WO2019154004A1 - 多用户配对方法、装置及基站 - Google Patents

多用户配对方法、装置及基站 Download PDF

Info

Publication number
WO2019154004A1
WO2019154004A1 PCT/CN2019/071193 CN2019071193W WO2019154004A1 WO 2019154004 A1 WO2019154004 A1 WO 2019154004A1 CN 2019071193 W CN2019071193 W CN 2019071193W WO 2019154004 A1 WO2019154004 A1 WO 2019154004A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
downlink channel
channel parameter
parameter
actual downlink
Prior art date
Application number
PCT/CN2019/071193
Other languages
English (en)
French (fr)
Inventor
黄心晔
欧阳逢辰
巢志骏
郭森宝
梁星魂
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19751795.6A priority Critical patent/EP3734855A4/en
Publication of WO2019154004A1 publication Critical patent/WO2019154004A1/zh
Priority to US16/990,018 priority patent/US11343003B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a multi-user pairing method, apparatus, and base station.
  • a transmitting device for example, a UE transmits data by transmitting electromagnetic waves to a receiving device (for example, a base station).
  • the transmitting device transmits an electromagnetic wave through the self antenna, and carries the data stream to be transmitted on the electromagnetic wave. Since the electromagnetic wave points to a transmission channel corresponding to the data stream, the electromagnetic wave can carry the data stream to the receiving through the corresponding channel. End device.
  • the base station maintains multiple antennas, and each UE sends an uplink data stream to the base station, each UE can be regarded as a single antenna. Therefore, multiple antennas of each UE and the base station form a virtual multiple input multiple output ( A multiple input multiple output (MIMO) system, while a MIMO system supports transmitting multiple data streams using the same time-frequency resource.
  • a multiple input multiple output (MIMO) system A multiple input multiple output (MIMO) system
  • the base station uses the same time-frequency resource to send multiple downlink data streams, the data stream and the downlink channel corresponding to different UEs are different. Therefore, before transmitting the multiple downlink data streams, the base station needs to separate and downlink corresponding to each UE.
  • the data stream is beam-shaped to the electromagnetic waves carrying the respective downlink data streams, so that the respective electromagnetic waves are directed to the downlink channel of the corresponding UE, and the process is called multi-user pairing. Based on this, the downlink channel currently corresponding to each UE is a necessary parameter for performing multi-user pairing.
  • the base station cannot directly learn the downlink channel of each UE, and each UE usually periodically transmits pilot information to the base station.
  • the base station obtains the downlink channel from the pilot information that is sent by each UE last time, and serves as the downlink channel that the corresponding UE currently corresponds to.
  • TDD time division duplexing
  • the UE needs to send pilot information to the base station because the time required for the channel to change significantly is several milliseconds (ms).
  • the cycle is tens of ms.
  • the downlink channel of the UE acquired by the base station does not match the downlink channel actually used by the UE, thereby not only reducing the beamforming accuracy of the electromagnetic wave corresponding to the UE, but also deteriorating the
  • the receiving performance of the UE further increases the interference of electromagnetic waves of other UEs on the electromagnetic waves of the UE, and further deteriorates the receiving performance of the UE.
  • the embodiment of the present application provides a multi-user pairing method, device, and base station to solve the problem that the receiving performance of the mobile UE deteriorates when there is a UE moving.
  • the embodiment of the present application provides a multi-user pairing method, the method includes: acquiring an actual downlink channel parameter at a time t0 of the UE; calculating an actual downlink channel parameter at the time t0 and the UE at a time t0- ⁇ t a correlation coefficient of the actual downlink channel parameter, wherein the ⁇ t is less than or equal to a preset time length; if the correlation coefficient is less than a preset threshold, according to the actual downlink channel parameter at the time t0, and the time t0 Determining the predicted downlink channel parameter of the UE t1 time before the actual downlink channel parameter adjacent to the actual downlink channel parameter at the time t0, where the t1 time is the transmission time after the t0 time And performing a multi-user pairing operation according to the predicted downlink channel parameter at the time t1.
  • the time t0 is a sounding time closest to the current time.
  • the base station can determine whether the actual downlink channel at time t0 is compared with the actual downlink channel before time t0 by the correlation between the actual downlink channel parameter at time t0 and the actual downlink channel parameter at time t0- ⁇ t. The change, in turn, determines if the corresponding UE is moving.
  • the downlink channel parameters at the time after the time t0 are predicted according to the several actual downlink channel parameters, and the multi-user pairing operation is performed according to the predicted downlink channel parameters.
  • the multi-user pairing operation it can be identified whether the corresponding UE is moving, so that the relatively accurate downlink channel parameters of the corresponding UE can be determined according to different identification results, and further, the pairing parameter of the mobile UE can be improved. Accuracy, improve the receiving performance of the mobile UE.
  • the performing a multi-user pairing operation according to the predicted downlink channel parameter at the time t1 includes: using the predicted downlink channel parameter at the time t1 as a The calculation parameter of the UE performs a multi-user pairing operation; or, according to the predicted downlink channel parameter at the time t1 and the actual downlink channel parameter at the time t0, a correction parameter is generated; and a multi-user pairing operation is performed according to the correction parameter.
  • the base station performs a multi-user pairing operation according to the predicted downlink channel parameter at time t1, and may adopt two types of methods.
  • the first type the predicted downlink channel parameter at time t1 is used as the real downlink channel parameter of the UE at time t1 to execute multiple users. Pairing operation; the second type: generating a correction parameter according to the predicted downlink channel parameter at time t1 and the actual downlink channel parameter at time t0, correcting the pairing algorithm using the modified parameter, and then performing a multi-user pairing operation according to the modified pairing algorithm.
  • the multi-user pairing operation can be performed with the relatively accurate downlink channel parameters of the mobile UE in the scenario that the UE is moving, thereby improving the accuracy of the pairing parameter of the mobile UE and improving the receiving performance of the mobile UE.
  • the predicted downlink channel parameter ⁇ (t1) of the time is calculated to obtain a second single-user weight of the UE, and V ⁇ (t1) is a conjugate transpose of the second single-user weight V(t1) of the UE.
  • Performing a multi-user pairing operation according to the modified parameter comprising: generating a target single-user beamforming SU BF weight according to the modified parameter ⁇ (t1); performing multi-user pairing according to the target SU BF weight Operation; or, performing a multi-user pairing operation according to the modified parameter ⁇ (t1) and the actual downlink channel parameter at the time t0.
  • the multi-user pairing operation can be performed with the relatively accurate downlink channel parameters of the mobile UE in the scenario that the UE is moving, thereby improving the accuracy of the pairing parameter of the mobile UE and improving the receiving performance of the mobile UE.
  • UEy for multi-user pairing operation is on the xth stream
  • the amount, SINR y indicates the SINR value determined by the CQI according to the channel quality of UEy, and ⁇ x, y refers to the SINR correction coefficient after UEy is paired on the xth stream.
  • the actual downlink channel parameter at the time t0 and the correlation coefficient K(t0) of the actual downlink channel parameter of the UE at time t0- ⁇ t are satisfied.
  • ⁇ ⁇ (t0- ⁇ t) refers to the conjugate transpose of the actual downlink channel parameter of the UE at time t0- ⁇ t.
  • the actual downlink channel parameter according to the time t0, and the actual downlink channel parameter before the t0 time and the actual downlink channel parameter at time t0 are adjacent and continuous Determining the predicted downlink channel parameter ⁇ (t1) at the time t1, comprising: a plurality of actual downlink channel parameters, including: Where tn refers to the earliest time in the time corresponding to the plurality of actual downlink channel parameters, ⁇ (ti) refers to the prediction coefficient, and ti(ti) refers to the actual downlink channel parameter at time ti; or, ⁇ (t1) It is determined by interpolating according to the actual downlink channel parameter at the time t0 and the predicted downlink channel parameter ⁇ (t2) at time t2, where the t2 is equal to t0+t, and the t is to obtain the actual downlink channel parameter.
  • Tn refers to the earliest time in the time corresponding to the plurality of actual downlink channel parameters
  • ⁇ (ti) refers to the prediction coefficient
  • ti(ti) refers to the actual downlink channel parameter at the time ti.
  • the acquiring the actual downlink channel parameter at the time t0 includes: receiving, at the time t0, an actual downlink channel parameter sent by the UE; or Receiving pilot information sent by the UE at the time t0; parsing the pilot information to obtain an actual downlink channel parameter.
  • an embodiment of the present application provides a multi-user pairing apparatus, including a module for performing the method steps in the first aspect and the implementation manners of the first aspect.
  • an embodiment of the present application provides a base station, including a transceiver, a processor, and a memory.
  • the transceiver, the processor and the memory can be connected by a bus system.
  • the memory is for storing a program, instruction or code
  • the processor is for executing a program, instruction or code in the memory, completing the first aspect, or the method of any one of the possible aspects of the first aspect.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any aspect of the first aspect or the first aspect. The method in .
  • the base station after the base station acquires the actual downlink channel parameter of the UE at time t0, the base station selects the actual downlink channel parameter at time t0 and the actual downlink channel parameter of the UE at time t0- ⁇ t. Correlation, determine if the UE has moved. If it is determined that the UE is moving, the base station predicts the downlink channel corresponding to the next transmission time according to the actual downlink channel parameter at time t0 and the number of actual downlink channel parameters adjacent to and consecutive to the actual downlink channel parameter at time t0. Parameters, and perform multi-user pairing operations based on the predicted downlink channel parameters.
  • the base station can identify whether the UE has moved after receiving the actual downlink channel parameter of the UE, and when the UE moves, Generating the predicted downlink channel parameter, so that even if a certain UE in the coverage of the base station moves, the base station can determine the relatively accurate downlink channel of the mobile UE, and further improve the accuracy of the pairing parameter of the mobile UE, and improve the Receive performance of mobile UEs.
  • FIG. 1 is a schematic diagram of an implementation scenario provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for a common multi-user pairing method provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a method for multi-user pairing method provided by an embodiment of the present application.
  • FIG. 4 is a sequence diagram of a base station acquiring an actual downlink channel parameter of a UE according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a multi-user pairing apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the MIMO system supports multiple antennas using the same frequency and simultaneously transmitting data streams. Based on this, the working process of the MIMO system is described in detail in conjunction with the implementation scenario diagram shown in FIG. Referring to FIG. 1 , in which each UE receives a single data stream, each UE can be regarded as a single antenna, and M UEs can be regarded as M single antennas, and an antenna array is usually disposed in the base station.
  • the antenna array is composed of N antennas. Wherein M and N are integers greater than one. Based on this, the antenna array of N antennas and the M single antennas of the UE constitute a MIMO antenna system.
  • the M electromagnetic waves are transmitted through the antenna array, and the M electromagnetic waves respectively carry one downlink data stream, and are transmitted to the corresponding UEs through the downlink channels corresponding to the M UEs. Since the M electromagnetic waves are transmitted simultaneously and at the same frequency, after the antenna array generates the M electromagnetic waves, the base station needs to divide the M electromagnetic waves from a spatial angle according to the downlink channel corresponding to each UE, that is, according to each downlink.
  • the channel parameters of the channel perform beamforming on the M electromagnetic waves to ensure that the M electromagnetic waves respectively point to the corresponding downlink channels, and the process is multi-user pairing.
  • FIG. 2 is a flowchart of a method for a commonly used multi-user pairing method according to an embodiment of the present application.
  • the method 100 shown in FIG. 2 includes the following steps:
  • step S1 a single user beam forming (SU BF) weight is generated for each UE.
  • SU BF single user beam forming
  • the device performing multi-user pairing is a base station, and the UE is a UE within the coverage of the base station.
  • the base station typically can not know directly the downlink channel parameters of the UE, thus, in a TDD system, according to the channel TDD technology reciprocity, the pilot transmitted from the UE frequency information, obtaining an uplink channel parameters [eta] of the UE, Further, according to the uplink channel parameters obtained at ⁇ ⁇ downlink channel parameters for the UE.
  • [eta] the Î ⁇ the [eta]
  • downlink channel parameters at ⁇ UE is the transpose of the uplink channel on which parameter ⁇ .
  • the SU BF weight of the UE can be calculated according to a preset algorithm.
  • a singular value decomposition singular value decomposition
  • step S2 a signal to interference plus noise ratio (SINR) correction is performed on each generated SU BF weight.
  • SINR signal to interference plus noise ratio
  • the multi-user pairing is essentially generating a multiple user beam forming (MUBF) weight of each UE, and the generation of the MU BF weight is usually calculated based on the SU BF weight of each UE. Therefore, the accuracy of the SU BF weight is especially important in the multi-user pairing process.
  • MUBF multiple user beam forming
  • the base station when generating the SU BF weight, the base station usually combines the SINR fed back by the UE, and the SINR fed back by the UE is different from the SINR corresponding to when the base station sends the downlink data stream. Based on this, it is necessary to perform SINR correction on the SU BF weight before performing multi-user pairing with SU BF weight data.
  • the base station may determine, according to a channel quality indicator (CQI) reported by the UE, a corresponding SINR value by using a lookup table, and then multiplying the SINR value by ⁇ SINR to obtain a SINR correction value of the SU BF weight.
  • CQI channel quality indicator
  • W BF refers to the SU BF weight of the UE when the dimension is Nx1, where N refers to the number of transmitting antennas of the base station.
  • W wide refers to the beam weight used by the UE to report CQI. For example, single-port transmission is used as an example.
  • the dimension of W wide is Nx1. Is the modular sum of all the elements in the matrix.
  • step S3 the MU BF weight is generated using the corrected SU BF weight.
  • the number of transmitting antennas of the base station is N
  • the maximum number of matching layers is N. Based on this, it is assumed that the number of layers is 1 in the case of a resource block (RB) or a resource block group (RBG). P.
  • the multi-user pairing ends. If P is less than N, the set formed by the P pairs of UEs is defined as X, and it is assumed that there are still Q to-be-paired UEs, and the Q to-be-paired UEs are formed.
  • Set Y and then use Q UEs in set Y to form a set with P UEs in set X, respectively, to obtain Q sets, and the Q sets each include P+1 UEs.
  • step S4 SINR correction is performed on the generated MU BF weight.
  • Step S3 after obtaining the MU BF weights of the P+1 UEs of the Q sets respectively, calculate the SINR correction value after each UE pairing on each RB or RBG.
  • R y refers to the downlink channel covariance matrix of UEy
  • u x refers to the SU BF weight before UEy pairing
  • w x refers to the MU BF weight of UEy paired
  • n refers to the total of UEy Number of streams.
  • the base station may obtain a modulation and coding scheme (MCS) corresponding to the SINR correction value of the corresponding UE by using a lookup table, and further, learn the corresponding UE according to the corresponding MCS. Instantaneous rate. Then, the proportional fair (PF) priority of each UE is obtained, and then the PF priorities of the M+1 UEs in each of the Q sets are accumulated to obtain the PF of the M+1 UEs. Priority and then, select Q sets of PF priorities and the largest set.
  • MCS modulation and coding scheme
  • the P+1 UEs are taken as the P+1 layer pairing.
  • the above process of calculating the gain is repeatedly performed until there is no gain, or the maximum number of pairing layers N has been reached, and the multi-user pairing operation is ended.
  • the execution condition of the method 100 is that the base station receives the pilot information sent by the UE, and the UE usually sends the pilot information to the base station at each sounding time, when the base station needs to send the UE to the UE.
  • the downlink channel parameters of the corresponding UE are parsed from the most recently received pilot information.
  • the time interval for the UE to transmit the pilot information to the base station is a few tens of ms, and the speed of the handover channel is several ms during the movement of the UE.
  • the downlink channel parameter of the UE that is acquired by the UE is not the parameter of the downlink channel actually used by the UE, and thus the base station is in the
  • the downlink channel parameters of the UE are inaccurate, and other UEs are caused to interfere with the UE.
  • the technical solutions of the embodiments of the present application are obtained by those skilled in the art in the process of research and development.
  • FIG. 3 is a flowchart of a method for a multi-user pairing method according to an embodiment of the present application.
  • the method 300 provided by the embodiment of the present application adds a mobile identification function of the UE according to the method 100, thereby enabling The recognition result predicts the downlink channel parameters of the UE, and further, the accuracy of multi-user pairing can be improved.
  • the method 300 includes the following steps:
  • Step S301 Acquire actual downlink channel parameters at time t0 of the UE.
  • the execution device in the embodiment of the present application is a base station, and the UE is a UE in the coverage of the base station.
  • the channel parameters include data for characterizing the channel position and strength, for example, may be the amplitude and phase of the channel, and the downlink channel parameter of the UE may refer to the amplitude of the channel used to transmit the downlink data stream of the UE. Phase.
  • the actual downlink channel parameter of the UE refers to the real downlink channel parameter corresponding to the UE.
  • the actual downlink channel parameter at the time t0 of the UE refers to the real downlink channel parameter of the UE acquired by the base station at time t0.
  • the manner in which the base station obtains the actual downlink channel parameter at the time t0 of the UE may be, but is not limited to, the following two types:
  • Manner 1 The base station receives the pilot information sent by the UE at time t0, parses the pilot information to obtain the actual channel parameter of the UE at the moment, and further, based on the TDD reciprocity, obtains the UE according to the actual line channel parameter. Actual downlink channel parameters.
  • the pilot information that the UE sends to the base station may be, but is not limited to, a sounding reference signal (SRS).
  • the base station parses the actual channel parameters from the pilot information, and obtains the actual downlink channel parameters according to the TDD reciprocity. The techniques are well known to those skilled in the art.
  • Manner 2 In the embodiment of the present application, the UE directly obtains its actual downlink channel parameter at time t0, and then sends the obtained actual downlink channel parameter to the base station.
  • the manner in which the UE obtains the actual downlink channel parameters of the UE may be multiple, and is a mature technology in the field.
  • FIG. 4 is a timing diagram of a base station acquiring an actual downlink channel parameter of a UE.
  • the time t0 is the current time, or the sounding time closest to the current time, and the time t0 is used as a demarcation point, and the previous time is earlier than t0.
  • the moment, the later moment is the moment of the future.
  • Step S302 calculating a correlation coefficient between the actual downlink channel parameter at the time t0 and the actual downlink channel parameter of the UE at time t0- ⁇ t.
  • the correlation coefficient is a coefficient that represents the actual downlink channel parameter at time t0 with respect to the degree of change of the actual downlink channel parameter at time t0- ⁇ t.
  • ⁇ t is a value less than or equal to the preset time length.
  • the preset time length is a preset time period, and the actual downlink channel parameter in the time period from the time t0 is determined as an optional reference downlink channel parameter for calculating the correlation coefficient.
  • the embodiment of the present application can determine whether the UE is moving by the correlation coefficient of the actual downlink channel parameters at the two moments.
  • the preset time length is too short, even if the corresponding UE moves, the correlation between the actual downlink channel parameter at time t0 and the actual downlink channel parameter at time t0- ⁇ t is still large, so that the UE cannot be accurately represented. Whether it is moving. If the preset time length is too long, the UE may have moved in the corresponding time period, even if the UE does not currently move, but the correlation between the actual downlink channel parameter at time t0 and the actual downlink channel parameter at time t0- ⁇ t remains Smaller, resulting in lower confidence in the judgment results.
  • the range of the preset time length may be set to 100ms to 150ms, for example, 120ms.
  • the actual downlink channel parameter received at 120 ms before the time t0 is determined as a reference parameter for calculating the correlation coefficient.
  • the UE in a state in which the network is connected and the network is used, the UE sends the pilot information or the actual downlink channel parameter to the base station according to the sounding period. Therefore, the base station can obtain the actual downlink channel parameter of the UE according to the corresponding sounding period. Further, the base station may use the actual downlink channel parameter corresponding to the time preset by the preset time length at time t0 as a reference parameter for calculating the correlation coefficient. However, when the UE is not connected to the network, or there is no communication requirement between the UE and the base station, the UE does not transmit pilot information or actual downlink channel parameters to the base station.
  • the base station may acquire the next actual downlink channel parameter of the corresponding UE after multiple sounding periods after the time. Based on this, the base station may not receive any data at any time before the actual downlink channel parameter at time t0, and the base station may obtain the earliest data within 100ms to 150ms before the time t0.
  • the actual downlink channel parameter is used as a reference parameter for calculating the correlation coefficient.
  • the base station obtains the actual downlink channel parameter at the time 120 ms before the time t0
  • the correlation coefficient between the corresponding actual downlink channel parameter and the actual downlink channel parameter at time t0 is calculated. If the base station has not received any data at the time of 120 ms before the time t0, the actual downlink channel parameter obtained at the time from t0-120 ms to t0 is calculated, for example, the actual downlink channel parameter acquired at time t0-80 ms, and The correlation coefficient of the actual downlink channel parameters at time t0.
  • the antenna may acquire 3 to 4 actual downlink channel parameters from 100 ms to 150 ms. Based on this, if the base station receives the downlink channel parameter according to the sounding period, it may directly before the t0 time.
  • the adjacent or sequential third or fourth actual downlink channel parameters are used as reference parameters for calculating the correlation coefficient.
  • the correlation coefficient K(t0) of the actual downlink channel parameter at time t0 and the actual downlink channel parameter at time t0- ⁇ t satisfies: Where ⁇ (t0) is the downlink channel parameter at time t0, and ⁇ ⁇ (t0- ⁇ t) is the conjugate transpose of the downlink channel parameter at time t0- ⁇ t.
  • the method for determining the correlation coefficient by calculating the actual downlink channel parameter at time t0 and the modulus of the actual downlink channel parameter at time t0- ⁇ t is only an optional implementation manner of the present application. It is also possible to determine the correlation coefficient of the two downlink channel parameters using other suitable calculation methods. Specifically, the embodiments of the present application are not described in detail herein.
  • Step S303 if the correlation coefficient is less than a preset threshold, according to the actual downlink channel parameter at the time t0, and a plurality of actual downlinks adjacent to and consecutive to the actual downlink channel parameter at the time t0.
  • the channel parameter determines a predicted downlink channel parameter at the time t1 of the UE.
  • the preset threshold is preset according to the moving speed of the UE and the attenuation ratio of the channel, and is used to detect whether the UE is moving. Specifically, according to the description of step S302, the faster the moving speed of the UE is, the smaller the correlation coefficient is. Therefore, if the correlation coefficient is smaller than the preset threshold, the corresponding UE is considered to be moving, if the correlation coefficient is greater than the If the threshold is preset, the corresponding UE is considered not to be currently moved.
  • the preset threshold may range from 0.5 to 0.7.
  • the time t1 is the time at which the downlink data stream is transmitted after the time t0.
  • the base station may predict the current downlink channel parameter at the time t0 and the actual downlink channel parameters adjacent to and consecutive to the actual downlink channel parameter at time t0.
  • the downlink channel parameter of the UE after time t0 so that the related operation of multi-user pairing can be performed according to the predicted downlink channel parameter, thereby improving the accuracy of multi-user pairing.
  • the base station sends a data flow to the UE every transmission time interval (TTI), and the TTI may be less than or equal to one sounding period.
  • TTI transmission time interval
  • the embodiment of the present application performs downlink channel parameter prediction by using the following methods based on different scenarios.
  • the predicted downlink channel parameter ⁇ (t1) at time t1 satisfies:
  • tn refers to the earliest time of the time corresponding to the plurality of actual downlink channel parameters
  • ⁇ (ti) refers to the prediction coefficient
  • ti(ti) refers to the actual downlink channel parameter at the time ti.
  • the embodiment of the present application calculates the predicted downlink channel parameter ⁇ (t2) at time t2, and then interpolates according to the actual downlink channel parameter at time t0 and the predicted downlink channel parameter ⁇ (t2) at time t2.
  • the sounding period is, for example, t, and t2 is equal to t0+t.
  • Tn refers to the earliest time in the time corresponding to the plurality of actual downlink channel parameters
  • ⁇ (ti) refers to the prediction coefficient
  • ti(ti) refers to the actual downlink channel parameter at the time ti.
  • the optimal downlink channel parameters can be determined by machine learning. The number is, for example, five.
  • the actual downlink channel parameters that are adjacent to and continuous with the actual downlink channel parameters at time t0 in the embodiment of the present application refer to a scenario in which the base station continuously acquires actual downlink channel parameters according to the sounding period. If the actual downlink channel parameter of the UE is not acquired for a long time before the time t0-tx, and the actual downlink channel parameter is continuously obtained according to the sounding period from the time t0-tx, it is received only after the time t0-tx. The actual downlink channel parameter is used as data for determining the predicted downlink channel parameter at time t1.
  • the base station does not acquire the downlink channel parameter of the target UE 10 minutes before the tz time.
  • the base station acquires the actual downlink channel parameter according to the sounding period, and calculates the time t1.
  • the data for calculation is selected from the actual downlink channel parameters acquired between the time tz and the time t0. Further, if the total number of actual downlink channel parameters acquired between tz time and time t0 is less than the set optimal number, all actual downlink channel parameters acquired between tz time and time t0 are used to calculate t1. The predicted downlink channel parameters at the moment.
  • Step S304 performing a multi-user pairing operation according to the predicted downlink channel parameter at the time t1.
  • step of the method 300 if the base station identifies that the UE is not moving by using the correlation coefficient, performing a multi-user pairing operation on the UE according to the method 100, and if the base station recognizes that the UE is moving,
  • the downlink channel parameters are predicted as a reference, and a multi-user pairing operation is performed.
  • the base station performs a multi-user pairing operation according to the predicted downlink channel parameter at time t1, and multiple methods may be used.
  • the multiple methods may be classified into two categories, the first category:
  • the predicted downlink channel parameter at time t1 is used as the real downlink channel parameter of the UE at time t1, and the multi-user pairing operation is performed according to method 100;
  • the second type is generated according to the predicted downlink channel parameter at time t1 and the actual downlink channel parameter at time t0.
  • the parameters are modified, the corresponding pairing algorithm in the method 100 is corrected using the correction parameters, and then the multi-user pairing operation is performed in accordance with the modified pairing algorithm.
  • the embodiment of the present application provides three different implementation manners, and several different implementation manners are described in detail below.
  • Method 1 When the correction parameter ⁇ (t1) is satisfied At the time, the algorithm for generating the SU BF weight in the method 100 is corrected using the modified parameter ⁇ (t1), and further, the target SU BF weight is generated according to the modified SU BF weight algorithm, and then, according to step S2 in the method 100, S3 and step S4 perform the remaining operations.
  • ⁇ (t1) refers to the predicted downlink channel parameter of the UE at time t1
  • ⁇ ⁇ (t0) refers to the conjugate transpose of the actual downlink channel parameter at time t0.
  • Method 2 When the correction parameter ⁇ (t1) is satisfied At this time, each step algorithm of step S1, step S2, step S3, and step S4 in the method 100 is corrected using the correction parameter ⁇ (t1), and then the multi-user pairing operation is performed in accordance with the corrected pairing algorithm.
  • V(t0) is the first single user weight calculated according to the actual downlink channel parameter at time t0
  • V(t1) is calculated according to the predicted downlink channel parameter ⁇ (t1) at time t1.
  • Single user weight, V ⁇ (t1) refers to the conjugate transpose of the second single user weight V(t1) of the UE
  • SINR x, y refers to the correction amount of UEy paired on the xth stream
  • ⁇ SINR x y is the correction amount before the pairing of the UEy on the xth stream
  • the SINR y is determined according to the channel quality of the UEy
  • the SINR value determined by the CQI, and ⁇ x, y is the SINR correction coefficient after the pairing of the UEy on the xth stream.
  • the embodiment of the present application determines whether the UE is moving before multi-user pairing, and after determining that the UE is moving, predicts a downlink channel parameter of the UE, and performs, according to the predicted downlink channel parameter of the UE, Multi-user pairing operation. Therefore, when a certain UE moves, the base station can still determine a relatively accurate downlink channel of the mobile UE, and further improve the beam accuracy of the electromagnetic wave corresponding to the mobile UE, and improve the receiving performance of the mobile UE.
  • FIG. 5 is a schematic structural diagram of a multi-user pairing apparatus 500 according to an embodiment of the present application.
  • the apparatus 500 can be applied to the method 300.
  • the apparatus 500 includes an acquisition module 501, a calculation module 502, a determination module 503, and a multi-user pairing module 504.
  • the obtaining module 501 is configured to perform the step of the base station acquiring the actual downlink channel parameter of the UE in the method 300.
  • the calculating module 502, the determining module 503, and the multi-user pairing module 504 are configured to perform various computing operations in the method 300.
  • the obtaining module 501 can be configured to obtain an actual downlink channel parameter at the time of the user equipment UE t0.
  • the calculating module 502 is configured to calculate a correlation coefficient between the actual downlink channel parameter at the time t0 and an actual downlink channel parameter of the UE at time t0- ⁇ t, where the ⁇ t is less than or equal to a preset time length.
  • the determining module 1302 may be configured to: when the correlation coefficient is less than a preset threshold, according to an actual downlink channel parameter at the time t0, and before the t0 time, adjacent to an actual downlink channel parameter at the time t0.
  • the predicted downlink channel parameters of the UE t1 time are determined by consecutive consecutive actual channel parameters, where the time t1 is the transmission time after the time t0.
  • the multi-user pairing module 504 can be configured to perform a multi-user pairing operation according to the predicted downlink channel parameter at the time t1.
  • the division of each module above is only a division of logic functions, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • the obtaining module 501 can be implemented by a transceiver
  • the calculating module 502, the determining module 503, and the multi-user pairing module 504 can be implemented by a processor.
  • base station 600 can include a processor 601, a transceiver 602, and a memory 603.
  • the memory 603 can be used to store programs/codes pre-installed by the base station 600, and can also store codes and the like for execution of the processor 601.
  • the base station 600 can correspond to the base station in the method 300 of the embodiment of the present application, wherein the transceiver 602 is configured to perform the acquisition of the actual downlink channel parameters performed by the base station in the method 300, and the processor 601 is configured to execute the method 300. Other processing than actual downlink channel parameter acquisition. I will not repeat them here.
  • the embodiment of the present application further provides a computer storage medium, wherein the computer storage medium disposed in the base station may store a program, and when the program is executed, the multi-user pairing provided in FIG. 3 may be implemented. Part or all of the steps of the method.
  • the storage medium in the base station may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a read-only memory (read-only) Memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the above types of memory.
  • bus interface which may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides a unit for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the UE. Alternatively, the processor and the storage medium may also be located in different components in the UE.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, an optical medium such as a DVD, or a semiconductor medium such as a Solid State Disk (SSD).
  • SSD Solid State Disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种多用户配对方法、装置及基站。其中,所述方法包括:获取用户设备UE t0时刻的实际下行信道参数;计算所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实际下行信道参数的相关性系数;若所述相关性系数小于预设阈值,确定所述UE t1时刻的预测下行信道参数;根据所述t1时刻的预测下行信道参数执行多用户配对操作。由此可见,本申请实施例中,即使基站覆盖范围内的某个UE发生移动,基站依然能够确定该移动UE相对准确的下行信道,进而,能够提高该移动UE的配对参数的准确性,提高该移动UE的接收性能。

Description

多用户配对方法、装置及基站
本申请要求在2018年2月11日提交中国专利局、申请号为201810140127.1、发明名称为“多用户配对方法、装置及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种多用户配对方法、装置及基站。
背景技术
众所周知,基站与其覆盖范围内的用户设备(user equipment,UE)之间,发送端设备(例如UE)通过向接收端设备(例如基站)发射电磁波的方式传输数据。具体的,发送端设备通过自身天线发射电磁波,并将待发送的数据流承载在该电磁波上,由于该电磁波指向数据流对应的传输信道,因此,该电磁波能够携带数据流通过相应信道传输到接收端设备。其中,由于基站维护有多根天线,而各个UE向基站发送上行数据流时,每个UE均可以看做一根单天线,因此,各个UE与基站的多天线形成虚拟的多输入多输出(multiple input multiple output,MIMO)系统,而MIMO系统支持使用相同的时频资源发送多个数据流。
当基站使用相同的时频资源发送多个下行数据流时,由于不同UE对应的数据流以及下行信道均各不相同,因此,在发送该多个下行数据流之前,基站需要对应各个UE分离下行数据流,并对承载各下行数据流的电磁波进行波束赋形,以使各个电磁波指向对应UE的下行信道,该过程称为多用户配对。基于此,各个UE当前对应的下行信道,是执行多用户配对的必要参数。然而,通常基站无法直接获知各个UE的下行信道,而各个UE通常周期性的向基站发送导频信息,所以,一种常用的做法,例如基于时分双工(time division duplexing,TDD)技术的系统中,基站从每个UE最近一次发送的导频信息中获取下行信道,作为相应UE当前对应的下行信道。
此外,若基站覆盖范围内的某个UE发生移动,则其对应的下行信道将会不断变化,而由于信道发生显著变化所需的时长为几毫秒(ms),UE向基站发送导频信息的周期却是几十ms。基于此,若某个UE正在发生移动,那么,基站所获取的该UE的下行信道与该UE实际使用的下行信道不符,从而不仅降低了该UE对应电磁波的波束赋形准确性,恶化了该UE的接收性能,进一步的,也会增加其他UE的电磁波对该UE的电磁波的干扰,进而,进一步恶化该UE的接收性能。
发明内容
本申请实施例提供了一种多用户配对方法、装置及基站,以解决当有UE发生移动时,该移动UE的接收性能恶化的问题。
第一方面,本申请实施例提供了一种多用户配对方法,该方法包括:获取UE t0时刻的实际下行信道参数;计算所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实 际下行信道参数的相关性系数,其中,所述Δt小于或者等于预设时间长度;若所述相关性系数小于预设阈值,根据所述t0时刻的实际下行信道参数,以及所述t0时刻之前与所述t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,确定所述UE t1时刻的预测下行信道参数,其中,所述t1时刻是所述t0时刻之后的发送时刻;根据所述t1时刻的预测下行信道参数执行多用户配对操作。
应理解,t0时刻是距离当前时刻最近的一个sounding时刻。而本申请实施例,基站能够通过t0时刻的实际下行信道参数与t0-Δt时刻的实际下行信道参数的相关性,确定t0时刻的实际下行信道相较于t0时刻之前的实际下行信道,是否发生变化,进而,确定相应UE是否正在移动。当UE正在移动,则根据若干个实际下行信道参数预测t0时刻之后的时刻的下行信道参数,并根据预测的下行信道参数执行多用户配对操作。
采用本实现方式,在执行多用户配对操作之前,能够识别相应UE是否正在移动,从而能够根据不同的识别结果,确定相应UE相对准确的下行信道参数,进而,能够提高该移动UE的配对参数的准确性,提高该移动UE的接收性能。
结合第一方面,在第一方面第一种可能的实现方式中,所述根据所述t1时刻的预测下行信道参数执行多用户配对操作,包括:将所述t1时刻的预测下行信道参数作为所述UE的计算参数执行多用户配对操作;或者,根据所述t1时刻的预测下行信道参数和所述t0时刻的实际下行信道参数,生成修正参数;根据所述修正参数执行多用户配对操作。
具体的,基站根据t1时刻的预测下行信道参数执行多用户配对操作,可以采用两类方法,第一类:将t1时刻的预测下行信道参数,作为UE在t1时刻的真实下行信道参数执行多用户配对操作;第二类:根据t1时刻的预测下行信道参数和t0时刻的实际下行信道参数,生成修正参数,使用该修正参数修正配对算法,然后,按照修正后的配对算法执行多用户配对操作。
采用本实现方式,能够在UE正在移动的场景下,以该移动UE相对准确的下行信道参数执行多用户配对操作,从而提高该移动UE的配对参数的准确性,提高该移动UE的接收性能。
结合第一方面,在第一方面第二种可能的实现方式中,所述修正参数ρ(t1)满足:
Figure PCTCN2019071193-appb-000001
其中,Η(t1)是指所述t1时刻的预测下行信道参数,Η Η(t0)是指所述t0时刻的实际下行信道参数的共轭转置;或者,ρ(t1)=abs[V Η(t1)V(t0)],其中,V(t0)是根据所述t0时刻的实际下行信道参数计算得到的所述UE的第一单用户权值,V(t1)是根据所述t1时刻的预测下行信道参数Η(t1)计算得到所述UE的第二单用户权值,V Η(t1)是指所述UE的第二单用户权值V(t1)的共轭转置。
结合第一方面,在第一方面第三种可能的实现方式中,当
Figure PCTCN2019071193-appb-000002
时,所述根据所述修正参数执行多用户配对操作,包括:根据所述修正参数ρ(t1)生成目标单用户波束赋形SU BF权值;根据所述目标SU BF权值执行多用户配对操作;或者,根据所述修正参数ρ(t1)和所述t0时刻的实际下行信道参数执行多用户配对操作。
采用本实现方式,能够在UE正在移动的场景下,以该移动UE相对准确的下行信道参数执行多用户配对操作,从而提高该移动UE的配对参数的准确性,提高该移动UE的接收性能。
结合第一方面,在第一方面第四种可能的实现方式中,当ρ(t1)=abs[V Η(t1)V(t0)]时,用于多用户配对操作的多用户波束赋形MU BF权值W ΜU-BF满足W ΜU-BF=V(V ΗV+D(ρ(t1))),D为对角线加载项;用于多用户配对操作的UEy在第x流上配对后的修正量SINR x,y满足SINR x,y=α x,y(ρ(t1))*SINR y*ΔSINR x,y,ΔSINR x,y是指UEy在第x流上配对前的修正量,SINR y根据UEy的信道质量指示CQI确定的SINR值,α x,y是指UEy在第x流上配对后的SINR修正系数。
结合第一方面,在第一方面第五种可能的实现方式中,所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实际下行信道参数的相关性系数K(t0)满足:
Figure PCTCN2019071193-appb-000003
其中,Η Η(t0-Δt)是指所述UE在t0-Δt时刻的实际下行信道参数的共轭转置。
结合第一方面,在第一方面第六种可能的实现方式中,所述根据所述t0时刻的实际下行信道参数,以及所述t0时刻之前与t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,确定所述t1时刻的预测下行信道参数Η(t1),包括:
Figure PCTCN2019071193-appb-000004
其中,tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数;或者,Η(t1)是根据所述t0时刻的实际下行信道参数和t2时刻的预测下行信道参数Η(t2)通过插值的方式确定的,其中,所述t2等于t0+t,所述t是指获取实际下行信道参数的周期,t2>t1,
Figure PCTCN2019071193-appb-000005
tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数。
结合第一方面,在第一方面第七种可能的实现方式中,所述获取所述t0时刻的实际下行信道参数,包括:在所述t0时刻接收所述UE发送的实际下行信道参数;或者,在所述t0时刻接收所述UE发送的导频信息;解析所述导频信息得到实际下行信道参数。第二方面,本申请实施例提供了一种多用户配对装置,包括用于执行第一方面及第一方面各实现方式中的方法步骤的模块。
第三方面,本申请实施例提供了一种基站,包括收发器,处理器以及存储器。其中,收发器、处理器以及存储器之间可以通过总线系统相连。该存储器用于存储程序、指令或代码,处理器用于执行存储器中的程序、指令或代码,完成第一方面,或第一方面的任意一种可能的设计中的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面任意可能的设计中的方法。
为解决现有技术的问题,本申请实施例中,基站获取到UE在t0时刻的实际下行信道 参数之后,根据t0时刻的实际下行信道参数与该UE在t0-Δt时刻的实际下行信道参数的相关性,确定该UE是否发生移动。若确定该UE发生移动,基站根据t0时刻的实际下行信道参数,以及t0时刻之前与t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,预测下一个发送时刻对应的下行信道参数,并根据所预测的下行信道参数执行多用户配对操作。由此可见,即使UE无法及时向基站发送该UE实际使用的下行信道,但是基站在接收到该UE的实际下行信道参数之后,能够识别该UE是否发生移动,并且,当该UE发生移动时,生成预测的下行信道参数,从而即使该基站覆盖范围内的某个UE发生移动,基站依然能够确定该移动UE相对准确的下行信道,进而,能够提高该移动UE的配对参数的准确性,提高该移动UE的接收性能。
附图说明
图1是本申请实施例提供的实施场景示意图;
图2是本申请实施例提供的一种常用的多用户配对方法的方法流程图;
图3是本申请实施例提供的多用户配对方法的方法流程图;
图4是本申请实施例提供的基站获取UE实际下行信道参数的时序图;
图5是本申请实施例提供的多用户配对装置的结构示意图;
图6是本申请实施例提供的基站的结构示意图。
具体实施方式
通常,MIMO系统支持多根天线使用相同频率,且同时发送数据流,基于此,结合图1所示的实施场景图,对MIMO系统的工作过程进行详细描述。参见图1,其中,以每个UE接收单数据流为例,每个UE可以视为一根单天线,M个UE则可以视为M根单天线,而基站中通常设置有一个天线阵列,该天线阵列由N根天线组成。其中,M和N是大于1的整数。基于此,N根天线的天线阵列和M根UE单天线组成MIMO天线系统。
当基站向各个UE发送下行数据流时,通过天线阵列发送M个电磁波,该M个电磁波分别携带一个下行数据流,通过M个UE对应的下行信道一一传输到相应UE。由于该M个电磁波同时且以同频率传输,因此,在天线阵列生成该M个电磁波之后,基站需要根据各个UE对应的下行信道,对该M个电磁波从空间角度进行划分,即,根据各个下行信道的信道参数,对该M个电磁波执行波束赋形,以保证该M个电磁波分别指向相应的下行信道,该过程即为多用户配对。
参见图2,图2是本申请实施例提供的一种常用的多用户配对方法的方法流程图,其中,图2所示的方法100包括如下步骤:
步骤S1,对应每个UE,生成单用户波束赋形(single user beam forming,SU BF)权值。
其中,结合上述对实施场景的描述可知,执行多用户配对的设备是基站,而所述的UE是该基站覆盖范围内的UE。
需要说明的是,基站通常无法直接获知UE的下行信道参数,所以,在TDD系统中,根据TDD技术的信道互易性,从UE发送的导频信息中,获取UE的上行信道参数Η ,进而,根据该上行信道参数Η 得到该UE的下行信道参数Η 。具体的,Η =Η 下Τ,即,根据TDD互易性,UE的下行信道参数Η 是其上行信道参数Η 的转置。
进而,可以根据预设的算法计算该UE的SU BF权值。具体的,以信道矩阵的秩(rank)是1为例,对下行信道矩阵进行奇异值分解(singular value decomposition,SVD),Η =UλV Η,其中,U是指UE侧的均衡矩阵,λ是指SVD分解的一个参数,V Η是指该UE的权值矩阵的共轭转置,其中,矩阵V中最大特征值对应的特征向量即为该UE的SU BF权值。
步骤S2,对所生成的每个SU BF权值执行信号干扰噪声比(signal to interference plus noise ratio,SINR)修正。
其中,多用户配对实质上是生成各个UE的多用户波束赋形(multiple user beam forming,MU BF)权值,而MU BF权值的生成,通常以每个UE的SU BF权值为计算基础,因此,SU BF权值的准确性在多用户配对过程中,尤为重要。
需要指出的是,基站在生成SU BF权值时,通常会结合UE反馈的SINR,而UE所反馈的SINR与基站发送下行数据流时对应的SINR存在差异。基于此,在以SU BF权值为数据执行多用户配对前,需要先对SU BF权值进行SINR修正。
具体的,基站可以根据该UE上报的信道质量指示(channel quality indicator,CQI),通过查表确定相对应的SINR值,然后,此SINR值乘以ΔSINR即得到该SU BF权值的SINR修正值。其中,以Rank是1为例,
Figure PCTCN2019071193-appb-000006
式中,
Figure PCTCN2019071193-appb-000007
是指没有经过基带加权的信道系数,W BF是指该UE在维度为Nx1时的SU BF权值,其中,N是指基站的发射天线数目。W wide是指该UE上报CQI时采用的波束加权,例如以单端口发送为例,W wide的维数为Nx1。
Figure PCTCN2019071193-appb-000008
是指矩阵中所有元素的模平方和。
步骤S3,使用修正后的SU BF权值生成MU BF权值。
具体的,在得到各个UE修正后的SU BF权值之后,上文提到,基站的发射天线数目是N,那么,最大配对层数是N。基于此,依然以Rank是1为例,假设在某资源块(resource block,RB)或者资源块组(resource block group,RBG)上,已经配对了P个UE,认为此时的配对层数为P。
其中,若P等于N,则多用户配对结束,若P小于N,则定义此P个已经配对的UE形成的集合为X,假设还存在Q个待配对UE,将该Q个待配对UE形成集合Y,然后,使用集合Y中的Q个UE一一与集合X中的P个UE分别形成一个集合,得到Q个集合,并且,该Q个集合均包括P+1个UE。进而,针对该Q个集合中每个集合的P+1个UE,在每个RB或者RBG上,按照算法W MU-BF=V(V HV+D) -1,计算该P+1个UE的MU BF权值。其中,V是指该P+1个UE的SU BF权值矩阵,V H是指V的共轭转置,D是指对角线加载项。
步骤S4,对所生成的MU BF权值执行SINR修正。
接步骤S3,在分别得到该Q个集合的P+1个UE的MU BF权值之后,在每个RB或者RBG上,计算每个UE配对后的SINR修正值。具体的,在每个RBG中,UEy在第x流上配对后SINR修正值SINR x,y=α x,y*SINR y*ΔSINR x,y,其中,ΔSINR x,y是指UEy第x流上配对前的SINR修正量,SINR y基站根据UEy上报的CQI查表得到的SINR值,α x,y是指UEy在第x流上配对后SINR的修正因子。
具体的,
Figure PCTCN2019071193-appb-000009
其中,R y是指UEy的下行信道协方差矩阵,u x,y是指UEy配对前的SU BF权值,w x,y是指UEy配对后的MU BF权值,n是指UEy的总流数。
进一步的,在得到每个UE的SINR修正值之后,基站可以通过查表获知相应UE对应该SINR修正值对应的调制与编码策略(modulation and coding scheme,MCS),进而,根据相应MCS获知相应UE的瞬时速率。然后,获得每个UE的比例公平(proportional fair,PF)优先级,然后,将Q个集合中,每个集合的M+1个UE的PF优先级累加,得到该M+1个UE的PF优先级和,然后,选取Q个集合PF优先级和最大的一个集合。进而,判断该最大的PF优先级和在集合X中P个UE的PF优先级和的基础上,是否有正增益,若有正增益,取该P+1个UE作为P+1层的配对用户;若无正增益,说明在该RB或者RBG上只能配对到P层,则多用户配对结束。
在每个配对层数上,重复执行上述计算增益的过程,直到没有增益,或者已经达到了最大配对层数N,结束多用户配对操作。
其中,根据步骤S1的描述可知,方法100的执行条件是基站接收到UE发送的导频信息,而UE通常在每个探测(sounding)时刻,向基站发送一次导频信息,当基站需要向UE发送数据流时,从最近一次接收到的导频信息中,解析得到相应UE的下行信道参数。
基于此,若基站覆盖范围内的某个UE发生移动,由于UE向基站发送导频信息的时间间隔最短是几十ms,而该UE在移动过程中,切换信道的速度为几ms,所以,基站在该UE最近一次发送导频信息之后,在该UE发送下个导频信息之前,所获取到的该UE的下行信道参数,并不是该UE真实使用的下行信道的参数,从而导致基站在执行多用户配对时,不仅所得到的该UE的MU BF权值不准确,降低该UE的接收性能,而且,该UE的下行信道参数不准确,还会致使其他UE对该UE产生干扰。有鉴于此,本领域技术人员在研发过程中,得到本申请实施例的技术方案。
下面结合附图,对本申请实施例进行描述。
参见图3,图3是本申请实施例提供的多用户配对方法的方法流程图,本申请实施例提供的方法300,在方法100的基础上,增加了UE的移动识别功能,从而,能够根据识别结果,预测该UE的下行信道参数,进而,能够提高多用户配对的准确性。所述方法300包括以下步骤:
步骤S301,获取UE t0时刻的实际下行信道参数。
其中,结合本申请实施例的实施场景,本申请实施例的执行设备是基站,所述UE是所述基站覆盖范围内的UE。本申请实施例中,信道参数包括用于表征信道位置和强度的数据,例如可以是信道的幅值和相位,UE的下行信道参数可以指用于传输该UE下行数据流的信道的幅值和相位。UE的实际下行信道参数是指,该UE对应的真实的下行信道参数,相应的,该UE t0时刻的实际下行信道参数是指,基站在t0时刻获取到的该UE的真实下行信道参数。
具体的,本申请实施例中,基站获取UE t0时刻的实际下行信道参数的方式可以但不限于以下两种:
方式一:基站在t0时刻接收到该UE发送的导频信息,解析该导频信息得到该UE此刻的实际上行信道参数,进而,基于TDD互易性,根据该实际上行信道参数得到该UE的 实际下行信道参数。
其中,UE向基站发送的导频信息,可以但不限于是探测参考信号(sounding reference signal,SRS)。此外,基站从导频信息中解析得到实际上行信道参数,以及根据TDD互易性得到实际下行信道参数,均为本领域技术人员所熟知的技术,本申请实施例此处不再详述。
方式二:本申请实施例中,在t0时刻,UE直接获取自身的实际下行信道参数,然后,将所获取的实际下行信道参数发送到基站。
具体的,UE获取自身实际下行信道参数的方式,可以有多种,并且是本领域较为成熟的技术,本申请实施例此处不再详述。
应理解,UE最近一次的实际下行信道参数,是本申请实施例的关键参数,因此,本申请实施例中,t0时刻可以理解为距离当前时刻最近的一个sounding时刻。参见图4,图4示出了基站获取UE实际下行信道参数的时序图,t0时刻是当前时刻,或者距离当前最近的sounding时刻,以t0时刻为分界点,之前的时刻是早于t0时刻的时刻,之后的时刻是将来的时刻。
步骤S302,计算所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实际下行信道参数的相关性系数。
其中,相关性系数是表征t0时刻的实际下行信道参数相对于t0-Δt时刻的实际下行信道参数变化程度的系数,相关性系数越小,说明t0时刻的实际下行信道参数相对于t0-Δt时刻的实际下行信道参数的变化越大,从而能够用于判断相应UE是否正在移动。Δt是小于或者等于预设时间长度的值。预设时间长度是预先设定的时间段,将距离t0时刻在该时间段内的实际下行信道参数,确定为可选的计算相关性系数的参考下行信道参数。
具体的,当UE发生移动,该UE对应的下行信道将持续变化,基于此,t0-Δt时刻的实际下行信道参数所表征的是变化之前的信道,t0时刻的实际下行信道参数所表征的是变化后的信道,并且UE移动的越快,该两个时刻的实际下行信道参数相关性就会越小。基于此,本申请实施例可以通过该两个时刻的实际下行信道参数的相关性系数,确定该UE是否正在发生移动。
应理解,若预设时间长度太短,即使相应的UE发生移动,t0时刻的实际下行信道参数和t0-Δt时刻的实际下行信道参数的相关性依然较大,从而无法准确的表示出该UE是否正在移动。而若预设时间长度太长,在相应的时间段内UE可能已经发生移动,即使UE当前并未移动,但是t0时刻的实际下行信道参数和t0-Δt时刻的实际下行信道参数的相关性依然较小,从而导致判断结果的可信度较低。
基于此,本申请实施例中,可以将预设时间长度的范围设置为100ms至150ms,例如是120ms。结合图4,将t0时刻之前120ms时接收到的实际下行信道参数,确定为计算相关性系数的参考参数。
进一步的,需要说明的是,在联网且使用网络的状态下,UE按照sounding周期向基站发送导频信息或者实际下行信道参数,所以,基站能够按照相应的sounding周期获取该UE的实际下行信道参数,进而,基站可以将早于t0时刻预设时间长度的时刻对应的实际下行信道参数,作为计算相关性系数的参考参数。然而,当UE未联网,或者UE与基站之间无通信需求时,UE不向基站发送导频信息或者实际下行信道参数。此时,基站在某个 时刻获取到一个实际下行信道参数之后,可能会在该时刻之后,间隔多个sounding周期获取到相应UE的下个实际下行信道参数。基于此,t0时刻的实际下行信道参数之前100ms至150ms的时刻,基站可能根本没有接收到任何数据,此种场景下,本申请实施例,可以将t0时刻之前100ms至150ms内,最早获取到的实际下行信道参数,作为计算相关性系数的参考参数。
例如,结合图4,若t0时刻之前120ms的时刻,基站曾获取到实际下行信道参数,则计算相应实际下行信道参数与t0时刻的实际下行信道参数的相关性系数。若t0时刻之前120ms的时刻,基站未曾接收到任何数据,则计算t0-120ms时刻至t0时刻内最早获取的实际下行信道参数,例如是在t0-80ms的时刻获取到的实际下行信道参数,与t0时刻的实际下行信道参数的相关性系数。
进一步的,若基站按照sounding周期接收实际下行信道参数,那么,100ms至150ms可以获取3到4个实际下行信道参数,基于此,若基站按照sounding周期接收下行信道参数,也可以直接将t0时刻之前,相邻且顺次的第3个或者第4个实际下行信道参数,作为计算相关性系数的参考参数。
具体的,t0时刻的实际下行信道参数与t0-Δt时刻的实际下行信道参数的相关性系数K(t0)满足:
Figure PCTCN2019071193-appb-000010
其中,Η(t0)是指t0时刻的下行信道参数,Η Η(t0-Δt)是指t0-Δt时刻的下行信道参数的共轭转置。
当然,上述通过计算t0时刻的实际下行信道参数和t0-Δt时刻的实际下行信道参数的模平方,来确定相关性系数的方式,仅为本申请的一种可选实施方式,本申请实施例还可以使用其他适用的计算方式,确定两下行信道参数相关性系数。具体的,本申请实施例此处不再详述。
步骤S303,若所述相关性系数小于预设阈值,根据所述t0时刻的实际下行信道参数,以及所述t0时刻之前与所述t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,确定所述UE t1时刻的预测下行信道参数。
其中,预设阈值是按照UE的移动速度和信道的衰减比例,预先设置一个门限值,用于检测UE是否正在移动。具体的,根据对步骤S302的描述可知,UE的移动速度越快,相关性系数越小,基于此,若相关性系数小于该预设阈值,则认为相应UE正在移动,若相关性系数大于该预设阈值,则认为相应UE当前并未移动。在本申请实施例中,该预设阈值的取值范围可以是0.5至0.7。t1时刻是t0时刻之后发送下行数据流的时刻。
进一步的,若基站识别出该UE正在移动,可以根据该t0时刻的实际下行信道参数,以及t0时刻之前与t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,预测出该UE在t0时刻之后的下行信道参数,从而能够根据预测的下行信道参数,执行多用户配对的相关操作,进而,提高多用户配对的准确性。
需要说明的是,基站每一个发送时间间隔(transmission time interval,TTI)向UE发送一次数据流,而TTI可以小于或者等于一个sounding周期。基于此,本申请实施例基于不同场景,通过下述方法执行下行信道参数预测。
当TTI等于一个sounding周期时,t1时刻的预测下行信道参数Η(t1)满足:
Figure PCTCN2019071193-appb-000011
其中,tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数。
当TTI小于一个sounding周期时,本申请实施例计算t2时刻的预测下行信道参数Η(t2),然后,根据t0时刻的实际下行信道参数和t2时刻的预测下行信道参数Η(t2),通过插值的方式确定t1时刻的预测下行信道参数Η(t1)。其中,本申请实施例中,sounding周期例如是t,t2等于t0+t,
Figure PCTCN2019071193-appb-000012
tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数。
需要说明的是,确定t1时刻的预测下行信道参数时,若所选择的实际下行信道参数数量过多,早于t0时刻太多的时刻对应的实际下行信道,与t0时刻的实际下行信道相关性较小,反而会影响t1时刻的预测下行信道参数的准确性。而若所选择的实际下行信道参数数量过少,同样会导致t1时刻的预测下行信道参数的准确性较差,所以,通常可以通过机器学习等方式,确定所选择的实际下行信道参数的最优数量,例如是5个。
当然,本申请实施例所述的与t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,指的是基站按照sounding周期持续获取实际下行信道参数的场景。若t0-tx时刻之前,基站长时间未获取到该UE的实际下行信道参数,并且从t0-tx时刻才开始持续的按照sounding周期获取实际下行信道参数,则仅以t0-tx时刻之后接收到的实际下行信道参数作为确定t1时刻的预测下行信道参数的数据。
例如,结合图4,在一个可选实施例中,tz时刻之前10分钟基站均未获取到目标UE的下行信道参数,从tz时刻开始,基站按照sounding周期获取实际下行信道参数,在计算t1时刻的预测下行信道参数时,从tz时刻至t0时刻之间所获取的实际下行信道参数中,选择计算用的数据。进一步的,若tz时刻至t0时刻之间所获取的实际下行信道参数总数量小于所设定的最优数量,则将tz时刻至t0时刻之间所获取的全部实际下行信道参数用于计算t1时刻的预测下行信道参数。
步骤S304,根据所述t1时刻的预测下行信道参数执行多用户配对操作。
其中,接方法300的上述步骤所述,若基站通过相关性系数识别出该UE未移动,则按照方法100对该UE执行多用户配对操作,若基站识别出该UE正在移动,那么,可以以预测下行信道参数为参考,执行多用户配对操作。
具体的,以t1时刻是TTI时刻为例,基站根据t1时刻的预测下行信道参数执行多用户配对操作,可以采用多种方法,所述的多种方法可以分为两类,第一类:将t1时刻的预测下行信道参数,作为UE在t1时刻的真实下行信道参数,按照方法100执行多用户配对操作;第二类:根据t1时刻的预测下行信道参数和t0时刻的实际下行信道参数,生成修正参数,使用该修正参数修正方法100中对应的配对算法,然后,按照修正后的配对算法执行多用户配对操作。
针对第二类方法,本申请实施例提供了三种不同的实施方式,下面对该几种不同的实施方式进行详细描述。
方式一:当修正参数ρ(t1)满足
Figure PCTCN2019071193-appb-000013
时,使用修正参数ρ(t1)修正方法100中生成SU BF权值的算法,进而,根据修正后的SU BF权值算法生成目标SU BF权值,然后,按照方法100中的步骤S2、步骤S3和步骤S4执行其余操作。
其中,Η(t1)是指该UE在t1时刻的预测下行信道参数,Η Η(t0)是指t0时刻的实际下行信道参数的共轭转置。
方式二:当修正参数ρ(t1)满足
Figure PCTCN2019071193-appb-000014
时,使用修正参数ρ(t1)修正方法100中步骤S1、步骤S2、步骤S3和步骤S4的每一步算法,然后,按照修正后的配对算法执行多用户配对操作。
方式三:当修正参数ρ(t1)满足ρ(t1)=abs[V Η(t1)V(t0)]时,修正方法100中步骤S3和步骤S4的算法,得到W ΜU-BF=V(V ΗV+D(ρ(t1)))和SINR x,y=α x,y(ρ(t1))*SINR y*ΔSINR x,y。在按照方法100中步骤S1和步骤S2计算得到SU BF权值之后,按照修正后的算法计算MU BF权值,进而,按照修正后的算法对得到的MU BF权值执行SINR修正。
其中,V(t0)是根据t0时刻的实际下行信道参数计算得到的UE的第一单用户权值,V(t1)是根据t1时刻的预测下行信道参数Η(t1)计算得到UE的第二单用户权值,V Η(t1)是指UE的第二单用户权值V(t1)的共轭转置,SINR x,y是指UEy在第x流上配对后的修正量,ΔSINR x,y是指UEy在第x流上配对前的修正量,SINR y根据UEy的信道质量指示CQI确定的SINR值,α x,y是指UEy在第x流上配对后的SINR修正系数。
当然,需要说明的是,上述第二类方法的三种方式,仅为本申请的可选实施方式,对本申请实施例不构成限制,任何在上述方式基础上的其他具体实施方式,均属于本申请实施例的保护范围。
综合上述,本申请实施例通过在多用户配对之前,识别UE是否正在移动,并在确定该UE正在移动之后,预测该UE的下行信道参数,并基于所预测的该UE的下行信道参数,执行多用户配对操作。从而在某个UE发生移动时,基站依然能够确定该移动UE相对准确的下行信道,进而,能够提高该移动UE对应电磁波的波束准确性,提高该移动UE的接收性能。
与方法300相对应的,参见图5,图5是本申请实施例提供的多用户配对装置500的结构示意图。该装置500可以应用于方法300。如图5所示,该装置500包括获取模块501、计算模块502、确定模块503和多用户配对模块504。该获取模块501,用于执行方法300中所述基站获取UE的实际下行信道参数的步骤;计算模块502、确定模块503和多用户配对模块504,用于执行方法300中各种计算工作。
例如,该获取模块501,可以用于获取用户设备UE t0时刻的实际下行信道参数。该计算模块502,可以用于计算所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实际下行信道参数的相关性系数,其中,所述Δt小于或者等于预设时间长度。该确定模块1302,可以用于在所述相关性系数小于预设阈值时,根据所述t0时刻的实际下行信道参 数,以及所述t0时刻之前与所述t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,确定所述UE t1时刻的预测下行信道参数,其中,所述t1时刻是所述t0时刻之后的发送时刻。该多用户配对模块504,可以用于根据所述t1时刻的预测下行信道参数执行多用户配对操作。
具体内容可以参考方法300实施例中相关部分的描述,此处不再赘述。
应理解,以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,获取模块501可以由收发器实现,计算模块502、确定模块503和多用户配对模块504可以由处理器实现。如图6所示,基站600可以包括处理器601、收发器602和存储器603。其中,存储器603可以用于存储基站600预装的程序/代码,也可以存储用于处理器601执行时的代码等。
应理解,基站600可对应于本申请实施例的方法300中的基站,其中收发器602用于执行方法300中所述基站执行的实际下行信道参数的获取,处理器601用于执行方法300中除了实际下行信道参数获取以外的其它处理。在此不再赘述。
具体实现中,对应基站600,本申请实施例还提供一种计算机存储介质,其中,设置在基站中的计算机存储介质可存储有程序,该程序执行时,可实施包括图3提供的多用户配对方法的部分或全部步骤。基站中的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
本申请实施例中,收发器可以是有线收发器,无线收发器或其组合。有线收发器例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发器例如可以为无线局域网收发器,蜂窝网络收发器或其组合。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图6中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本领域技术任何还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域 技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和 范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种多用户配对方法,其特征在于,所述方法包括:
    获取用户设备UE t0时刻的实际下行信道参数;
    计算所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实际下行信道参数的相关性系数,其中,所述Δt小于或者等于预设时间长度;
    若所述相关性系数小于预设阈值,根据所述t0时刻的实际下行信道参数,以及所述t0时刻之前与所述t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,确定所述UE t1时刻的预测下行信道参数,其中,所述t1时刻是所述t0时刻之后的发送时刻;
    根据所述t1时刻的预测下行信道参数执行多用户配对操作。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述t1时刻的预测下行信道参数执行多用户配对操作,包括:
    将所述t1时刻的预测下行信道参数作为所述UE的计算参数执行多用户配对操作;或者,
    根据所述t1时刻的预测下行信道参数和所述t0时刻的实际下行信道参数,生成修正参数;
    根据所述修正参数执行多用户配对操作。
  3. 如权利要求2所述的方法,其特征在于,所述修正参数ρ(t1)满足:
    Figure PCTCN2019071193-appb-100001
    其中,Η(t1)是指所述t1时刻的预测下行信道参数,Η Η(t0)是指所述t0时刻的实际下行信道参数的共轭转置;或者,
    ρ(t1)=abs[V Η(t1)V(t0)],其中,V(t0)是根据所述t0时刻的实际下行信道参数计算得到的所述UE的第一单用户权值,V(t1)是根据所述t1时刻的预测下行信道参数Η(t1)计算得到所述UE的第二单用户权值,V Η(t1)是指所述UE的第二单用户权值V(t1)的共轭转置。
  4. 如权利要求3所述的方法,其特征在于,当
    Figure PCTCN2019071193-appb-100002
    时,所述根据所述修正参数执行多用户配对操作,包括:
    根据所述修正参数ρ(t1)生成目标单用户波束赋形SU BF权值;
    根据所述目标SU BF权值执行多用户配对操作;或者,
    根据所述修正参数ρ(t1)和所述t0时刻的实际下行信道参数执行多用户配对操作。
  5. 如权利要求3所述的方法,其特征在于,当ρ(t1)=abs[V Η(t1)V(t0)]时,用于 多用户配对操作的多用户波束赋形MU BF权值W ΜU-BF满足W ΜU-BF=V(V ΗV+D(ρ(t1))),D为对角线加载项;
    用于多用户配对操作的UEy在第x流上配对后的修正量SINR x,y满足SINR x,y=α x,y(ρ(t1))*SINR y*ΔSINR x,y,ΔSINR x,y是指UEy在第x流上配对前的修正量,SINR y根据UEy的信道质量指示CQI确定的SINR值,α x,y是指UEy在第x流上配对后的SINR修正系数。
  6. 如权利要求1所述的方法,其特征在于,所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实际下行信道参数的相关性系数K(t0)满足:
    Figure PCTCN2019071193-appb-100003
    其中,Η Η(t0-Δt)是指所述UE在t0-Δt时刻的实际下行信道参数的共轭转置。
  7. 如权利要求1所述的方法,其特征在于,所述根据所述t0时刻的实际下行信道参数,以及所述t0时刻之前与t0时刻的实际下行信道参数相邻且连续的若干个实际下行信道参数,确定所述t1时刻的预测下行信道参数Η(t1),包括:
    Figure PCTCN2019071193-appb-100004
    其中,tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数;或者,
    Η(t1)是根据所述t0时刻的实际下行信道参数和t2时刻的预测下行信道参数Η(t2)通过插值的方式确定的,其中,所述t2等于t0+t,所述t是指获取实际下行信道参数的周期,t2>t1,
    Figure PCTCN2019071193-appb-100005
    tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数。
  8. 如权利要求1所述的方法,其特征在于,所述获取所述t0时刻的实际下行信道参数,包括:
    在所述t0时刻接收所述UE发送的实际下行信道参数;或者,
    在所述t0时刻接收所述UE发送的导频信息;
    解析所述导频信息得到实际下行信道参数。
  9. 一种多用户配对装置,其特征在于,所述装置包括:
    获取模块,用于获取用户设备UE t0时刻的实际下行信道参数;
    计算模块,用于计算所述t0时刻的实际下行信道参数与所述UE在t0-Δt时刻的实际下行信道参数的相关性系数,其中,所述Δt小于或者等于预设时间长度;
    确定模块,用于在所述相关性系数小于预设阈值时,根据所述t0时刻的实际下行信道参数,以及所述t0时刻之前与所述t0时刻的实际下行信道参数相邻且连续的若 干个实际下行信道参数,确定所述UE t1时刻的预测下行信道参数,其中,所述t1时刻是所述t0时刻之后的发送时刻;
    多用户配对模块,用于根据所述t1时刻的预测下行信道参数执行多用户配对操作。
  10. 如权利要求9所述的装置,其特征在于,
    所述多用户配对模块,具体用于将所述t1时刻的预测下行信道参数作为所述UE的计算参数执行多用户配对操作;或者,根据所述t1时刻的预测下行信道参数和所述t0时刻的实际下行信道参数,生成修正参数;根据所述修正参数执行多用户配对操作。
  11. 如权利要求10所述的装置,其特征在于,所述修正参数ρ(t1)满足:
    Figure PCTCN2019071193-appb-100006
    其中,Η(t1)是指所述t1时刻的预测下行信道参数,Η Η(t0)是指所述t0时刻的实际下行信道参数的共轭转置;或者,
    ρ(t1)=abs[V Η(t1)V(t0)],其中,V(t0)是根据所述t0时刻的实际下行信道参数计算得到的所述UE的第一单用户权值,V(t1)是根据所述t1时刻的预测下行信道参数Η(t1)计算得到所述UE的第二单用户权值,V Η(t1)是指所述UE的第二单用户权值V(t1)的共轭转置。
  12. 如权利要求11所述的装置,其特征在于,当
    Figure PCTCN2019071193-appb-100007
    时,
    所述多用户配对模块,具体用于根据所述修正参数ρ(t1)生成目标单用户波束成形SU BF权值;根据所述目标SU BF权值执行多用户配对操作;或者,根据所述修正参数ρ(t1)和所述t0时刻的实际下行信道参数执行多用户配对操作。
  13. 如权利要求11所述的装置,其特征在于,当ρ(t1)=abs[V Η(t1)V(t0)]时,用于多用户配对操作的MU BF权值W ΜU-BF满足W ΜU-BF=V(V ΗV+D(ρ(t1))),D为对角线加载项;
    用于多用户配对操作的UEy在第x流上配对后的修正量SINR x,y满足SINR x,y=α x,y(ρ(t1))*SINR y*ΔSINR x,y,ΔSINR x,y是指UEy在第x流上配对前的修正量,SINR y根据UEy的信道质量指示CQI确定的SINR值,α x,y是指UEy在第x流上配对后的SINR修正系数。
  14. 如权利要求9所述的装置,其特征在于,相关性系数K(t0)满足:
    Figure PCTCN2019071193-appb-100008
    其中,Η Η(t0-Δt)是指所述UE在t0-Δt时刻的实际下行信道参数的共轭转置。
  15. 如权利要求9所述的装置,其特征在于,
    所述确定模块,具体用于按照
    Figure PCTCN2019071193-appb-100009
    确定所述t1时刻的预测下行信道参数Η(t1),tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数;或者,
    根据所述t0时刻的实际下行信道参数和t2时刻的预测下行信道参数Η(t2)通过插值的方式确定所述Η(t1),其中,所述t2等于t0+t,所述t是指获取实际下行信道参数的周期,t2>t1,
    Figure PCTCN2019071193-appb-100010
    tn是指所述若干个实际下行信道参数对应的时刻中最早的时刻,Α(ti)是指预测系数,Η(ti)是指ti时刻的实际下行信道参数。
  16. 如权利要求9所述的装置,其特征在于,
    所述获取模块,具体用于在所述t0时刻接收所述UE发送的实际下行信道参数;或者,在所述t0时刻接收所述UE发送的导频信息;解析所述导频信息得到实际下行信道参数。
  17. 一种基站,其特征在于,包括:处理器和存储器,其中,所述存储器内存储有所述处理器能够执行的操作指令,所述处理器读取所述存储器内的操作指令用于实现权利要求1至8中任意一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
PCT/CN2019/071193 2018-02-11 2019-01-10 多用户配对方法、装置及基站 WO2019154004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19751795.6A EP3734855A4 (en) 2018-02-11 2019-01-10 METHOD AND DEVICE FOR PAIRING MULTIPLE USERS AND BASE STATION
US16/990,018 US11343003B2 (en) 2018-02-11 2020-08-11 Multi-user pairing method and apparatus, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810140127.1 2018-02-11
CN201810140127.1A CN110166091B (zh) 2018-02-11 2018-02-11 多用户配对方法、装置及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,018 Continuation US11343003B2 (en) 2018-02-11 2020-08-11 Multi-user pairing method and apparatus, and base station

Publications (1)

Publication Number Publication Date
WO2019154004A1 true WO2019154004A1 (zh) 2019-08-15

Family

ID=67549238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071193 WO2019154004A1 (zh) 2018-02-11 2019-01-10 多用户配对方法、装置及基站

Country Status (4)

Country Link
US (1) US11343003B2 (zh)
EP (1) EP3734855A4 (zh)
CN (1) CN110166091B (zh)
WO (1) WO2019154004A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751595B (zh) * 2019-10-29 2022-02-11 中国移动通信集团山东有限公司 一种波束调整方法、装置、存储介质和源基站
CN116156519A (zh) * 2021-11-19 2023-05-23 华为技术有限公司 一种波束成型权值计算方法以及相关装置
CN116249190A (zh) * 2022-09-09 2023-06-09 北京邮电大学 多用户配对传输确定方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997362A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 多点协作配对方法及装置
CN104270180A (zh) * 2014-09-18 2015-01-07 上海华为技术有限公司 用户设备配对方法及装置
CN104378146A (zh) * 2013-08-16 2015-02-25 普天信息技术研究院有限公司 一种上行mu-mimo系统中的用户设备配对方法
US20170195973A1 (en) * 2014-06-03 2017-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Determination of Channel Condition Indication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960556B (zh) * 2005-09-20 2012-01-11 开曼群岛威睿电通股份有限公司 迭代信道预测
KR101415200B1 (ko) * 2007-05-15 2014-07-07 한국과학기술원 무선통신 시스템에서 무선채널을 예측하기 위한 방법 및장치
WO2012065278A1 (en) * 2010-11-15 2012-05-24 Telefonaktiebolaget L M Ericsson (Publ) Two-dimensional ue pairing in mimo systems
US20150038140A1 (en) * 2013-07-31 2015-02-05 Qualcomm Incorporated Predictive mobility in cellular networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997362A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 多点协作配对方法及装置
CN104378146A (zh) * 2013-08-16 2015-02-25 普天信息技术研究院有限公司 一种上行mu-mimo系统中的用户设备配对方法
US20170195973A1 (en) * 2014-06-03 2017-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Determination of Channel Condition Indication
CN104270180A (zh) * 2014-09-18 2015-01-07 上海华为技术有限公司 用户设备配对方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734855A4

Also Published As

Publication number Publication date
EP3734855A1 (en) 2020-11-04
US20200374018A1 (en) 2020-11-26
EP3734855A4 (en) 2021-02-24
US11343003B2 (en) 2022-05-24
CN110166091B (zh) 2021-11-30
CN110166091A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN113840324B (zh) 一种测量上报方法及装置
US20190082346A1 (en) Communication method, terminal, and base station
CN114424623A (zh) 基于机器学习的信道估计
EP4020854B1 (en) Channel measurement method and communication apparatus
US11343003B2 (en) Multi-user pairing method and apparatus, and base station
CN101902298B (zh) 信道质量指示补偿方法、系统及基站
US10686498B2 (en) Systems and methods for massive MIMO adaptation
CN114389785A (zh) 参考信号的调整方法及装置、终端及网络侧设备
WO2017152876A1 (zh) 用于无线通信的装置和方法、参数优化装置和方法
WO2011130997A1 (zh) 估计终端移动速度的方法和装置
US10439702B2 (en) Control of transmission mode selection
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
CN110830202A (zh) 通信方法、装置和通信系统
JP5855286B2 (ja) チャネル品質表示を取得するための方法と装置
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2022083532A1 (zh) Csi计算方法、用户终端及计算机可读存储介质
US11832251B2 (en) Apparatus for CSI prediction control
CN115913486A (zh) 信息上报方法、装置、终端及可读存储介质
RU2707732C1 (ru) Устройство и способ связи
WO2023160456A1 (zh) 信道信息上报方法、装置、网络侧设备、终端及介质
KR100627829B1 (ko) 사용자 위치 기반의 오퍼튜니스틱 빔포밍 방법
CN114978268B (zh) 去蜂窝导频长度优化方法、装置、电子设备及存储介质
WO2023155092A1 (en) Systems and methods utilizing doppler frequency values for wireless communication
WO2023213239A1 (zh) 参考信号的配置方法、状态信息的上报方法及相关设备
WO2022027646A1 (en) Port selection codebook enhancement by partial channel reciprocity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019751795

Country of ref document: EP

Effective date: 20200728

NENP Non-entry into the national phase

Ref country code: DE