WO2011130997A1 - 估计终端移动速度的方法和装置 - Google Patents

估计终端移动速度的方法和装置 Download PDF

Info

Publication number
WO2011130997A1
WO2011130997A1 PCT/CN2010/078426 CN2010078426W WO2011130997A1 WO 2011130997 A1 WO2011130997 A1 WO 2011130997A1 CN 2010078426 W CN2010078426 W CN 2010078426W WO 2011130997 A1 WO2011130997 A1 WO 2011130997A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
uplink
base station
moving speed
impulse response
Prior art date
Application number
PCT/CN2010/078426
Other languages
English (en)
French (fr)
Inventor
李斌
张婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011130997A1 publication Critical patent/WO2011130997A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the LTE system belongs to a broadband wireless communication system. Therefore, since the multipath effect of the wireless channel generates corresponding frequency selective fading within its bandwidth, it can be selected according to the wireless channel condition of different users in the system. Code modulation levels and physical resource mapping locations to further improve system performance.
  • the above-mentioned technologies including MIMO mode selection, frequency selection scheduling, and power control, which can further improve system performance, need to be based on prior knowledge of the user's wireless channel information.
  • the problem of the change and the delay of the algorithm implementation are all closely related to the moving speed of the user terminal UE.
  • a signal between a user equipment (i.e., a mobile terminal) and a base station is propagated through a wireless channel, and the fluctuation speed of the channel fading is closely related to the moving speed of the user terminal.
  • the mobile communication system is always in a dynamically changing environment, and the user terminal may move from a stationary state to a high-speed mobile state, or may move from an urban environment to a suburban environment. The above algorithm will be more effective if the moving speed of the user terminal can be accurately estimated.
  • the downlink channel information includes: a precoding matrix indicating a PMI and/or a rank indication RI; and the step of the base station acquiring whether the terminal feeds back an attribute of the downlink channel information to the base station,
  • the downlink transmission mode of the terminal acquires information about whether the terminal feeds back the precoding matrix indication PMI and/or the rank indication RI to the base station.
  • NM PjW is the downlink time window r d .
  • w the number of changes in the PMI feedback from the terminal
  • Ka is the number of antennas in the base station array
  • L is the number of REs in the bandwidth of the LTE system
  • J ' is the same frequency domain location occupied by the uplink of the adjacent time slot of the terminal with sequence number k
  • the present invention provides an apparatus for estimating a moving speed of a terminal, including: an acquiring unit, configured to acquire information about whether a terminal feeds back terminal channel data to the base station; and a selecting unit, configured to select according to the attribute An estimation algorithm of the terminal moving speed; an estimating unit, configured to estimate a moving speed of the terminal according to the selected estimation algorithm.
  • FIG. 3 is a schematic flowchart of step 4: when the second estimation algorithm is selected in the method for estimating the moving speed of the terminal shown in FIG. 1;
  • FIG. 4 is a flowchart of an application scenario of a method for estimating the moving speed of the terminal according to the present invention;
  • FIG. 5 is a schematic structural diagram of an apparatus for estimating a moving speed of a terminal according to the present invention;
  • FIG. 6 is a schematic structural diagram of an estimating unit in the apparatus for estimating a moving speed of a terminal shown in FIG. 5.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS The technical problems, technical solutions, and advantages of the embodiments of the present invention will be more clearly understood from the following detailed description. As shown in FIG.
  • Step 12 is specifically: if the downlink transmission mode of the terminal is any one of mode 3, mode 4, mode 5, and mode 6 specified by the Long Term Evolution (LTE) protocol, the estimation algorithm selected by the base station is: The algorithm for the terminal to indicate a PMI and/or a rank indication RI on the base station to estimate a moving speed of the terminal; if the downlink transmission mode of the terminal is a mode 1 specified by the LTE protocol In any one of mode 2 and mode 7, the estimation algorithm selected by the base station is: estimating a moving speed of the terminal by using a correlation value of channel impulse response data of an uplink of an adjacent time slot of the base station side. algorithm. Step 13: The base station selects the selected estimation algorithm to estimate a moving speed of the terminal.
  • LTE Long Term Evolution
  • Step 142 The base station calculates a downlink channel change probability according to the change probability of the PMI and the change probability of the RI, specifically: ⁇ " ⁇ 1 ⁇ + ⁇ ⁇ ⁇ . ⁇ 1 RI ' ⁇ 1 RI ⁇ +0 ⁇ 1 PM ⁇ + 0 "
  • the channel impulse response estimation data H 7 of the second uplink is
  • the uplink channel estimation related algorithm needs to meet both the time domain and the frequency domain requirements.
  • the use of downlink feedback information to estimate the terminal speed (Algorithm 1) has no such limitation, and the feedback information is generally set in a period, which is more reliable than uplink relies on real-time scheduling. Therefore, Algorithm 1 has a high priority.
  • the step specifically includes: Step 421: Acquire a change probability P PM of the PMI and a change probability P w of the RI in the downlink time window T d .
  • P PM is 0.
  • is 0.
  • Num total is the total number of the feedback terminal T d PMI within a time window of the downlink
  • Nun ⁇ is the number of changes within a time window T d terminal feeds back the downlink of RI
  • Num totcd ja downlink to the terminal within a time window T d The total number of times the RI is fed back;
  • the calculating unit 532 is configured to calculate the probability of the downlink channel change according to the change rate 4 of the PMI and the change rate of the RI;
  • the channel impulse response estimation data H of the second uplink is

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

估计终端移动速度的方法和装置 技术领域 本发明涉及无线移动通信技术领域, 特别涉及一种估计终端移动速度的 方法和装置。 背景技术
LTE ( Long Term Evolution , 长期演进) 无线通信系统是以 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)技术为基石出的 新一代无线网络, 其无线侧釆用 MIMO ( Multiple-Input Multiple-Out-put, 多 输入多输出)、 高阶调制以及相应的频选调度、 功率控制等技术相配合, 以达 到更高的系统吞吐量和频谱效率。 在 LTE系统中, MIMO被认为是达到用户平均吞吐量和频谱效率要求的 最佳技术。 为了达到该目标, LTE系统中规定了在不同的无线信道环境中, 可自适应的选择釆用包括开环 CDD ( Cyclic Delay Diversity, 循环延迟冗余 技术) 空间复用、 闭环预编码、 波束赋形以及发射分集等方案在内的多种 MIMO技术。 此外, LTE系统属于宽带无线通信系统, 因此, 由于无线信道 的多径效应会在其带宽内产生相应的频率选择性衰落, 可根据系统内不同用 户所处的无线信道状况, 为其选择合适的编码调制水平以及物理资源映射位 置, 以进一步提高系统性能。 在 LTE无线移动通信系统中, 上述包括 MIMO模式选择、 频选调度以 及功率控制在内的可以进一步提高系统性能的技术的实现, 都需要基于事先 掌握用户的无线信道信息, 由此带来的信道变化情况以及算法实现的时延等 问题都与用户终端 UE的移动速度密切相关。
LTE无线通信系统中, 用户设备(即移动终端) 与基站之间的信号是通 过无线信道传播的, 信道衰落的波动速度与用户终端的移动速度有着密切的 关系。 而且, 移动通信系统始终处于动态变化的环境中, 用户终端可能从静 止状态到高速移动状态, 也可能从市区环境到郊区环境移动等。 如果可以准确地估计用户终端的移动速度,则上述算法都将会更加有效。
LTE系统中, 如对于功率控制而言, 如果可以准确的估计用户终端的移动速 度, 就可以更加准确有效地根据环境的变化, 动态地改变功率控制的参数, 包括功率控制的步长、 周期、 目标值等。 又如, 对于终端的下行链路发射模 式选择时,可以根据 UE速度的高低情况自适应的分别选择开环 CDD空间复 用及闭环预编码模式以与其实际速度对应的 MIMO技术方案。 因此, 对于 LTE系统而言, 实现上述算法的有效保障措施就是分辨用户 终端的移动速度, 从而合理选择终端下行链路发射模式、 功率控制等算法及 其参数。 现有技术中, 可以在用户终端上增力口 GPS ( Navigation Satellite Timing And Ranging Global Position System , 导航星测时与测 巨全球定位系统) 的定 位装置, 在基站上相应设备的配合下准确地对移动终端进行定位, 进而对移 动终端的移动速度进行估计, 但是, 该方案增加了用户终端设备的成本。 发明内容 本发明要解决的技术问题是提供一种成本较低的估计终端移动速度的方 法和装置。 为解决上述技术问题, 本发明的实施例提供技术方案如下: 一方面, 提供一种估计终端移动速度的方法, 包括: 基站获取终端是否 向所述基站反馈下行链路信道信息的属性; 所述基站根据所述属性, 选择终 端移动速度的估计算法; 所述基站根据选择的所述估计算法, 估计所述终端 的移动速度。 进一步地, 所述下行链路信道信息包括: 预编码矩阵指示 PMI 和 /或秩 指示 RI; 所述基站获取终端是否向所述基站反馈下行链路信道信息的属性的 步骤包括: 所述基站根据所述终端的下行链路发射模式, 获取终端是否向所 述基站反馈预编码矩阵指示 PMI和 /或秩指示 RI的信息。 进一步地, 所述基站根据所述属性, 选择终端移动速度的估计算法的步 4聚具体包括: 如果所述终端的下行链路发射模式为长期演进 LTE协议 ( LTE Release 8协议 3GPP TS36.213 V8.* ) 规定的模式 3、 模式 4、 模式 5以及模 式 6中的任意一种时, 所述基站选择的估计算法为: 利用所述终端给所述基 站上 4艮的预编码矩阵指示 PMI和 /或秩指示 RI来估计所述终端的移动速度的 算法; 如果所述终端的下行链路发射模式为 LTE协议 (LTE Release 8协议 3GPP TS36.213 V8. * )规定的模式 1、 模式 2以及模式 7中的任意一种时, 所 述基站选择的估计算法为: 利用基站侧的相邻时隙上行链路的信道冲击响应 数据的相关值来估计所述终端的移动速度的算法。 需要说明的是, 为了表述 简便, 本申请中使用相邻时隙表示上行时间窗 内的任意两个上行时隙, 而 并不特指时间上紧密相邻的两个时隙。 本申请中如无特殊说明, 则相邻时隙 均表示上行时间窗 Tup内的任意两个上行时隙。 进一步地, 当选择的所述估计算法为: 利用所述终端给所述基站上报的 预编码矩阵指示 PMI和 /或秩指示 RI来估计所述终端的移动速度时, 所述基 站才艮据选择的所述估计算法,估计所述终端的移动速度的步骤包括: 步骤一, 所述基站获取下行时间窗 Tdown内, 所述终端向所述基站上报的 PMI的变化概 率^ w和所述终端向所述基站上 ^艮的 R! 的变化概率 步骤二, 所述基站 根据所述 PMI的变化概率 PPM和所述 RI的变化概率 , 计算得到下行信道 变化概率 Ρ νι¾ ; 步骤三, 所述基站根据预设的下行信道变化概率与终端移动 速度的对应关系, 确定所述下行信道变化概率 P wf!对应的终端的移动速度。 进一步地, 所述步 4聚一具体为
N
'tal Pi
r, = Num
= . RRII
m _ NumtotdJ 其中, NM PjW为所述下行时间窗 rdw„内终端反馈的 PMI 的变化次数,
Numtotal 为所述下行时间窗 Td 内终端反馈 PMI的总次数, Nun^为所述下 行时间窗 Td 内终端反馈的 RI的变化次数, Numtotcd ja为所述下行时间窗 Td 内终端反馈 RI的总次数; 所述步 4聚二具体为:
Figure imgf000006_0001
其中, "和/?为力口权系数, " + /? = ι,ο≤ ≤1,0≤/?≤1。 进一步地, 当选择的所述估计算法为: 利用基站侧的相邻时隙上行链路 的信道冲击响应数据的相关值来估计所述终端的移动速度时, 所述基站根据 选择的所述估计算法, 估计所述终端的移动速度的步骤包括: 步骤 a, 所述 基站获取第一上行时隙 tl 基站侧的第一上行链路的信道冲击响应估计数据
Ηλ; 步骤 b, 所述基站获取第二上行时隙 t2基站端的第二上行链路的信道冲 击响应估计数据 H2 , 其中, t2 - t\ < Tup , 为上行时间窗长; 步骤 c, 所述基 站将所述第一上行链路的信道冲击响应估计数据 H,与所述第二上行链路的 信道冲击响应估计数据 H2的对应釆样点求相关,得到上行链路相邻时隙信道 冲击响应估计数据的相关值 Rff ; 步骤 d, 所述基站根据预设的上行链路相邻 时隙信道冲击响应估计数据的相关值与终端移动速度的对应关系, 确定所述 上行链路相邻时隙信道冲击响应估计数据的相关值 RH对应的终端的移动速 度。 进一步地, 所述步骤 c之后, 还包括: 将所述上行链路相邻时隙信道冲 击响应估计数据的相关值 RH与上行链路相邻时隙信道冲击响应估计数据的 历史相关值进行滤波处理, 得到滤波后的上行链路相邻时隙信道冲击响应估 计数据的相关值。 进一步地, 所述步骤 d具体为: 所述基站根据预设的滤波后的上行链路 相邻时隙信道冲击响应估计数据的相关值与终端移动速度的对照表, 查找滤 波后的所述上行链路相邻时隙信道冲击响应估计数据的相关值对应的终端的 移动速度。 进一步地, 所述的估计终端移动速度的方法, 其中, 所述第一上行链路 的信道冲击响应估计数据 H,为;
Figure imgf000007_0001
所 述 第 二 上 行 链 路 的 信 道 冲 击 响 应 估 计 数 据 H, 为
所述上行链路相邻时隙信道冲
Figure imgf000007_0002
击响应估计数据的相关值 RH
Figure imgf000007_0003
其中, k为终端的序号, Ka为基站阵列的天线数量, L为 LTE系统带宽 内 RE的数量; J '为序号为 k的终端相邻时隙上行所占用的相同频域位置的
RE的数量, / = 1, 2, · · · , Ζ' , J'≤ 。 进一步地, 所述滤波后的上行链路相邻时隙信道冲击响应估计数据的相 关值 '为: ' = ( co)R + coRH , 其中, ω为平滑滤波因子, 0 < «≤1 , 为上 行链路相邻时隙信道冲击响应估计数据的历史相关值。 另一方面, 本发明还提供了一种估计终端移动速度的装置, 包括: 获取 单元, 用于获取终端是否向所述基站反馈终端信道数据的信息; 选择单元, 用于根据所述属性, 选择终端移动速度的估计算法; 估算单元, 用于根据选 择的所述估计算法, 估计所述终端的移动速度。 进一步地, 所述获取单元具体为: 根据所述终端的下行链路发射模式, 获取终端是否向所述基站反馈预编码矩阵指示 ΡΜΙ和 /或秩指示 RI的信息; 所述选择单元具体为: 如果所述终端的下行链路发射模式为长期演进 LTE协 议规定的模式 3、 模式 4、 模式 5 以及模式 6 中的任意一种时, 则选择的估 计算法为: 利用所述终端给基站上 4艮的预编码矩阵指示 ΡΜΙ和 /或秩指示 RI 来估计所述终端的移动速度的算法; 如果所述终端的下行链路发射模式为 LTE协议规定的模式 1、 模式 2以及模式 7中的任意一种时, 则选择的估计 算法为: 利用基站侧的相邻时隙上行链路的信道冲击响应数据的相关值来估 计所述终端的移动速度的算法。 进一步地, 当选择的所述估计算法为: 利用所述终端给所述基站上报的 预编码矩阵指示 PMI和 /或秩指示 RI来估计所述终端的移动速度时, 所述估 算单元包括: 第一获取单元, 用于获取下行时间窗 Jdw„内, 所述终端向所述 基站上报的 PMI的变化概率 ΡΡΜ7和所述终端向所述基站上报的 RI的变化概 率 ΡΜ; 计算单元, 用于根据所述 ΡΜΙ的变化概率和所述 RI的变化概率 ΡΜ , 计算得到下行信道变化概率 P w„; 第一确定单元, 用于根据预设的下行信道 变化 4既率与终端移动速度的对应关系, 确定所述下行信道变化 4既率 对应 的终端的移动速度。 进一步地, 当选择的所述估计算法为: 利用基站侧的相邻时隙上行链路 的信道冲击响应数据的相关值来估计所述终端的移动速度时, 所述估算单元 包括: 第二获取单元, 用于获取第一上行时隙 tl基站侧的第一上行链路的信 道冲击响应估计数据 第三获取单元, 用于获取第二上行时隙 t2基站端的 第二上行链路的信道冲击响应估计数据 H2 , 其中, n -t\ < Tup , 为上行时 间窗长; 相关单元, 用于将所述第一上行链路的信道冲击响应估计数据 与 所述第二上行链路的信道冲击响应估计数据 H2的对应釆样点求相关,得到上 行链路相邻时隙信道冲击响应估计数据的相关值 Rff ; 第二确定单元, 用于根 据预设的上行链路相邻时隙信道冲击响应估计数据的相关值与终端移动速度 的对应关系,确定所述上行链路相邻时隙信道冲击响应估计数据的相关值 Rff 对应的终端的移动速度。 进一步地, 所述估算单元还包括: 滤波单元, 用于将所述上行链路相邻 时隙信道冲击响应估计数据的相关值 Rff与上行链路相邻时隙信道冲击响应 估计数据的历史相关值进行滤波处理, 得到滤波后的上行链路相邻时隙信道 冲击响应估计数据的相关值; 所述第二确定单元具体为: 根据预设的滤波后 的上行链路相邻时隙信道冲击响应估计数据的相关值与终端移动速度的对照 表, 查找滤波后的所述上行链路相邻时隙信道冲击响应估计数据的相关值对 应的终端的移动速度。 本发明的实施例具有以下有益效果: 上述方案中, 所述基站根据终端是否向所述基站反馈下行链路信道信息 的属性,选择终端移动速度的估计算法; 所述基站根据选择的所述估计算法, 估计所述终端的移动速度, 相比于现有技术, 不需要增加 GPS组件, 因此降 低了成本, 并且适用于 LTE系统及各种天线形式。 附图说明 图 1为本发明的一种估计终端移动速度的方法的流程示意图; 图 2为图 1所示的估计终端移动速度的方法中选择第一种估算算法时, 步骤 13的流程示意图; 图 3为图 1所示的估计终端移动速度的方法中选择第二种估算算法时, 步 4聚 13的流程示意图; 图 4 为本发明的一种估计终端移动速度的方法的应用场景的流程示意 图; 图 5为本发明的一种估计终端移动速度的装置的结构示意图; 图 6为图 5所示的估计终端移动速度的装置中估算单元的结构示意图。 具体实施方式 为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下 面将结合附图及具体实施例进行详细描述。 如图 1所示, 为本发明的一种估计终端移动速度的方法, 包括: 步骤 11 , 基站获取终端是否向所述基站反馈下行链路信道信息的属性; 具体步骤为: 所述基站根据所述终端的下行链路发射模式, 获取终端是 否向所述基站反馈预编码矩阵指示 PMI和 /或秩指示 RI的信息; 下行链路信道信息包括: 预编码矩阵指示 PMI和 /或秩指示 RI。 步骤 12 , 所述基站根据所述属性, 选择终端移动速度的估计算法; 才艮据 LTE协议 ( LTE Release 8协议 3GPP TS36.213 V8.* )的规定, 当终 端的下行链路发射模式为长期演进 LTE协议规定的模式 3、 模式 4、 模式 5 以及模式 6 中的任意一种时, 终端给基站上报预编码矩阵指示 PMI和 /或秩 指示 RI; 当终端的下行链路发射模式为 LTE协议( LTE Release 8协议 3GPP TS36.213 V8. * )规定的模式 1、模式 2以及模式 7中的任意一种时,则无 PMI 和 RI 信息反馈。 基站可以依据该规定, 在获取到所述属性后, 选择终端移 动速度的估计算法。 步骤 12具体为: 如果所述终端的下行链路发射模式为长期演进 LTE协 议规定的模式 3、 模式 4、 模式 5 以及模式 6 中的任意一种时, 所述基站选 择的估计算法为: 利用所述终端给所述基站上 4艮的预编码矩阵指示 PMI 和 / 或秩指示 RI 来估计所述终端的移动速度的算法; 如果所述终端的下行链路 发射模式为 LTE协议规定的模式 1、 模式 2以及模式 7中的任意一种时, 所 述基站选择的估计算法为: 利用基站侧的相邻时隙上行链路的信道冲击响应 数据的相关值来估计所述终端的移动速度的算法。 步骤 13 ,所述基站 居选择的所述估计算法,估计所述终端的移动速度。 上述方案中, 所述基站根据终端是否向所述基站反馈下行链路信道信息 的属性,选择终端移动速度的估计算法; 所述基站根据选择的所述估计算法, 估计所述终端的移动速度,相比于现有技术,本实施例不需要增加 GPS组件, 因此降氐了成本, 并且适用于 LTE系统及各种天线形式。 如图 2所示, 当选择的所述估计算法为: 利用所述终端给所述基站上 4艮 的预编码矩阵指示 PMI和 /或秩指示 RI来估计所述终端的移动速度时, 步骤 13包括: 步骤 141 , 所述基站获取下行时间窗 rdw„内, 所述终端向所述基站上 4艮 的 PMI的变化概率 PPM和所述终端向所述基站上报的 RI的变化概率 ,具体 为: = N
Num PM
Num RI
RI Num, RI 其中, NM PjW为所述下行时间窗 rdw„内终端反馈的 PMI 的变化次数,
Numtotal 为所述下行时间窗 Td 内终端反馈 PMI的总次数, Nun^为所述下 行时间窗 Td 内终端反馈的 RI的变化次数, Numtotcd ja为所述下行时间窗 Td 内终端反馈 RI的总次数。 步骤 142,所述基站根据所述 PMI的变化概率和所述 RI的变化概率 , 计算得到下行信道变化概率, 具体为: α "·Ρ 1 ΡΜ + τ Ρ β.Ρ 1 RI ' Ρ 1 RI≠ +0 Ρ1 PM≠ + 0 "
p
down 1 PM■> 1 RI u'-* PM
p P ≠0 P = 0 其中, "和/?为力口权系数, " + /? = ι,ο≤ ≤1,0≤/?≤1 步骤 143, 所述基站根据预设的下行信道变化概率与终端移动速度的对 应关系, 确定所述下行信道变化概率 对应的终端的移动速度。 其中, 下行信道变化 4既率与终端移动速度的对应关系可以通过仿真或测 试获得。 如图 3所示, 当选择的所述估计算法为: 利用基站侧的相邻时隙上行链 路的信道冲击响应数据的相关值来估计所述终端的移动速度时, 步骤 13 包 括: 步骤 151 , 所述基站获取第一上行时隙 tl基站侧的第一上行链路的信道 冲击响应估计数据 Ht; 步骤 152, 所述基站获取第二上行时隙 t2基站侧的第二上行链路的信道 冲击响应估计数据 H2, 其中, t2-t\<Tup, 7 为上行时间窗长; 步骤 153 , 所述基站将所述第一上行链路的信道冲击响应估计数据 与 所述第二上行链路的信道冲击响应估计数据 H2的对应釆样点求相关,得到上 行链路相邻时隙信道冲击响应估计数据的相关值 Rff ; 步骤 154, 所述基站 居预设的上行链路相邻时隙信道冲击响应估计数 据的相关值与终端移动速度的对应关系, 确定所述上行链路相邻时隙信道冲 击响应估计数据的相关值 R„对应的终端的移动速度。 其中, 上行链路相邻时隙信道冲击响应估计数据的相关值与终端移动速 度的对应关系可以通过仿真或测试获得。 可选的, 所述步骤 153之后, 还包括: 将所述上行链路相邻时隙信道冲击响应估计数据的相关值 RH与上行链 路相邻时隙信道冲击响应估计数据的历史相关值进行滤波处理, 得到滤波后 的上行链路相邻时隙信道冲击响应估计数据的相关值; 可选的, 步 4聚 154可以为: 所述基站 居预设的滤波后的上行链路相邻时隙信道冲击响应估计数据 的相关值与终端移动速度的对照表, 查找滤波后的所述上行链路相邻时隙信 道冲击响应估计数据的相关值对应的终端的移动速度。 其中 , 所述第一上行链路的信道冲击响应估计数据 H、 为
Figure imgf000012_0001
所 述 第 二 上 行 链 路 的 信 道 冲 击 响 应 估 计 数 据 H7
Figure imgf000012_0002
所述上行链路相邻时隙信道冲击响应估计数据的相关值 RH为:
RH
Figure imgf000013_0001
其中, k为终端的序号, Ka为基站阵列的天线数量, L为 LTE系统带宽 内 RE ( Resource Element, 资源单元) 的数量; 为序号为 k的终端相邻时 隙上行所占用的相同频域位置的 RE ( Resource Element )的数量, = 1, 2, · · · , J' ,
L≤ 。 所述滤波后的上行链路相邻时隙信道冲击响应估计数据的相关值 '为:
R' = (\ - )R + RH , 其中, ω为平滑滤波因子, 0 < «≤1 , 为上行链路 相邻时隙信道冲击响应估计数据的历史相关值。 以下描述本发明的应用场景: 一种 LTE无线通信系统中分辨用户终端移 动速度的方法, 包括: 步骤一, 根据该 UE的下行链路发射模式进行判断, 如果 UE下行链路 发射模式为模式 3、 模式 4、 模式 5、 模式 6中的任意一种模式下时, 转到步 4聚二; 否则转到步 4聚四; 步骤二, ΐ己录下行时间窗 ^ 内上 4艮 ΡΜΙ ( Precoding matrix indicator, 预编码矩阵指示) 及 RI ( Ranking indication, 秩指示) 的变化概率, 分别记 作 PPJW及 ; 转到步骤三; 步骤三, 根据步骤二计算得到下行信道变化概率 P w„, 比对下行信道变 化 4既率与 UE移动速度估计对照门限表, 估计出该终端当前的移动速度, 处 理过程结束。 当从步骤一跳转到步骤四时, 处理流程如下: 步骤四,在某一时隙 tl在基站侧获取上行链路的信道冲击响应估计数据 Ηλ;根据 LTE协议,该信道估计可以产生自上行解调参考信号( DeModulation
Reference Signal , DMRS ) 或上行信道探测参考信号 (Sounding Reference Signal, SRS); 步骤五, 在后续某上行时隙 t2从基站侧获取信道冲击响应估计数据 H2; 同样, 才艮据 LTE协议, 该信道估计可以产生自上行解调参考信号 DMRS或 上行 sounding参考信号 SRS; 其中, t2 - t\ < Tup , Tup为上行时间窗长; 之后将
Ηλ与 H2对应釆样点的 CIR数据求相关, 得到上行链路相前后时隙信道估计 数据的相关值 Rff ; 步骤六, 对步骤五中得到的上行链路相邻前后时隙信道估计数据的相关 值^与历史保存的相关值 进行滤波处理, 得到滤波后的上行链路相邻前后 时隙信道估计数据的相关值大小; 比对上行链路相邻前后时隙信道估计数据 的相关值与终端移动速度估计对照门限, 估计出该终端当前的移动速度, 处 理过程结束。 本发明所提供的估计用户终端移动速度的方法, 根据 UE所处 UE下行 链路发射模式选择速度计算方法的方案, 利用下行时间窗内 UE上报的 PMI 及 RI信息(反馈的 PMI及 RI的变^既率 )或利用上行时间窗内前后不同时 隙上行链路的信道冲击响应( CIR, channel impulse response )数据的相关值, 通过比对门限的方法, 估计出该终端当前移动速度。 在保证估计结果准确性 的同时, 大大减少了运算复杂度, 非常利于工程实现。 以下描述本发明所述的 LTE无线通信系统中分辨用户终端移动速度方法 的另一应用场景, 图 4为其具体实施过程中的流程图。 支设其基站端天线阵 列釆用 Ka才艮天线。 所述方法包括以下步 4聚: 首先, 基于 UE所处 UE下行链路发射模式选择算法: 如果 UE下行链 路发射模式为模式 3、 模式 4、 模式 5、 模式 6中的任意一种模式时, 转到利 用 UE反馈的 PMI、 RI估计终端的移动速度的方案; 否则, 转到利用上行信 道估计的相关值估计终端的移动速度的方案: 利用上行信道冲击响应估计终端速度 (算法 2 ), 要求其连续时隙中 UE 所处的频域位置有重合部分, 即 L,不能等于 0。 因此, 上行信道估计相关算 法需要同时满足时域和频域的要求。 而利用下行反馈信息估计终端速度 (算 法 1 ) 则无此限制, 并且反馈信息一般都为周期设置, 相较于上行依靠于实 时调度更为可靠, 因此, 算法 1优先级高。 当利用 UE反馈的 PMI、 RI估计 UE运动速度时, 步骤具体包括: 步骤 421 , 获取下行时间窗 Td 内上报 PMI的变化概率 PPM和 RI的变化 概率 Pw 当 UE不反馈 PMI时, PPM为 0。 当 UE不反馈 RI时, ^为 0。 进一步地, 步 4聚 421包括: 步骤 a, 假设 NumPM和 NumR1分别为下行时间窗 内 UE反馈 PMI、 RI 的变化次数。 每个下行时间窗 ^„开始时,
Figure imgf000015_0001
O ; 当基站侧接 收到 UE连续两个上报的 PMI值不同时, 则 NumpM1自加一; 当基站侧接收到 UE连续两个上 4艮的 RI值不同时, 则 Numm自力口一; 步骤 b, 求 ^和 ;
Num
層 _ Nnmtotall_PPlM
NumRI
p RmI = -
Num, RI 其中, —層为 ^ 内 UE反馈 PMI 的总次数, Nmn 为 Τ η
UE反馈 RI的总次数。 Td 的具体值可根据 PMI和 RI反馈周期配置, 建议 值为 100ms。 步骤 422 , 计算下行信道变化概率 P w„。 根据 PPjW及 计算得到下行 信道变化 4既率:
Figure imgf000016_0001
其中, "和 /?为加权系数, α+ β = \, 0≤α≤\, 0≤β≤1 , "和/?的取值和 ΡΜΙ 和 RI反馈周期等有关, 建议值为" = /? = 0.5。 步骤 423 , 估计终端的移动速度。 根据计算得到的 查找下行信道 变化概率与估计的终端移动速度对应门限, 从而估计出该终端当前的移动速 度大小。 终端移动速度的门限值可通过仿真或测试获得, 可以为, 在终端固 定速度情况不同的无线环境中, 通过仿真和测试记录所得到的该速度下对应 的下行信道变化概率值, 然后, 根据不同速度下的变化概率值确定其判决门 限。 当利用上行信道估计的相关值估计终端的移动速度时, 步骤具体包括: 步骤 431 , 记录上行时间窗 7:„内不同时隙信道数据:
4十对 LTE通信系统, 第 11个时隙第 k个用户经过信道后处理的上行链 路信道冲击响应估计矩阵表示为
Figure imgf000016_0002
其中, Ka表示基站阵列天线数, L表示 LTE系统带宽内 RE的数目 第 t2个时隙第 k个用户经过信道后处理的上行链路信道冲击响应估计矩 阵表示为
Figure imgf000017_0001
其中, t2-t\≤Tup; 上行时间窗 Tup的取值与 UE上行调度的周期以及 UE 所占的频域位置有关, run的建议值为 20ms。 步骤 432, 将得到的 Hn与 Hi2对应频域位置上的 CIR数据求相关, 计算 瞬时相关值 Rff。 计算公式如下式所示:
Figure imgf000017_0002
其中, i = l,2,'-'X , J'为前后不同时隙第 k个用户所占用的相同频域位 置的 RE数目, J' = 0时 Rff = , 为上行链路相关值的历史值。 步骤 433, 平滑滤波。 对瞬时相关值 Rff与上行链路相关值的历史值 R进 行平滑滤波, 具体如下式所示:
Κ, = (\-ω)Κ + ωΚ} 得到滤波后的上行链路相邻时隙信道估计数据的瞬时相关值 , 同时, 相关值 '为下一上行时间窗的历史相关值。 其中, ω为平滑滤波因子,
0<ω≤1, ω取值和 UE所处的无线信道环境下的噪声和千扰大小相关, 一般 ω取值为 0.3。 步骤 434, 估计速度。 根据滤波后的瞬时相关值 '查找相邻时隙 CIR相 关值与估计的终端移动速度的对应门限, 从而估计出该终端当前的移动速度 大小。 终端移动速度的门限值可通过仿真或测试获得, 可以为, 在终端固定 速度情况不同的无线环境中, 通过仿真和测试记录所得到的该速度下对应的 上行信道变化 4既率值, 然后才艮据不同速度下的变化 4既率值确定其判决门限。 如图 5所示, 为本发明所述的估计终端移动速度的装置, 包括: 获取单元 51 , 用于获取终端是否向所述基站反馈终端信道数据的信息; 具体为: 根据所述终端的下行链路发射模式, 获取终端是否向所述基站反馈 预编码矩阵指示 PMI和 /或秩指示 RI的信息; 选择单元 52 , 用于 居所述属性, 选择终端移动速度的估计算法; 估算单元 53 ,用于 居选择的所述估计算法,估计所述终端的移动速度。 上述方案中, 根据终端是否向所述基站反馈下行链路信道信息的属性, 选择终端移动速度的估计算法; 根据选择的所述估计算法, 估计所述终端的 移动速度, 相比于现有技术, 不需要增加 GPS组件, 因此降低了成本, 并且 适用于 LTE系统及各种天线形式。 所述选择单元 52具体为: 如果所述终端的下行链路发射模式为长期演进 LTE协议规定的模式 3、 模式 4、 模式 5以及模式 6中的任意一种时, 则选择的估计算法为: 利用所 述终端给基站上报的预编码矩阵指示 PMI和 /或秩指示 RI来估计所述终端的 移动速度的算法; 如果所述终端的下行链路发射模式为 LTE协议规定的模式 1、 模式 2以 及模式 7中的任意一种时, 则选择的估计算法为: 利用基站侧的相邻时隙上 行链路的信道冲击响应数据的相关值来估计所述终端的移动速度的算法。 当选择的所述估计算法为: 利用所述终端给所述基站上 ·ί艮的预编码矩阵 指示 ΡΜΙ和 /或秩指示 RI来估计所述终端的移动速度时, 如图 6所示, 所述 估算单元 53包括: 第一获取单元 531 , 用于获取下行时间窗 Jdw„内, 所述终端向所述基站 上报的 PMI的变化概率 PPM和所述终端向所述基站上报的 RI的变化概率 Pm; 具体为:
Figure imgf000019_0001
其中, NM PjW为所述下行时间窗 rdw„内终端反馈的 PMI 的变化次数,
Numtotal 为所述下行时间窗 Td 内终端反馈 PMI的总次数, Nun^为所述下 行时间窗 Td 内终端反馈的 RI的变化次数, Numtotcd ja为所述下行时间窗 Td 内终端反馈 RI的总次数; 计算单元 532 ,用于才艮据所述 PMI的变化 4既率和所述 RI的变化 4既率 , 计算得到下行信道变化概率 ; 具体为:
Figure imgf000019_0002
"和 ^为力口权系数, + /? = 1, 0≤ ≤1, 0≤/?≤1。 第一确定单元 533 , 用于 居预设的下行信道变化 4既率与终端移动速度 的对应关系, 确定所述下行信道变化 4既率 对应的终端的移动速度。 当选择的所述估计算法为: 利用基站侧的相邻时隙上行链路的信道冲击 响应数据的相关值来估计所述终端的移动速度时, 所述估算单元 53包括: 第二获取单元 534 , 用于获取第一上行时隙 tl基站侧的第一上行链路的 信道冲击响应估计数据 H,; 第三获取单元 535 , 用于获取第二上行时隙 t2基站端的第二上行链路的 信道冲击响应估计数据 H2 , 其中, t2 - t\≤Tup , 7 为上行时间窗长; 相关单元 536 , 用于将所述第一上行链路的信道冲击响应估计数据 H,与 所述第二上行链路的信道冲击响应估计数据 H2的对应釆样点求相关,得到上 行链路相邻时隙信道冲击响应估计数据的相关值 Rff ; 第二确定单元 537, 用于根据预设的上行链路相邻时隙信道冲击响应估 计数据的相关值与终端移动速度的对应关系, 确定所述上行链路相邻时隙信 道冲击响应估计数据的相关值 RH对应的终端的移动速度。 可选的, 所述估算单元 53还包括: 滤波单元 538 , 将所述上行链路相邻 时隙信道冲击响应估计数据的相关值 Rff与上行链路相邻时隙信道冲击响应 估计数据的历史相关值进行滤波处理, 得到滤波后的上行链路相邻时隙信道 冲击响应估计数据的相关值; 第二确定单元 537具体为: 居预设的滤波后的上行链路相邻时隙信道 冲击响应估计数据的相关值与终端移动速度的对照表, 查找滤波后的所述上 行链路相邻时隙信道冲击响应估计数据的相关值对应的终端的移动速度。 所 述 第 一 上行链路 的 信 道 冲 击 响 应 估 计 数据 H、 为
Figure imgf000020_0001
所 述 第 二 上 行 链 路 的 信 道 冲 击 响 应 估 计 数 据 H, 为
Figure imgf000020_0002
C ) O ■■■ hL (k a)(t2) KaxL 所述上行链路相邻时隙信道冲击响应估计数据的相关值 RH为:
Figure imgf000021_0001
其中, k为终端的序号, Ka为基站阵列的天线数量, L为 LTE系统带宽 内 RE的数量; J'为序号为 k的终端相邻时隙上行所占用的相同频域位置的
RE的数量, / = 1, 2, · · ·,Ζ' , J'≤ 。 所述滤波后的上行链路相邻时隙信道冲击响应估计数据的相关值 '为:
R' = (\ - )R + RH , 其中, ω为平滑滤波因子, 0 < «≤1 , 为上行链路 相邻时隙信道冲击响应估计数据的历史相关值。 本发明还提供一种基站, 该基站包括上述估计终端移动速度的装置。 本发明的移动终端速度的估计方案, 具有如下特点: ( 1 ) 利用 LTE 系统协议规定, 根据 UE的下行链路发射模式分别釆用 不同的参数判断速度, 提高了算法的可靠性;
( 2 )基于上行时隙信道数据求相关及统计上 PMI/RI值进行判断, 适 用于 LTE FDD ( Frequency Division Dual, 频分双工)及 TDD ( Time Division Dual, 时分双工) 系统, 并且, 引入滤波平滑机制, 有效提高算法判断精度; ( 3 )设定不同的门限值, 可适应各种不同的信道环境;
( 4 ) 现有技术的方法能对用户终端的径向移动速度提供估计, 并且, 其估计精度取决于用户终端对于频率偏差的测量精度, 因此误差较大。 本发 明在保证分辩结果精度的情况下,减少了运算复杂度,适合于工程实现处理。 本发明的移动终端速度的估计方法, 也可以用于移动台的速度估计。 所述方法实施例是与所述装置实施例相对应的, 在方法实施例中未详细 描述的部分参照装置实施例中相关部分的描述即可, 在装置实施例中未详细 描述的部分参照方法实施例中相关部分的描述即可。 本领域普通技术人员可以理解, 实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算 机可读取存储介质中, 该程序在执行时, 包括如上述方法实施例的步骤, 所 述的存储介质,如:磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM ) 或随机存 4诸 ΐ己忆体 ( Random Access Memory, RAM ) 等。 在本发明各方法实施例中, 所述各步骤的序号并不能用于限定各步骤的 先后顺序, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 对各步骤的先后变化也在本发明的保护范围之内。 以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若千改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种估计终端移动速度的方法, 其特征在于, 包括:
基站获取终端是否向所述基站反馈下行链路信道信息的属性; 所述基站根据所述属性, 选择终端移动速度的估计算法; 所述基站根据选择的所述估计算法, 估计所述终端的移动速度。
2. 根据权利要求 1所述的估计终端移动速度的方法, 其特征在于,
所述下行链路信道信息包括: 预编码矩阵指示 PMI 和 /或秩指示
RI;
所述基站获取终端是否向所述基站反馈下行链路信道信息的属性 的步骤包括: 所述基站根据所述终端的下行链路发射模式, 获取终端 是否向所述基站反馈预编码矩阵指示 PMI和 /或秩指示 RI的属性。
3. 根据权利要求 2所述的估计终端移动速度的方法, 其特征在于, 所述 基站根据所述属性, 选择终端移动速度的估计算法的步骤具体包括: 如果所述终端的下行链路发射模式为长期演进 LTE协议规定的模 式 3、 模式 4、 模式 5以及模式 6中的任意一种时, 所述基站选择的估 计算法为: 利用所述终端给所述基站上 4艮的预编码矩阵指示 PMI 和 / 或秩指示 RI来估计所述终端的移动速度的算法;
如果所述终端的下行链路发射模式为 LTE协议规定的模式 1、 模 式 2以及模式 7中的任意一种时, 所述基站选择的估计算法为: 利用 基站侧的相邻时隙上行链路的信道冲击响应数据的相关值来估计所述 终端的移动速度的算法。
4. 根据权利要求 3所述的估计终端移动速度的方法, 其特征在于,
当选择的所述估计算法为: 利用所述终端给所述基站上 ·ί艮的预编 码矩阵指示 ΡΜΙ和 /或秩指示 RI来估计所述终端的移动速度时, 所述 基站才艮据选择的所述估计算法 ,估计所述终端的移动速度的步骤包括: 步骤一, 所述基站获取下行时间窗 Td 内, 所述终端向所述基站 上报的 PMI的变化概率 PPM和所述终端向所述基站上报的 RI的变化概 率 PRT, 步骤二,所述基站根据所述 PMI的变化概率 PPM和所述 RI的变化 概率 PM , 计算得到下行信道变化概率 ; 步骤三, 所述基站根据预设的下行信道变化概率与终端移动速度 的对应关系, 确定所述下行信道变化概率 对应的终端的移动速度。 根据权利要求 4所述的估计终端移动速度的方法, 其特征在于,
所述步 4聚一具体为:
Figure imgf000024_0001
其中, NumPM为所述下行时间窗 Td 内终端反馈的 PMI的变化次 数, Numtotal PM为所述下行时间窗 Tdmm内终端反馈 PMI的总次数, Numm 为所述下行时间窗 Td 内终端反馈的 RI的变化次数, Numtotal m为所述 下行时间窗 Td 内终端反馈 RI的总次数; 所述步 4聚二具体为: α " ·Ρ 1 ΡΜ + τ Ρ β.Ρ 1 RI ' Ρ 1 RI≠ + 0 Ρ1 PM≠ + 0 "
p
down 1 PM■> 1 RI U' -* PM
p P ≠0 P = 0 其中, "和/?为力口权系数, "+ /? = 1, 0≤"≤1, 0≤/?≤1
6. 根据权利要求 3所述的估计终端移动速度的方法, 其特征在于, 当选 择的所述估计算法为: 利用基站侧的相邻时隙上行链路的信道冲击响 应数据的相关值来估计所述终端的移动速度时, 所述基站 居选择的 所述估计算法, 估计所述终端的移动速度的步骤包括:
步骤 a, 所述基站获取第一上行时隙 tl基站侧的第一上行链路的 信道冲击响应估计数据 H,; 步骤 b, 所述基站获取第二上行时隙 t2基站端的第二上行链路的 信道冲击响应估计数据 H2 , 其中, t2 - t\≤Tup , 7 为上行时间窗长; 步骤 c, 所述基站将所述第一上行链路的信道冲击响应估计数据 H,与所述第二上行链路的信道冲击响应估计数据 H2的对应釆样点求 相关, 得到上行链路相邻时隙信道冲击响应估计数据的相关值 RH; 步骤 d, 所述基站 居预设的上行链路相邻时隙信道冲击响应估 计数据的相关值与终端移动速度的对应关系, 确定所述上行链路相邻 时隙信道冲击响应估计数据的相关值 RH对应的终端的移动速度。 根据权利要求 6所述的估计终端移动速度的方法, 其特征在于, 所述 步骤 c之后, 还包括: 将所述上行链路相邻时隙信道冲击响应估计数据的相关值 RH与 上行链路相邻时隙信道冲击响应估计数据的历史相关值进行滤波处 理,得到滤波后的上行链路相邻时隙信道冲击响应估计数据的相关值。 根据权利要求 7所述的估计终端移动速度的方法, 其特征在于, 所述 步骤 d具体为:
所述基站根据预设的滤波后的上行链路相邻时隙信道冲击响应估 计数据的相关值与终端移动速度的对照表, 查找滤波后的所述上行链 路相邻时隙信道冲击响应估计数据的相关值对应的终端的移动速度。 根据权利要求 7或 8所述的估计终端移动速度的方法, 其特征在于, 所述第一上行链路的信道冲击响应估计数据 H, 为 ;
Figure imgf000025_0001
所述第 二上行链路的信道冲 击 响应估计数据 H2
Figure imgf000026_0001
所述上行链路相邻时隙信道冲击响应估计数据的相关值 RH为
Ka
1 L'
RH ∑ ka=l
Ka Ka
d ) * o
ka=\ ka=\ 其中, k为终端的序号, Ka为基站阵列的天线数量, J为 LTE系 统带宽内资源单元 RE的数量; J'为序号为 k的终端相邻时隙上行所 占用的相同频 i或位置的 RE的数量, = 1,2,. ,J' , J'≤J。
10. 根据权利要求 9所述的估计终端移动速度的方法, 其特征在于,
所述滤波后的上行链路相邻时隙信道冲击响应估计数据的相关值 '为:
R' = \- )R + RH , 其中, ω为平滑滤波因子, 0<ω< \ 0<ω<\, R为上行链路相邻时隙信道冲击响应估计数据的历史相关值。
11. 一种估计终端移动速度的装置, 其特征在于, 包括:
获取单元, 用于获取终端是否向所述基站反馈下行链路信道信息 的属性;
选择单元, 用于 -据所述属性, 选择终端移动速度的估计算法; 估算单元, 用于根据选择的所述估计算法, 估计所述终端的移动 速度。
12. 根据权利要求 11所述的估计终端移动速度的装置, 其特征在于,
所述获取单元具体为: 根据所述终端的下行链路发射模式, 获取 终端是否向所述基站反馈预编码矩阵指示 ΡΜΙ和 /或秩指示 RI的信息; 所述选择单元具体为:
如果所述终端的下行链路发射模式为长期演进 LTE协议规定的模 式 3、 模式 4、 模式 5以及模式 6中的任意一种时, 则选择的估计算法 为: 利用所述终端给基站上 4艮的预编码矩阵指示 PMI和 /或秩指示 RI 来估计所述终端的移动速度的算法;
如果所述终端的下行链路发射模式为 LTE协议规定的模式 1、 模 式 2以及模式 7中的任意一种时, 则选择的估计算法为: 利用基站侧 的相邻时隙上行链路的信道冲击响应数据的相关值来估计所述终端的 移动速度的算法。
13. 根据权利要求 12所述的估计终端移动速度的装置, 其特征在于,
当选择的所述估计算法为: 利用所述终端给所述基站上 ·ί艮的预编 码矩阵指示 ΡΜΙ和 /或秩指示 RI来估计所述终端的移动速度时, 所述 估算单元包括: 第一获取单元, 用于获取下行时间窗 Td 内, 所述终端向所述基 站上报的 PMI的变化概率 Pp^和所述终端向所述基站上报的 RI的变化 概率 计算单元, 用于根据所述 PMI的变化概率和所述 RI的变化概率 Pm , 计算得到下行信道变化概率 ; 第一确定单元, 用于 居预设的下行信道变化 4既率与终端移动速 度的对应关系, 确定所述下行信道变化 4既率 对应的终端的移动速 度。
14. 居权利要求 12所述的估计终端移动速度的装置, 其特征在于, 当选 择的所述估计算法为: 利用基站侧的相邻时隙上行链路的信道冲击响 应数据的相关值来估计所述终端的移动速度时, 所述估算单元包括: 第二获取单元, 用于获取第一上行时隙 tl基站侧的第一上行链路 的信道冲击响应估计数据 H,; 第三获取单元, 用于获取第二上行时隙 t2基站端的第二上行链路 的信道冲击响应估计数据 H2 , 其中, t2 - t\≤Tup , 7 为上行时间窗长; 相关单元, 用于将所述第一上行链路的信道冲击响应估计数据 H 与所述第二上行链路的信道冲击响应估计数据 H2的对应釆样点求相 关, 得到上行链路相邻时隙信道冲击响应估计数据的相关值 Rff; 第二确定单元, 用于 -据预设的上行链路相邻时隙信道冲击响应 估计数据的相关值与终端移动速度的对应关系, 确定所述上行链路相 邻时隙信道冲击响应估计数据的相关值 RH对应的终端的移动速度。 根据权利要求 14所述的估计终端移动速度的装置, 其特征在于, 所述 估算单元还包括:
滤波单元, 用于将所述上行链路相邻时隙信道冲击响应估计数据 的相关值 RH与上行链路相邻时隙信道冲击响应估计数据的历史相关 值进行滤波处理, 得到滤波后的上行链路相邻时隙信道冲击响应估计 数据的相关值;
所述第二确定单元具体为: 才艮据预设的滤波后的上行链路相邻时 隙信道冲击响应估计数据的相关值与终端移动速度的对照表, 查找滤 波后的所述上行链路相邻时隙信道冲击响应估计数据的相关值对应的 终端的移动速度。
PCT/CN2010/078426 2010-04-22 2010-11-04 估计终端移动速度的方法和装置 WO2011130997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010158606.X 2010-04-22
CN201010158606.XA CN102238569B (zh) 2010-04-22 2010-04-22 估计终端移动速度的方法和装置

Publications (1)

Publication Number Publication Date
WO2011130997A1 true WO2011130997A1 (zh) 2011-10-27

Family

ID=44833667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078426 WO2011130997A1 (zh) 2010-04-22 2010-11-04 估计终端移动速度的方法和装置

Country Status (2)

Country Link
CN (1) CN102238569B (zh)
WO (1) WO2011130997A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092660A1 (en) * 2018-11-02 2020-05-07 At&T Intellectual Property I, L.P. Improved performance based on inferred user equipment device speed for advanced networks
US20220109516A1 (en) * 2019-02-21 2022-04-07 U-Blox Ag Estimating and using characteristic differences between wireless signals
EP4084365A4 (en) * 2019-12-24 2023-06-21 ZTE Corporation CHANNEL IDENTIFICATION METHOD AND APPARATUS, TRANSMISSION METHOD, TRANSMISSION DEVICE, BASE STATION AND MEDIA

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686768A (zh) * 2012-08-30 2014-03-26 新邮通信设备有限公司 移动通信系统中的用户设备移动速度的估算方法
CN106470058B (zh) * 2015-08-20 2019-06-21 北京大学 一种长期演进lte中传输模式的切换方法和装置
CN111163416B (zh) 2018-10-22 2021-05-11 中国移动通信有限公司研究院 信息获取方法、发送方法、终端及第一网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327659A (zh) * 1999-10-26 2001-12-19 Sk电信股份有限公司 用于控制码分多址系统中反向链路功率的设备和方法
CN1464644A (zh) * 2002-06-11 2003-12-31 华为技术有限公司 移动通信系统中一种移动台运动速度的测量方法
CN1549609A (zh) * 2003-05-19 2004-11-24 大唐移动通信设备有限公司 用户终端移动速度的估计方法
CN1638495A (zh) * 2003-09-16 2005-07-13 三星电子株式会社 移动通信系统中用于估算移动终端的速度的装置和方法
CN1642334A (zh) * 2004-01-17 2005-07-20 华为技术有限公司 移动台移动速度估计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747369A1 (de) * 1997-10-27 1999-05-06 Siemens Ag Übertragungskanalschätzung in Telekommunikationssystemen mit drahtloser Telekommunikation
US8243613B2 (en) * 2006-11-28 2012-08-14 Samsung Electronics Co., Ltd Method and apparatus for estimating velocity of mobile station using channel quality indicator in a mobile communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327659A (zh) * 1999-10-26 2001-12-19 Sk电信股份有限公司 用于控制码分多址系统中反向链路功率的设备和方法
CN1464644A (zh) * 2002-06-11 2003-12-31 华为技术有限公司 移动通信系统中一种移动台运动速度的测量方法
CN1549609A (zh) * 2003-05-19 2004-11-24 大唐移动通信设备有限公司 用户终端移动速度的估计方法
CN1638495A (zh) * 2003-09-16 2005-07-13 三星电子株式会社 移动通信系统中用于估算移动终端的速度的装置和方法
CN1642334A (zh) * 2004-01-17 2005-07-20 华为技术有限公司 移动台移动速度估计方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092660A1 (en) * 2018-11-02 2020-05-07 At&T Intellectual Property I, L.P. Improved performance based on inferred user equipment device speed for advanced networks
US10887046B2 (en) 2018-11-02 2021-01-05 At&T Intellectual Property I, L.P. Performance based on inferred user equipment device speed for advanced networks
US11502777B2 (en) 2018-11-02 2022-11-15 At&T Intellectual Property I, L.P. Performance based on inferred user equipment device speed for advanced networks
US20220109516A1 (en) * 2019-02-21 2022-04-07 U-Blox Ag Estimating and using characteristic differences between wireless signals
EP4084365A4 (en) * 2019-12-24 2023-06-21 ZTE Corporation CHANNEL IDENTIFICATION METHOD AND APPARATUS, TRANSMISSION METHOD, TRANSMISSION DEVICE, BASE STATION AND MEDIA

Also Published As

Publication number Publication date
CN102238569A (zh) 2011-11-09
CN102238569B (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
CN110291762B (zh) 减少无线通信系统中的干扰的系统和方法
US9432221B2 (en) Methods and systems for adaptive channel estimation/prediction filter design
US9191087B2 (en) Methods and systems for precoder selection assisted by demodulation reference signals (DM-RS)
JP5215317B2 (ja) 無線通信システムにおけるアンテナダイバーシティの提供
JP5920938B2 (ja) Ueモビリティステータスを判定するための方法及び装置
US20110085460A1 (en) Reporting of timing information to support downlink data transmission
KR20170030773A (ko) 무선 통신 시스템에서 위치 추정 방법 및 장치
US20210359800A1 (en) User equipment assisted demodulation reference signal configuration selection
US11936581B2 (en) Uplink doppler metric estimation based on an uplink or a downlink reference signal
TWI639314B (zh) 多天線系統及預編碼方法
WO2011130997A1 (zh) 估计终端移动速度的方法和装置
EP3621212A1 (en) Techniques for acquisition of channel state information
WO2014180510A1 (en) Channel estimation for a subset of resource elements of a resource block
US9300374B2 (en) Communications terminal, apparatus, and method for detecting rank indication
US8718167B2 (en) Method for channel estimation and feedback in wireless communication system
US11310021B2 (en) Uplink doppler metric estimation based on a downlink reference signal
WO2017194010A1 (zh) 一种导频信息的发送方法和装置以及接收方法和装置
CN105337683A (zh) 一种针对csi反馈系统的发射加权方法及装置
WO2013173765A1 (en) Calculating and reporting channel characteristics
WO2019154004A1 (zh) 多用户配对方法、装置及基站
CN114391232B (zh) 频谱效率(spef)至信道质量指示符(cqi)映射适配
EP3051726B1 (en) User device and interference reduction processing method
US20240187063A1 (en) Device and method for estimating channel in wireless communication system
US20230163907A1 (en) Channel compression for channel feedback reporting
CN117676794A (zh) 估计上行定时提前量的方法、网络设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850129

Country of ref document: EP

Kind code of ref document: A1