electric motor on the basis of a reference control intensity Iref determined by: Formula (I) where Ks is a constant strictly higher than 0, J is the rotational inertia of the mobile elements of the valve, Km is the torque of the electric motor, and Kr is a value modelling operating dispersions of the valve.

Description

PROCEDE DE COMMANDE D'UNE VANNE EGR, ROBUSTE CONTRE LES METHOD FOR CONTROLLING AN EGR VALVE, ROBUST AGAINST
DISPERSIONS Dispersions
[0001 ] La présente invention revendique la priorité de la demande française 1053143 déposée le 23 avril 2010 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. The present invention claims the priority of the French application 1053143 filed April 23, 2010 whose content (text, drawings and claims) is here incorporated by reference.
[0002] L'invention concerne l'admission d'air dans un moteur à combustion interne, et en particulier les dispositifs de répartition d'air d'admission introduisant de l'air frais et de l'air provenant du circuit d'échappement dans la chambre de combustion du moteur.  The invention relates to the admission of air into an internal combustion engine, and in particular the intake air distribution devices introducing fresh air and air from the exhaust system. in the combustion chamber of the engine.
[0003] Le recyclage des gaz d'échappement permet de diminuer le niveau des oxydes d'azote émis dans les gaz d'échappement. Le recyclage de gaz d'échappement consiste à introduire de l'air frais et des gaz d'échappement dans la chambre de combustion du moteur. Pour des moteurs diesels, il est courant de voir des taux de recyclage de l'ordre de 50 %, ce qui signifie que la moitié des gaz aspirés par un cylindre d'un moteur à combustion interne sont des gaz d'échappement recirculés. Des normes d'émission de gaz polluants de plus en plus strictes ont conduit à la généralisation de circuits de recyclage de gaz d'échappement EGR pour les moteurs diesel. Cependant, l'utilisation de l'EGR pour les moteurs à allumage commandé est également en plein développement.  The recycling of the exhaust gas reduces the level of nitrogen oxides emitted in the exhaust gas. Exhaust gas recirculation involves introducing fresh air and exhaust into the combustion chamber of the engine. For diesel engines, it is common to see recycling rates of the order of 50%, which means that half of the gases drawn by a cylinder of an internal combustion engine are recirculated exhaust gas. Increasingly stringent emission standards for pollutants have led to the generalization of EGR exhaust gas recirculation systems for diesel engines. However, the use of EGR for spark ignition engines is also growing.
[0004] Le recyclage de gaz d'échappement est contrôlé par l'intermédiaire d'une valve. La valve permet de prélever une quantité variable de gaz d'échappement pour les mélanger à l'air frais à introduire dans la chambre de combustion. La valve permet de réguler le débit de recyclage des gaz d'échappement vers l'entrée du moteur à chaque cycle de combustion.  The recycling of exhaust gas is controlled via a valve. The valve allows to take a variable amount of exhaust gas to mix with fresh air to be introduced into the combustion chamber. The valve regulates the exhaust gas recirculation flow to the engine inlet at each combustion cycle.
[0005] Ce recyclage nécessite d'asservir le débit de gaz d'échappement réinjecté, et donc la position de l'obturateur de la vanne EGR à une valeur de consigne qui varie dans le temps. La valeur de consigne est fournie par le calculateur moteur pour contrôler un moteur électrique actionnant l'obturateur.  This recycling requires to slave the flow of exhaust gas reinjected, and thus the position of the shutter of the EGR valve to a set value that varies over time. The setpoint is supplied by the engine control unit to control an electric motor operating the shutter.
[0006] Il est techniquement délicat de procéder à un asservissement de position de l'obturateur de façon précise sur toute la plage de fonctionnement requise. Les différences de pression entre l'amont et l'aval de la vanne EGR ont ainsi une forte influence sur la précision de l'asservissement. Par ailleurs, les vannes incluent généralement des ressorts de rappel ramenant l'obturateur vers une position d'équilibre intermédiaire entre l'ouverture et la fermeture totale. L'action de ces ressorts perturbe le fonctionnement dynamique de la vanne. De plus, le fonctionnement de l'obturateur est fortement non linéaire. [0006] It is technically difficult to position the shutter precisely in a precise manner over the entire operating range. required. The pressure differences between upstream and downstream of the EGR valve have a strong influence on the accuracy of the servo. In addition, the valves generally include return springs bringing the shutter to a position of equilibrium intermediate between the opening and the total closure. The action of these springs disrupts the dynamic operation of the valve. In addition, the operation of the shutter is strongly non-linear.
[0007] Des imperfections d'asservissement ont généralement les conséquences suivantes: une augmentation du temps de réponse de l'obturateur induisant une dégradation des performances du moteur, ou la génération d'oscillations importantes de l'obturateur induisant son inefficacité. Ces conséquences se traduisent généralement par une augmentation de la consommation de carburant et de la production d'oxydes d'azote.  Servo imperfections generally have the following consequences: an increase in the shutter response time inducing a degradation of the performance of the engine, or the generation of large oscillations of the shutter inducing its inefficiency. These consequences generally result in an increase in fuel consumption and the production of nitrogen oxides.
[0008] Un certain nombre de solutions proposées jusqu'ici synthétisent la loi de commande de l'obturateur par l'intermédiaire d'un correcteur par rétroaction appelée « PID » (pour Proportionnel, Intégral, Dérivé). La méthode de synthèse consiste principalement à déterminer l'erreur entre la position mesurée de l'obturateur et la position de consigne (action proportionnelle), à calculer la vitesse de changement de l'erreur (action dérivée) et l'intégrale temporelle de l'erreur (action intégrale) et à élaborer un signal de contrôle de position somme de ces trois actions.  A number of solutions proposed so far synthesize the control law of the shutter via a feedback corrector called "PID" (for Proportional, Integral, Derived). The method of synthesis consists mainly in determining the error between the measured position of the shutter and the set position (proportional action), in calculating the speed of change of the error (derivative action) and the time integral of the error (integral action) and to develop a position control signal sum of these three actions.
[0009] De telles solutions s'avèrent peu robustes vis-à-vis des perturbations externes rencontrées ou des variations des caractéristiques des composants. De telles solutions nécessitent en outre des méthodes de calibration longues et délicates à mettre au point.  Such solutions are not very robust vis-à-vis the external disturbances encountered or variations in the characteristics of the components. Such solutions also require long and difficult calibration methods to be developed.
[0010] Le document FR2881536 décrit un procédé d'asservissement présentant une robustesse accrue, c'est-à-dire une moindre sensibilité aux perturbations extérieures. Ce document propose de réaliser un prépositionnement de la vanne EGR en boucle ouverte, en fonction d'une valeur de consigne, d'une variation de pression entre l'amont et l'aval et de propriétés du ressort de rappel.  Document FR2881536 describes a servo-control process having increased robustness, that is to say a lower sensitivity to external disturbances. This document proposes to perform a prepositioning of the EGR valve in open loop, as a function of a set point value, a pressure variation between the upstream and downstream and properties of the return spring.
[001 1 ] Cette solution présente également des inconvénients. Cette solution nécessite un certain nombre de capteurs qui augmentent le coût de la vanne EGR. De plus, le positionnement de l'obturateur n'est pas très robuste face à des erreurs sur les paramètres pris en compte, notamment la variation de pression ou les propriétés du ressort de rappel. Par ailleurs, la loi de commande proposée par cette solution n'est valable que pour la régulation autour d'une unique position d'équilibre. Pour assurer une régulation satisfaisante sur toute la course de l'obturateur, cette solution suppose l'utilisation d'un grand nombre de lois de commandes distinctes pour les différentes positions de l'obturateur. En effet, chaque loi de commande est linéaire et ne s'avère juste que sur une faible partie de la course de l'obturateur dont le comportement est non linéaire. Cette solution est donc délicate à mettre au point du fait du nombre de points de fonctionnement à tester et du fait du nombre de permutations à réaliser en temps réel entre les différentes lois de commandes. [001 1] This solution also has drawbacks. This solution requires a number of sensors that increase the cost of the valve EGR. In addition, the positioning of the shutter is not very robust in the face of errors on the parameters taken into account, in particular the variation of pressure or the properties of the return spring. Furthermore, the control law proposed by this solution is only valid for the regulation around a single equilibrium position. To ensure satisfactory regulation over the entire range of the shutter, this solution assumes the use of a large number of separate control laws for the different positions of the shutter. Indeed, each control law is linear and is only fair on a small part of the race of the shutter whose behavior is non-linear. This solution is therefore difficult to develop because of the number of operating points to be tested and because of the number of permutations to be performed in real time between the different control laws.
[0012] L'invention vise à résoudre un ou plusieurs de ces inconvénients. L'invention porte ainsi sur un procédé de commande d'un moteur électrique d'entraînement d'un obturateur rotatif d'une vanne de recyclage de gaz d'échappement d'un moteur à combustion interne, comprenant les étapes de : The invention aims to solve one or more of these disadvantages. The invention thus relates to a method of controlling an electric motor for driving a rotary shutter of an exhaust gas recycling valve of an internal combustion engine, comprising the steps of:
- déterminer la position angulaire Θ de l'obturateur ; - determine the angular position Θ of the shutter;
- générer une consigne de position angulaire 9c de l'obturateur en fonction de l'actionnement d'une commande d'accélérateur du moteur à combustion interne ;  generating an angular position reference 9c of the shutter as a function of the actuation of an accelerator control of the internal combustion engine;
- générer une consigne d'alimentation du moteur électrique basée sur une intensité de commande de référence Iref déterminée par :  generating an electric motor supply instruction based on a reference control intensity Iref determined by:
Figure imgf000005_0001
Figure imgf000005_0001
[0013] avec Ks une constante strictement supérieure à 0, J l'inertie de rotation des éléments mobiles de la vanne, Km le couple du moteur électrique, et Kr une valeur modélisant des dispersions de fonctionnement de la vanne. [0014] Selon une variante, un ressort de rappel qui rappelle l'obturateur vers une position de repos obturant l'écoulement de gaz d'échappement recyclé en l'absence d'excitation du moteur électrique. With Ks a constant strictly greater than 0, J the rotational inertia of the movable elements of the valve, Km the torque of the electric motor, and Kr a value modeling the operating dispersions of the valve. According to a variant, a return spring which remembers the shutter towards a rest position closing the flow of recycled exhaust gas in the absence of excitation of the electric motor.
[0015] Selon encore une variante, ladite consigne d'alimentation est calculée en transformant ladite intensité de commande de référence en un signal à modulation de largeur d'impulsion appliquée sur une entrée de commande du moteur électrique.  According to another variant, said supply setpoint is calculated by transforming said reference control intensity into a pulse width modulation signal applied to a control input of the electric motor.
[0016] Selon une autre variante, la transformation comprend un écrêtage de l'intensité de commande de référence.  According to another variant, the transformation comprises a clipping of the reference control intensity.
[0017] Selon encore une autre variante, la transformation comprend la multiplication du signal écrêté par le couple moteur Km.  According to yet another variant, the transformation comprises the multiplication of the clipped signal by the engine torque Km.
[0018] Selon une variante, Ks est une valeur de gain pour l'ajustement du fonctionnement de la vanne.  According to a variant, Ks is a gain value for adjusting the operation of the valve.
[0019] L'invention porte également sur un moteur à combustion interne, comprenant : [0019] The invention also relates to an internal combustion engine, comprising:
- un circuit de recyclage de gaz d'échappement comprenant une vanne commandée pour réguler le débit de gaz d'échappement recyclés la traversant, la vanne comprenant un élément d'obturation monté à rotation dans un passage des gaz d'échappement et comprenant un moteur électrique entraînant l'élément d'obturation ;  an exhaust gas recirculation circuit comprising a controlled valve for regulating the flow of recycled exhaust gas therethrough, the valve comprising a shutter element rotatably mounted in an exhaust passage and comprising an engine electric driving the shutter element;
- un module de commande du moteur électrique apte à :  a control module of the electric motor adapted to:
- générer une consigne de position angulaire 9c de l'obturateur en fonction de l'actionnement d'une commande d'accélérateur du moteur à combustion interne ;  generating an angular position reference 9c of the shutter as a function of the actuation of an accelerator control of the internal combustion engine;
- obtenir une valeur de position angulaire Θ de l'obturateur;  - Obtain an angular position value Θ of the shutter;
- générer une consigne d'alimentation du moteur électrique basée sur une intensité de commande de référence Iref déterminée par :  generating an electric motor supply instruction based on a reference control intensity Iref determined by:
J *(Dua) UKrJ * (Dua) UKr
Figure imgf000006_0001
[0020] avec Ks une constante strictement supérieure à 0, J l'inertie de rotation des éléments mobiles de la vanne, Km le couple du moteur électrique, et Kr une valeur modélisant des dispersions de fonctionnement de la vanne.
Figure imgf000006_0001
With Ks a constant strictly greater than 0, J the rotational inertia of the movable elements of the valve, Km the torque of the electric motor, and Kr a value modeling the operating dispersions of the valve.
[0021 ] Selon une variante, le moteur comprend un ressort de rappel rappelant l'obturateur vers une position d'interruption de l'écoulement des gaz d'échappement à travers la vanne.  According to a variant, the engine comprises a return spring reminding the shutter to a position of interruption of the flow of exhaust gas through the valve.
[0022] Selon encore une variante, le module de commande génère une consigne d'alimentation du moteur électrique en transformant ladite intensité de commande de référence en un signal à modulation de largeur d'impulsion, et le module de commande applique le signal à modulation de largeur d'impulsion sur une entrée de commande du moteur électrique.  According to another variant, the control module generates a power supply command of the electric motor by transforming said reference control intensity into a pulse width modulation signal, and the control module applies the modulation signal. pulse width on a control input of the electric motor.
[0023] D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :  Other features and advantages of the invention will become apparent from the description which is given below, by way of indication and in no way limiting, with reference to the accompanying drawings, in which:
• la figure 1 illustre le principe de détermination de la position de consigne de la vanne EGR en fonction de l'appui sur une pédale d'accélérateur ; • Figure 1 illustrates the principle of determination of the set position of the EGR valve depending on the support on an accelerator pedal;
• la figure 2 est une représentation schématique d'une vanne EGR ; FIG. 2 is a schematic representation of an EGR valve;
• la figure 3 représente un diagramme de traitement générant une consigne d'intensité du moteur de la vanne EGR ; FIG. 3 represents a processing diagram generating a motor intensity reference of the EGR valve;
• la figure 4 est un diagramme illustrant la conversion de l'intensité pour commander le moteur de la vanne EGR en modulation de largeur d'impulsion ou en modulation d'impulsions en durée. FIG. 4 is a diagram illustrating the intensity conversion for controlling the motor of the EGR valve in pulse width modulation or pulse width modulation.
[0024] La figure 1 illustre le principe de détermination d'une position de consigne d'une vanne EGR. L'utilisateur applique une commande d'accélération, par exemple par l'intermédiaire d'une pédale. Cette commande est mesurée sous forme d'un niveau d'enfoncement d'une pédale d'accélérateur identifié par une valeur Ac et traduit une demande de couple au moteur à combustion interne. Une première cartographie 21 de contrôle moteur transforme cette valeur en une consigne de débit de carburant à injecter Qinj pour un régime moteur donné Nmot. Une deuxième cartographie 22 transforme cette valeur de consigne en une consigne de débit d'air d'admission Qac. [0024] Figure 1 illustrates the principle of determining a set position of an EGR valve. The user applies an acceleration command, for example via a pedal. This control is measured as a depression level of an accelerator pedal identified by a value Ac and translates a torque demand to the internal combustion engine. A first engine control map 21 converts this value into a fuel flow setpoint. inject Qinj for a given engine speed Nmot. A second map 22 converts this setpoint value into an intake air flow setpoint Qac.
[0025] La figure 2 illustre de façon schématique une vanne EGR 10. De façon connue en soi, la vanne EGR comporte un corps de vanne 1 1 délimitant un passage de fluide. Un élément d'obturation 13 est disposé dans ce passage de fluide pour réguler le débit des gaz d'échappement recyclés. L'élément d'obturation 13 est monté pivotant autour d'un axe 15 dans le passage de fluide. La position angulaire de cet élément d'obturation dans le passage permet de fermer ou ouvrir le passage, partiellement ou complètement. L'élément d'obturation peut être une soupape comportant une tête coopérant avec un siège dans le passage de fluide et fixé sur un arbre d'entraînement. Dans l'exemple de la figure 2, l'arbre d'entraînement 12 d'un moteur électrique 14 entraîne l'élément d'obturation 13 en rotation autour de l'axe 15.  Figure 2 schematically illustrates an EGR valve 10. In known manner, the EGR valve comprises a valve body 1 1 defining a fluid passage. A sealing member 13 is disposed in this fluid passage for regulating the flow rate of the recycled exhaust gas. The closure member 13 is pivotally mounted about an axis 15 in the fluid passage. The angular position of this shutter element in the passage makes it possible to close or open the passage, partially or completely. The shutter member may be a valve having a head cooperating with a seat in the fluid passage and attached to a drive shaft. In the example of FIG. 2, the drive shaft 12 of an electric motor 14 drives the shutter element 13 in rotation about the axis 15.
[0026] Le moteur électrique 14 et son arbre 12 constituent ainsi des moyens de positionnement de l'élément d'obturation 13. Le moteur électrique 14 est alimenté par un signal d'intensité variable dans le temps, délivré par un système d'asservissement. Le système d'asservissement est par exemple intégré dans un calculateur de contrôle moteur. Le système d'asservissement comprend un capteur de position angulaire 16 détectant la position angulaire de l'arbre 12 et générant un signal Θ correspondant sur sa sortie 18.  The electric motor 14 and its shaft 12 thus constitute means for positioning the shutter element 13. The electric motor 14 is powered by a signal of variable intensity in time, delivered by a servo system . The servo system is for example integrated in an engine control computer. The servo system comprises an angular position sensor 16 detecting the angular position of the shaft 12 and generating a corresponding signal sur on its output 18.
[0027] Des ressorts de rappel (non illustrés) sollicitent l'élément d'obturation vers une position de repos. Le couple de rappel exercé par le ressort est opposé au couple exercé par le moteur électrique durant le fonctionnement. La position de repos de l'élément de rappel correspond à une obturation totale du passage de fluide par celui-ci. Ainsi, en cas de dysfonctionnement de la vanne EGR, le recyclage de gaz d'échappement cessera.  Reminder springs (not shown) urge the closure member to a rest position. The return torque exerted by the spring is opposite to the torque exerted by the electric motor during operation. The rest position of the return element corresponds to a total closure of the fluid passage therewith. Thus, in case of malfunction of the EGR valve, the exhaust gas recirculation will stop.
[0028] Le comportement électrique et mécanique de la vanne 10 peut généralement être modélisé au moyen des équations suivantes The electrical and mechanical behavior of the valve 10 can generally be modeled by means of the following equations
U = R * I + L *—{1) U = R * I + L * - {1)
dt  dt
J * (ë) = Km * I - Kr {2) [0029] L'équation 1 correspond à une modélisation électrique du moteur électrique 14 de la vanne. L'équation 2 correspond à une modélisation mécanique de l'élément d'obturation de la vanne. J * (ë) = K m * I - K r {2) Equation 1 corresponds to an electrical modeling of the electric motor 14 of the valve. Equation 2 corresponds to a mechanical modeling of the shutter element of the valve.
[0030] U correspond à la tension aux bornes du moteur électrique, R correspond à sa résistance électrique, I correspond à l'intensité le traversant et L correspond à son inductance.  U corresponds to the voltage at the terminals of the electric motor, R corresponds to its electrical resistance, I corresponds to the intensity therethrough and L corresponds to its inductance.
[0031 ] J correspond à l'inertie de rotation globale de la vanne, Θ correspond à la position angulaire de l'arbre du moteur (soit mesurée par le capteur 16, soit déterminée numériquement par un calculateur), Km correspond au couple moteur, et Kr correspond au couple résistant (incluant notamment le couple visqueux, le couple de rappel du ressort, le couple de butées...) et représente également un ensemble de dispersions sur le système formé par la vanne (frottements, bruits, estimation d'erreur du modèle...).  J corresponds to the overall rotational inertia of the valve, Θ corresponds to the angular position of the motor shaft (measured by the sensor 16, or determined numerically by a computer), Km corresponds to the engine torque, and Kr corresponds to the resistive torque (including in particular the viscous torque, the spring return torque, the pair of abutments, etc.) and also represents a set of dispersions on the system formed by the valve (friction, noise, estimation of model error ...).
[0032] On définit préalablement les valeurs suivantes : er = e- 0c  We define beforehand the following values: er = e- 0c
_ ά - θο) _ ά - θο)
er ~ dt e r ~ dt
[0033] correspondant respectivement à l'erreur de poursuite et à la dérivée temporelle de l'erreur de poursuite, 9c correspondant à la position angulaire de consigne de l'arbre d'entraînement.  Corresponding respectively to the tracking error and the time derivative of the tracking error, 9c corresponding to the desired angular position of the drive shaft.
[0034] On considère une variable dynamique d'erreur S définie par la relation suivante :  We consider a dynamic error variable S defined by the following relation:
·· ·  ·· ·
S = er+ Ks * er  S = er + Ks * er
[0035] avec Ks une constante strictement supérieure à 0, correspondant à une valeur de gain calibrable. Cette valeur de gain est calibrable pour ajuster la commande appliquée au moteur 14. [0036] Si la variable dynamique S est égale à 0 ou tend vers zéro, alors l'erreur de poursuite er tend vers 0, ce qui est le but recherché pour la régulation de la position angulaire de l'arbre d'entraînement. With Ks a constant strictly greater than 0, corresponding to a calibrated gain value. This gain value is calibrated to adjust the control applied to the motor 14. If the dynamic variable S is 0 or tends to zero, then the tracking error er tends to 0, which is the goal for the regulation of the angular position of the drive shaft.
[0037] Des calculs permettent de déterminer l'intensité minimale Iref à appliquer au moteur électrique pour annuler la variable dynamique S. L'intensité Iref s'exprime comme suit :  Calculations make it possible to determine the minimum intensity Iref to be applied to the electric motor to cancel the dynamic variable S. The intensity Iref is expressed as follows:
Figure imgf000010_0001
Figure imgf000010_0001
[0038] La régulation de la vanne étant effectuée avec une rétroaction, on peut remplacer cette valeur d'intensité dans l'équation (2), pour aboutir à la relation :  The regulation of the valve being carried out with a feedback, it is possible to replace this intensity value in equation (2), to arrive at the relation:
·· ·  ·· ·
er =— Ks * er  er = - Ks * er
[0039] Cette relation se résout avec une valeur de poursuite de la forme er = En * e -Ks*t This relation is solved with a continuation value of the form er = E n * e -Ks * t
[0040] E0 étant une constante et t le temps. E0 being a constant and t the time.
[0041 ] L'erreur de poursuite converge donc vers 0 dans le temps. Par ailleurs, cette convergence est obtenue indépendamment du paramètre Kr de couple résistant. Ainsi, la commande avec l'intensité Iref déterminée s'avère robuste vis-à-vis de ce paramètre Kr. Le paramètre Kr peut être déterminé par des essais sur la vanne 10.  The tracking error converges to 0 in time. Moreover, this convergence is obtained independently of the parameter Kr of resistant torque. Thus, the control with the determined intensity Iref is robust with respect to this parameter Kr. The parameter Kr can be determined by tests on the valve 10.
[0042] De plus, une telle commande peut être générée avec un nombre réduit de capteur, renforçant la fiabilité et abaissant le coût de la boucle de recyclage de gaz d'échappement. Par ailleurs, une telle commande peut être utilisée pour l'ensemble de la course de l'élément obturant, sans nécessiter l'utilisation d'une multiplicité de modèles. En outre, une telle commande peut être mise en oeuvre avec des méthodes de calibration relativement courtes et simples à mettre au point via un seul paramètre Ks. In addition, such a control can be generated with a reduced number of sensors, increasing the reliability and lowering the cost of the exhaust gas recirculation loop. Moreover, such a control can be used for the entire race of the closing element, without requiring the use of a multiplicity of models. In addition, such a command may be implemented with relatively short calibration methods and easy to develop via a single parameter Ks.
[0043] La figure 3 est un diagramme illustrant les paramètres et les opérations mises en oeuvre pour le calcul de l'intensité de commande Iref du moteur 14.  FIG. 3 is a diagram illustrating the parameters and the operations implemented for the calculation of the control intensity Iref of the motor 14.
[0044] Le module 31 calcule la différence entre Θ et 9c. Le module 32 calcule la dérivée temporelle du signal de sortie du module 31 . Le module 33 multiplie le signal de sortie du module 32 pas un facteur (-Ks). Le module 38 calcule la dérivée seconde temporelle de 9c. Le module 34 additionne les signaux de sortie des modules 33 et 38. Le module 35 multiplie le signal de sortie du module 34 par le facteur J. Le module 36 additionne le signal de sortie du module 35 à la valeur Kr. Le module 37 multiplie le signal de sortie du module 36 par un facteur (1 /Km) pour générer le signal de commande en intensité Iref.  The module 31 calculates the difference between Θ and 9c. The module 32 calculates the time derivative of the output signal of the module 31. The module 33 multiplies the output signal of the module 32 not a factor (-Ks). The module 38 calculates the second time derivative of 9c. The module 34 adds the output signals of the modules 33 and 38. The module 35 multiplies the output signal of the module 34 by the factor J. The module 36 adds the output signal of the module 35 to the value Kr. The module 37 multiplies the output signal of the module 36 by a factor (1 / Km) to generate the intensity control signal Iref.
[0045] La figure 4 est un diagramme illustrant la transformation de la commande d'intensité Iref en une commande à modulation de largeur d'impulsion, pour appliquer un rapport cyclique de tension entre les bornes d'alimentation du moteur 14, et ainsi disposer d'une commande simplifiée et adapté au HW du CMM.  FIG. 4 is a diagram illustrating the transformation of the intensity control Iref into a pulse width modulation control, to apply a cyclic voltage ratio between the power supply terminals of the motor 14, and thus dispose of a simplified order adapted to the CMM HW.
[0046] Le module 41 réalise une saturation de la valeur Iref calculée. Le module 42 multiplie le signal de sortie du module 41 par le facteur Km pour convertir l'intensité en tension, le module 43 multiplie la sortie du module 42 par une valeur UBat correspondant à une tension de batterie (par exemple 12V correspondant à une tension de batterie connectée au réseau de bord), le module 44 multiplie la sortie du module 43 par une valeur de gradation (par exemple 1 /100) du signal de commande, pour générer le signal de commande Upwm.  The module 41 achieves a saturation of the calculated Iref value. The module 42 multiplies the output signal of the module 41 by the factor Km to convert the intensity into voltage, the module 43 multiplies the output of the module 42 by a value UBat corresponding to a battery voltage (for example 12V corresponding to a voltage connected to the on-board network), the module 44 multiplies the output of the module 43 by a gradation value (for example 1/100) of the control signal, to generate the control signal Upwm.

Claims

REVENDICATIONS
1 . Procédé de commande d'un moteur électrique (14) d'entraînement d'un obturateur (13) rotatif d'une vanne (10) de recyclage de gaz d'échappement d'un moteur à combustion interne, comprenant les étapes de: 1. A method of controlling an electric motor (14) for driving a rotary shutter (13) of an exhaust gas recirculation valve (10) of an internal combustion engine, comprising the steps of:
-déterminer la position angulaire Θ de l'obturateur (13) ;  -determine the angular position Θ of the shutter (13);
-générer une consigne de position angulaire 9c de l'obturateur (13) en fonction de l'actionnement d'une commande d'accélérateur du moteur à combustion interne ;  generating a setpoint of angular position 9c of the shutter (13) as a function of the actuation of an accelerator control of the internal combustion engine;
-générer une consigne d'alimentation du moteur électrique basée sur une intensité de commande de référence Iref déterminée par :  generating a power supply instruction of the electric motor based on a reference control intensity Iref determined by:
Figure imgf000012_0001
avec Ks une constante strictement supérieure à 0, J l'inertie de rotation des éléments mobiles de la vanne, Km le couple du moteur électrique, et Kr une valeur modélisant des dispersions de fonctionnement de la vanne.
Figure imgf000012_0001
with Ks a constant strictly greater than 0, J the rotational inertia of the movable elements of the valve, Km the torque of the electric motor, and Kr a value modeling the operating dispersions of the valve.
Procédé de commande selon la revendication 1 , dans lequel un ressort de rappel rappelle l'obturateur (13) vers une position de repos obturant l'écoulement de gaz d'échappement recyclé en l'absence d'excitation du moteur électrique (14). Control method according to claim 1, wherein a return spring recalls the shutter (13) to a rest position closing the flow of recycled exhaust gas in the absence of excitation of the electric motor (14).
Procédé de commande selon la revendication 1 ou 2, dans lequel ladite consigne d'alimentation est calculée en transformant ladite intensité de commande de référence en un signal à modulation de largeur d'impulsion (Upwm) appliqué sur une entrée de commande du moteur électrique (14). A control method according to claim 1 or 2, wherein said power setpoint is calculated by transforming said reference control intensity into a pulse width modulated signal (Upwm) applied to a control input of the electric motor ( 14).
Procédé de commande selon la revendication 3, dans lequel la transformation comprend un écrêtage de l'intensité de commande de référence. A control method according to claim 3, wherein the transform comprises a clipping of the reference control intensity.
Procédé de commande selon la revendication 4, dans lequel la transformation comprend la multiplication du signal écrêté par le couple moteur Km. A control method according to claim 4, wherein the transformation comprises multiplying the clipped signal by the engine torque Km.
Procédé de commandes sur l'une quelconque des revendications précédentes, dans lequel Ks est une valeur de gain pour l'ajustement du fonctionnement de la vanne (10). A control method as claimed in any one of the preceding claims, wherein Ks is a gain value for adjusting the operation of the valve (10).
7. Moteur à combustion interne, caractérisé en ce qu'il comprend : 7. Internal combustion engine, characterized in that it comprises:
-un circuit de recyclage de gaz d'échappement comprenant une vanne commandée pour réguler le débit de gaz d'échappement recyclés la traversant, la vanne (10) comprenant un élément d'obturation (13) monté à rotation dans un passage des gaz d'échappement et comprenant un moteur électrique entraînant l'élément d'obturation ; an exhaust gas recirculation circuit comprising a controlled valve for regulating the flow of recycled exhaust gas therethrough, the valve (10) comprising a shutter element (13) rotatably mounted in a gas passage; exhaust system comprising an electric motor driving the shutter member;
-un module de commande (17) du moteur électrique apte à :  a control module (17) for the electric motor adapted to:
-générer une consigne de position angulaire 9c de l'obturateur (13) en fonction de l'actionnement d'une commande d'accélérateur du moteur à combustion interne ;  generating a setpoint of angular position 9c of the shutter (13) as a function of the actuation of an accelerator control of the internal combustion engine;
-obtenir une valeur de position angulaire Θ de l'obturateur (13) ;  obtaining an angular position value Θ from the shutter (13);
-générer une consigne d'alimentation du moteur électrique (14) basée sur une intensité de commande de référence Iref déterminée par :  generating a power supply command of the electric motor (14) based on a reference control intensity Iref determined by:
Figure imgf000013_0001
Figure imgf000013_0001
avec Ks une constante strictement supérieure à 0, J l'inertie de rotation des éléments mobiles de la vanne, Km le couple du moteur électrique, et Kr une valeur modélisant des dispersions de fonctionnement de la vanne.  with Ks a constant strictly greater than 0, J the rotational inertia of the movable elements of the valve, Km the torque of the electric motor, and Kr a value modeling the operating dispersions of the valve.
Moteur à combustion interne selon la revendication 7, comprenant un ressort de rappel rappelant l'obturateur (13) vers une position d'interruption de l'écoulement des gaz d'échappement à travers la vanne. An internal combustion engine as claimed in claim 7 including a return spring biasing the shutter member (13) to a position to interrupt the flow of exhaust gas through the valve.
Moteur à combustion interne selon la revendication 7 ou 8, dans lequel le module de commande (17) génère une consigne d'alimentation du moteur électrique (14) en transformant ladite intensité de commande de référence en un signal à modulation de largeur d'impulsion (Upwm), et dans lequel le module de commande (17) applique le signal à modulation de largeur d'impulsion sur une entrée de commande du moteur électrique. Internal combustion engine according to claim 7 or 8, wherein the control module (17) generates a power supply command of the electric motor (14) by converting said reference control intensity into a pulse width modulated signal. (Upwm), and wherein the control module (17) applies the pulse width modulated signal to a control input of the electric motor.
PCT/FR2011/050718 2010-04-23 2011-03-31 Method for controlling an egr valve that is resistant to dispersion WO2011131884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1053143 2010-04-23
FR1053143A FR2959276B1 (en) 2010-04-23 2010-04-23 METHOD FOR CONTROLLING AN EGR VALVE, ROBUST AGAINST DISPERSIONS

Publications (1)

Publication Number Publication Date
WO2011131884A1 true WO2011131884A1 (en) 2011-10-27

Family

ID=43333280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050718 WO2011131884A1 (en) 2010-04-23 2011-03-31 Method for controlling an egr valve that is resistant to dispersion

Country Status (2)

Country Link
FR (1) FR2959276B1 (en)
WO (1) WO2011131884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990775A1 (en) * 2012-05-15 2013-11-22 Peugeot Citroen Automobiles Sa Method for controlling angular position of shutter of valve in exhaust line of thermal engine of car, involves defining dynamic variable error, and determining electric current by adding convergence term to dynamic variable error

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1053143A (en) 1952-03-28 1954-02-01 Beton Acier Process for the manufacture of tanks and other hollow structures in prestressed reinforced concrete
EP0750103A2 (en) * 1995-06-21 1996-12-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for an internal combustion engine
WO2002014667A1 (en) * 2000-08-11 2002-02-21 Siemens Aktiengesellschaft Driver circuit for an electrical actuator
FR2881536A1 (en) 2005-02-03 2006-08-04 Peugeot Citroen Automobiles Sa Movable closing unit`s e.g. disk, position controlling method for e.g. electric valve, of heat engine, involves positioning disk by feedback control in closed loop based on error between position of valve disk and set point position
FR2891585A1 (en) * 2005-10-03 2007-04-06 Valeo Sys Controle Moteur Sas Driving motor control correction device for heat engine, has gain adjustment units adjusting gain of correction units based on value of gain parameter selected from group comprising error signal and derivative of set point and error signal
FR2927429A1 (en) * 2008-02-08 2009-08-14 Peugeot Citroen Automobiles Sa Mobile closing element e.g. cork, position controlling element for drive train, involves determining positioning command, and completing displacement command by combining two positioning commands with each other

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1053143A (en) 1952-03-28 1954-02-01 Beton Acier Process for the manufacture of tanks and other hollow structures in prestressed reinforced concrete
EP0750103A2 (en) * 1995-06-21 1996-12-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for an internal combustion engine
WO2002014667A1 (en) * 2000-08-11 2002-02-21 Siemens Aktiengesellschaft Driver circuit for an electrical actuator
FR2881536A1 (en) 2005-02-03 2006-08-04 Peugeot Citroen Automobiles Sa Movable closing unit`s e.g. disk, position controlling method for e.g. electric valve, of heat engine, involves positioning disk by feedback control in closed loop based on error between position of valve disk and set point position
FR2891585A1 (en) * 2005-10-03 2007-04-06 Valeo Sys Controle Moteur Sas Driving motor control correction device for heat engine, has gain adjustment units adjusting gain of correction units based on value of gain parameter selected from group comprising error signal and derivative of set point and error signal
FR2927429A1 (en) * 2008-02-08 2009-08-14 Peugeot Citroen Automobiles Sa Mobile closing element e.g. cork, position controlling element for drive train, involves determining positioning command, and completing displacement command by combining two positioning commands with each other

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990775A1 (en) * 2012-05-15 2013-11-22 Peugeot Citroen Automobiles Sa Method for controlling angular position of shutter of valve in exhaust line of thermal engine of car, involves defining dynamic variable error, and determining electric current by adding convergence term to dynamic variable error

Also Published As

Publication number Publication date
FR2959276A1 (en) 2011-10-28
FR2959276B1 (en) 2012-04-06

Similar Documents

Publication Publication Date Title
FR2921691A1 (en) METHOD FOR CONTROLLING A TURBOCHARGER USING A PHYSICAL MODEL OF THE TURBOCHARGER REGIME
FR2771450A1 (en) CONTROLLING THE SUPPLY PRESSURE OF A SUPERCHARGED INTERNAL COMBUSTION ENGINE AND USE THEREOF
FR2852631A1 (en) Thermal engine controlling method, involves monitoring input variable/internal size of physical model based on deviation between calculated and measured values of physical size of model, to correct input variable/internal size
WO2014083248A1 (en) Method for controlling a double-supercharged combustion engine
FR2874237A1 (en) Supercharged internal combustion engine e.g. gasoline engine, controlling method, involves comparing values of mass air flow, and estimating defect if values have amplitude difference higher than predefined threshold
FR2883040A1 (en) INTERNAL COMBUSTION ENGINE AND METHOD OF MANAGING THE SAME
FR2903736A1 (en) METHOD FOR CONTROLLING THE SUPPLY PRESSURE OF AN INTERNAL COMBUSTION ENGINE FOR MOTOR VEHICLES.
FR2868473A1 (en) Internal combustion engine e.g. diesel engine, control process for vehicle, involves adapting upstream control based on output magnitude of supply pressure adjustment, and correcting set point position of actuation unit based on magnitude
FR2953253A1 (en) METHOD FOR CONTROLLING TWO STAGE SUPERIORING OF FIXED GEOMETRY TURBOCHARGERS WITH DYNAMIC ESTIMATOR AND LIMITING THE PRESSURE BEFORE TURBINE
FR2847941A1 (en) Control of an internal combustion engine with an exhaust gas reintroduction system, where the quantity of exhaust gases reintroduced is controlled as a function of the crude exhaust gas emission
EP2834508B1 (en) System for controlling the vanes of a variable geometry turbine with learning and linearisation
WO2011131884A1 (en) Method for controlling an egr valve that is resistant to dispersion
US20090183788A1 (en) Regulator unit and method for regulating a flap opening of a flap situated in a mass flow line
FR2944318A3 (en) Gas intake and exhaust system for internal-combustion engine of motor vehicle, has limiting units limiting volume flow at exit of turbine part relative to determined maximum volume flow
FR2875543A1 (en) METHOD AND DEVICE FOR MANAGING AN INTERNAL COMBUSTION ENGINE HAVING AT LEAST ONE CYLINDER
FR2873410A1 (en) Internal combustion engine e.g. diesel engine, controlling process, involves predefining control variables for actuators, influencing fresh air and exhaust gas flow, by comparing set points and actual values of mass air and gas outputs
FR2882576A1 (en) Internal combustion engine e.g. diesel engine, controlling method for motor vehicle, involves determining maximum value for pressure drop ratio set point such that during transitional stage adjusted pressure drop ratio is less than value
FR2877744A1 (en) METHOD AND DEVICE FOR CONTROLLING AN ADJUSTING MEMBER IN A MASS FLOW DRIVE
FR2955613A1 (en) Supercharging pressure regulating method for turbocompressor integrated heat engine i.e. petrol engine, of diesel vehicle, involves associating position correction with calculated presetting value to obtain position setpoint of units
FR2871195A1 (en) Internal combustion engine monitoring process for motor vehicle, involves adjusting controlled variable on value from requests on engine`s output variable if request different from pedal actuation request exists, or on actuation based value
EP2256322B1 (en) Effect of the nox control on the combustion noise control in an internal combustion engine
FR2932224A1 (en) Boost pressure regulating system for diesel engine, has regulators cooperating with switching unit for controlling actuators to modify pressures at outlets, and estimation unit dynamically estimating rate of low pressure turbocompressor
FR2944317A3 (en) Gas intake and exhaust system for internal combustion engine of motor vehicle, has control unit controlling valve relative to sensors measurements, where valve is arranged in outlet of exhaust of motor vehicle
EP1574694B1 (en) Apparatus and method controlling metering of injected fuel in a diesel engine
FR2885388A1 (en) Internal combustion engine e.g. supercharged diesel engine, controlling method for vehicle, involves controlling compressor not powered by turbine based on airflow set point permitting complete burning of fuel flow of preset total loads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11719320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11719320

Country of ref document: EP

Kind code of ref document: A1