WO2011131097A1 - 数据报文处理方法、系统及接入服务节点 - Google Patents

数据报文处理方法、系统及接入服务节点 Download PDF

Info

Publication number
WO2011131097A1
WO2011131097A1 PCT/CN2011/072681 CN2011072681W WO2011131097A1 WO 2011131097 A1 WO2011131097 A1 WO 2011131097A1 CN 2011072681 W CN2011072681 W CN 2011072681W WO 2011131097 A1 WO2011131097 A1 WO 2011131097A1
Authority
WO
WIPO (PCT)
Prior art keywords
host
mapping
dns
module
aid
Prior art date
Application number
PCT/CN2011/072681
Other languages
English (en)
French (fr)
Inventor
晏祥彪
江华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11771550.8A priority Critical patent/EP2538621B1/en
Priority to KR1020127024195A priority patent/KR101381701B1/ko
Priority to JP2013500325A priority patent/JP2013526107A/ja
Publication of WO2011131097A1 publication Critical patent/WO2011131097A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • H04L61/103Mapping addresses of different types across network layers, e.g. resolution of network layer into physical layer addresses or address resolution protocol [ARP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5084Providing for device mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4505Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols
    • H04L61/4511Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols using domain name system [DNS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/58Caching of addresses or names

Definitions

  • the present invention relates to the field of communications, and in particular, to a data message processing method, system, and access service node in an identity location separation network.
  • 3G and 4G are the core of research on next-generation networks in the field of wireless communications, aiming to improve the quality of wireless mobile communications based on all-IP packet core networks;
  • Next-Generation Networks (NGN) and Next-Generation Internet (NGI) are telecommunications networks and the Internet, respectively.
  • Research on next-generation network convergence; China's next-generation Internet aims to build a next-generation Internet based on IPv6; although various studies vary widely, the widely accepted views of various studies are: Future network ⁇ in the unified bearer of packets The internet. Therefore, the next generation network architecture will be based on the Internet.
  • the Internet has maintained rapid development since its birth. It has become the most successful and most vital communication network.
  • the Internet was invented in the 1970s. It is difficult to predict that there will be a large number of mobile terminals and multiple township terminals in the world today. Therefore, the Internet protocol stack at that time was mainly designed for terminals connected in a "fixed" manner.
  • the transmitted address is the received address, and the path is reversible, so the IP address with dual attributes of identity and location can work very well. There is no conflict between the identity attribute of the IP address and the location attribute.
  • the IP address also represents the identity and location that exactly met the network needs of the time. From the perspective of the network environment at the time, this design scheme is simple and effective, simplifying the hierarchy of the protocol stack.
  • the identity attribute of an IP address requires that any two IP addresses be equal.
  • IP address can be assigned according to the organization, there is no necessary relationship between consecutively encoded IP addresses, or at least there is no necessary relationship in the topology. ; IP address location attribute requires IP address Based on the network topology (rather than the organization), the IP addresses in the same subnet should be in a contiguous IP address block, so that the IP address prefixes in the network topology can be aggregated, thus reducing the router device.
  • the entry of the routing table guarantees the scalability of the routing system.
  • DHCP Dynamic Host Configuration Protocol
  • NAT Network Address Translator
  • the user status of the Internet has changed dramatically.
  • the Internet was basically used by people who are in a common group and trusted by each other.
  • the traditional Internet protocol stack is also designed based on such a set of devices; the current Internet users are mixed, people It is difficult to continue to trust each other. In this case, the Internet, which lacks embedded security mechanisms, needs to change.
  • Routing scalability issues There is a basic assumption about the scalability of Internet routing systems:
  • the address is assigned according to the topology, or the topology is deployed according to the address, and the two must choose one.
  • the identity attribute of an IP address requires that the IP address be assigned based on the organization to which the terminal belongs (rather than the network topology), and this allocation must be stable and cannot be changed frequently; the location attribute of the IP address requires the IP address to be based on the network.
  • the topology is allocated to ensure the scalability of the routing system. In this way, the two attributes of the IP address create conflicts, which eventually leads to the scalability problem of the Internet routing system.
  • the identity attribute of the IP address requires that the IP address should not change as the location of the terminal changes. This ensures that the communication bound to the identity is not interrupted, and that the terminal can still use its identity after the terminal is moved.
  • the communication link is established; the location attribute of the IP address requires the IP address to change as the terminal location changes, so that the IP address can be aggregated in the new network topology, otherwise the network must reserve a separate route for the mobile terminal.
  • Information which causes a sharp increase in routing table entries.
  • a number of township issues Many townships usually refer to terminals or networks that access the Internet through multiple ISP networks. The advantages of multiple township technologies include increasing network reliability, supporting traffic load balancing across multiple ISPs, and increasing overall available bandwidth.
  • IP addresses require that a plurality of home terminals always display the same identity to other terminals, regardless of whether the multiple township terminals access the Internet through several ISPs; and the location attribute of the IP address requires that multiple township terminals are different.
  • the ISP network uses different IP addresses to communicate, so that the IP address of the terminal can be aggregated in the topology of the ISP network.
  • IP address contains both the identity information and the location information of the terminal
  • both the communication peer and the malicious eavesdropper can obtain the identity information and topology location information of the terminal according to the IP address of the terminal.
  • the dual attribute problem of IP address is one of the fundamental reasons that plague the Internet to continue to develop. Separating the identity attribute and location attribute of an IP address is a good way to solve the problems faced by the Internet.
  • the new network will be designed based on this idea, and propose a network structure of separate mapping of identity information and location information to solve some serious drawbacks of the existing Internet.
  • the most representative one is a network-based solution.
  • the core idea is to divide the network into two parts, one part is the transmission network or the forwarding network, which is located at the center of the whole network; the other part is the edge network or the access network.
  • the access switch router is connected to the forwarding network; the address space and routing information of the access network and the forwarding network are isolated from each other.
  • the network-based identity location separation scheme combines the dual functions of traditional IP addresses.
  • the identity and the location identifier can be separated, and the identity identifier is the identity attribute of the end host.
  • the scheme is designed to be in the access network, it is also called the access identifier AID (Access ID), and the AID is the identity of the end host.
  • the identifier is in the access network.
  • the location identifier is the location attribute of the end host.
  • the route used to forward the network in the forwarding network is also called the route ID (RID).
  • the routing identifier of the end host the scope is in the forwarding network; the access service node ASN (Access Service Node) completes the registration and query of the mobile terminal AID and RID in the mapping server.
  • ASN Access Service Node
  • the access service node ASN initiates a location query process to the identity location mapping server, obtains the current location information of the destination terminal, and returns the source terminal access service node to ensure that it is correct. Initiate a communication connection.
  • ASN Access Service Node, access service node, ASN maintains the connection relationship between mobile terminal and network, assigns RID to mobile terminal, handles location update of terminal handover, handles terminal location information registration, billing/authentication, maintenance/ Query the AID-RID mapping relationship of the communication peer.
  • the ASN encapsulates, routes, and forwards data packets sent by the terminal.
  • the ASN queries the AID-RID mapping table in the local cache table according to the communication peer AID in the data packet: finds the corresponding AIDc-RIDc mapping entry, and encapsulates the RIDc in the data.
  • the packet header is forwarded to the forwarding network; the corresponding AIDc-RIDc mapping entry is not found, and the process of querying the AIDc-RIDc mapping relationship is sent to the mapping forwarding plane.
  • GSR General Switch Router, Universal Switch Router. A data packet that routes and forwards the address with the RID as the destination.
  • the main function of the forwarding network is to select and forward data packets based on the route identifier RID in the data packet.
  • the main function of the mapping server is to save the mapping information of the AID-RID of the mobile node, process the registration process of the mobile node, and process the location query process of the communication peer.
  • the trigger condition for the source access service node ASNs to initiate the location query process is that the terminal "initiates communication".
  • the source access service node ASNs may be required to perform the communication CN location query process.
  • the source access service node ASNs does not have the communication peer location and identity.
  • the mapping between the mappings of the RIDc (route ID) and the AIDc (access identifier) of the peer end cannot forward data packets according to the route identified by RIDc.
  • the communication peer CN location query process initiated by the source access service node ASNs may last for several hundred milliseconds to several seconds.
  • the ASNs receive the data packets sent by the terminal to the peer end, initiate the query of the peer mapping information, and wait for the mapping server to return the mapping information of the peer.
  • the ASNs must cache the received data packets and consume a large amount of resources. The longer the waiting time, the larger the amount of data buffered, which will affect the normal forwarding performance. At the same time, there are security risks, and it is easy to form an attack on the mapping server. Summary of the invention
  • the object of the present invention is to provide a data packet processing method, a service access node and a system, so as to improve data packet forwarding efficiency.
  • the present invention provides a data packet processing method, which is implemented based on an identity location separation network, and uses a domain name system (DNS) server to store a correspondence between a host domain name and an access identifier (AID).
  • DNS domain name system
  • Methods include:
  • the source host sends a DNS query message to the DNS server, where the domain name of the destination host is carried, and the DNS server returns a DNS response containing the AID of the destination host to the source host.
  • the access service node listens to the DNS response packet, and obtains the AID of the destination host in the response packet.
  • the ASN queries the mapping server according to the AID of the destination host to obtain a route identifier (RID) of the destination host;
  • the ASN After receiving the data packet sent by the source host to the destination host, the ASN forwards the data packet according to the RID of the destination host.
  • the ASN intercepts the DNS response packet from the received forwarding network by: in accordance with the DNS packet format, the port number of the DNS, the access identifier of the DNS, or the routing identifier of the DNS, Whether the forwarding network packet is a DNS response packet.
  • the DNS query message is forwarded to the DNS server by the ASN.
  • the method further includes: after the ASN obtains the AID of the destination host from the DNS response packet, the DNS response packet is sent. Forwarding to the source host; the source host sends a data packet to the destination host according to the AID of the destination host in the DNS response packet.
  • the step C includes: the ASN queries the local cache before querying the mapping server, and if there is no mapping relationship between the AID and the RID of the destination host in the local cache, and then sends a mapping query request to the mapping server, according to the mapping of the mapping server.
  • the query response obtains the RID of the destination host and caches the mapping between the AID and the RID of the destination host.
  • step D after receiving the data packet sent by the source host to the destination host, the ASN first queries the local cache, and if the local cache does not have or is querying the mapping between the AID and the RID of the destination host, After the relationship is received, the data packet is forwarded after waiting for the mapping query response of the mapping server.
  • the ASN uses data encapsulation or replacement to implement data packet forwarding.
  • the destination address of the source address in the data packet sent by the source host is the AID of the source host and the destination host respectively.
  • the method further includes: when the ASN forwards the data packet, The data sent by the source host is encapsulated by the RID of the source host and the destination host.
  • the source and destination addresses of the encapsulated data packets are the RIDs of the source host and the destination host, respectively, and are encapsulated.
  • the text also includes the AID of the source host and the destination host.
  • the source address and the destination address of the data packet sent by the source host are the AIDs of the source host and the destination host respectively.
  • the method further includes: the ASN performing data forwarding
  • the AID of the source host and the destination host are respectively replaced by the RIDs of the source host and the destination host.
  • the AID of the source host and the RID are uniquely corresponding, and the AID of the destination host and the RID uniquely correspond.
  • the present invention further provides an access service node, where the access service node (ASN) is located in an identity location separation network, the identity location separation network includes a DNS server, and the DNS server is configured as: Corresponding relationship between the host domain name and the access identifier, receiving a DNS query message carrying the domain name of the destination host sent by the source host, and returning a DNS response packet carrying the AID of the destination host to the source host, the ASN include: a listening module, which is connected to the packet processing module, and configured to: listen for a DNS response packet, and obtain an access identifier (AID) of the destination host in the response packet;
  • mapping query module which is connected to the listening module, and configured to: query the mapping server to obtain a routing identifier (RID) of the destination host according to the AID of the destination host acquired by the listening module;
  • RID routing identifier
  • a message processing module which is connected to the mapping query module and the listening module, and configured to: receive a data packet sent by the source host to the destination host, and forward the data packet according to the RID obtained by the mapping query module; And receiving and forwarding a packet sent from the forwarding network to the source host of the ASN.
  • the listening module of the ASN is configured to listen to the DNS response packet in the forwarding network packet received from the packet processing module according to the DNS packet format, the port number of the DNS, and the DNS.
  • the access identifier or the routing identifier of the DNS determines whether the received forwarding network packet is a DNS response.
  • the packet processing module is further configured to receive and forward a DNS query message sent by the source host to the DNS server and a DNS response message sent by the DNS server to the source host.
  • the ASN further includes a mapping information cache module connected to the mapping query module, where the mapping information cache module is configured to: a mapping relationship between an AID and a RID of the cache host; the mapping query module is configured to pass the following The method of obtaining the RID of the destination host: querying the mapping information cache module before querying the mapping server, if the mapping information cache module does not have the mapping relationship between the AID and the RID of the destination host, and then sending a mapping query request to the mapping server, The mapping of the AID and the RID of the destination host is saved in the mapping information cache module.
  • the packet processing module of the ASN is configured to perform data packet forwarding by: after receiving the data packet sent by the source host to the destination host, notifying the mapping query module to query the mapping information cache module. If there is no mapping between the AID and the RID of the destination host in the mapping information cache module, the mapping query module waits for the mapping query response of the mapping server, and then forwards the data packet.
  • the packet processing module of the ASN is configured to implement data packet forwarding by using encapsulation or replacement.
  • the present invention further provides a data message processing system, which is implemented based on an identity location separation network, where the system includes an end host, an access service node (ASN), and a DNS server, where:
  • the end host includes a domain name querying module and a packet receiving and sending module, wherein the domain name querying module is configured to: send a DNS query message carrying the domain name of the destination host to the DNS server, and receive the destination host host returned by the DNS server
  • the AID DNS response packet is configured to: send a data packet to the destination host according to the AID of the destination host in the DNS response packet, and receive the data packet;
  • the ASN includes:
  • the listening module is connected to the packet processing module, and configured to: listen to the DNS response packet, and obtain an access identifier (AID) of the destination host in the response packet;
  • mapping query module which is connected to the listening module, and configured to: obtain a routing identifier (RID) of the destination host according to the obtained AID of the destination host, and a packet processing module, and the packet processing module
  • the mapping query module and the listening module are connected, and are configured to: receive the data packet sent by the source host to the destination host, forward the data packet according to the RID obtained by the mapping query module; and receive and forward the packet from the forwarding network.
  • the DNS server is configured to: save the correspondence between the host domain name and the access identifier, the DNS query message sent by the receiving host, and return the DNS response to the host.
  • the listening module of the ASN is configured to listen to the DNS response packet in the forwarding network packet received from the packet processing module according to the DNS packet format, the port number of the DNS, and the DNS.
  • the access identifier or the routing identifier of the DNS determines whether the received forwarding network packet is a DNS response packet.
  • the packet processing module is further configured to receive and forward a DNS query message sent by the source host to the DNS server and a DNS response message sent by the DNS server to the source host.
  • the ASN further includes a mapping information cache module connected to the mapping query module.
  • the mapping information cache module is configured to be a mapping relationship between the AID and the RID of the cache host; the mapping query module is configured to obtain the RID of the destination host by: querying the mapping information before querying the mapping server.
  • the cache module if there is no mapping relationship between the AID and the RID of the destination host in the mapping information cache module, sends a mapping query request to the mapping server, and obtains the RID of the destination host according to the mapping query response of the mapping server; the mapping query module also sets The mapping relationship between the AID and the RID of the destination host is saved in the mapping information cache module.
  • the packet processing module of the ASN is configured to perform data packet forwarding by: after receiving the data packet sent by the source host to the destination host, notifying the mapping query module to query the mapping information.
  • the cache module if there is no AID and RID mapping relationship of the destination host in the mapping information cache module, wait for the mapping query module to receive the mapping query response of the mapping server, and then perform the forwarding of the message.
  • the source address and the destination address of the data packet sent by the source host received by the packet processing module of the ASN are respectively the AID of the source host and the destination host; and the processing module further sets The data packet sent by the source host is encapsulated by the RID of the source host and the destination host.
  • the source and destination addresses of the encapsulated data packets are the source host and the destination host respectively.
  • the RID of the destination host, and the encapsulated packet also includes the AID of the source host and the destination host.
  • the source address and the destination address of the data packet sent by the source host received by the packet processing module of the ASN are respectively the AID of the source host and the destination host; and the processing module further sets When the data packet is forwarded, the AID of the source host and the destination host are replaced by the RID of the source host and the destination host, and the AID of the source host and the RID are uniquely corresponding, and the destination host is The AID corresponds to the RID uniquely.
  • the data packet processing method, the access service node, and the system of the present invention are based on the identity location separation network architecture.
  • the access service node Before the access service node (ASN) receives the data packet sent by the source host, it queries the DNS according to the source host. In the case of the domain name system, the DNS returns the AID of the destination host, and queries the mapping server for the AID-RID mapping information, thereby improving the forwarding efficiency of the source host data packet and improving the forwarding performance.
  • BRIEF abstract 1 is a schematic diagram of the composition of a network architecture in which identity and location are separated;
  • FIG. 2 is a schematic flowchart of a data packet processing and processing method according to the present invention.
  • FIG. 3 is a schematic structural diagram of a module of an access service node according to the present invention.
  • FIG. 4 is a block diagram showing the structure of a data message processing system of the present invention.
  • the main idea of the data packet processing method, the access service node and the system of the present invention is based on the identity location separation network architecture, and the access service node (ASN) receives the data packet sent by the source host before the source host
  • the DNS domain name system, i or name system
  • the packet returned by the DNS detects the AID of the destination host and queries the mapping server for the mapping information of the AID-RID. Forwarding efficiency, improve forwarding performance.
  • the identity location separation network architecture of the present invention separates the dual functions of the identity and location of the IP address of the traditional Internet, realizing dynamic redistribution of mobility, multiple townships, IP addresses, mitigating routing load and the next generation Internet. Support for issues such as mutual visits between different network areas.
  • the identity location separation architecture network has the following characteristics: The network is divided into an access network and a forwarding network, and the access network is located at the edge of the forwarding network and is responsible for access of all terminals.
  • the forwarding network is responsible for the routing of different terminals that access through the access network.
  • the access service node is located at a demarcation point between the forwarding network and the access network, and has an interface with the access network and an interface with the forwarding network.
  • the access network and the forwarding network do not overlap in the topology relationship.
  • the communication between the user terminals only needs to be identified by the identity of the peer end, and the identity identifier is also referred to as the access identifier in the access network.
  • the access service node provides access services for the terminal, maintains user connections, and forwards user data.
  • the data packet processing process of the present invention includes:
  • the source host sends a DNS query message to the DNS server according to the domain name of the destination host to be accessed, where the domain name of the destination host is carried, and the DNS server returns an access identifier including the destination host to the source host.
  • (AID) DNS response message ;
  • the correspondence between the domain name of the storage host and the access identifier (ie, the identity attribute of the end host) in the DNS server, and the DNS server has its own access identifier in the identity and location separation network.
  • Route ID the identity and location separation network
  • the source host uses the DNS client protocol to query the DNS server to obtain the access identifier AID of the destination host.
  • the DNS server returns the AID of the destination host.
  • the source access service node ASN listens to the response message and obtains the AID of the destination host.
  • the access identifier of the DNS server is a well-known address set by the system.
  • the transmission of the DNS query packet sent by the source host and the DNS response packet sent by the server must pass through the ASN.
  • the format of the DNS packet is as follows:
  • Identification field used for message identification, terminal setting, the DNS server uses the identifier to return the result;
  • Flag field 16 bits, the definition of the important bit segment is as follows:
  • the problem part of the DNS query message usually has only one problem.
  • the format includes the query name, query type and query class.
  • the query name is the domain name that needs to be searched, such as "ZTE.COM.CN".
  • the query class is 1 refers to the Internet address IP, and the present invention is an access identifier.
  • the resource record in the DNS response message is as follows:
  • the domain name is the name corresponding to the resource data in the record, and its format is the same as the format of the previous query name segment.
  • Type Description The type code of the RR is the same as the value of the previous query type. Usually 1 for Internet data.
  • the lifetime is the number of seconds the client keeps the resource record.
  • the resource record usually has a lifetime of 2 days.
  • the resource data length indicates the number of resource data, the format of which depends on the value of the field type field, and for the type A resource data is a 4-byte IP address (in the present invention, an access identifier).
  • the ASN listens to the DNS response packet, and obtains an access identifier (AID) of the destination host in the response packet.
  • AID access identifier
  • the ASN intercepts the DNS response packet from the received forwarding network packet (the packet sent by the forwarding network in the present invention is called a forwarding network packet), and determines whether the packet is a DNS response packet. Then, the AID of the destination host in the DNS response packet is extracted in real time, and the listening function is completed, and the DNS response packet is forwarded to the source host. After the source host receives the DNS response packet, the destination address is generated. The data packet of the access identifier of the end host is sent to the source ASN.
  • the ASN can determine whether the received packet is a DNS response packet according to the following three methods:
  • the ASN determines whether it is a DNS response packet according to the above-mentioned DNS packet format.
  • the DNS supports the User Datagram Protocol (UDP) and Transmission Control Protocol (TCP), and uses a specific port number.
  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol
  • the port number of the DNS is 53
  • the destination port number of the DNS query is 53
  • the source port number of the DNS response packet is 53
  • the ASN determines whether it is a DNS response packet according to the source port number.
  • the DNS has a specific access identifier and routing identifier.
  • the ASN judges according to the access identifier or routing identifier in the source address.
  • the ASN obtains the RID of the destination host according to the destination host AID.
  • the ASN obtains the local cache mapping relationship after obtaining the destination host AID. If the mapping relationship between the destination host and the destination host is not found in the local cache, the ASN sends the mapping relationship to the mapping server of the identity location separation network. Mapping the query request, obtaining the RID of the destination host according to the mapping query response of the mapping server, and locally storing the mapping relationship between the AID and the RID of the destination host according to the destination host RID returned by the mapping server;
  • the ASN obtains the RID of the destination host directly from the mapping server after obtaining the AID of the destination host.
  • the query request carries the AID of the destination host, and queries the mapping server of the identity location separation network to query the mapping information, that is, the location RID of the access service node to which the destination host belongs.
  • the ASN After receiving the data packet sent by the source host to the destination host, the ASN forwards the data packet according to the RID of the destination host.
  • the data packet of the terminal is received first.
  • the local cache is first queried. If the local host does not have or is querying the destination host, If the mapping between the AID and the RID is performed, the data packet is buffered, and the packet is forwarded after waiting for the mapping query response. If the mapping information returned by the mapping server is received, whether or not the data packet of the terminal is received, The RID is immediately cached in the local mapping table, so that the ASN can directly perform local query after receiving the data packet of the terminal.
  • the source and destination addresses of the data packets sent by the source host are the AIDs of the source and destination hosts respectively.
  • the ASN After receiving the data packets sent by the source host to the destination host, the ASN receives the data packets according to the destination host in the data packet.
  • the AID queries the local cache to obtain the RID of the destination host, and forwards the data packet according to the destination host RID.
  • the source access service node ASNs encapsulates the data packet by using the queried RID, and the encapsulated data "the source and destination addresses of the ⁇ text source respectively, the RID of the destination host, and the encapsulated " ⁇ text also includes the source and destination.
  • the AID of the end host is then sent to the destination access service node ASNd through the forwarding network, and the ASNd is decapsulated and sent to the destination host.
  • the source access service node ASNs replaces the AID of the destination host in the data packet by using the queried RID, and then sends the data packet to the destination access node ASNd through the forwarding network.
  • the ASNd replaces the received data packet RID with the AID and sends it to the AID. Destination host.
  • the AID of the source host and the source ASN are allocated.
  • the RID is - corresponding, the same destination host AID and the destination ASN assigned RID are also one-to-one correspondence.
  • the ASN listens to the DNS response packet, obtains the AID of the destination host in advance, and queries the mapping server in advance when the mapping relationship of the destination host is not cached locally, thereby reducing the buffering of the data packet.
  • the size of the buffer is reduced, and the task of data management is reduced, so that the ASN device has more resources for data forwarding and improves the processing efficiency of the forwarded data.
  • the present invention further provides an access service node (ASN, Access Service Node) located in an identity location separation network, where the identity location separation network includes a DNS server.
  • the DNS server is configured to: save the correspondence between the host domain name and the access identifier, and receive the DNS query message sent by the source host, which carries the domain name of the destination host, and return the AID carrying the destination host to the source host.
  • the function of the ASN includes: maintaining the connection relationship between the terminal and the network, assigning the RID to the terminal, processing the location update of the terminal handover, processing the registration of the terminal, charging/authenticating, and maintaining/inquiring the communication peer
  • the AID-RID mapping relationship ; and, encapsulating, routing, and forwarding the data message sent by the terminal or the terminal.
  • the ASN queries the AID-RID mapping table in the local mapping table according to the communication peer AIDc in the data packet: If the corresponding AIDc-RIDc mapping entry is not found, the ASN initiates the mapping to the mapping server. The process of querying the AIDc-RIDc mapping relationship.
  • the identity location separation network further includes a GSR: General Switch Router, a universal switching router, and the GSR routes and forwards data packets with the RID as the destination address.
  • the ASN includes:
  • a listening module which is connected to the message processing module, and configured to listen to the DNS response message, and obtain an access identifier (AID) of the destination host in the response message;
  • mapping query module which is connected to the listening module, and configured to query the mapping server to obtain a routing identifier (RID) of the destination host according to the AID of the destination host acquired by the listening module;
  • the packet processing module, the The mapping query module and the listening module are connected, and are configured to: receive, process, and forward the data, the DNS query and the response message, and the mapping query and the response message.
  • the setting is: receiving the source The data packet sent by the host to the destination host is forwarded according to the RID obtained by the mapping query module, and the packet sent from the forwarding network to the source host of the ASN is received and forwarded.
  • the listening module of the ASN intercepts the DNS response packet from the forwarding network packet received by the packet processing module, according to the format of the DNS packet, the port number of the DNS, the access identifier of the DNS, or the DNS.
  • the route identifier determines whether the received forwarding network packet is a DNS response packet.
  • the packet processing module is further configured to: receive and forward a DNS query message sent by the source host to the DNS server, and a DNS response message sent by the DNS server to the source host.
  • the ASN further includes a mapping information cache module connected to the mapping query module, where the mapping information cache module is configured to be a mapping relationship between the AID and the RID of the cache host; before the mapping query module queries the mapping server, The mapping information cache module is first queried. If there is no mapping relationship between the AID and the RID of the destination host in the mapping information cache module, the mapping query request is sent to the mapping server, and the RID of the destination host is obtained according to the mapping query response of the mapping server. And the mapping relationship between the AID and the RID of the destination host is saved to the mapping information cache module.
  • the packet processing module of the ASN after receiving the data packet sent by the source host to the destination host, notifies the mapping query module to query the mapping information cache module, if there is no destination end in the mapping information cache module.
  • the AID and the RID mapping relationship of the host caches the data packet, and waits for the mapping query module to receive the mapping query response of the mapping server, and then forwards the data packet.
  • the packet processing module of the ASN implements data packet forwarding by means of encapsulation or replacement, as described above.
  • the present invention further provides a data packet processing system.
  • the system is implemented based on an identity location separation network, where the system includes an end host, an access service node (ASN), and a DNS server, where: the end host The domain name query module and the packet sending and receiving module are configured, wherein the domain name querying module is configured to: send a DNS query message carrying the domain name of the destination host to the DNS server, and receive the DNS of the AID carrying the destination host returned by the DNS server. a response packet; the packet sending and receiving module is configured to send a data packet and receive a data packet to the destination host according to the destination host AID in the DNS response packet;
  • the ASN includes:
  • a listening module which is connected to the packet processing module, and configured to listen to the DNS response packet, and obtain an access identifier (AID) of the destination host in the response packet;
  • mapping query module which is connected to the listening module, and configured to query the mapping server to obtain a routing identifier (RID) of the destination host according to the AID of the destination host acquired by the listening module;
  • the packet processing module, and the The mapping query module and the listening module are connected, and are configured to: receive, process, and forward the data, the DNS query and the response message, and the mapping query and the response message.
  • the setting is: receiving the source The data packet sent by the host to the destination host is forwarded according to the RID obtained by the mapping query module; and the packet sent from the forwarding network to the source host of the ASN is received and forwarded;
  • the DNS server is configured to: save the correspondence between the host domain name and the access identifier, the DNS query message sent by the receiving host, and return the DNS response to the host.
  • the listening module of the ASN intercepts the DNS response packet from the forwarding network packet received by the packet processing module, according to the format of the DNS packet, the port number of the DNS, the access identifier of the DNS, or the routing identifier of the DNS. Determine whether the received forwarding network packet is a DNS response packet.
  • the packet processing module is further configured to receive and forward a DNS query message sent by the source host to the DNS server and a DNS response message sent by the DNS server to the source host.
  • the ASN further includes a mapping information cache module connected to the mapping query module, the mapping The information cache module is configured to: a mapping relationship between the AID and the RID of the cache host; before the mapping query module queries the mapping server, first query the mapping information cache module, if the mapping information cache module does not have the AID of the destination host and The mapping relationship between the RID and the RID is sent to the mapping server, and the RID of the destination host is obtained according to the mapping query response of the mapping server, and the mapping relationship between the AID and the RID of the destination host is saved to the mapping information cache module.
  • the ASN packet processing module After receiving the data packet sent by the source host to the destination host, the ASN packet processing module notifies the mapping query module to query the mapping information cache module, if the mapping information cache module does not have the AID and RID of the destination host.
  • the mapping relationship is that the packet processing module internally caches the data packet, and waits for the mapping query module to receive the mapping query response of the mapping server, and then forwards the packet.
  • the source and destination addresses of the data packets sent by the source host received by the packet processing module of the ASN are the AIDs of the source and destination hosts respectively.
  • the RIDs of the source and destination hosts are used.
  • the data packets sent by the source host are encapsulated.
  • the source and destination addresses of the encapsulated data packets are the RIDs of the source and destination hosts respectively.
  • the encapsulated packets also include the AIDs of the source and destination hosts.
  • the source and destination addresses of the data packets sent by the source host received by the packet processing module of the ASN are the AIDs of the source and destination hosts respectively.
  • the source and destination hosts are respectively used.
  • the RID replaces the source and the AID of the destination host.
  • the AID of the source host uniquely corresponds to the RID
  • the AID of the destination host uniquely corresponds to the RID.
  • the destination ASN decapsulates and restores the received data packet; if the data packet sent by the source ASN is the replaced data packet, The destination end ASN replaces and restores the received data packet. That is, the operation of the destination ASN on the packet is the reverse operation of the source ASN.
  • the identity location separation network further includes a mapping server, and the mapping server is configured to return an RID to the ASN according to an inquiry of the ASN.
  • the data packet processing method, the access service node and the system of the present invention are based on The identity location is separated from the network architecture.
  • the access service node ASN
  • the packet returned by the DNS detects the AID of the destination host according to the source host.
  • the mapping information of the AID-RID is queried to the mapping server, so that the forwarding efficiency of the ASN to the source host data packet is improved, and the forwarding performance of the ASN is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种基于身份位置分离网络实现的数据报文处理方法、接入节点及系统,该方法包括:A、源端主机向DNS服务器发送DNS查询报文,其中携带目的端主机的域名,所述DNS服务器向所述源端主机返回包含目的端主机的AID的DNS响应报文;B、接入服务节点(ASN)侦听DNS响应报文,获取侦听到的响应报文中的目的端主机的AID;C、所述ASN根据所述目的端主机的AID向映射服务器查询获取所述目的端主机的路由标识(RID);以及D、所述ASN接收所述源端主机发送给目的端主机的数据报文后,根据所述目的端主机的RID进行数据报文转发。本发明能够提高ASN对源端主机数据报文的转发效率,改善ASN的转发性能。

Description

数据报文处理方法、 系统及接入服务节点
技术领域
本发明涉及一种通信领域, 尤其涉及身份位置分离网络中的数据 文的 处理方法、 系统及接入服务节点。
背景技术
3G和 4G是无线通信领域对下一代网络的研究核心, 旨在基于全 IP分 组核心网提高无线移动通信的质量; 下一代网络(NGN ) 和下一代互联网 ( NGI )分别是电信网和互联网领域对下一代网络融合的研究; 中国下一代 互联网 旨在构建基于 IPv6 的下一代互联网; 虽然各种研究存在很大差异, 但是各种研究普遍接受的观点是: 未来网络^^于分组的统一承载网络。 因 此研究下一代网络构架将以互联网为主要参考对象。 互联网从其诞生以来一 直保持高速发展, 已成为当前最成功、 最具生命力的通信网络, 其灵活可扩 展性、 高效的分组交换、 终端强大的功能等特点非常符合新一代网络的设计 需要, 互联网将是新一代网络设计的主要参考蓝本。 然而, 互联网的结构还 远远没有达到最优, 存在很多重大的设计问题。 除 IP地址空间无法满足应用 需要外, 还主要表现在以下方面:
互联网发明于二十世纪七十年代, 人们难以预计今天世界上将存在大量 的移动终端和多家乡终端, 因此当时的互联网协议栈主要是针对以"固定"方 式连接的终端而设计。 在当时的网络环境下, 由于终端基本上不会从一个位 置移动到其它位置, 发送的地址就是接收的地址, 路经是可逆的, 所以具有 身份和位置双重属性的 IP地址能够非常好的工作, IP地址的身份属性与位置 属性之间没有产生任何冲突。 IP地址同时代表身份和位置恰恰满足了当时的 网络需求。 从当时的网络环境来看, 这种设计方案简单有效, 简化了协议栈 的层次结构。 但毋庸置疑的是, IP地址的身份属性与位置属性之间存在着内 部矛盾。 IP地址的身份属性要求任意两个 IP地址都是平等的, 虽然 IP地址 可以按照组织机构进行分配, 但是连续编码的 IP地址之间没有必然的关系, 或者至少在拓朴位置上没有必然的关系; IP地址的位置属性则要求 IP地址 基于网络拓朴(而不是组织机构)进行分配, 处于同一个子网内的 IP地址都 应该处于一个连续的 IP地址块中, 这样才可以使网络拓朴中的 IP地址前缀 聚合, 从而减少路由器设备的路由表的条目, 保证路由系统的可扩展性。
伴随着网络规模和技术的发展, 一些动态分配 IP地址的技术逐步出现, 口动态主机配置协议(DHCP, Dynamic Host Configuration Protocol ) , 这就 开始打破 IP地址唯一表示一个终端的 4叚定。 私有 IP地址空间的使用和网络 地址转换(NAT, Network Address Translator )技术的诞生使得情况继续恶 化。在这种情况下同时具有身份属性与位置属性的 IP地址将难以继续胜任它 的角色, IP地址的双重属性问题已经凸显出来。 除了技术层面的需求发生了 显著变化以外, 互联网的用户状况也已经发生了巨大的改变。 在互联网诞生 之后的最初几年中, 互联网基本上被一些处于共同团体且相互信任的人员使 用, 传统互联网协议栈也是基于此种 4叚设而设计的; 而目前的互联网用户则 是鱼龙混杂, 人们难以继续互相信任。 在这种情况下, 缺乏内嵌安全性机制 的互联网也需要发生变革。
总的来说, IP地址双重属性的内在矛盾将导致如下主要问题:
1. 路由可扩展问题。 关于互联网路由系统的可扩展性存在一个基本的假 定:
"地址按照拓朴进行分配, 或者拓朴按照地址进行部署, 二者必选其一"。 IP地址的身份属性要求 IP地址基于终端所属的组织机构(而不是网络拓朴) 进行分配, 而且这种分配要保持一定的稳定性, 不能经常改变; 而 IP地址的 位置属性要求 IP地址基于网络拓朴进行分配, 以便保证路由系统的可扩展 性。 这样, IP地址的两种属性就产生了冲突, 最终引发了互联网路由系统的 可扩展问题。
2. 移动性问题。 IP地址的身份属性要求 IP地址不应该随着终端位置的 改变而变化, 这样才能够保证绑定在身份上的通信不中断, 也能够保证终端 在移动后,其它终端仍能够使用它的身份与之建立通信联系; 而 IP地址的位 置属性则要求 IP地址随着终端位置的改变而改变, 以便 IP地址能够在新的 网络拓朴中聚合, 否则网络就必须为移动后的终端保留单独的路由信息, 从 而造成路由表条目的急剧增长。 3. 多家乡问题。多家乡通常指终端或网络同时通过多个 ISP 的网络接入 到互联网。 多家乡技术的优点包括增加网络的可靠性、 支持多个 ISP之间的 流量负载均衡和提高总体可用带宽等。 但是, IP地址双重属性的内在矛盾使 得多家乡技术难以实现。 IP地址的身份属性要求一个多家乡终端始终对其它 终端展现不变的身份, 无论该多家乡终端是通过几个 ISP接入到互联网; 而 IP地址的位置属性则要求一个多家乡终端在不同的 ISP 网络中使用不同的 IP地址通信, 这样才能保证终端的 IP地址能够在 ISP 网络的拓朴中聚合。
4. 安全和位置隐私问题。 由于 IP地址同时包含终端的身份信息和位置 信息,所以通信对端和恶意窃听者都可以才艮据一个终端的 IP地址同时获得该 终端的身份信息和拓朴位置信息。 总的来说, 自从传统互联网的体系结构建 立以来, 互联网的技术环境和用户群体都已经发生了翻天覆地的变化, 互联 网需要随之进行革新。 IP地址的双重属性问题是困扰互联网继续发展的根本 原因之一,将 IP地址的身份属性和位置属性进行分离,是解决互联网所面临 问题的一个很好的思路。 新网络将基于这种思路进行设计, 提出一种身份信 息与位置信息分离映射的网络结构,以解决现有互联网存在的一些严重弊端。
为了解决身份和位置的问题, 业界进行了大量的研究和探索, 所有身份 与位置分离方案的基本思想都是将原本绑定在 IP地址上的身份与位置双重 属性分离。 其中, 有些方案釆用应用层的 URL (统一资源定位符 Uniform Resource Locator, URL是用于完整地描述 Internet上网页和其他资源的地址的 一种标识方法。 ) 或 FQDN (合格域名 Fully Qualified Domain Name ) 作为 终端的身份标识等; 有些方案引入了新的名字空间作为身份标识, 如 HIP ( Host Identity Protocol )在以 IP地址为位置标识的网络层上增加主机标识; 有些方案将 IP地址进行分类, 部分 IP作为身份标识, 部分 IP作为位置标 识, 如 LISP ( Locator/ID Separation Protocol )位置身份分离协议。
其中比较有代表性的是基于网络的解决方案, 其核心思想是将网络分为 两个部分, 一个部分是传输网络或者转发网络, 位于整个网络的中心; 另一 部分是边缘网络或者接入网络, 通过接入交换路由器连接到转发网络; 其中 接入网络和转发网络的地址空间和路由信息是相互隔离的。
如图 1所示,基于网络的身份位置分离方案中将传统的 IP地址的双重功 能分离分别为身份标识和位置标识, 其中身份标识为端主机的身份属性, 由 于方案设计中作用在在接入网络, 因此也称为接入标识 AID ( Access ID ) , AID作为端主机的身份标识, 作用域在接入网络中; 其中位置标识为端主机 的位置属性, 由于方案设计中作用在转发网络中, 用于转发网络的路由, 因 此也称为路由标识 RID ( Route ID ) , RID作为端主机的路由标识, 作用域 在转发网络; 接入服务节点 ASN ( Access Service Node ) 完成移动终端 AID 和 RID在映射服务器的注册和查询。
移动终端向通信对端 CN发起通信时, 由其接入服务节点 ASN向身份位 置映射服务器发起位置查询过程, 查询获得目的终端的当前位置信息, 返回 给源端接入服务节点, 保证其能够正确发起通信连接。
ASN: Access Service Node, 接入服务节点, ASN维护移动终端与网络 的连接关系, 为移动终端分配 RID, 并处理终端切换的位置更新, 处理终端 位置信息登记注册, 计费 /鉴权, 维护 /查询通讯对端的 AID-RID映射关系。
ASN封装、路由并转发终端发出的数据报文。 ASN收到源终端发来的数 据报文时,根据数据报文中的通信对端 AID查询本地緩存表中的 AID-RID映 射表: 查到对应的 AIDc-RIDc映射条目, 将 RIDc封装在数据报文头部并转 发到转发网络; 没有查到对应的 AIDc-RIDc映射条目, 向映射转发平面发出 查询 AIDc-RIDc映射关系的流程。
GSR: General Switch Router, 通用交换路由器。 路由并转发以 RID为目 的地址的数据报文。
转发网络主要功能是根据数据报文中的路由标识 RID进行选路和转发数 据报文。
映射服务器主要功能是保存移动节点的 AID-RID的映射信息, 处理移动 节点的登记注册流程, 处理通信对端的位置查询流程。
上述方案存在的问题:
源端接入服务节点 ASNs发起位置查询过程的触发条件是终端 "发起通 信" 。 在发起通信过程中, 可能需要源端接入服务节点 ASNs进行通信对端 CN位置查询过程,此时源端接入服务节点 ASNs中没有通信对端位置和身份 之间的映射关系, 即对端的 RIDc (路由标识) -AIDc (接入标识) 的映射表 项,无法按照 RIDc标识的路由转发数据报文。根据不同的网络传输条件和网 元位置, 源端接入服务节点 ASNs发起的通信对端 CN位置查询过程可能持 续几百毫秒到几秒的时间。
在这种情况下 ASNs收到终端发给对端的数据报文, 发起对端映射信息 的查询,等待映射服务器返回对端的映射信息, ASNs必须对接收到的数据报 文进行緩存, 消耗大量的资源, 等待的时间越长, 緩存的数据量越大, 必然 影响正常的转发性能; 同时还存在安全方面的隐患, 容易形成对映射服务器 的攻击。 发明内容
本发明的目的是提供一种数据报文处理方法、 服务接入节点及系统, 以 提高数据报文转发效率。
为解决以上技术问题, 本发明提供一种数据报文处理方法, 该方法基于 身份位置分离网络实现, 并使用域名系统(DNS )服务器保存端主机域名和 接入标识 (AID)的对应关系, 该方法包括:
A、源端主机向 DNS服务器发送 DNS查询报文,其中携带目的端主机的 域名, 所述 DNS服务器向所述源端主机返回包含目的端主机的 AID的 DNS 响应 4艮文;
B、 接入服务节点 (ASN )侦听 DNS响应报文, 获取响应报文中的目的 端主机的 AID;
C、所述 ASN根据所述目的端主机的 AID向映射服务器查询获取所述目 的端主机的路由标识(RID ) ; 以及
D、 所述 ASN接收所述源端主机发送给目的端主机的数据报文后, 根据 所述目的端主机的 RID进行数据报文转发。
优选地, 步骤 B 中, ASN从接收的转发网络 "^文中通过如下方式侦听 DNS响应报文:根据 DNS报文格式、 DNS的端口号、 DNS的接入标识或 DNS 的路由标识, 判断收到的转发网络报文是否为 DNS响应报文。 优选地, 步骤 A中, 所述 DNS查询报文经过 ASN转发至 DNS服务器; 所述方法还包括: 所述 ASN从 DNS响应报文中获取目的端主机的 AID后, 将所述 DNS响应报文转发给源端主机; 所述源端主机根据所述 DNS响应报 文中的目的端主机的 AID向目的端主机发送数据报文。
优选地, 步骤 C包括: 所述 ASN向映射服务器查询前先查询本地緩存, 若本地緩存中没有目的端主机的 AID和 RID的映射关系,再向映射服务器发 送映射查询请求, 根据映射服务器的映射查询响应获取目的端主机的 RID, 并緩存目的端主机的 AID和 RID的映射关系。
优选地,步骤 D中,所述 ASN接收到所述源端主机发送给目的端主机的 数据报文后, 先查询本地緩存, 若本地緩存中没有或者正在查询目的端主机 的 AID和 RID的映射关系, 则等待收到所述映射服务器的映射查询响应后, 再进数据行报文转发。
优选地,步骤 D中 ,所述 ASN釆用封装或替换的方式实现数据报文转发。 优选地, 步骤 D中, 所述源端主机发送的数据报文中源地址目的地址分 别为源端主机和目的端主机的 AID; 所述方法还包括: 所述 ASN进行数据报 文转发时, 用源端主机和目的端主机的 RID对源端主机发送的数据^艮文进行 封装, 封装后的数据报文的源地址和目的地址分别为源端主机和目的端主机 的 RID, 且封装后的 文还包括源端主机和目的端主机的 AID。
优选地, 步骤 D中, 所述源端主机发送的数据报文的源地址和目的地址 分别为源端主机和目的端主机的 AID; 所述方法还包括: 所述 ASN进行数据 才艮文转发时, 用源端主机和目的端主机的 RID分别替换源端主机和目的端主 机的 AID, 所述源端主机的 AID与 RID唯一对应, 且所述目的端主机的 AID 与 RID唯一对应。
为解决以上技术问题, 本发明还提供一种接入服务节点, 该接入服务节 点(ASN )位于身份位置分离网络,所述身份位置分离网络包括 DNS服务器, 所述 DNS服务器设置成: 保存端主机域名和接入标识的对应关系, 接收源端 主机发送的携带目的端主机的域名的 DNS查询报文, 以及, 向源端主机返回 携带目的端主机的 AID的 DNS响应报文, 所述 ASN包括: 侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 获 取响应报文中目的端主机的接入标识(AID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据侦听模块获取 的目的端主机的 AID向映射服务器查询获取目的端主机的路由标识(RID ); 以及
报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RID进 行数据报文转发; 以及, 接收及转发从转发网络发来的发送给该 ASN下源端 主机的报文。
优选地,所述 ASN的侦听模块是设置成从所述报文处理模块收到的转发 网络报文中通过如下方式侦听 DNS响应报文: 根据 DNS报文格式、 DNS的 端口号、 DNS的接入标识或 DNS的路由标识, 判断收到的转发网络报文是 否为 DNS响应 4艮文。
优选地,所述报文处理模块还设置成接收并转发源端主机发送给 DNS服 务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
优选地, 所述 ASN还包括与所述映射查询模块连接的映射信息緩存模 块, 该映射信息緩存模块设置成: 緩存端主机的 AID和 RID的映射关系; 所 述映射查询模块是设置成通过如下方式获取目的端主机的 RID: 向映射服务 器查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中没有目的 端主机的 AID和 RID的映射关系, 再向映射服务器发送映射查询请求, 根据 映射服务器的映射查询响应获取目的端主机的 RID; 该映射信息查询模块还 设置成:在所述映射信息緩存模块中保存目的端主机的 AID和 RID的映射关 系。
优选地,所述 ASN的报文处理模块是设置成通过如下方式进行数据报文 转发: 接收到所述源端主机发送给目的端主机的数据报文后, 通知映射查询 模块查询映射信息緩存模块, 若映射信息緩存模块中没有目的端主机的 AID 和 RID映射关系, 则等待映射查询模块收到所述映射服务器的映射查询响应 后, 再进行数据报文转发。 优选地,所述 ASN的报文处理模块是设置成釆用封装或替换的方式实现 数据报文转发。
为解决以上技术问题, 本发明还提供一种数据报文处理系统, 该数据报 文处理系统基于身份位置分离网络实现, 该系统包括端主机、 接入服务节点 ( ASN ) 及 DNS服务器, 其中:
所述端主机包括域名查询模块及报文收发模块, 其中, 域名查询模块设 置成: 向 DNS服务器发送携带目的端主机的域名的 DNS查询报文, 以及接 收所述 DNS服务器返回的携带目的端主机的 AID的 DNS响应报文; 报文收 发模块设置成: 根据所述 DNS响应报文中的目的端主机的 AID向目的端主 机发送数据报文, 以及, 接收数据报文;
所述 ASN包括:
侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 获 取响应报文中目的端主机的接入标识(AID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据获取的目的端 主机的 AID向映射服务器查询获取目的端主机的路由标识(RID ) ; 以及 报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RID进 行数据报文转发; 以及, 接收及转发从转发网络发来的发送给该 ASN下源端 主机的报文;
DNS服务器设置成: 保存端主机域名和接入标识的对应关系, 接收端主 机发送的 DNS查询 文, 以及向端主机返回 DNS响应 4艮文。
优选地,所述 ASN的侦听模块是设置成从所述报文处理模块收到的转发 网络报文中通过如下方式侦听 DNS响应报文: 根据 DNS报文格式、 DNS的 端口号、 DNS的接入标识或 DNS的路由标识, 判断收到的转发网络报文是 否为 DNS响应报文。
优选地,所述报文处理模块还设置成接收并转发源端主机发送给 DNS服 务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
优选地, 所述 ASN还包括与所述映射查询模块连接的映射信息緩存模 块, 该映射信息緩存模块设置成緩存端主机的 AID和 RID的映射关系; 所述 映射查询模块是设置成通过如下方式获取目的端主机的 RID: 向映射服务器 查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中没有目的端 主机的 AID和 RID的映射关系, 再向映射服务器发送映射查询请求, 根据映 射服务器的映射查询响应获取目的端主机的 RID;该映射查询模块还设置成: 在所述映射信息緩存模块中保存目的端主机的 AID和 RID的映射关系。
优选地,所述 ASN的报文处理模块是设置成通过如下方式进行数据报文 转发: 接收到所述源端主机发送给目的端主机的数据报文后, 通知所述映射 查询模块查询映射信息緩存模块, 若映射信息緩存模块中没有目的端主机的 AID和 RID映射关系, 则等待映射查询模块收到所述映射服务器的映射查询 响应后, 再进行 >¾文转发。
优选地,所述 ASN的报文处理模块接收的所述源端主机发送的数据报文 中源地址和目的地址分别为源端主机和目的端主机的 AID; 所述 ^艮文处理模 块还设置成: 在进行数据报文转发时, 用源端主机和目的端主机的 RID对源 端主机发送的数据报文进行封装, 封装后的数据报文的源地址和目的地址分 别为源端主机和目的端主机的 RID, 且封装后的报文还包括源端主机和目的 端主机的 AID。
优选地,所述 ASN的报文处理模块接收的所述源端主机发送的数据报文 的源地址和目的地址分别为源端主机和目的端主机的 AID; 所述 ^艮文处理模 块还设置成: 在进行数据报文转发时, 分别用源端主机和目的端主机的 RID 替换源端主机和目的端主机的 AID ,所述源端主机的 AID与 RID唯一对应 , 且所述目的端主机的 AID与 RID唯一对应。
本发明数据报文处理方法、 接入业务节点及系统基于身份位置分离网络 架构, 接入服务节点(ASN ) 收到源端主机发送的数据报文前, 根据源端主 机查询 DNS ( domain name system, 域名系统) 时, 该 DNS返回的才艮文侦听 到目的端主机的 AID, 并向映射服务器查询 AID-RID的映射信息, 从而提高 对源端主机数据报文的转发效率, 改善转发性能。 附图概述 图 1是身份和位置分离的网络架构的组成示意图;
图 2 是本发明数据报文处理处理方法的流程示意图;
图 3 是本发明接入服务节点的模块结构示意图;
图 4是本发明数据报文处理系统的模块结构示意图。
本发明的较佳实施方式
本发明数据报文处理方法、 接入业务节点及系统的主要思想是基于身份 位置分离网络架构,接入服务节点(ASN ) 收到源端主机发送的数据报文前, 才艮据源端主机查询 DNS ( domain name system, i或名系统) 时, 该 DNS返回 的报文侦听到目的端主机的 AID,并向映射服务器查询 AID-RID的映射信息, 从而提高对源端主机数据报文的转发效率, 改善转发性能。
本发明所说的身份位置分离网络架构,将传统互联网的 IP地址标识身份 和位置的双重功能进行分离, 实现对移动性、 多家乡性、 IP地址动态重分配、 减轻路由负载及下一代互联网中不同网络区域之间的互访等问题的支持。
身份位置分离架构网络具有以下特点: 网络划分为接入网和转发网, 接 入网位于转发网的边缘, 负责所有终端的接入。 转发网负责不同通过接入网 接入的终端的路由。 接入服务节点位于转发网和接入网的分界点, 具有与接 入网的接口及与转发网的接口。 接入网与转发网在拓朴关系上没有重叠。 用 户终端间进行通信只需使用对端的身份标识进行识别, 身份标识在接入网也 称为接入标识。 接入服务节点为终端提供接入服务, 维护用户连接, 转发用 户数据。
图 2为本发明实施例的数据报文处理方法的流程图, 本发明数据报文处 理流程包括:
201 : 源端主机根据要访问的目的端主机的域名向 DNS服务器发送 DNS 查询报文, 其中携带目的端主机的域名, 所述 DNS服务器向所述源端主机返 回包含目的端主机的接入标识 (AID)的 DNS响应报文;
在传统的 DNS服务器中存储端主机的域名和 IP地址的对应关系, 在本 发明的身份和位置分离网络中, DNS服务器中存储端主机的域名和接入标识 (即端主机的身份属性)的对应关系, 同时 DNS服务器在身份和位置分离网 络中有自己的接入标识和路由标识。
源端主机和目的端主机通信时, 源端主机根据目的端主机的域名利用 DNS客户端协议查询 DNS服务器以得到目的端主机的接入标识 AID, DNS 服务器返回包含目的端主机接入标识 AID的响应报文,源接入服务节点 ASN 侦听该响应艮文, 获取目的端主机的 AID。
DNS服务器的接入标识是系统设定的公知地址, 源端主机发送的 DNS 查询报文和服务器返回 DNS响应报文的传输必须经过 ASN。
DNS的报文格式如下:
Figure imgf000013_0001
问题数 资源记录数
授权的资源记录数
Figure imgf000013_0002
查询问题
回答(资源记录数可变)
授权(资源记录数可变)
额外信息 (资源记录数可变)
其中:
标识字段: 用于报文标识, 终端设置, DNS服务器使用该标识返回结果; 标志字段: 16位, 重要位段的定义如下:
Figure imgf000013_0003
4位 Rcode 返回码, 0表示无差错
DNS查询报文中的问题部分通常只有一个问题, 格式包括查询名、 查询 类型和查询类, 查询名就是需要查找的域名, 如 "ZTE.COM.CN" 。 查询类 为 1是指互联网地址 IP , 本发明为接入标识。
DNS响应报文中的资源记录, 在 DNS报文格式中的最后 3个字段, 回 答字段、 授权字段和额外字段, 釆用资源记录格式, 格式如下:
Figure imgf000014_0001
其中: 域名是记录中资源数据对应的名字, 它的格式和前面的查询名字 段格式一样。
类型说明 RR的类型码和前面的查询类型值是一样的。通常为 1 ,表示互 联网数据。
生存时间是客户程序保留该资源记录的秒数, 资源记录通常的生存时间 为 2天。
资源数据长度说明资源数据的数量,该数据的格式依赖域类型字段的值, 对于类型 A资源数据是 4字节的 IP地址(本发明中为接入标识) 。
202, ASN侦听 DNS响应报文, 获取响应报文中的目的端主机的接入标 识(AID ) ;
ASN从收到的转发网络报文(本发明中将转发网络发送过来的报文称为 转发网络报文)中侦听 DNS响应报文, 判断该报文是否是 DNS的响应报文, 如果是, 则实时提取 DNS响应报文中的目的端主机的 AID, 完成侦听功能, 并将 DNS响应报文转发给源端主机, 源端主机接收到该 DNS响应报文后, 生成目的地址为目的端主机的接入标识的数据报文, 并发送给源端 ASN。
ASN可根据以下三种方式判断接收的报文是否为 DNS响应报文:
1、 ASN根据上述的 DNS的报文格式判断是否为 DNS响应报文;
2、 DNS均支持用户数据包协议(UDP )和传输控制协议(TCP ) , 并使 用特定的端口号, 如 DNS的端口号为 53 , DNS的查询 文的目的端口号为 53 , DNS响应报文的源端口号为 53 , ASN根据源端口号判断是否为 DNS响 应报文;
3、 DNS有特定的接入标识及路由标识, ASN根据源端地址中的接入标 识或路由标识进行判断。
203 , ASN根据目的端主机 AID获取目的端主机的 RID;
若 ASN本地緩存有映射关系, 则 ASN获取目的端主机 AID后先查询本 地緩存的映射关系, 若在本地緩存中未查到目的端主机的映射关系, 则 ASN 向身份位置分离网络的映射服务器发送映射查询请求, 根据映射服务器的映 射查询响应获取目的端主机的 RID,并根据映射服务器返回的目的端主机 RID 在本地緩存保存目的端主机的 AID和 RID的映射关系;
若 ASN本地緩存中没有保存映射关系, 则 ASN获取目的端主机 AID后 直接向映射服务器查询目的端主机的 RID。
ASN向映射服务器查询目的端主机的 RID时,查询请求中携带目的端主 机的 AID, 向身份位置分离网络的映射服务器查询映射信息, 即目的端主机 所属的接入服务节点的位置 RID。
204, ASN接收所述源端主机发送给目的端主机的数据报文后, 根据所 述目的端主机的 RID进行数据报文转发。
接收数据报文与获得映射服务器返回的 RID之间一定有时间差, 多数情 况是先收到终端的数据报文, 这种情况下, 先查询本地緩存, 若本地緩存中 没有或者正在查询目的端主机的 AID和 RID的映射关系, 则緩存数据报文, 等待收到映射查询响应后, 再进行报文转发; 如果先收到映射服务器返回的 映射信息, 不管是否收到终端的数据报文, 应该立即将 RID进行本地映射表 的緩存, 这样 ASN收到终端的数据报文以后就可以直接进行本地查询。
源端主机发送的数据报文中源、 目的地址分别为源、 目的端主机的 AID, ASN接收所述源端主机发送给目的端主机的数据报文后, 根据数据报文中的 目的端主机 AID查询本地緩存获取目的端主机 RID , 并根据目的端主机 RID 进行数据报文转发。
数据报文转发的方式有以下两种: ( 1 )封装转发
源接入服务节点 ASNs利用查询到的 RID封装该数据报文, 封装后的数 据 "^文的源、 目的地址分别源、 目的端主机的 RID, 且封装后的 "^文还包括 源、 目的端主机的 AID; 然后通过转发网络发送给目的接入服务结点 ASNd, ASNd解封装后发送给目的端主机。
( 2 )替换转发
源接入服务节点 ASNs利用查询到的 RID替换该数据报文中的目的主机 的 AID, 然后通过转发网络发送给目的接入服务结点 ASNd, ASNd将接收数 据报文 RID替换回 AID后发送给目的端主机。
需要说明的是, 替换转发的情形下, 源端主机的 AID和源 ASN分配的
RID是——对应的 , 同样的目的端主机的 AID和目的端 ASN分配的 RID也 是一一对应的。
本发明中, 通过 ASN侦听 DNS响应报文, 提前获取目的端主机的 AID, 并在本地未緩存目的端主机的映射关系的情况下, 提前向映射服务器进行查 询, 从而减少数据报文的緩存, 减少緩存器的大小, 减少数据管理的任务量, 使得 ASN设备有更多的资源来进行数据转发, 提高转发数据的处理效率。
图 3所示, 为实现以上方法, 本发明还提供了一种接入服务节点, 该接 入服务节点(ASN, Access Service Node )位于身份位置分离网络, 所述身份 位置分离网络包括 DNS服务器, 该 DNS服务器设置成: 保存端主机域名和 接入标识的对应关系,接收源端主机发送的携带目的端主机的域名的 DNS查 询报文, 以及, 向源端主机返回携带目的端主机的 AID的 DNS响应报文, 所述 ASN的功能包括: 维护终端与网络的连接关系, 为终端分配 RID, 处理终端切换的位置更新, 处理终端的登记注册, 计费 /鉴权, 维护 /查询通讯 对端的 AID-RID映射关系; 以及, 封装、 路由并转发送达终端或终端发出的 数据报文。 ASN 收到终端发来的数据报文时, 根据数据报文中的通信对端 AIDc查询本地映射表中的 AID-RID映射表: 没有查到对应的 AIDc-RIDc映 射条目, 则向映射服务器发起查询 AIDc-RIDc映射关系的流程。 该身份位置分离网络还包括 GSR: General Switch Router, 通用交换路由 器, 该 GSR路由并转发以 RID为目的地址的数据报文。
与本发明相关地, ASN包括:
侦听模块, 其与报文处理模块连接, 并设置成侦听 DNS响应报文, 获取 响应 ^艮文中目的端主机的接入标识( AID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成根据侦听模块获取的 目的端主机的 AID向映射服务器查询获取目的端主机的路由标识(RID ) ; 报文处理模块, 其与所述映射查询模块和侦听模块连接, 并设置成: 接 收、 处理并转发数据艮文、 DNS查询及响应艮文以及映射查询及响应艮文, 与本发明相关地, 其设置成: 接收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RID进行数据报文转发; 以及, 接收及转发从转发 网络发来的发送给该 ASN下源端主机的报文。
进一步地,所述 ASN的侦听模块从所述报文处理模块收到的转发网络报 文中侦听 DNS响应报文, 根据 DNS报文格式、 DNS的端口号、 DNS的接入 标识或 DNS的路由标识, 判断收到的转发网络报文是否为 DNS响应报文。
进一步地,所述报文处理模块还设置成:接收并转发源端主机发送给 DNS 服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
进一步地,所述 ASN还包括与所述映射查询模块连接的映射信息緩存模 块, 该映射信息緩存模块设置成緩存端主机的 AID和 RID的映射关系; 所述 映射查询模块向映射服务器查询前, 先查询所述映射信息緩存模块, 若映射 信息緩存模块中没有目的端主机的 AID和 RID的映射关系,再向映射服务器 发送映射查询请求,根据映射服务器的映射查询响应获取目的端主机的 RID, 并向所述映射信息緩存模块保存目的端主机的 AID和 RID的映射关系。
进一步地,所述 ASN的报文处理模块接收到所述源端主机发送给目的端 主机的数据报文后, 通知所述映射查询模块查询映射信息緩存模块, 若映射 信息緩存模块中没有目的端主机的 AID和 RID映射关系,则緩存该数据报文, 等待映射查询模块收到所述映射服务器的映射查询响应后, 再进行数据报文 转发。 所述 ASN的报文处理模块釆用封装或替换的方式实现数据报文转发,具 体如上所述。
本发明还提供一种数据报文处理系统, 如图 4所示, 该系统基于身份位 置分离网络实现,该系统包括端主机、接入服务节点(ASN )及 DNS服务器, 其中: 所述端主机包括域名查询模块及报文收发模块, 其中, 域名查询模块设 置成: 向 DNS服务器发送携带目的端主机的域名的 DNS查询报文, 以及接 收所述 DNS服务器返回的携带目的端主机的 AID的 DNS响应报文; 报文收 发模块设置成根据所述 DNS响应报文中的目的端主机 AID向目的端主机发 送数据报文及接收数据报文;
所述 ASN包括:
侦听模块, 其与报文处理模块连接, 并设置成侦听 DNS响应报文, 获取 响应报文中目的端主机的接入标识(AID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成根据侦听模块获取的 目的端主机的 AID向映射服务器查询获取目的端主机的路由标识( RID ) ; 报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收、 处理并转发数据艮文、 DNS查询及响应艮文以及映射查询及响应艮文, 与本发明相关地, 其设置成: 接收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RID进行数据报文转发; 以及, 接收及转发从转发 网络发来的发送给该 ASN下源端主机的报文;
DNS服务器设置成: 保存端主机域名和接入标识的对应关系, 接收端主 机发送的 DNS查询 文, 以及向端主机返回 DNS响应 4艮文。
所述 ASN 的侦听模块从所述报文处理模块收到的转发网络报文中侦听 DNS响应报文,根据 DNS报文格式、 DNS的端口号、 DNS的接入标识或 DNS 的路由标识, 判断收到的转发网络报文是否为 DNS响应报文。
所述报文处理模块还设置成接收并转发源端主机发送给 DNS服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
所述 ASN还包括与所述映射查询模块连接的映射信息緩存模块,该映射 信息緩存模块设置成: 緩存端主机的 AID和 RID的映射关系; 所述映射查询 模块向映射服务器查询前, 先查询所述映射信息緩存模块, 若映射信息緩存 模块中没有目的端主机的 AID和 RID的映射关系,再向映射服务器发送映射 查询请求, 根据映射服务器的映射查询响应获取目的端主机的 RID, 并向所 述映射信息緩存模块保存目的端主机的 AID和 RID的映射关系。
所述 ASN 的报文处理模块接收到所述源端主机发送给目的端主机的数 据报文后, 通知映射查询模块查询映射信息緩存模块, 若映射信息緩存模块 中没有目的端主机的 AID和 RID映射关系,则报文处理模块内部緩存该数据 报文, 等待映射查询模块收到所述映射服务器的映射查询响应后, 再进行报 文转发。
所述 ASN的报文处理模块接收的所述源端主机发送的数据报文中源、 目 的地址分别为源、 目的端主机的 AID, 进行数据报文转发时, 用源、 目的端 主机的 RID对源端主机发送的数据报文进行封装, 封装后的数据报文的源、 目的地址分别为源、 目的端主机的 RID, 且封装后的报文还包括源、 目的端 主机的 AID。
所述 ASN的报文处理模块接收的所述源端主机发送的数据报文的源、 目 的地址分别为源、 目的端主机的 AID, 进行数据报文转发时, 分别用源、 目 的端主机的 RID替换源、 目的端主机的 AID , 所述源端主机的 AID与 RID 唯一对应 , 且目的端主机的 AID与 RID唯一对应。
若源端 ASN发送的数据报文是封装后的数据报文, 则目的端 ASN对接 收的数据报文进行解封装还原;若源端 ASN发送的数据报文是替换后的数据 报文, 则目的端 ASN对接收的数据报文进行替换还原; 即目的端 ASN对报 文的操作是源端 ASN的反操作。
进一步地, 所述身份位置分离网络还包括映射服务器, 所述映射服务器 设置成根据 ASN的查询向所述 ASN返回 RID。
工业实用性
与现有技术相比, 本发明数据报文处理方法、接入业务节点及系统基于 身份位置分离网络架构, 接入服务节点(ASN ) 在收到源端主机发送的数据 报文前, 先根据源端主机查询 DNS时, 该 DNS返回的报文侦听到目的端主 机的 AID, 并向映射服务器查询 AID-RID的映射信息, 从而提高 ASN对源 端主机数据报文的转发效率, 改善 ASN的转发性能。

Claims

权 利 要 求 书
1、 一种数据报文处理方法, 其特征在于, 该方法基于身份位置分离网络 实现, 并使用域名系统(DNS )服务器保存端主机域名和接入标识 (AID)的对 应关系, 该方法包括:
A、源端主机向 DNS服务器发送 DNS查询报文,其中携带目的端主机的 域名, 所述 DNS服务器向所述源端主机返回包含目的端主机的 AID的 DNS 响应 4艮文;
B、 接入服务节点 (ASN )侦听 DNS响应报文, 获取侦听到的响应报文 中的目的端主机的 AID;
C、所述 ASN根据所述目的端主机的 AID向映射服务器查询获取所述目 的端主机的路由标识(RID ) ; 以及
D、 所述 ASN接收所述源端主机发送给目的端主机的数据报文后, 根据 所述目的端主机的 RID进行数据报文转发。
2、 如权利要求 1所述的方法, 其中, 步骤 B中, 所述 ASN是从接收的 转发网络报文中通过如下方式侦听 DNS响应报文:根据 DNS报文格式、 DNS 的端口号、 DNS的接入标识或 DNS的路由标识, 判断收到的转发网络报文 是否为 DNS响应报文。
3、 如权利要求 1所述的方法, 其中, 步骤 A中, 所述 DNS查询报文经 过 ASN转发至 DNS服务器; 所述方法还包括: 所述 ASN从 DNS响应报文中获取目的端主机的 AID 后, 将所述 DNS响应报文转发给源端主机; 所述源端主机根据所述 DNS响 应报文中的目的端主机的 AID向目的端主机发送数据报文。
4、 如权利要求 1所述的方法, 其中, 所述 ASN根据所述目的端主机的 AID向映射服务器查询获取所述目的端主机的 RID的步骤包括:所述 ASN向 映射服务器查询前先查询本地緩存, 若本地緩存中没有目的端主机的 AID和 RID 的映射关系, 再向映射服务器发送映射查询请求, 根据映射服务器的映 射查询响应获取目的端主机的 RID,并緩存目的端主机的 AID和 RID的映射 关系。
5、 如权利要求 1所述的方法, 其中, 步骤 D中, 根据所述目的端主机 的 RID进行数据报文转发的步骤包括:所述 ASN接收到所述源端主机发送给 目的端主机的数据报文后, 先查询本地緩存, 若本地緩存中没有或者正在查 询目的端主机的 AID和 RID的映射关系,则等待收到所述映射服务器的映射 查询响应后, 再进行数据报文转发。
6、 如权利要求 1所述的方法, 其中, 步骤 D中, 所述 ASN釆用封装或 替换的方式实现数据报文转发。
7、 如权利要求 1所述的方法, 其中, 步骤 D中, 所述源端主机发送的 数据 文中源地址和目的地址分别为源端主机和目的端主机的 AID; 所述方法还包括: 所述 ASN进行数据报文转发时, 用源端主机和目的端 主机的 RID对源端主机发送的数据报文进行封装, 封装后的数据报文的源地 址和目的地址分别为源端主机和目的端主机的 RID, 且封装后的 ^艮文还包括 源端主机和目的端主机的 AID。
8、 如权利要求 1所述的方法, 其中, 所述源端主机发送的数据报文的源 地址和目的地址分别为源端主机和目的端主机的 AID; 所述方法还包括: 所述 ASN进行数据报文转发时, 分别用源端主机和目 的端主机的 RID替换源端主机和目的端主机的 AID,所述源端主机的 AID与 RID唯一对应 , 且所述目的端主机的 AID和 RID唯一对应。
9、 一种接入服务节点, 其特征在于, 该接入服务节点(ASN )位于身份 位置分离网络, 所述身份位置分离网络包括域名系统(DNS )服务器, 所述 DNS服务器设置成: 保存端主机域名和接入标识的对应关系, 接收源端主机 发送的携带目的端主机的域名的 DNS查询报文, 以及, 向源端主机返回携带 目的端主机的接入标识( AID ) 的 DNS响应 4艮文, 所述 ASN包括:
侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 获 取侦听到的响应报文中目的端主机的接入标识(AID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据所述侦听模块 获取的目的端主机的 AID 向映射服务器查询以获取目的端主机的路由标识 ( RID ) ; 以及
报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 并根据映射查询模块获取的 RID 进行数据报文转发; 以及, 接收及转发从转发网络发来的发送给所述 ASN下 的源端主机的报文。
10、 如权利要求 9所述接入服务节点, 其中, 所述侦听模块是设置成从 所述报文处理模块收到的转发网络报文中通过如下方式侦听 DNS响应报文: 根据 DNS ^艮文格式、 DNS的端口号、 DNS的接入标识或 DNS的路由标识, 判断报文处理模块收到的转发网络报文是否为 DNS响应报文。
11、 如权利要求 9所述的接入服务节点, 其中, 所述报文处理模块还设置成接收并转发源端主机发送给 DNS服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
12、 如权利要求 9所述的接入服务节点, 还包括与所述映射查询模块连 接的映射信息緩存模块, 所述映射信息緩存模块设置成: 緩存端主机的 AID 和 RID的映射关系; 所述映射查询模块是设置成通过如下方式获取目的端主机的 RID: 向映 射服务器查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中没 有目的端主机的 AID和 RID的映射关系,再向映射服务器发送映射查询请求, 根据映射服务器的映射查询响应获取目的端主机的 RID; 所述映射查询模块还设置成: 在所述映射信息緩存模块中保存目的端主 机的 AID和 RID的映射关系。
13、 如权利要求 9所述的接入服务节点, 其中, 所述报文处理模块是设 置成通过如下方式进行数据报文转发: 在接收到所述源端主机发送给目的端 主机的数据报文后, 通知映射查询模块查询映射信息緩存模块, 若映射信息 緩存模块中没有目的端主机的 AID和 RID映射关系,则等待映射查询模块收 到所述映射服务器的映射查询响应后, 再进行报文转发。
14、 如权利要求 9所述的接入服务节点, 其中, 所述报文处理模块是设 置成釆用封装或替换的方式实现数据报文转发。
15、 一种数据报文处理系统, 其特征在于, 该数据报文处理系统基于身 份位置分离网络实现, 该系统包括端主机、 接入服务节点 (ASN )及域名系 统(DNS )服务器, 其中:
所述端主机包括域名查询模块及报文收发模块, 其中, 域名查询模块设 置成: 向 DNS服务器发送携带目的端主机的域名的 DNS查询报文, 以及接 收所述 DNS服务器返回的携带目的端主机的接入标识(AID ) 的 DNS响应 报文; 报文收发模块设置成: 根据所述 DNS响应报文中的目的端主机的 AID 向目的端主机发送数据报文, 以及接收数据报文;
所述 ASN包括:
侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 获 取侦听到的 DNS响应 4艮文中目的端主机的 AID;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据侦听模块获取 的目的端主机的 AID向映射服务器查询获取目的端主机的路由标识(RID ); 以及
报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RID进 源端主机的报文;
所述 DNS服务器设置成: 保存端主机域名和接入标识的对应关系,接收 端主机发送的 DNS查询报文, 以及向端主机返回 DNS响应报文。
16、 如权利要求 15所述的系统, 其中, 所述 ASN的侦听模块是设置成 从所述报文处理模块收到的转发网络报文中通过如下方式侦听 DNS 响应报 文: 根据 DNS报文格式、 DNS的端口号、 DNS的接入标识或 DNS的路由标 识, 判断收到的转发网络报文是否为 DNS响应报文。
17、 如权利要求 15所述的系统, 其中, 所述报文处理模块还设置成接收并转发源端主机发送给 DNS服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
18、 如权利要求 15所述的系统, 其中, 所述 ASN还包括与所述映射查 询模块连接的映射信息緩存模块, 所述映射信息緩存模块设置成緩存端主机 的 AID和 RID的映射关系; 所述映射查询模块是设置成通过如下方式获取目的端主机的 RID: 向映 射服务器查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中没 有目的端主机的 AID和 RID的映射关系,再向映射服务器发送映射查询请求, 根据映射服务器的映射查询响应获取目的端主机的 RID; 所述映射查询模块还设置成: 在所述映射信息緩存模块中保存目的端主 机的 AID和 RID的映射关系。
19、 如权利要求 15所述的系统, 其中, 所述 ASN的报文处理模块是设 置成通过如下方式进行数据报文转发: 接收到所述源端主机发送给目的端主 机的数据报文后, 通知所述映射查询模块查询映射信息緩存模块, 若映射信 息緩存模块中没有目的端主机的 AID和 RID映射关系,则等待映射查询模块 收到所述映射服务器的映射查询响应后, 再进行数据报文转发。
20、 如权利要求 15所述的系统, 其中, 所述源端主机发送给目的端主机 的数据 文中源地址和目的地址分别为源端主机和目的端主机的 AID; 所述报文处理模块还设置成: 在进行数据报文转发时, 用源端主机和目 的端主机的 RID对源端主机发送的数据报文进行封装, 封装后的数据报文的 源地址和目的地址分别为源端主机和目的端主机的 RID, 且封装后的 ^艮文还 包括源端主机和目的端主机的 AID。
21、 如权利要求 15所述的系统, 其中, 所述 ASN的报文处理模块接收 的所述源端主机发送的数据^艮文的源地址和目的地址分别为源端主机和目的 端主机的 AID;
所述报文处理模块还设置成: 进行数据报文转发时, 分别用源端主机和 目的端主机的 RID替换源端主机和目的端主机的 AID ,所述源端主机的 AID 与 RID唯一对应, 且所述目的端主机的 AID和 RID唯一对应。
PCT/CN2011/072681 2010-04-20 2011-04-12 数据报文处理方法、系统及接入服务节点 WO2011131097A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11771550.8A EP2538621B1 (en) 2010-04-20 2011-04-12 Data message processing method, system and access service node
KR1020127024195A KR101381701B1 (ko) 2010-04-20 2011-04-12 데이터 메시지 처리 방법, 시스템 및 접속 서비스 노드
JP2013500325A JP2013526107A (ja) 2010-04-20 2011-04-12 データメッセージの処理方法、システム及びアクセスサービスノード

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010153057.7 2010-04-20
CN201010153057.7A CN102238059B (zh) 2010-04-20 2010-04-20 数据报文处理方法、系统及接入服务节点

Publications (1)

Publication Number Publication Date
WO2011131097A1 true WO2011131097A1 (zh) 2011-10-27

Family

ID=44833696

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2011/072432 WO2011131084A1 (zh) 2010-04-20 2011-04-02 数据通信系统及方法
PCT/CN2011/072681 WO2011131097A1 (zh) 2010-04-20 2011-04-12 数据报文处理方法、系统及接入服务节点

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072432 WO2011131084A1 (zh) 2010-04-20 2011-04-02 数据通信系统及方法

Country Status (5)

Country Link
EP (1) EP2538621B1 (zh)
JP (1) JP2013526107A (zh)
KR (1) KR101381701B1 (zh)
CN (1) CN102238059B (zh)
WO (2) WO2011131084A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112148782A (zh) * 2020-09-24 2020-12-29 建信金融科技有限责任公司 市场数据接入方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546847B (zh) * 2010-12-30 2015-10-28 中兴通讯股份有限公司 信息处理方法、域名服务器和接入路由器
CN104079675B (zh) * 2013-03-25 2017-12-29 联想(北京)有限公司 信息处理的方法、电子设备及服务器
CN104579969B (zh) * 2013-10-29 2019-04-23 中兴通讯股份有限公司 报文发送方法及装置
CN104980348A (zh) * 2014-04-04 2015-10-14 中兴通讯股份有限公司 业务链路由方法及系统、及系统中的设备
CN104486457B (zh) * 2014-12-11 2016-03-30 电信科学技术研究院 一种地址分配、获取方法及装置
CN110896410B (zh) * 2018-11-15 2022-03-18 腾讯科技(深圳)有限公司 视频数据的上传方法、装置、计算机可读介质及电子设备
CN111343096B (zh) * 2020-02-21 2023-12-15 深圳市风云实业有限公司 一种标地分离报文转发方法、设备、交换芯片和存储介质
CN111614792B (zh) * 2020-03-31 2023-04-18 视联动力信息技术股份有限公司 透传方法、系统、服务器、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法
CN101123536A (zh) * 2007-09-19 2008-02-13 北京交通大学 实现一体化网络位置管理的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465867B2 (ja) * 2000-01-14 2010-05-26 ソニー株式会社 情報処理装置および方法、並びに記録媒体
JP2002268129A (ja) 2001-03-07 2002-09-18 Keishu Hatta でこピタ手ぶれ防止具
JP4579934B2 (ja) 2004-02-13 2010-11-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) レガシーノードとhipノード間のホストアイデンティティプロトコル(hip)接続を確立するためのアドレス指定方法及び装置
CN101668324A (zh) * 2008-09-04 2010-03-10 华为技术有限公司 中继网络的路由方法、装置及系统
CN101656765B (zh) * 2009-09-14 2013-01-16 中兴通讯股份有限公司 身份位置分离网络的名址映射系统及数据传输方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法
CN101123536A (zh) * 2007-09-19 2008-02-13 北京交通大学 实现一体化网络位置管理的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FARINACCI ET AL.: "Locator/ID Separation Protocol (LISP) draft-farinacci-lisp-12.txt", no. 12, 2 March 2009 (2009-03-02), XP015060559, Retrieved from the Internet <URL:http://tools.ietf.org/html/draft-farinacci-lisp-12> *
See also references of EP2538621A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112148782A (zh) * 2020-09-24 2020-12-29 建信金融科技有限责任公司 市场数据接入方法及装置
CN112148782B (zh) * 2020-09-24 2023-01-20 建信金融科技有限责任公司 市场数据接入方法及装置

Also Published As

Publication number Publication date
CN102238059B (zh) 2015-05-13
KR20120129975A (ko) 2012-11-28
CN102238059A (zh) 2011-11-09
WO2011131084A1 (zh) 2011-10-27
KR101381701B1 (ko) 2014-04-04
JP2013526107A (ja) 2013-06-20
EP2538621B1 (en) 2018-04-04
EP2538621A1 (en) 2012-12-26
EP2538621A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2011131097A1 (zh) 数据报文处理方法、系统及接入服务节点
JP4727126B2 (ja) 近距離無線コンピューティング装置用のセキュア・ネットワーク・アクセスの提供
WO2011124132A1 (zh) 数据通信系统及方法
WO2011131088A1 (zh) 数据报文处理方法、入口隧道路由器及系统
WO2011069399A1 (zh) 地址映射方法及接入业务节点
AU2001288394A1 (en) Location-independent packet routing and secure access in a short-range wireless networking environment
WO2011032473A1 (zh) 虚拟专用网络的实现方法及系统
JP2013527632A (ja) マルチnat64環境のための方法及びホストノード
WO2011035710A1 (zh) 面向用户的通信方法和路由注册方法及设备及通信系统
WO2011029322A1 (zh) 名址映射系统、数据传输方法及名址映射维护方法
WO2011032462A1 (zh) 一种数据传输、接收的方法及系统及路由器
WO2012088882A1 (zh) 一种数据传输方法、系统及接入网关
US8705471B2 (en) Method and system for implementing ID/locator mapping
WO2011032498A1 (zh) 一种分配位置标识和报文发送的方法及系统
JP5241665B2 (ja) 通信装置、通信システムおよび通信方法
WO2011124121A1 (zh) 网间数据通讯系统及方法
WO2012075768A1 (zh) 身份位置分离网络的监听方法和系统
WO2012088828A1 (zh) 表维护方法、系统和接入网关路由器
WO2012122710A1 (zh) 一种承载网络及数据传输方法
WO2012083685A1 (zh) 一种提高映射路由表使用效率的方法及系统
WO2012075770A1 (zh) 身份位置分离网络的阻断方法和系统
WO2022218194A1 (zh) 服务路由方法及设备
CA2419865C (en) Providing secure network access for short-range wireless computing devices
CN114390021A (zh) 基于IPv6单栈的IDC服务提供系统及方法
Li et al. A Mobility Management Solution Based on ID/Locator Separation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024195

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011771550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013500325

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE