WO2011131134A1 - 用机械波侦测地下人员信息的通讯系统和方法 - Google Patents

用机械波侦测地下人员信息的通讯系统和方法 Download PDF

Info

Publication number
WO2011131134A1
WO2011131134A1 PCT/CN2011/073116 CN2011073116W WO2011131134A1 WO 2011131134 A1 WO2011131134 A1 WO 2011131134A1 CN 2011073116 W CN2011073116 W CN 2011073116W WO 2011131134 A1 WO2011131134 A1 WO 2011131134A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical wave
signal
detecting
base station
mechanical
Prior art date
Application number
PCT/CN2011/073116
Other languages
English (en)
French (fr)
Inventor
胡馨
胡敏
黄剑毅
Original Assignee
Hu Alicia Xiao
Hu Min
Huang Jianyi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hu Alicia Xiao, Hu Min, Huang Jianyi filed Critical Hu Alicia Xiao
Priority to CN201180019557.4A priority Critical patent/CN103026643B/zh
Publication of WO2011131134A1 publication Critical patent/WO2011131134A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves

Definitions

  • the invention relates to the field of mechanical wave communication, and in particular to a mechanical wave communication system and method for detecting underground personnel information. Background technique
  • the communication system set up in the underground working environment mainly uses wired and wireless transmission based on electromagnetic waves.
  • electromagnetic waves are shielded, electromagnetic wave-based communication is completely interrupted, and ground rescue.
  • Personnel cannot know the underground trapped personnel. The exact location and the living conditions of the underground trapped people seriously hindered the ground from saving children.
  • Embodiments of the present invention provide a mechanical wave communication system and method capable of detecting and obtaining underground personnel information.
  • the system and method employ a mechanical wave based communication method. Since the mechanical wave is different from the electromagnetic wave, it will not be interrupted when the disaster occurs underground. Therefore, the system and method can reliably and accurately transmit information such as the position and living condition of the trapped person to the ground through mechanical wave communication in the event of a disaster in the underground. The ground rescued ⁇ t. action.
  • a mechanical wave communication system capable of detecting and obtaining underground personnel information
  • the mechanical wave communication system includes:
  • the transmitter is carried by an underground person or placed near an underground person and emits a mechanical wave signal under the operation of an underground person;
  • the mechanical wave detecting transmitting base station is disposed underground, for detecting a mechanical wave signal, and generating and transmitting a corresponding mechanical wave signal when the mechanical wave signal is detected;
  • the ground center station is set on the ground for detecting mechanical waves, detecting mechanical wave signals emitted by the transmitting base station, and processing the mechanical wave signals when the mechanical wave signals are detected to obtain underground personnel information.
  • the mechanical wave communication system has a plurality of mechanical wave detecting transmitting base stations which are disposed at a predetermined interval in the ground.
  • the predetermined spacing is in the range of 5 to 10 Zhu.
  • the mechanical wave detecting transmitting base station closest to the underground personnel detects the mechanical wave signal emitted by the mechanical wave transmitter
  • the mechanical wave detecting transmitting base station when the mechanical wave detecting transmitting base station closest to the underground personnel detects the mechanical wave signal emitted by the mechanical wave transmitter, the mechanical wave detecting transmitting base station generates a corresponding mechanical wave signal and transmits it to the adjacent The next next mechanical wave detects the transmitting base station, thereby sequentially transmitting the mechanical wave signal through all of the plurality of mechanical waves to detect all or some of the base stations until reaching the ground center station.
  • each mechanical wave detecting transmitting base station determines the source of the mechanical wave signal according to the detected mechanical wave signal, if the mechanical wave signal is from a mechanical wave transmitter, or if the mechanical wave signal is from a mechanical wave detecting and transmitting farther from the ground The base station further generates a corresponding mechanical wave signal and transmits it to the next mechanical wave detecting transmitting base station adjacent thereto. If the mechanical wave is from a mechanical wave detecting transmitting base station closer to the ground, the transmission of the mechanical wave signal is stopped.
  • the intensity of the mechanical wave signal emitted by the transmitting base station is detected by the mechanical wave to be greater than the intensity of the mechanical wave signal emitted by the mechanical wave transmitter.
  • the underground personnel operate the mechanical wave launcher to emit a mechanical wave signal when trapped;
  • the underground personnel information includes location information of the underground trapped person, or includes location information and living condition information of the underground trapped person.
  • each of the mechanical wave detecting transmitting base stations comprises: a mechanical wave detecting head for detecting a mechanical wave signal; a decoder for analyzing the detected mechanical wave signal, and determining the mechanical wave signal according to the analyzed signal Source, if the mechanical wave signal is from a mechanical wave transmitter, or if the mechanical wave signal is from a mechanical wave detecting transmitting base station farther from the ground, the parsed signal is transmitted to the encoder if the mechanical wave is from the ground closer
  • the mechanical wave detects the transmitting base station, and does not transmit the parsed signal to the encoder, thereby stopping the transmission of the mechanical wave signal; and the encoder is configured to add the current mechanical wave detecting transmitting base station number to the parsed signal, and encode the same.
  • a mechanical wave transmitter for emitting the encoded signal as a mechanical wave.
  • each of the mechanical wave detecting transmitting base stations further comprises: a signal amplifier that amplifies the encoded signal to be transmitted.
  • each of the mechanical wave detecting transmitting base stations further comprises: a base station emergency power supply, and when the external power supply for supplying the mechanical wave detecting base station is normally cut off, the mechanical wave detecting transmitting base station is powered.
  • the ground center station comprises: a ground mechanical wave detector for detecting a mechanical wave signal; a decoder for decoding the detected mechanical wave signal to obtain a decoded number; and a data processor; The decoded data is processed to obtain underground personnel information.
  • the ground center station further comprises: a notification device, configured to notify the underground personnel information.
  • the notification device can be a display and/or a speaker.
  • each of the mechanical wave detecting transmitting base stations is housed in a rectangular or spherical metal casing having a wall thickness of 2 mm or more.
  • the ground center station is packaged in the handset box for handheld motion detection on the ground.
  • a mechanical wave communication method is further provided for detecting and obtaining underground personnel information, and the mechanical wave communication method includes:
  • the mechanical wave signal is emitted by an underground mechanical person's operating mechanical wave launcher, wherein the mechanical wave launcher is carried by an underground person or placed near an underground person;
  • the detection base station is detected by a mechanical wave disposed underground, detecting a mechanical wave signal, and generating and transmitting a corresponding mechanical wave signal when the mechanical wave signal is detected;
  • the ground wave station is set on the ground to detect the mechanical wave signal transmitted from the mechanical wave detecting base station, and the mechanical wave signal is processed when the mechanical wave signal is detected to obtain underground personnel information.
  • the mechanical wave communication system and method according to the embodiment of the present invention overcomes the deficiencies of the prior art based on electromagnetic wave communication by adopting a mechanical wave-based communication method.
  • a plurality of mechanical wave detecting transmitting base stations are disposed underground.
  • the underground personnel can operate the mechanical wave carried around or near it to emit mechanical waves.
  • the transmitted mechanical wave is detected by the nearest neighboring mechanical wave detecting transmitting base station, and the mechanical wave detecting transmitting base station generates a corresponding mechanical wave signal and transmits it to the next mechanical wave adjacent to the detecting and transmitting base station, thereby
  • the mechanical wave signal is sequentially transmitted through a plurality of mechanical waves to detect all or some of the base stations in the transmitting base station until reaching the ground center station.
  • the ground center station obtains underground personnel information by processing mechanical wave signals.
  • the mechanical wave communication system and method according to an embodiment of the present invention can quickly, accurately, and reliably transmit underground personnel information to the ground, assisting, for example, ground rescue operations.
  • FIG. 1 is a schematic block diagram of a mechanical wave communication system in accordance with an embodiment of the present invention.
  • FIGS. 2(a)-2(c) are schematic block diagrams of a mechanical wave detecting transmitting base station according to an embodiment of the present invention, respectively.
  • 3 is a schematic block diagram of a ground center station in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a mechanical wave communication method according to an embodiment of the present invention. detailed description
  • . 1 is a schematic block diagram of a mechanical wave communication system in accordance with an embodiment of the present invention.
  • the mechanical wave communication system shown in Fig. 1 is capable of detecting and obtaining underground personnel information by mechanical wave communication, and the system includes a mechanical wave transmitter 1, a mechanical wave detecting transmitting base station 2, 3 and 4, and a ground center station 5.
  • the mechanical wave detecting transmitting base stations 2, 3, 4 are sequentially further away from the mechanical wave transmitter 1 and sequentially from the ground (or the ground center) Station 5) the closer.
  • the mechanical wave transmitter 1 A hand-held device that can be carried by underground personnel, or can be placed near underground personnel so that underground personnel can use it at any time. Under the operation of underground personnel, the mechanical wave transmitter 1 transmits a mechanical wave signal.
  • the mechanical wave launcher 1 has a simple structure and a small size that are easy to carry.
  • the mechanical wave transmitter 1 may include only an operation button, a signal generator, and a signal transmitter.
  • the signal emitter can be a piezoelectric ceramic sheet.
  • the mechanical wave transmitter 1 can also include, for example, other operating buttons that the underground personnel can operate to indicate the location and/or living conditions.
  • the mechanical wave transmitter 1 may further comprise, for example, an encoder that encodes a signal generated by the signal generator, for example, the number of the mechanical wave transmitter 1 (eg, a pre-assigned identification ID) may be added to the signal generated by the signal generator and The signal is encoded to indicate, for example, the source of the signal.
  • the mechanical wave transmitter 1 may also include, for example, a signal amplifier that amplifies the generated signal.
  • the mechanical wave may be an ultrasonic wave or an infrasound wave, preferably an infrasound wave, because of its large propagation distance.
  • Mechanical waves are different from electromagnetic waves and are not interrupted in the event of a disaster in the ground. They can transmit underground personnel information quickly and reliably.
  • the mechanical wave detecting and transmitting base stations 2, 3 and 4 are arranged underground, for detecting mechanical wave signals, and generating and transmitting corresponding mechanical wave signals when the mechanical wave signals are detected.
  • the mechanical wave detecting transmitting base station will be further described later with reference to FIG.
  • the mechanical wave detecting transmitting base stations 2, 3 and 4 are disposed underground at a predetermined interval from each other, and preferably, the predetermined pitch is in the range of 5 to 10 meters to meet the demand for mechanical wave transmission.
  • FIG. 1 only shows three mechanical wave detecting transmitting base stations, it can be understood that any number of mechanical wave detecting and transmitting base stations can be set according to actual application requirements.
  • an underground personnel operates a mechanical wave launcher to emit a mechanical wave signal.
  • the mechanical wave signal is detected by a mechanical wave detecting transmitting base station that is closest to the underground personnel.
  • the mechanical wave detecting transmitting base station generates a corresponding mechanical wave signal and transmits it to the next mechanical wave detecting transmitting base station adjacent thereto.
  • the mechanical wave signals are sequentially transmitted through a plurality of mechanical waves to detect all or some of the base stations in the transmitting base station until reaching the ground center station.
  • the mechanical wave detecting transmitting base station 2 is closest to the underground personnel, and detects the mechanical The mechanical wave signal emitted by the wave transmitter 1 and in response thereto generates a corresponding mechanical wave signal and transmits it to the next mechanical wave detecting transmitting base station 3 adjacent thereto.
  • the mechanical wave detecting transmitting base station 3 then generates a corresponding mechanical wave signal and transmits it to the transmitting base station 4 by the next mechanical wave adjacent thereto.
  • the mechanical wave detection transmitting base station 4 in turn generates a corresponding mechanical wave signal and transmits it to the ground.
  • the underground wave personnel in the vicinity of the mechanical wave detecting transmitting base station 3 operate the mechanical wave transmitter carried by the mechanical wave transmitter to transmit the mechanical wave signal.
  • the transmitting base stations 3 and 4 are transmitted via the mechanical wave detection to transmit the corresponding mechanical wave signals to the ground.
  • the intensity of the mechanical wave transmitted by the transmitting base station is detected by the mechanical wave.
  • the intensity of the signal is greater than the intensity of the mechanical wave transmitted by the mechanical wave transmitter.
  • the ground center station 5 is disposed on the ground for detecting a mechanical wave signal transmitted from the mechanical wave detecting transmitting base station, and processing the mechanical wave signal when the mechanical wave signal is detected to obtain underground personnel information.
  • a ground center station 5 may include a ground mechanical wave detector for detecting mechanical wave signals, a decoder for decoding the detected mechanical wave signals to obtain decoded data, and a data processor for processing the decoded data. , to get underground personnel information.
  • the ground center station 5 will be further described later with reference to FIG.
  • FIG. 1 is schematic block diagrams of a mechanical wave detecting transmitting base station according to an embodiment of the present invention, respectively.
  • the mechanical wave detecting transmitting base station 2 shown in Fig. 1 will be described as an example. It can be understood that other mechanical wave detecting and transmitting base stations can also adopt the same structure as described below.
  • the mechanical wave detecting transmitting base station 2 may include a mechanical wave detecting head 20, a decoder 22, an encoder 24, and a mechanical wave transmitter 26.
  • the mechanical wave detecting head 20 detects a mechanical wave signal transmitted from the mechanical wave transmitter 1 or other mechanical wave detecting transmitting base station.
  • the decoder 22 analyzes the detected mechanical wave signal to obtain a source of the mechanical wave signal therefrom. For example, the source of the mechanical wave signal can be determined based on the identification ID included in the signal.
  • the mechanical wave signal is from the mechanical wave transmitter 1, or if the mechanical wave signal is from a mechanical wave detecting transmitting base station that is further from the ground (ie, closer to the transmitting source of the mechanical wave signal), the resolved mechanical wave signal is transmitted to the encoder twenty four. If the mechanical wave is from a mechanical wave detecting transmitting base station that is closer to the ground (i.e., further away from the transmitting source of the mechanical wave signal), the detected mechanical wave signal is not transmitted to the encoder 24, thereby stopping the mechanical wave signal relay. In this way, it is possible to avoid an infinite loop of mechanical wave signals between the respective mechanical wave detecting transmitting base stations.
  • the encoder 24 adds the own station number (for example, a pre-assigned identification ID) to the mechanical wave signal analyzed by the decoder 22, and encodes the obtained signal to generate an encoded signal.
  • the mechanical wave detecting transmitting base station that receives the first mechanical wave signal from the mechanical wave transmitter 1 can also add a position related to its own position in the signal. Information, which can be used to determine the location of underground personnel based on this information.
  • the mechanical wave transmitter 26 uses the encoded signal as a machine The mechanical wave is emitted.
  • the intensity of the corresponding mechanical wave signal generated may be greater than the intensity of the detected mechanical wave signal.
  • the material of the mechanical wave detecting head 20 and the mechanical wave emitter 26 may be a piezoelectric ceramic sheet.
  • Both the decoder 22 and the encoder 24 can be implemented using a microcontroller chip, such as the ATxmegal6A4.
  • the mechanical wave detecting transmitting base station 2 receives the mechanical wave signal, and the decoder 22 parses out the mechanical wave signal from the received mechanical wave signal from the mechanical wave transmitter 1, and thus transmits the analyzed signal to the encoder 24.
  • the encoder 24 can add the ID of the mechanical wave detection transmitting base station 2 to the parsed signal and encode the signal.
  • the mechanical wave detecting transmitting base station 2 receives the mechanical wave signal, and the decoder 22 parses out the mechanical wave signal from the received mechanical wave signal from the mechanical wave transmitter 3. Since the mechanical wave. The transmitter 3 is closer to the ground, the parsed signal is not sent to the encoder 24, and the signal relay is stopped.
  • the mechanical wave detecting transmitting base station 2 may further include: a signal amplifier 28 for amplifying the encoded signal to be transmitted.
  • a signal amplifier 28 for amplifying the encoded signal to be transmitted.
  • the signal amplifier 28 can be implemented with an operational amplifier component, such as an AD621 operational amplifier.
  • the mechanical wave detecting transmitting base station 2 may further include a base station emergency power source 29 according to an embodiment of the present invention.
  • the external power source can be used to supply power to the mechanical wave detection transmitting base station.
  • the base station emergency power source 29 can supply power to the various components of the mechanical wave detecting transmitting base station 2 when, for example, a disaster such as a mine disaster occurs, causing the external power source to be cut off. This ensures that the mechanical wave detection transmitting base station 2 is still operating normally in the event of a disaster, thus ensuring fast, reliable and accurate signal transmission and information transfer.
  • the base station emergency power supply 29 can be powered by a suitable form, such as a battery.
  • Root 4 In the embodiment of the present invention, all components of the mechanical wave detecting transmitting base station 2 are packaged in a rectangular or spherical metal casing having a wall thickness of 2 mm or more, and have waterproof and compressive properties.
  • the packaged mechanical wave detecting transmitting base station 2 can be mounted, for example, on the side wall of the underground passage of the mine. This package structure ensures that the mechanical wave detects the damage to the base station 2 in the event of a disaster, ensuring its normal operation and fast, reliable and accurate signal transmission and information transfer.
  • the ground center station 5 includes: a ground mechanical wave detector 30 for detecting a mechanical wave signal; a decoder 32 for decoding the detected mechanical wave signal to obtain decoded data; and a data processor 34, used to process the decoded number to obtain underground personnel information.
  • the data processor may use any suitable processing algorithm to analyze the decoded data to extract underground personnel information therefrom.
  • the ground center station 5 may further include a notification device 36 for notifying the obtained underground personnel information, such as underground Personnel location or living conditions. It will be appreciated that the notification device 36 may also be excluded from the ground center station 5, but externally.
  • the ground center station 5 transmits the obtained information to the notification device 36 for notification.
  • the notification device 36 can be a suitable type of display, such as a liquid crystal display, for displaying the location or survival status information of an underground person.
  • the notification device 36 may also be a speaker that audibly informs the information.
  • the material of the ground mechanical wave detector 30 may be a piezoelectric ceramic piece.
  • Both the decoder 32 and the data processor 34 can be implemented in the form of a microcontroller chip, such as the ATxmegal 6A4.
  • the ground center station can be packaged in a handset box for handheld motion detection on the ground. In this way, detection can be performed in a more flexible and efficient manner.
  • the mechanical wave communication method 40 includes: at step 402, a mechanical wave signal is transmitted by an underground person's operating mechanical wave transmitter 1, wherein the mechanical wave, the transmitter 1 is carried by an underground person or placed near an underground person; Step 404, detecting the transmitting base station 2 by the mechanical wave set in the underground, detecting the mechanical wave emitted from the mechanical wave transmitter 1, and generating and transmitting a corresponding mechanical wave signal when the mechanical wave signal is detected; at step 406, further The mechanical wave detects and transmits the base station 3 and 4 to generate and transmit the corresponding mechanical wave signal. Finally, in step 408, the mechanical wave signal transmitted from the mechanical wave detecting transmitting base station 4 is detected by the ground center station 5 disposed on the ground. And processing the mechanical wave, the signal when the mechanical wave signal is detected, to obtain underground personnel information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Transmitters (AREA)

Description

用机械波侦测地下人员信息的通讯系统和方法 技术领域
本发明涉及机械波通讯领域, 具体涉及一种用于侦测地下人员信息的机械波通讯 系统和方法。 背景技术
目前, 地下工作环境中设置的通讯系统主要使用基于电磁波的有线和无线传输, 在例如井下矿难发生时电磁波被屏蔽, 基于电磁波的通讯完全中断, 地面救搓.人员无 法确切知道地下受困人员的确切位置以及地下受困人员的生存状况, 严重阻碍地面救 孩,.行动。
需要一种能够克服现有通讯系统的不足, 基本不会受到地下灾难影响的地下通讯 方式, 其能够向地面提供地下人员的例如位置和生存状况等信息。 发明内容
本发明实施例提供了一种机械波通讯系统和方法, 其能够侦测和获得地下人员信 息, 该系统和方法采用基于机械波的通讯方式。 由于机械波不同于电磁波, 在地下发 生灾难时不会被中断, 因此该系统和方法能够在地下发生灾难时通过机械波通讯将受 困人员的位置以及生存状况等信息可靠、 准确地传送至地面, 协助了地面救 ^t.行动。
根据本发明实施例, 提供一种机械波通讯系统, 能够侦测和获得地下人员信息, 所述机械波通讯系统包括:
机械波.发射器, 由地下人员携带或放置在地下人员附近, 并在地下人员的操作下 发射机械波信号;
机械波侦测发射基站, 设置在地下, 用于侦测机械波信号, 并在侦测到机械波信 号时产生和发射相应机械波信号; 以及
地面中心站,设置在地面上,用于侦测从机械波,.侦测发射基站发射的机械波信号, 并在侦测到机械波信号时对机械波信号进行处理, 以获得地下人员信息。
优选地, 机械波通讯系统具有多个机械波侦测发射基站, 彼此以预定间距设置在 地下。 优选地, 预定间距在 5到 10朱的范围内。
优选地, 当与地下人员最邻近的机械波侦测发射基站侦测到机械波发射器发射的 机械波信号时, 该机械波侦测发射基站产生相应的机械波信号并将其发射到由与之邻 近的下一机械波侦测发射基站, 由此将机械波信号依次传递通过多个机械波侦测发射 基站中的全部或一些基站, 直至达到地面中心站。
优选地, 每一个机械波侦测发射基站根据侦测到的机械波信号来确定该机械波信 号的来源, 如果该机械波信号来自于机械波发射器, 或者如果该机械波信号来自距离 地面更远的机械波侦测发射基站, 则进一步产生相应的机械波信号并将其发射到由与 之邻近的下一机械波侦测发射基站, 如果该机械波来自于距离地面更近的机械波侦测 发射基站, 则停止机械波信号的传递。
优选地, 由机械波侦测发射基站发射的机械波信号的强度大于由机械波发射器发 _ 射的机械波.信号的强度。
优选地, 地下人员在受困时操作机械波发射器发射机械波信号; 地下人员信息包 括地下受困人员的位置信息, 或者包括地下受困人员的位置信息和生存状况信息。
优选地, 每个机械波侦测发射基站包括: 机械波侦测头, 用于侦测机械波信号; 解码器, 用于对侦测到的机械波信号进行解析, 并根据解析的信号来确定该机械波信 号的来源, 如果该机械波信号来自于机械波.发射器, 或者如果该机械波信号来自距离 地面更远的机械波侦测发射基站, 则将解析的信号传送给编码器, 如果该机械波来自 于距离地面更近的机械波侦测发射基站, 则不将解析的信号传送给编码器, 从而停止 机械波信号的传递; 编码器, 用于在解析的信号中加入当前机械波侦测发射基站的编 号, 并对其进行编码, 以产生编码的信号; 机械波发射器, 用于将编码的信号作为机 械波发射出。
优选地, 每个机械波侦测发射基站还包括: 信号放大器, 对要发射的编码的信号 进行放大。
优选地, 每个机械波侦测发射基站还包括: 基站应急电源, 当在正常情况下为机 械波侦测发射基站供电的外部电源切断时, 为机械波侦测发射基站供电。
优选地, 地面中心站包括: 地面机械波侦测器, 用于侦测机械波信号; 解码器, 用于对侦测到的机械波信号进行解码, 得到解码数.据; 以及数.据处理器, 用于对解码 数据进行处理, 以获得地下人员信息。
优选地, 地面中心站还包括: 通知装置, 用于通知地下人员信息。 通知装置可以 是显示器和 /或杨声器。
优选地, 每个机械波侦测发射基站封装于壁厚 2毫米以上的矩型或球型金属外壳 内。
优选地, 地面中心站封装于手持机盒内, 以在地面上进行手持移动侦测。 根据本发明实施例,还提供一种机械波通讯方法,用于侦测和获得地下人员信息, 所述机械波通讯方法包括:
由地下人员的操作机械波发射器来发射机械波信号, 其中机械波发射器由地下人 员携带或放置在地下人员附近;
通过设置在地下的机械波侦测发射基站, 侦测机械波信号, 并在侦测到机械波信 号时产生和发射相应机械波信号; 以及
通过设置在地面上的地面中心站, 侦测从机械波侦测发射基站发射的机械波信 号, 并在侦测到机械波信号时对机械波信号进行处理, 以获得地下人员信息。
根.据本发.明实施例的机械波通讯系统和方法通过采用基于机械波的通讯方式, 克 服了现有技术中基于电磁波通讯的不足之处。 此外, 在地下设置了多个机械波侦测发 射基站。 当发生地下灾难时或者在需要向地面告知地下状况的情况下, 地下人员可以 操作随身携带或其附近的机械波发.射器发射机械波.。 该发射的机械波由最邻近的机械 波侦测发射基站侦测, 该机械波侦测发射基站产生相应的机械波信号并将其发射到由 与之邻近的下一机械波侦测发.射基站, 由此将机械波信号依次传递通过多个机械波侦 测发射基站中的全部或一些基站, 直至达到地面中心站。 地面中心站通过对机械波信 号进行处理来获得地下人员信息。 这样, 根据本发明实施例的机械波通讯系统和方法 能够快速、 准确、 可靠地将地下人员信息传送至地面, 协助了例如地面救.援行动。 附图说明
通过下面结合附图说明本^ 明的优选实施例, 将使本发明的上述及其它目的、 特 征和优点更加清楚, 其中:
图 1是根据本发明实施例的机械波通讯系统的示意框图。
图 2 ( a ) -2 ( c ) 分别是根据本发明实施例的机械波侦测发射基站的示意框图。 图 3是根据本发明实施例的地面中心站的示意框图。
图 4 #居本发明实施例的机械波通讯方法的示意流程图。 具体实施方式
以下参照附图, 对本发明的示例实施例进行详细描述, 本.发.明不限于下述示例实 施例。 为了清楚描述本 明的基本思想, 附图中仅示出了与本发明的技术方案密切相 关的部件、 功能或步骤, 并且以下描述中省略了对已知技术、 功能、 部件或步驟的具 体描述。 图 1是根据本发明实施例的机械波通讯系统的示意框图。 图 1所示机械波通讯系 统能够通过机械波通讯来侦测和获得地下人员信息, 该系统包括机械波发射器 1、 机 械波侦测发射基站 2、 3和 4、 以及地面中心站 5。 在图 1中, 作为示例, 按照从机械 波侦测发射基站 2、 3、 4的顺序, 机械波侦测发射基站 2、 3、 4依次距离机械波发射 器 1越远, 而依次距离地面 (或地面中心站 5 )越近。
机械波发射器 1可以由地下人员随身携带的手持式设备, 或者可以放置在地下人 员附近, 以便地下人员随时可以使用。 在地下人员的操作下, 机械波发射器 1发射机 械波信号。 优选地, 机械波发射器 1具有便于携带的简单结构和小型体积。 例如, 机 械波发射器 1可以只包括操作按钮、 信号发生器和信号发射器。 例如当发生井下矿难 时, 地下受困的人员可以操作该操作按钮, 触发机械波发射器 1中的信号发生器生成 应急信号并通过信号发射器作为机械波.发射出。 例如, 信号发射器可以采用压电陶瓷 片。 机械波.发射器 1还可以包括例如其他操作按鈕, 地下人员可以操作这些其他操作 按钮来指示所在位置和 /或生存状况。机械波发射器 1还可以包括例如编码器, 对信号 发生器生成的信号进行编码, 例如, 可以在信号生成器生成的信号中加入机械波发射 器 1的编号(例如,预先分配的标识 ID )并对信号进行编码来指示例如该信号的来源。 机械波发射器 1还可以包括例如信号放大器, 对生成的信号进行放大。
机械波可以是超声波或次声波, 优选地为次声波, 因为其传播距离较大。 机械波 不同于电磁波,在地下发生灾难时不会被中断, 能够快速、可靠地传递地下人员信息。
机械波侦测发射基站 2、 3和 4设置在地下, 用于侦测机械波信号, 并在侦测到 机械波信号时产生和发射相应机械波信号。 稍后将参照图 2进一步描述机械波侦测发 射基站。
根.据本发明实施例, 机械波侦测发射基站 2、 3和 4彼此以预定间距设置在地下, 优选地, 预定间距在 5到 10米的范围内, 以满足机械波传输的需要。
虽然图 1仅示出了 3个机械波侦测发射基站,但是可以理解,根据实际应用需求, 可以设置任意数目的机械波侦测发.射基站。
根据本发明实施例, 地下人员操作机械波发射器发射机械波信号。 该机械波信号 由与地下人员最邻近的机械波侦测发射基站侦测到。 响应于此, 该机械波侦测发射基 站产生相应的机械波信号并将其发射到由与之邻近的下一机械波侦测发射基站。 按照 这种方式, 将机械波信号依次传递通过多个机械波侦测发射基站中的全部或一些基 站, 直至达到地面中心站。
例如, 参照图 1示例, 机械波侦测发射基站 2距离地下人员最近, 其侦测到机械 波发射器 1发射的机械波信号, 并响应于此产生相应的机械波信号并将其发射到由与 之邻近的下一机械波侦测发射基站 3。 机械波侦测发射基站 3继而产生相应的机械波 信号并将其发射到由与之邻近的下一机械波侦测发射基站 4。 机械波侦测发射基站 4 继而产生相应的机械波信号并将其发射到地面。 可以理解, 例如也可以是机械波侦测 发射基站 3邻近的地下人员操作其携带的机械波发射器发射机械波信号。 在这种情况 下, 经由机械波侦测发射基站 3和 4将相应的机械波信号发射到地面。
根.据本发明实施例, 由机械波侦测发射基站发射的机械波.信号的强度大于由机械 波发射器发射的机械波.信号的强度。 这样, 能够可靠地传递地下人员信息至地面。
地面中心站 5设置在地面上,用于侦测从机械波侦测发射基站发射的机械波信号, 并在侦测到机械波信号时对机械波信号进行处理, 以获得地下人员信息。 尽管示出了 了一个地面中心站 5 , 但是根据实际应用需求, 可以设置任意数目的地面中心站。 地 面中心站 5可以包括地面机械波侦测器, 用于侦测机械波信号; 解码器, 用于对侦测 到的机械波信号进行解码, 得到解码数据; 以及数据处理器, 用于对解码数据进行处 理, 以获得地下人员信息。 稍后将参照图 3进一步描述地面中心站 5。
图 2 ( a ) -2 ( c )分别是根^本发明实施例的机械波侦测发射基站的示意框图。 以图 1所示机械波侦测发射基站 2为例进行描述。 可以理解, 其他机械波侦测发射基 站也可以采用下述相同的结构。
如图 2 ( a )所示, 机械波侦测发射基站 2可以包括机械波侦测头 20、 解码器 22、 编码器 24和机械波发射器 26。机械波侦测头 20侦测从机械波发射器 1或其他机械波 侦测发射基站发射的机械波信号。 解码器 22解析侦测到的机械波信号, 以从中获得 机械波信号的来源。例如,可以根据信号中包括的标识 ID,来确定机械波信号的来源。 如果机械波信号来自于机械波发射器 1 , 或者如果该机械波信号来自距离地面更远 (即, 距离该机械波信号的发射源更近)的机械波侦测发射基站, 则将解析的机械波 信号传输到编码器 24。 如果机械波来自于距离地面更近(即, 距离该机械波信号的发 射源更远)的机械波侦测发射基站, 则不将侦测到的机械波信号传输到编码器 24, 从 而停止机械波信号接力。 这样, 可以避免机械波信号在各个机械波侦测发射基站之间 无限循环。, 编码器 24在解码器 22解析的机械波信号中加入本站编号 (例如, 预先 分配的标识 ID ), 并对得到的信号进行编码, 以产生编码的信号。 此外, 根据本发明 实施例, 从机械波发射器 1第一个接收到机械波信号的机械波侦测发射基站(即, 距 离地下人员最近的机械波侦测发射基站)还可以在信号中加入有关自身位置的信息, 从而可以根.据该信息来确定地下人员的位置。 机械波发射器 26将编码的信号作为机 械波发射出。 优选地, 所产生的相应机械波信号的强度可以比侦测到机械波信号的强 度大。
机械波侦测头 20和机械波发射器 26的材料可以采用压电陶瓷片。。 解码器 22和 编码器 24均可以采用单片机芯片来实现, 例如 ATxmegal6A4。
作为示例, 机械波侦测发射基站 2接收到机械波信号, 解码器 22从接收到的机 械波信号中解析出机械波信号是来自机械波发射器 1的, 因此将解析的信号发送给编 码器 24。 编码器 24可以在解析的信号中加入机械波侦测发射基站 2的 ID , 并对信号 进行编码。 作为另一示例, 机械波侦测发射基站 2接收到机械波信号, 解码器 22从 接收到的机械波信号中解析出机械波信号是来自机械波发射器 3的。 由于机械波.发射 器 3是更靠近地面, 因此不将解析的信号发送给编码器 24, 停止信号接力。
如图 2 ( b )所示, 根据本发.明实施例, 机械波侦测发射基站 2还可以包括: 信号 放大器 28 , 对要发射的编码的信号进行放大。 这样, 可以提高信号的强度, 有助于可 靠、准确的信号传输。例如,信号放.大器 28可以采用运算放大器件来实现,例如 AD621 运算放大器。
如图 2 ( c )所示, 根据本发明实施例, 机械波侦测发.射基站 2还可以包括基站应 急电源 29。 在正常情况下, 可以由外部电源为机械波侦测发射基站供电。 当例如发生 井下矿难等灾难, 导致外部电源被切断时, 基站应急电源 29可以为机械波侦测发射 基站 2的各个元件供电。 这样, 确保了灾难发生时机械波侦测发射基站 2仍然能够正 常操作, 从而确保了快速、 可靠和准确的信号传输和信息传递。 基站应急电源 29可 以采用适合形式的电源, 例如电池。
根 4§本发明实施例, 机械波侦测发射基站 2的全部元件封装于壁厚 2毫米以上的 矩型或球型金属外壳内, 并具有防水和抗压性能。 这种封装后的机械波侦测发射基站 2可以安装在例如矿井的地下通道侧壁上。 这种封装结构确保了灾难发生时机械波侦 测发.射基站 2免受损坏, 从而确保了其正常操作以及快速、 可靠和准确的信号传输和 信息传递。
下面稍后将参照图 3进一步描述地面中心站 5。 如图 3所示, 地面中心站 5包括: 地面机械波侦测器 30, 用于侦测机械波信号; 解码器 32, 用于对侦测到的机械波信 号进行解码, 得到解码数据; 以及数据处理器 34, 用于对解码数,据进行处理, 以获得 地下人员信息。 数.据处理器 34可以采用任何适合的处理算法来对解码数据进行分析, 以从中提取地下人员信息。
地面中心站 5还可以包括通知装置 36, 用于通知获得的地下人员信息, 例如地下 人员位置或生存状况。 可以理解, 通知装置 36也可以不包括在地面中心站 5 中, 而 是独立地设置在外部。 地面中心站 5将获得的信息传送给通知装置 36以进行通知。 例如, 通知装置 36可以是适合类型的显示器, 例如液晶显示器, 用于显示地下人员 的位置或生存状况信息。 通知装置 36也可以是扬声器, 以声音方式通知信息。
例如, 地面机械波侦测器 30的材料可以选用压电陶瓷片。 解码器 32和数.据处理 器 34均可以采用单片机芯片形式实现, 例如 ATxmegal 6A4。
根据本发明实施例, 地面中心站可以封装于手持机盒内, 以在地面上进行手持移 动侦测。 这样, 能够以更加灵活、 有效地方式进行侦测。
以上参照图 1-3对根据本发明实施例的机械波通讯系统进行了描述, 下面参照图 1和 4描述根据本发明实施例的机械波通讯方法。
如图 4所示, 该机械波通讯方法 40包括: 在步骤 , 402, 由地下人员的操作机械波 发射器 1来发射机械波信号, 其中机械波,发射器 1由地下人员携带或放置在地下人员 附近; 在步驟 404, 通过设置在地下的机械波侦测发射基站 2, 侦测从机械波发射器 1 发,射的机械波, 并在侦测到机械波信号时产生和发射相应机械波.信号; 在步驟 406, 进一步经由机械波侦测发.射基站 3和 4来产生和发射相应的机械波信号; 最后, 在步 骤 408 , 通过设置在地面上的地面中心站 5 , 侦测从机械波侦测发射基站 4发射的机 械波.信号, 并在侦测到机械波信号时对机械波,,信号进行处理, 以获得地下人员信息。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人员 来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和润饰, 这些改进和 润饰也应视为本发明的保护范围。

Claims

1.一种机械波通讯系统, 能够侦测和获得地下人员信息, 所述机械波通讯系统包 括:
机械波发射器, 由地下人员携带或放置在地下人员附近, 并在地下人员的操作下 发射机械波信号;
机械波侦测发射基站, 设置在地下, 用于侦测机械波信号, 并在侦测到机械波信 号时产生和发射相应机械波信号; 以及
地面中心站,设置在地面上,用于侦测从机械波侦测发射基站发射的机械波信号, 并在侦测到机械波信号时对机械波信号进行处理, 以获得地下人员信息。
2. 根据权利要求 1所述的机械波通讯系统, 具有多个机械波侦测发射基站, 彼此 以预定间距设置在地下。
3. 根^"权利要求 2所述的机械波通讯系统, 其中, 预定间距在 5到 10米的范围 内。
4. 根据权利要求 2所述的机械波通讯系统, 其中, 当与地下人员最邻近的机械波 侦测发射基站侦测到机械波发射器发.射的机械波信号时, 该机械波侦测发身基站产生 相应的机械波信号并将其发.射到由与之邻近的下一机械波侦测发射基站, 由此将机械 波信号依次传递通过多个机械波侦测发射基站中的全部或一些基站, 直至达到地面中 心站。
5. 根据权利要求 2所述的机械波通讯系统, 其中,每一个机械波侦测发射基站根 据侦测到的机械波信号来确定该机械波信号的来源, 如果该机械波信号来自于机械波 发射器, 或者如果该机械波信号来自距离地面更远的机械波侦测发射基站, 则进一步 产生相应的机械波信号并将其发射到由与之邻近的下一机械波侦测发射基站, 如果该 机械波来自于距离地面更近的机械波侦测发射基站, 则停止机械波.信号的传递。
6. 根 ί&权利要求 1所述的机械波通讯系统, 其中, 由机械波侦测发射基站发射的 机械波信号的强度大于由机械波发射器发射的机械波信号的强度。
7. 根据权利要求 1所述的机械波通讯系统, 其中, 地下人员在受困时操作机械波 发射器发射机械波信号;
地下人员信息包括地下受困人员的位置信息, 或者包括地下受困人员的位置信息 和生存状况信息。
8. 根据权利要求 1或 2所述的机械波通讯系统, 其中, 每个机械波侦测发射基 站包括:
机械波侦测头, 用于侦测机械波信号;
解码器, 用于对侦测到的机械波信号进行解析, 并根据解析的信号来确定该机械 波信号的来源, 如果该机械波信号来自于机械波发射器, 或者如果该机械波信号来自 距离地面更远的机械波侦测发射基站, 则将解析的信号传送给编码器, 如果该机械波 来自于距离地面更近的机械波侦测发射基站, 则不将解析的信号传送给编码器, 从而 停止机械波信号的传递;
编码器, 用于在解析的信号中加入当前机械波侦测发射基站的编号, 并对其进行 编码, 以产生编码的信号;
机械波发射器, 用于将编码的信号作为机械波发射出。
9. 根据权利要求 8所述的机械波通讯系统, 其中,每个机械波侦测发射基站还包 括:
信号放大器, 对要发射的编码的信号进行放大。
10. 根据权利要求 8所述的机械波通讯系统, 其中, 每个机械波侦测发射基站还 包括:
基站应急电源, 当在正常情况下为机械波侦测发射基站供电的外部电源切断时, 为机械波侦测发射基站供电。
11.根据权利要求 1所述的机械波通讯系统, 其中, 地面中心站包括:
地面机械波侦测器, 用于侦测机械波信号;
解码器, 用于对侦测到的机械波信号进行解码, 得到解码数据; 以及
数据处理器, 用于对解码数据进行处理, 以获得地下人员信息。
12. 根据权利要求 11所述的机械波通讯系统, 其中, 地面中心站还包括: 通知装置, 用于通知地下人员信息。
13. 根据权利要求 12所述的机械波通讯系统, 其中, 通知装置包括显示器和 /或 扬声器。
14. 根据权利要求 1或 2所述的机械波通讯系统, 其中, 每个机械波侦测发射基 站封装于壁厚 2毫米以上的矩型或球型金属外壳内。
15. 根据权利要求 1所述的机械波.通讯系统, 其中, 地面中心站封装于手持机盒 内, 以在地面上进行手持移动侦测。
16.—种机械波通讯方法, 用于侦测和获得地下人员信息, 所述机械波.通讯方法包 括: 由地下人员的操作机械波发射器来发射机械波信号, 其中机械波发射器由地下人 员携带或放置在地下人员附近;
通过设置在地下的机械波侦测发射基站, 侦测机械波信号, 并在侦测到机械波信 号时产生和发射相应机械波信号; 以及
通过设置在地面上的地面中心站, 侦测从机械波侦测发射基站发射的机械波信 号, 并在侦测到机械波信号时对机械波信号进行处理, 以获得地下人员信息。
17. 根据权利要求 16所述的机械波通讯方法, 其中, 当与地下人员最邻近的机械 波侦测发射基站侦测到机械波发射器发射的机械波信号时, 该机械波侦测发射基站产 生相应的机械波信号并将其发射到由与之邻近的下一机械波侦测发射基站, 由此将机 械波信号依次传递通过多个机械波侦测发射基站中的全部或一些基站, 直至达到地面 中心站。
18. 根 ^^权利要求 16所述的机械波通讯方法, 其中, 在产生和发射相应机械波信 号之前, 机械波侦测发射基站根据侦测到的机械波信号来确定该机械波信号的来源, 如果该机械波信号来自于机械波发射器, 或者如果该机械波.信号来自距离地面更远的 机械波侦测发射基站, 则进一步产生相应的机械波信号并将其发射到由与之邻近的下 一机械波侦测发射基站, 如果该机械波来自于距离地面更近的机械波侦测发射基站, 则停止机械波信号的传递。
PCT/CN2011/073116 2010-04-22 2011-04-21 用机械波侦测地下人员信息的通讯系统和方法 WO2011131134A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180019557.4A CN103026643B (zh) 2010-04-22 2011-04-21 用于侦测地下人员信息的机械波通讯系统和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010201658449U CN201994943U (zh) 2010-04-22 2010-04-22 井下受困生存人员侦测及机械波通讯装置
CN201020165844.9 2010-04-22

Publications (1)

Publication Number Publication Date
WO2011131134A1 true WO2011131134A1 (zh) 2011-10-27

Family

ID=44671417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073116 WO2011131134A1 (zh) 2010-04-22 2011-04-21 用机械波侦测地下人员信息的通讯系统和方法

Country Status (2)

Country Link
CN (2) CN201994943U (zh)
WO (1) WO2011131134A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109389801A (zh) * 2017-08-12 2019-02-26 段云涛 一种次声波救援系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449135A (zh) * 2002-04-03 2003-10-15 文化传信科技(澳门)有限公司 一种介质传递通讯系统及方法
CN101247183A (zh) * 2007-02-15 2008-08-20 凌阳科技股份有限公司 基于超声波实现通讯的发送装置、接收装置、系统和方法
WO2009127376A1 (de) * 2008-04-14 2009-10-22 Ed. Züblin Aktiengesellschaft Vorrichtung und verfahren zur übertragung von information in festen medien

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449135A (zh) * 2002-04-03 2003-10-15 文化传信科技(澳门)有限公司 一种介质传递通讯系统及方法
CN101247183A (zh) * 2007-02-15 2008-08-20 凌阳科技股份有限公司 基于超声波实现通讯的发送装置、接收装置、系统和方法
WO2009127376A1 (de) * 2008-04-14 2009-10-22 Ed. Züblin Aktiengesellschaft Vorrichtung und verfahren zur übertragung von information in festen medien

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109389801A (zh) * 2017-08-12 2019-02-26 段云涛 一种次声波救援系统及方法

Also Published As

Publication number Publication date
CN103026643B (zh) 2014-10-29
CN103026643A (zh) 2013-04-03
CN201994943U (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
CY1124132T1 (el) Συσκευη και μεθοδος για τον προσδιορισμο θεσης
US20140070942A1 (en) Pass-tracker: apparatus and method for identifying and locating distressed firefighters
US20160093187A1 (en) Sound and Temperature Sensors for Environmental Anomaly Detection
RU2008120010A (ru) Беспроводная система контроля неисправностей
US7839290B2 (en) Sonic building rescue beacon
DE202004018276U1 (de) Erdbebenvorwarnsystem
CN102930681B (zh) 一种红外安全防护报警装置
US20170270775A1 (en) PASS-Tracker: Apparatus and Method for Identifying and Locating Distressed Firefighters
ATE441910T1 (de) Alarmeinheit
US7262692B2 (en) Emergency evacuation guiding system using signal strength for guidance
JP2008102108A (ja) 地すべり検知システム
TW200519584A (en) Control system for reaction equipment and monitoring device thereof
US8284049B2 (en) Sensing and reporting devices, systems and methods
JP2008301469A (ja) 手荷物監視装置
WO2011131134A1 (zh) 用机械波侦测地下人员信息的通讯系统和方法
JP5556528B2 (ja) 監視システム
JP3210281U (ja) 地震救助支援装置
KR20200064223A (ko) 건물내 설치되는 레이더 인체감지센서를 이용한 인명구출 제어시스템
JP5942148B2 (ja) 無線通信システム
CA2962716A1 (en) Wireless acoustic glass breakage detectors
EP2466562A1 (en) Alarm system for swimming pools
CN203012900U (zh) 一种具有遥控检测功能的烟雾报警器
JP2008071282A (ja) 地震警報装置
CN104427055A (zh) 一种具有防撞提醒功能的智能手机
JP2007241964A (ja) 緊急通報装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019557.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771587

Country of ref document: EP

Kind code of ref document: A1