WO2011129306A1 - 温度管理を要する流動体貯蔵タンク内の汚染防止方法、およびその装置 - Google Patents

温度管理を要する流動体貯蔵タンク内の汚染防止方法、およびその装置 Download PDF

Info

Publication number
WO2011129306A1
WO2011129306A1 PCT/JP2011/059031 JP2011059031W WO2011129306A1 WO 2011129306 A1 WO2011129306 A1 WO 2011129306A1 JP 2011059031 W JP2011059031 W JP 2011059031W WO 2011129306 A1 WO2011129306 A1 WO 2011129306A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
cooling medium
storage tank
atm
fluid storage
Prior art date
Application number
PCT/JP2011/059031
Other languages
English (en)
French (fr)
Inventor
耕平 大上
修司 大上
寛 長谷
Original Assignee
八尾乳業協同組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112012025924-5A priority Critical patent/BR112012025924B1/pt
Application filed by 八尾乳業協同組合 filed Critical 八尾乳業協同組合
Priority to AU2011242003A priority patent/AU2011242003B2/en
Priority to CA2795434A priority patent/CA2795434C/en
Priority to MX2012011683A priority patent/MX2012011683A/es
Priority to US13/641,407 priority patent/US9248480B2/en
Priority to KR1020127029644A priority patent/KR101821434B1/ko
Priority to CN201180019114.5A priority patent/CN102985342B/zh
Priority to RU2012148126/12A priority patent/RU2564583C2/ru
Priority to ES11768827.5T priority patent/ES2642279T3/es
Priority to EP11768827.5A priority patent/EP2559637B1/en
Publication of WO2011129306A1 publication Critical patent/WO2011129306A1/ja
Priority to US14/978,043 priority patent/US10058903B2/en
Priority to US16/045,261 priority patent/US10562082B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/22Safety features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/744Large containers having means for heating, cooling, aerating or other conditioning of contents heating or cooling through the walls or internal parts of the container, e.g. circulation of fluid inside the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • B65D90/50Arrangements of indicating or measuring devices of leakage-indicating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system

Definitions

  • the present invention provides a fluid storage tank that requires temperature control, and a cooling medium that flows and circulates in a closed pressure-resistant jacket installed outside the wall surface of the storage tank enters the storage tank when the wall surface of the storage tank is damaged.
  • the present invention relates to a method and an apparatus for preventing the occurrence.
  • the present invention has been made in view of the above-described problems of the conventional fluid storage tank, and it is an object of the present invention to provide a method and an apparatus for preventing the fluid in the fluid storage tank from being contaminated by a cooling medium. .
  • Another object of the present invention is to provide a method and apparatus for easily detecting minute breakage such as cracks and pinholes in the wall surface of a fluid storage tank.
  • the present invention is installed around the outside of the wall of the fluid storage tank under a constant pressure (x) (pressurization, decompression, or normal pressure, usually about 1 atm).
  • x constant pressure
  • the cooling medium is added to the fluid storage tank in the sealed jacket.
  • the present invention is also an apparatus for carrying out the above method, in which a liquid cooling medium is flowed in a sealed pressure-resistant jacket installed around the outside of a wall surface of a fluid storage tank under a constant pressure.
  • the cooling medium is caused to flow in the hermetic pressure-resistant jacket under a pressure less than the pressure x (atm) applied to the fluid storage tank.
  • the present invention is also an apparatus for carrying out the above method, (A) a hermetic pressure-resistant jacket installed on the outside of the wall surface of the fluid storage tank for fluidly circulating a liquid cooling medium; (B) A server provided separately from the cooling medium storage tank having a vent or the fluid storage tank, one end of which is connected to the hermetic pressure-resistant jacket, preferably the bottom of the hermetic pressure-resistant jacket, by a conduit.
  • the liquid level of the tank wherein the cooling medium storage tank or the server tank is set so that the liquid level is lower by A (m) (A> 0) than the bottom of the fluid storage tank; And (c) a suction pump having one end connected to a cooling medium outlet provided in the hermetic pressure-resistant jacket and the other end connected to the cooling medium storage tank or the server tank;
  • x (atm) is the pressure (atm) applied to the fluid storage tank, that is, the pressure (atm) applied to the liquid surface of the fluid, and normal pressure when the fluid storage tank is open, That is, 1 atm;
  • d (atm) is obtained by subtracting the pressure (atm) at the bottom of the
  • the present invention is also an apparatus for carrying out the above method, (A) a hermetic pressure-resistant jacket installed on the outside of the wall surface of the fluid storage tank for fluidly circulating a liquid cooling medium; (B) a cooling medium storage tank having a vent, one end of which is connected to the hermetic pressure-resistant jacket, preferably the hermetic pressure-resistant jacket bottom, by a conduit; (C) a suction pump having one end connected to the cooling medium outlet provided in the hermetic pressure-resistant jacket via a pipe and the other end connected to the cooling medium storage tank via a pipe; and (d) one end sealed Pressure-reducing jacket, preferably the bottom of the hermetic pressure-resistant jacket, and a decompression unit having the other end connected to the cooling medium storage tank by a pipe line;
  • B (m) from the bottom to the top of the hermetic pressure-resistant jacket is: B ⁇ C- ⁇ W (1-E) ⁇ / ⁇ ) [Here, normal pressure is 1 atm, C (m) is the suction
  • the tank is larger than C (m) (C (m) is the suction height (m) when the cooling medium is water) (ie, H> C)
  • the jacket has a multi-stage structure with two or more stages, the first stage has the above-described configuration, and the second and subsequent stages are each provided with a hermetic pressure-resistant jacket, and the cooling medium storage tank and each stage are hermetically sealed.
  • a server tank or a decompression unit provided separately from the fluid storage tank is provided between the pressure-resistant jacket, preferably the bottom of the hermetic pressure-resistant jacket,
  • the height B ′ (m) from the bottom to the top of each hermetic pressure-resistant jacket is determined as follows: B ′ ⁇ C ⁇ ⁇ W (1-E) ⁇ / ⁇ ) (Where C, W, E and ⁇ are as described above
  • the present invention provides a decompression unit used in the apparatus of the present invention, comprising a decompression valve that decompresses and maintains a constant pressure of the pressurized cooling medium, and a differential pressure valve that further decompresses the cooling medium. To do.
  • the present invention provides a liquid cooling / heating medium flowing in a sealed pressure-resistant jacket installed around the outside of the wall of the fluid storage tank under a certain pressure, and the fluid in the fluid storage tank is transferred by the cooling / heating medium.
  • the cooling medium flows in the hermetic pressure-resistant jacket under a pressure of x (atm) or less, preferably less than x (atm) in the fluid storage tank.
  • the cooling medium is sampled from a pool of air provided in the passage of the cooling medium, and the components of the cooling medium are analyzed. A detection method is provided.
  • a physical decompression device that can be used in a method and an apparatus that prevent the contamination by a cooling medium in a fluid storage tank that requires temperature control as described above, and that decompresses automatically and forcibly.
  • the fluid in the fluid storage tank when the fluid in the fluid storage tank is held at a temperature by a cooling medium, even if a crack or a pinhole or the like suddenly occurs on the wall surface of the storage tank, the outside of the storage tank Since the inside of the closed pressure-resistant jacket is in a reduced pressure state from the inside of the storage tank, the fluid in the storage tank flows into the sealed pressure-resistant jacket, so that the cooling medium is mixed into the fluid in the storage tank. There is no. For this reason, bacterial contamination of the fluid via the cooling medium, contamination with foreign matter, and the like can be prevented, and the quality of the fluid in the storage tank can be maintained. In addition, minute breakage such as cracks and pinholes in the storage tank wall surface can be easily detected by sampling the cooling medium and detecting contamination of the cooling medium sample.
  • FIG. 1 is a layout view of an apparatus showing a first embodiment of a first stage of the present invention. It is a layout of an apparatus showing a second embodiment of the first stage of the present invention. It is a layout of an apparatus showing a third embodiment of the first stage of the present invention. It is a layout of an apparatus showing a fourth embodiment of the first stage of the present invention. It is a layout view showing a first embodiment of the multistage of the present invention in a large fluid storage tank.
  • FIG. 6 is a layout view of an apparatus showing a second multi-stage embodiment of the present invention in a large fluid storage tank. It is a layout of the apparatus which shows the 3rd embodiment of the multistage of this invention in a large sized fluid storage tank.
  • FIG. 6 is a layout view of a conventional temperature management fluid storage tank device. It is a layout view of a decompression unit used in the apparatus of the present invention.
  • FIG. 10 is a layout view of an apparatus showing a fifth embodiment of the first stage of the present invention.
  • the relative position between the liquid level of the cooling medium storage tank (or cooling medium server tank) and the top of the hermetic pressure-resistant jacket is maintained at a height at which the reduced pressure state required by the cooling medium is maintained and can be circulated under reduced pressure. It is necessary to adjust.
  • the maximum suction height C max of the cooling medium of the suction pump depends on the pump performance.
  • the maximum suction height C max of the cooling medium of the suction pump is defined as the maximum suction height (m) of water that is a more general cooling medium.
  • the heights A and B and the suction height of the cooling medium by the suction pump A, B, and C are set so that the following equation (1) holds between C and C.
  • a + B ⁇ C (1) A: Height (m) from the liquid surface of the cooling medium storage tank (or cooling medium server tank) to the bottom of the hermetic pressure-resistant jacket, B: Height (m) from the bottom of the sealed pressure-resistant jacket to the top of the jacket, C: Height of suction of cooling medium by suction pump (m)
  • the equations (2 ′) and (3 ′) show that the pressure at the bottom of the closed pressure-proof jacket is larger than the pressure at the top of the jacket when the suction pump is stopped, and the pressure at the bottom of the jacket when the suction pump is stopped is
  • the pressure x (atm) applied to the fluid storage tank is set to be equal to or lower than the pressure x (atm) applied to the fluid storage tank, preferably less than x.
  • the suction height C (m) of the cooling medium is set by the following equation (4).
  • C (C max ⁇ S) / ⁇ (4)
  • C max Maximum suction height of the cooling medium by the suction pump (m)
  • S Safe operation value (m)
  • Specific gravity of the cooling medium (g / cm 3 )
  • C max (m) is the maximum suction height of the cooling medium by the suction pump
  • S (m) is a safe operation value
  • is the specific gravity of the cooling medium.
  • the safe operation value S (m) takes into account the deterioration of the suction performance of the suction pump due to metal fatigue or the like, and is usually 1 m or more, preferably 2 to 4 (m).
  • the height A (m) from the liquid level of the cooling / heating medium storage tank (or cooling / heating medium server tank) to the bottom of the hermetic pressure-resistant jacket on the fluid storage tank wall is set by the following expression (5).
  • a ⁇ ⁇ W (1 ⁇ x + d) / ⁇ (5) x: pressure (atm) applied to the fluid storage tank, d: differential pressure (atm) required when the suction pump is stopped, which is the pressure (atm) obtained by subtracting the pressure (atm) at the bottom of the hermetic pressure-resistant jacket from the pressure x (atm) in the fluid storage tank, and d> 0 ,
  • d is 0.05 to 0.4 (atm), in particular 0.2 to 0.4 (atm)
  • W height of water suction in a vacuum state (about 10 m), It is.
  • B (m) is set so that it may become a following formula (1).
  • B ⁇ CA (1) That is, B ⁇ (C max ⁇ S) / ⁇ W (1 ⁇ x + d) / ⁇ (6) It becomes.
  • A ⁇ W (1 ⁇ x + d) / ⁇ (5 ′)
  • the present invention uses the height A (m) of the bottom of the hermetic pressure-resistant jacket from the liquid level of the cooling medium storage tank and the height B (m) from the bottom of the hermetic pressure-resistant jacket to the top. Even when the pump is stopped, it is possible to achieve a relative pressure reduction in the sealed pressure jacket.
  • These heights A and B are the height C of the suction of the cooling medium by the suction pump, the specific gravity of the cooling medium, the required pressure x in the fluid storage tank and the pressure difference in the sealed pressure jacket, Consider safe operation values and atmospheric pressure, etc., and adjust to allow safe circulation.
  • the pressure in the hermetic pressure-resistant jacket can be made equal to or lower than the pressure in the fluid storage tank (maintenance of reduced pressure) by the combination of the electromagnetic valve and the physical pressure reducing device.
  • the safe operation value S (m) needs to be set in consideration of the deterioration of the suction performance of the suction pump due to metal fatigue or the like.
  • B is set by the following equation (7).
  • E (atm) is the set pressure (atm) of the decompression unit, and C, W, and ⁇ are as described above.
  • the set pressure E (atm) of the decompression unit is set by the following equation (8).
  • E xd (8) x and d are as described above.
  • the height B (m) of the hermetic pressure-resistant jacket provided in the small fluid storage tank for temperature control is a cooling medium using a suction pump in a standard state where the atmospheric pressure is 1 atm and the temperature is 25 degrees.
  • the inside of the hermetic pressure-resistant jacket 4 is in a reduced pressure state (fluid storage tank 2 It is possible to keep the pressure relatively low compared to the internal pressure (usually 1 atm or less). Air is accumulated in the cooling medium flow conduit 5 between the suction pump 1 and the cooling medium storage tank 3, preferably near the cooling medium storage tank 3 and below the liquid level of the cooling medium storage tank 3. 9 may be provided.
  • the temperature of the cooling medium in the cooling medium storage tank 3 can be controlled by the temperature management facility 8.
  • the cooling medium storage tank 3 When there is a distance from the cooling medium storage tank 3 to the fluid storage tank 2 or when the cooling medium storage tank 3 is large, the cooling medium storage tank 3 is at a lower level (height) than the fluid storage tank 2.
  • the server tank 10 When installation is impossible, as shown in FIGS. 2 and 3, the server tank 10 is located near the fluid storage tank 2 and from the fluid storage tank 2 as the second and third aspects of the present invention. May be installed at a lower level. In that case, the cooling medium is pressurized by the pressurizing pump 17 from the cooling medium storage tank 3 and sent to the server tank 10. Thereafter, the cooling heat medium is decompressed and circulated in the sealed pressure-resistant jacket 4 from the server tank 10 by the suction pump 1 and returned to the cooling heat medium storage tank 3.
  • a + B (A is the height from the liquid level of the server tank 10 to the bottom of the fluid storage tank 2, and B is the height of the hermetic pressure-resistant jacket) is the suction height C (m) of the suction pump.
  • a + B C is set.
  • the server tank 10 is preferably provided with a vent (vent pipe), the server tank 10 is not an airtight system but an open system, a ball tap is provided, and the flow rate of the cooling medium from the cooling medium storage tank 3 is preferably adjusted. . Thereby, the liquid level of the server tank 10 can be kept constant.
  • an electromagnetic valve 13 may be provided downstream of the suction pump 1 as shown in FIG.
  • a cooling medium receiver tank 11 is provided between the suction pump 1 and the cooling medium storage tank 3 provided in the vicinity of the outlet of the cooling medium of the hermetic pressure-resistant jacket 4, and the level sensor interlocked with the suction pump 1. It is also possible to provide the cooling medium receiver tank 11 (not shown) and adjust the liquid level of the cooling medium receiver tank 11.
  • the pressure is adjusted by the decompression unit 12. Then, the inside of the hermetic pressure-resistant jacket 4 may be in a reduced pressure state than in the storage tank 2 (pressure reduction by the pressure reduction unit).
  • a physical decompression device 14 is provided between the outlet of the hermetic pressure-resistant jacket 4 and the suction pump 1 to forcibly depressurize the depressurized state in the hermetic pressure-resistant jacket 4.
  • a method in which the reduced pressure state is not controlled by the height is also included in the present invention.
  • an electromagnetic valve 13 may be provided to seal the inside of the sealed pressure-resistant jacket 4.
  • the inside of the cooling medium storage tank and preferably the lowermost part (bottom) of the hermetic pressure-resistant jacket are connected by a pipe line through the cooling medium receiver tank 11 as the case may be.
  • the outlet at the top and the suction port of the suction pump 1 are connected by a pipe line
  • the discharge port of the suction pump 1 and the inside of the cooling medium storage tank 3 are connected by a pipe line.
  • the pipe line is located within the liquid level of the cooling medium storage tank.
  • vent in the cooling medium storage tank. This is because the cooling medium storage tank 3 needs to be an open system rather than a closed system. The reason for this is that by returning the pressurized chilled heat medium in the return pipe (from the suction pump 1 to the chilled medium storage tank 3) to the atmospheric pressure, the return (from the chilled medium storage tank 3 to the sealed pressure jacket 4) This is to keep the inside of the pipeline of (b) always under reduced pressure.
  • the closed pressure jacket 4 In order to keep the cooling medium in a reduced pressure state, the closed pressure jacket 4 needs to be filled with the cooling medium even when the suction pump 1 is stopped. That is, when the suction pump 1 is stopped, it is desirable that the cooling medium is not discharged into the cooling medium storage tank 3 but only the flow of the cooling medium is stopped. This is because, even when the suction pump 1 is stopped, in order to keep the inside of the hermetic pressure-resistant jacket 4 in a reduced pressure state, the reduced pressure state cannot be maintained if the cooling medium is discharged to the cooling medium storage tank 3. Therefore, in the pipe line from the discharge port of the suction pump 1 to the inside of the cooling medium storage tank 3, the pipe line from the discharge port of the suction pump 1 enters the liquid level in the cooling medium storage tank 3.
  • the method and apparatus for preventing the cooling medium from being mixed into the fluid storage tank 2 by setting the inside of the sealed pressure jacket 4 on the wall surface of the fluid storage tank 2 to be in a decompressed state is always in a decompressed state ( This means a method in which the pressure is relatively lower than the pressure in the fluid storage tank 2, and is not necessarily limited to the above-described embodiment.
  • the structure of the pressure-resistant jacket may be multistage, and a server tank and / or a decompression unit and a suction pump may be provided at each stage as necessary.
  • the sealed pressure-resistant jacket is multi-staged, the first stage at the bottom is the same as the apparatus in the case of the small fluid storage tank, and the same as the first stage at each stage after the second stage.
  • a hermetic pressure-resistant jacket is provided, and the configuration after the second stage is the same as that at the first stage (see FIGS. 5 and 7), or the suction pumps after the second stage can be omitted (see FIG. 5). 6, see FIG.
  • the safety operation value S (m) was subtracted from the maximum suction height (C max ) of the cooling medium by the suction pump for the height B ′ (m) of each hermetic pressure-resistant jacket 4a, 4b, 4c, etc.
  • the cooling medium server tanks 10a, 10b, and 10c are provided in each stage, and the liquid level of each cooling medium server tank sends the cooling medium to each hermetic pressure-resistant jacket. 4a, 4b, and 4c are installed below the bottom. Suction pumps 1 a, 1 b, 1 c, etc. are provided between the outlets of the respective sealed pressure-resistant jackets 4 a, 4 b, 4 c and the cooling medium storage tank 3. Cooling medium receiver tanks 11b and 11c may be provided between the second and subsequent suction pumps 1b and 1c and the cooling medium storage tank 3 (FIG. 5).
  • the height between the outlet of each sealed pressure-resistant jacket and the cooling medium storage tank 3 is the amount of cooling medium by the suction pump. Since the suction height is exceeded, the suction pumps 1b and 1c are omitted, and instead, the T-type pipe 16 and the valve 15 for supplying the priming water at the start of operation are sealed in the second and subsequent sealed pressure-resistant jackets 4b and 4c. May be provided in each pipe line between each of the outlet portions and the cooling medium storage tank 3 (FIGS. 6 and 8).
  • each hermetic pressure-resistant jacket is directly attached from the refrigeration medium storage tank 3 by the decompression unit 12 provided at each stage. You may send a cooling medium to the bottom part of 4a, 4b, 4c.
  • physical decompressors 14a, 14b, 14c and electromagnetic valves 13 are provided in each stage, and cooling medium receiver tanks 11b, 11c are provided in the second and subsequent stages.
  • cooling medium receiver tanks 11b, 11c are provided in the second and subsequent stages.
  • the physical pressure reducing device 14 and the electromagnetic valve 13 are provided only in the first stage, and the suction pumps 1b and 1c are omitted in the second and subsequent stages, and instead priming water at the start of operation is supplied.
  • the T-shaped pipe 16 and the valve 15 are provided in each pipe line between the outlets of the second and subsequent sealed pressure-resistant jackets 4 b and 4 c and the cooling medium storage tank 3.
  • FIG. 11 instead of sending the cooling medium as shown in FIG. 1 from the cooling medium storage tank 3 to the bottom of the sealing pressure jacket 4 via the cooling medium flow line 5, The aspect sent to places other than a bottom part, for example, a top part, is shown.
  • the cooling medium that can be used in the present invention is usually a liquid medium at normal temperature and atmospheric pressure, and includes a refrigerant and a heating medium.
  • the refrigerant is a liquid for cooling the fluid in the fluid storage tank, and examples thereof include cooling water cooled by a refrigeration apparatus and antifreeze liquid (generally ethylene glycol liquid or propylene glycol liquid). Can be mentioned.
  • the refrigerant in the cooling medium storage tank is cooled to about ⁇ 10 to 5 degrees Celsius, usually about ⁇ 2 to 2 degrees by the cooling device as necessary.
  • the heating medium is a liquid for heating the fluid in the fluid storage tank, and examples of the heating medium that can be used in the present invention include hot water and hot oil heated by a heating device. Etc.
  • the refrigerant and the heating medium are caused to flow in the hermetic pressure-resistant jacket under conditions of temperature and pressure at which a liquid state is obtained.
  • the fluid in the fluid storage tank is milk, wine, liquor, beverage or the like that is liquid or powder in a temperature controlled state.
  • the storage tank is normally open to atmospheric pressure, but may be a pressurized closed system, and in the case of a pressurized closed system, the sealed pressure-resistant jacket is in a further reduced pressure state than in the storage tank.
  • the suction pump that can be used in the present invention is preferably a self-priming pump, such as a self-priming centrifugal pump or a piston pump.
  • the self-priming pump performance (C max ) of the self-priming pump is the high and low level from the liquid level of the cooling medium storage tank (or server tank) to the inlet of the self-priming pump, that is, the sealed pressure resistance from the liquid level.
  • the height to the top of the jacket (A + B) or more is required.
  • the cooling medium in the cooling medium storage tank 3 is sampled from the air pool 9 and the components of the cooling medium are analyzed periodically using a component analyzer such as gas chromatography or liquid chromatography.
  • a component analyzer such as gas chromatography or liquid chromatography.
  • the air reservoir 9 is in a pipe where the cooling medium returns from the suction pump 1 to the cooling medium storage tank 3, preferably near the cooling medium storage tank 3 and below the liquid level of the storage tank 3. It is desirable to attach to the position.
  • the pressure reducing unit 12 that can be used in the modes shown in FIGS. 4, 7, and 8 includes a pressure reducing valve 18 and a differential pressure valve 19 as illustrated in FIG.
  • the decompression unit 12 can decompress the chilled heat medium pressurized by the pressurization pump 17 by the decompression valve 18 and keep it at a constant pressure, and can make the decompression state by the differential pressure valve 19. If the pressure of the cooling medium after passing through the pressure reducing valve 18 is too low (for example, 2 atmospheres or less), the pressure reduction by the differential pressure valve 19 may be difficult to act. atm) or more, preferably 2 to 4 atmospheres (atm).
  • the sealed pressure-resistant jacket 4 is formed from the liquid surface of the refrigeration medium (water) storage tank 3.
  • the height (A) to the bottom is 1 m
  • the height (B) from the bottom to the top of the hermetic pressure resistant jacket 4 is 5 m
  • a self-priming centrifugal pump 1 manufactured by Ebara Corporation, 40FQD5. 15A type, maximum suction height (C max ) 7 m, output 1.5 kW
  • the refrigeration medium storage tank 3 cools or heats the refrigeration medium to an arbitrary temperature by the connected temperature management device 8 and automatically manages the temperature management device 8 so that it can be used as an ice bunker or hot bunker.
  • the fluid is introduced through the fluid introduction pipe 6 and sent out to the fluid take-out pipe 7.
  • the self-priming centrifugal pump 1 Before or immediately after charging the fluid into the fluid storage tank 2 by the fluid charging pipe 6, the self-priming centrifugal pump 1 is put into a cooling medium to start operation, and the cooling medium is stored in the cooling medium.
  • the cooling medium is circulated back to the cooling medium storage tank 3.
  • the circulation of the cooling / heating medium is appropriately performed in consideration of an arbitrary temperature management state while the fluid is stored in the fluid storage tank 2.
  • the cooling medium water flows in the sealed pressure jacket 4 in a reduced pressure state than in the fluid storage tank 2.
  • the bottom of the hermetic pressure-resistant jacket 4 is connected to the cooling medium storage tank 3, the cooling medium server tanks 10a, 10b, 10c, the cooling medium receiver tanks 11b, 11c, or the decompression unit 12. As shown in FIG. 11, a portion other than the bottom of the hermetic pressure-resistant jacket 4 may be connected to a cold heat medium storage tank or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

 冷熱媒により温度を管理した流動体貯蔵タンク内の流動体の冷熱媒による汚染を防止する方法および装置を提供する。 一定圧下にある流動体貯蔵タンク2の壁面の外側に設置した密閉式耐圧ジャケット4内で液体状の冷熱媒を流動させて該冷熱媒により温度を管理する該流動体貯蔵タンク2において、該密閉式耐圧ジャケット4内で該冷熱媒を、該流動体貯蔵タンク2内の圧力x(atm)以下、好ましくはx(atm)未満の圧力下で流動させることにより、該貯蔵タンク2内の流動体の該冷熱媒による汚染を防止する方法、およびそのための装置。

Description

温度管理を要する流動体貯蔵タンク内の汚染防止方法、およびその装置
 本発明は、温度管理を要する流動体貯蔵タンクにおいて、該貯蔵タンクの壁面の外側に設置した密閉式耐圧ジャケットを流動循環する冷熱媒が該貯蔵タンクの該壁面の破損時に該貯蔵タンク内に侵入するのを防止する方法及び装置に関する。
 様々な製品製造の工業化が進むと共に、大量の物質を貯蔵することを目的とした貯蔵タンクが使用されるようになった。このタンク内に貯蔵する流動体の性質・用途に合わせ、該タンク内の温度を管理(制御)または保持することが一般化している。図9に示す流動体貯蔵タンク22内の温度を管理(制御)または保持する従来の装置は、冷熱媒を加圧ポンプ27により該タンク壁面に設置した密閉式耐圧ジャケット24内を流動させ、冷熱媒貯液タンク23に戻す装置により一般的に可能となっている。冷熱媒貯液タンク23内の冷熱媒は温度管理装置28により温度を調節する。
 しかし、上記の従来のタンク壁面の外側に設置した密閉式耐圧ジャケットに冷熱媒を加圧ポンプにより加圧循環し、該タンク内の流動体温度を管理(制御)または保持する方法及び装置では、タンク壁面に亀裂、ピンホール等の微小の破損が発生したときには該冷熱媒が該タンク内に混入して該タンク内の流動体を汚染するという欠陥があった。また、タンク壁面の亀裂、ピンホール等の破損が微小の場合は目視では確認できず、タンク内流動体の汚染を把握する事が出来なかった。このように品質に問題を有する製品が市場に出回る可能性は十分に考えられる事であった。
 本発明は、上記の従来の流動体貯蔵タンクが有していた問題を鑑みて、該流動体貯蔵タンク内の流動体の冷熱媒による汚染を防止する方法および装置を提供することを目的とする。
 本発明はまた、流動体貯蔵タンクの壁面の亀裂、ピンホール等の微小の破損を簡便に検出する方法および装置を提供することを目的とする。
 本発明は上記の目的を達成するために、一定圧(x)(加圧、減圧、又は常圧、通常は約1気圧の常圧)下にある流動体貯蔵タンクの壁面の外側周囲に設置した密閉式耐圧ジャケット内で液体状の冷熱媒を流動させて該冷熱媒により温度を管理する該流動体貯蔵タンクにおいて、該密閉式耐圧ジャケット内で冷熱媒を、該流動体貯蔵タンク内に加わる圧力x(atm)以下、好ましくはx(atm)未満の圧力下、で流動させることにより、該流動体貯蔵タンクの壁面の破損により、該流動体貯蔵タンク内の該流動体が該冷熱媒により汚染されるのを防止する方法を提供する。
 本発明はまた、上記の方法を実施するための装置であって、一定圧下にある流動体貯蔵タンクの壁面の外側周囲に設置した密閉式耐圧ジャケット内で液体状の冷熱媒を流動させて該冷熱媒により温度を管理する該流動体貯蔵タンクを備えた装置において、該密閉式耐圧ジャケット内で冷熱媒を、該流動体貯蔵タンク内に加わる圧力x(atm)未満の圧力下で流動させることにより、該流動体貯蔵タンクの壁面の破損により、該流動体貯蔵タンク内の該流動体が該冷熱媒により汚染されるのを防止した装置を提供する。
 本発明はまた、上記の方法を実施するための装置であって、
 (a)該流動体貯蔵タンクの壁面の外側に設置した、液体状の冷熱媒を流動循環させるための密閉式耐圧ジャケット;
 (b)一端が該密閉式耐圧ジャケット、好ましくは該密閉式耐圧ジャケット底部、と管路により連結された、通気口を有する冷熱媒貯液タンク又は前記流動体貯蔵タンクとは別に設けられたサーバータンク、ここで該冷熱媒貯液タンク又は該サーバータンクの液面は該流動体貯蔵タンクの底部よりも液面がA(m)(A>0)だけ下方レベルになるように設置される;及び
 (c)該密閉式耐圧ジャケットに設けた冷熱媒出口部に一端が連結し、且つ該冷熱媒貯液タンク又は該サーバータンクと他端が連結する吸引ポンプ
を有し、
該冷熱媒貯液タンク又は該サーバータンクの液面から該密閉式耐圧ジャケットの底部までの高さA(m)を、
A≧{W(1-x+d)}/ρ
(ここで、
W(m)は、真空状態での水の吸い上げ高さ(m)(約10mである)であり;
x(atm)は、該流動体貯蔵タンク内に加わる圧力(atm)、即ち該流動体の液面に加わる圧力(atm)であり、該流動体貯蔵タンクが開放されている場合は常圧、即ち、1atmであり;
d(atm)は、該吸引ポンプ停止時に該密閉式耐圧ジャケットの底部で必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0であり;
ρは該冷熱媒の比重である)
とし、
該高さA(m)と、該密閉式耐圧ジャケットの底部から最上部までの高さB(m)と、該吸引ポンプによる該冷熱媒の吸い上げ高さC(m)とが、
B≦C-A    (1)
〔ここで、
C(m)は、C=(Cmax-S)/ρであり、
max(m)は、該吸引ポンプによる該冷熱媒の最大吸い上げの高さ(m)(但し、Cmaxは冷熱媒を水とした場合の吸い上げ高さ)であり、
S(m)は安全運用値であって、S>0であり、
ρ及びAは、上記の通りである〕
となるように設定した、温度管理を要する流動体貯蔵タンク内の流動体の、該冷熱媒による汚染を防止した装置を提供する。
 本発明はまた、上記の方法を実施するための装置であって、
(a)流動体貯蔵タンクの壁面の外側に設置した、液体状の冷熱媒を流動循環させるための密閉式耐圧ジャケット;
(b)一端が該密閉式耐圧ジャケット、好ましくは該密閉式耐圧ジャケット底部、と管路により連結された、通気口を有する冷熱媒貯液タンク;
(c)一端が該密閉式耐圧ジャケットに設けた冷熱媒出口部に管路で連結しそして他端が管路で該冷熱媒貯液タンクと連結する吸引ポンプ;及び
(d)一端が該密閉式耐圧ジャケット、好ましくは該密閉式耐圧ジャケット底部、とそして他端が該冷熱媒貯液タンクに管路でそれぞれ連結された減圧ユニット;
を有し、
該密閉式耐圧ジャケット底部から最上部までの高さB(m)を、
B≦C-{W(1-E)}/ρ)
〔ここで、常圧を1atmとし、
C(m)は該吸引ポンプによる該冷熱媒の吸い上げ高さC(m)であって、
C=(Cmax-S)/ρであり、
max(m)は該吸引ポンプによる水の最大吸い上げの高さ(m)であり、
Sは安全運用値(m)であって、S>0であり、
ρは該冷熱媒の比重であり、
W(m)は真空状態での水の吸い上げ高さ(約10mである)であり、
E(atm)は該減圧ユニットの設定圧力(atm)であって、
E=x-dであり、
x(atm)は、該流動体貯蔵タンク内に加わる圧力(atm)であり、
d(atm)は、該吸引ポンプ停止時に必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0である〕
となるように設定した、温度管理を要する流動体貯蔵タンク内の流動体の、該冷熱媒による汚染を防止した装置を提供する。
 本発明はまた、上記の方法を実施するための装置であって、前記流動体貯蔵タンクの高さH(m)(=B(m))が、吸引ポンプによる液体状の冷熱媒の吸い上げ高さC(m)(C(m)は、冷熱媒が水である場合の吸い上げ高さ(m)とする)を越える大型タンクである場合(即ち、H>Cの場合)は、密閉式耐圧ジャケットを2段以上の多段構造として、1段目は前記の構成とし、2段目以降の各段には、それぞれ密閉式耐圧ジャケットを設け、そして前記冷熱媒貯液タンクと各段の密閉式耐圧ジャケット、好ましくは該密閉式耐圧ジャケットの底部、との間に前記流動体貯蔵タンクとは別に設けられたサーバータンク又は減圧ユニットを設け、
 該サーバータンクを設けた場合は、各サーバータンクの液面から各密閉式耐圧ジャケットの底部までの高さA’を、
A’≧{W(1-x+d)}/ρ
(W,x,dおよびρは、前記の通りである)とし、そして、各サーバータンクの液面から各密閉式耐圧ジャケットの最上部までの高さA’+B’(m)を、
A’+B’≦C
(ここで、C=(Cmax-S)/ρであり、Cmax、Sおよびρは前記の通りである)
とし、
該減圧ユニットを設けた場合は、各密閉式耐圧ジャケットの底部から最上部までの高さB’(m)を、
B’≦C-{W(1-E)}/ρ)
(ここで、C、W、Eおよびρは前記の通りである)
とすればよい。即ち、2段目以降も、1段目と同様に構成することができる。
 更に本発明は、加圧された冷熱媒を減圧し且つ一定圧に保つ減圧弁と、該冷熱媒を更に減圧する差圧弁とから構成される、本発明の装置に使用される減圧ユニットを提供する。
 更に本発明は、一定圧下にある流動体貯蔵タンクの壁面の外側周囲に設置した密閉式耐圧ジャケット内で液体状の冷熱媒を流動させて該冷熱媒により該流動体貯蔵タンク内の流動体の温度を管理する該流動体貯蔵タンクにおいて、該密閉式耐圧ジャケット内で該冷熱媒を、該流動体貯蔵タンク内の圧力x(atm)以下、好ましくはx(atm)未満、の圧力下で流動させ、該冷熱媒を該冷熱媒の通路に設けたエアーだまりからサンプリングし、該冷熱媒の成分を分析することを特徴とする、該流動体貯蔵タンクの亀裂又はピンホール等の微小の破損の検出方法を提供する。
 更に本発明は、減圧を必要とする液体が流動している空間において、何らかの原因により減圧が保たれない状況になりそうになった場合、その空間の流動を止めてその空間を密閉し、物理的および強制的に減圧する、上記の温度管理を要する流動体貯蔵タンク内の冷熱媒による汚染を防止した方法及び装置に使用し得る物理的減圧装置を提供する。
 本発明によると、流動体貯蔵タンク内の流動体を冷熱媒により温度保持する際に、突然に該貯蔵タンク壁面に亀裂、ピンホール等の微小の破損が発生したとしても、該貯蔵タンクの外側の密閉式耐圧ジャケット内が該貯蔵タンクの内側よりも減圧状態にあるので、該貯蔵タンク内流動体が該密閉式耐圧ジャケットに流れ込むため、該貯蔵タンク内流動体に該冷熱媒が混入することはない。このため、該冷熱媒を介した該流動体の細菌汚染、異物混入などを防止することが出来、該貯蔵タンク内流動体の品質を保持する事が出来る。また、該貯蔵タンク壁面の亀裂、ピンホール等の微小の破損を、冷熱媒をサンプリングして、冷熱媒サンプルの汚染を検出することにより、容易に検出することができる。
本発明の一段の第1の実施形態を示す装置の配置図である。 本発明の一段の第2の実施形態を示す装置の配置図である。 本発明の一段の第3の実施形態を示す装置の配置図である。 本発明の一段の第4の実施形態を示す装置の配置図である。 大型流動体貯蔵タンクにおける本発明の多段の第1の実施形態を示す配置図である。 大型流動体貯蔵タンクにおける本発明の多段の第2の実施態様を示す装置の配置図である。 大型流動体貯蔵タンクにおける本発明の多段の第3の実施態様を示す装置の配置図である。 大型流動体貯蔵タンクにおける本発明の多段の第4実施形態を示す配置図である。 従来の温度管理流動体貯蔵タンクの装置の配置図である。 本発明の装置に使用する減圧ユニットの配置図である。 本発明の一段の第5の実施形態を示す装置の配置図である。
 本発明では、冷熱媒が必要とする減圧状態を保ち、かつ減圧循環可能な高さに冷熱媒貯液タンク(又は冷熱媒サーバータンク)の液面と密閉式耐圧ジャケットの最上部の相対的位置を調整することが必要となる。つまり、吸引ポンプによる冷熱媒の最大吸い上げの高さCmax(m)から安全運用値S(m)を差し引いて吸引ポンプによる冷熱媒吸い上げ高さC(m)を設定し(C=Cmax-S)、冷熱媒貯液タンク(又は冷熱媒サーバータンク)の液面から流動体貯蔵タンク壁面上の密閉式耐圧ジャケット底面までの高さA(m)と、該密閉式耐圧ジャケット底部からその最上部までの高さB(m)を調整することが重要である。
 吸引ポンプの冷熱媒の最大吸い上げの高さCmaxはポンプ性能に依存する。そして、吸引ポンプの冷熱媒の最大吸い上げ高さCmaxを、より一般的な冷熱媒である水の最大吸い上げ高さ(m)と定義づける。本発明の冷熱媒の減圧状態を保つために、流動体貯蔵タンクと冷熱媒貯液タンクが大気に開放されている場合、上記の高さA,Bと吸引ポンプによる冷熱媒の吸い上げの高さCとの間に次式(1)が成り立つようにA,B,Cを設定する。
  A+B≦C   (1)
A:冷熱媒貯液タンク(又は冷熱媒サーバータンク)の液面から密閉式耐圧ジャケット底部までの高さ(m)、
B:密閉式耐圧ジャケット底部から該ジャケットの最上部までの高さ(m)、
C:吸引ポンプによる冷熱媒の吸い上げの高さ(m)
 冷熱媒が水の場合、標準状態であるならば、水の吸い上げ高さW(m)は、真空状態(0atm)で約10mである(W=約10)。このことから、吸引ポンプが停止した際、密閉式耐圧ジャケット底部、及びその最上部での圧力は次式(2)、(3)で示すことができる。
 ジャケット底部の圧力(atm)=(1-A/W)×1      (2)
 ジャケット最上部の圧力(atm)=(1-(A+B)/W)×1 (3)
 より一般的には、冷熱媒の比重をρとすると、吸引ポンプが停止した際、密閉式耐圧ジャケット底部、及びその最上部の圧力は次式(2’)、(3’)で示すことができる。
 ジャケット底部の圧力(atm)=(1-Aρ/W)×1      (2’)
 ジャケット最上部の圧力(atm)=(1-(A+B)ρ/W)×1 (3’)
 (2’)、(3’)式より、吸引ポンプ停止時に密閉式耐圧ジャケット底部の圧力が該ジャケット最上部の圧力よりも大きくなることが示され、吸引ポンプ停止時の該ジャケット底部の圧力を、該流動体貯蔵タンク内に加わる圧力x(atm)以下、好ましくはx未満、と設定することにより、該密閉式耐圧ジャケット内で冷熱媒を、該流動体貯蔵タンク内に加わる圧力x(atm)以下の圧力下で流動させること(ポンプ停止時も含めて)が可能となる。吸引ポンプの稼動時は、吸引ポンプの停止時よりも密閉式耐圧ジャケット底部の圧力は低くなるため、該密閉式耐圧ジャケット底部の圧力は該流動体貯蔵タンク内に加わる圧力(x)よりも低くなる。
 冷熱媒の吸い上げ高さC(m)は次式(4)により設定する。
C=(Cmax-S)/ρ  (4)
max:吸引ポンプによる冷熱媒の最大吸い上げの高さ(m)
S:安全運用値(m)
ρ:冷熱媒の比重(g/cm
 Cmax(m)は吸引ポンプによる冷熱媒の最大吸い上げの高さであり、S(m)は安全運用値であり、ρは冷熱媒の比重である。安全運用値S(m)は金属疲労等による吸引ポンプの吸引性能の劣化等を考慮したもので、通常1m以上、好ましくは2~4(m)である。
 次に、冷熱媒貯液タンク(又は冷熱媒サーバータンク)の液面から流動体貯蔵タンク壁面上の密閉式耐圧ジャケット底面までの高さA(m)を次式(5)により設定する。
A≧{W(1-x+d)/ρ}  (5)
x:流動体貯蔵タンク内に加わる圧力(atm)、
d:吸引ポンプ停止時に必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0、好ましくはdは0.05~0.4(atm)、特に0.2~0.4(atm)、
W:真空状態での水の吸い上げ高さ(約10m)、
である。
 そして、下記式(1)となるようにB(m)を設定する。
B≦C-A  (1)
即ち、
B≦(Cmax-S)/ρ-W(1-x+d)/ρ   (6)
となる。
 S(m)及びd(atm)を適切な値に設定した場合は、
A={W(1-x+d)/ρ}  (5’)
B=C-A=(Cmax-S)/ρ-{W(1-x+d)/ρ}  (6’)
とすることができる。
 このように、本発明は冷熱媒貯液タンクの液面から密閉式耐圧ジャケット底部の高さA(m)と、該密閉式耐圧ジャケット底部から最上部までの高さB(m)により、吸引ポンプ停止の際でも密閉式耐圧ジャケット内の相対的減圧を達成することが可能である。
 これらの高さA,Bを、吸引ポンプによる冷熱媒の吸い上げの高さC、冷熱媒の比重、必要とする流動体貯蔵タンク内の圧力xと密閉式耐圧ジャケット内の圧力との差圧、安全運用値および大気圧などを考慮し、安全に循環が可能なように調節する。
 冷熱媒貯液タンク又は冷熱媒サーバータンクの液面を密閉式耐圧ジャケット底部より下方レベルに設置できない場合(A=0の場合)は、減圧ユニットにより冷熱媒減圧循環が可能となり、さらに吸引ポンプ停止時は、電磁弁と物理的減圧装置の組み合わせにより密閉式耐圧ジャケット内の圧力を流動体貯蔵タンク内の圧力以下(減圧維持)とすることができる。
 減圧ユニットによる減圧を実施する場合も、冷熱媒の吸い上げ高さC(m)は式(4):
C=(Cmax-S)/ρ  (4)
(Cmax、S、ρは前記の通りである。)により設定する。安全運用値S(m)は金属疲労等による吸引ポンプの吸引性能の劣化等を考慮し、設定する必要がある。
 Bは、次式(7)により設定する。
B≦C-W(1-E)/ρ  (7)
E(atm)は、減圧ユニットの設定圧力(atm)であり、C、W、ρは前記の通りである。
 減圧ユニットの設定圧力E(atm)は、次式(8)により設定する。
E=x-d   (8)
x、dは前記の通りである。
 以下、本発明の装置の実施形態を図面に基づいて説明する。
小型の流動体貯蔵タンクの場合
 温度管理する小型の流動体貯蔵タンクに設けられる密閉式耐圧ジャケットの高さB(m)が、気圧が1atm、温度が25度の標準状態で吸引ポンプによる冷熱媒の最大ポンプ吸い上げ高さ(=ポンプ性能)Cmax以下(冷熱媒の比重が1、ポンプ性能が8mの場合は、Bは8m以下、好ましくはポンプ性能Cmaxから安全運用値(好ましくは約2m)を引いた6m以下)の場合において、本発明の第1の態様(図1参照)では、大気に開放した冷熱媒貯液タンク3を、そのタンク3の液面が、上部を大気に開放した流動体貯蔵タンク2の底部よりもA(m)だけ下方レベル(冷熱媒が水の場合、A={W(1-x+d)/ρ}=0.5~2m下方レベル)になるように設置し、流動体貯蔵タンク2の壁面に設けられた密閉式耐圧ジャケット4内を、その冷熱媒出口部位付近に設けた吸引ポンプ1により吸引して、該貯蔵タンク2内よりも減圧状態にする(高さによる減圧)。即ち、冷熱媒貯液タンク3から密閉式耐圧ジャケットの最上部までの高さA+B(m)が吸引ポンプ1による冷熱媒の吸い上げ高さC(m)以下、即ちA+B≦C、又はS及びdを適切な値に設定した場合はC=A+B、となるように設定して、冷熱媒を冷熱媒貯液タンク3から冷熱媒流動管路5を経て密閉式耐圧ジャケット4の底部に送り、該密閉式耐圧ジャケット4内を流動させて吸引し、ついで冷熱媒流動管路5を経て冷熱媒貯液タンク3に戻すことにより、密閉式耐圧ジャケット4内で冷熱媒を常に流動体貯蔵タンク2内よりも減圧状態(流動体貯蔵タンク2内の圧力に比べて相対的に圧力が低い状態、通常、1気圧以下)で流動させる。さらに、吸引ポンプ1が停止した際も、上記式(2)、(3)又は(2’)、(3’)に示すように、密閉式耐圧ジャケット4内を減圧状態(流動体貯蔵タンク2内の圧力に比べて相対的に圧力が低い状態、通常、1気圧以下)に保つことが可能である。吸引ポンプ1と冷熱媒貯液タンク3の間の冷熱媒流動管路5に、好ましくは冷熱媒貯液タンク3の近くで、且つ冷熱媒貯液タンク3の液面以下の高さにエアーだまり9を設けてもよい。冷熱媒貯液タンク3内の冷熱媒は温度管理設備8により温度管理することができる。
 冷熱媒貯液タンク3から流動体貯蔵タンク2まで距離がある場合や、冷熱媒貯液タンク3が大型であり、流動体貯蔵タンク2よりも低いレベル(高さ)に冷熱媒貯液タンクの設置が不可能である場合は、本発明の第2及び第3の態様として、図2及び図3に示すようにサーバータンク10を流動体貯蔵タンク2の近くで且つ該流動体貯蔵タンク2よりも低いレベルに設置してもよい。
 その場合、冷熱媒貯液タンク3から冷熱媒を加圧ポンプ17で加圧し、該サーバータンク10に送り込む。その後、該冷熱媒を吸引ポンプ1で該サーバータンク10から密閉式耐圧ジャケット4内を減圧循環させ、冷熱媒貯液タンク3に戻す構造となる。この場合も、A+B(Aはサーバータンク10の液面から流動体貯蔵タンク2の底部までの高さ、Bは密閉式耐圧ジャケットの高さである)を吸引ポンプの吸い上げ高さC(m)以下、即ちA+B≦C、S及びdを適切な値に設定した場合はA+B=Cとなるように設定する。
 該サーバータンク10に通気口(通気管)を設け、該サーバータンク10を密閉系ではなく開放系としておき、ボールタップを設け、冷熱媒貯液タンク3からの冷熱媒の流量を調節するのが好ましい。これにより、サーバータンク10の液面を一定に保つことが可能となる。
 吸引ポンプ1が停止した際も密閉式耐圧ジャケット4内を減圧状態に保つために、図2に示すように、吸引ポンプ1の下流に電磁弁13を設けてもよい。
 図3に示すように、密閉式耐圧ジャケット4の冷熱媒出口部位付近に設けた吸引ポンプ1と冷熱媒貯液タンク3の間に冷熱媒レシーバータンク11を設け、吸引ポンプ1と連動するレベルセンサー(図示していない)を冷熱媒レシーバータンク11に設けて、冷熱媒レシーバータンク11の液面を調節することもできる。
 冷熱媒貯液タンク3の液面をサーバータンク10により流動体貯蔵タンク2の底部よりも下方レベルに設定して減圧状態を保持する(高さによる減圧)代わりに、減圧ユニット12により圧力調整して、該密閉式耐圧ジャケット4内を該貯蔵タンク2内よりも減圧状態にしてもよい(減圧ユニットによる減圧)。
 図4に示す本発明の第4の態様においては、冷熱媒貯液タンク3の液面を流動体貯蔵タンク2の底部よりも下方レベルにする代わりに、減圧ユニット12により管路内を減圧して、ポンプ停止時に備えている。
 密閉式耐圧ジャケット4の出口部と吸引ポンプ1の間に物理的減圧装置14を設けて、密閉式耐圧ジャケット4内の減圧状態を強制減圧するなど、様々な方法で、該密閉式耐圧ジャケット内の減圧状態を高さで制御しない方法も本発明に含まれる。吸引ポンプ1のポンプ停止時に備えて、電磁弁13を設けて密閉式耐圧ジャケット4内を密閉してもよい。
 いずれの態様においても、冷熱媒貯液タンク内部と該密閉式耐圧ジャケットの好ましくは最下部(底部)を、場合によっては冷熱媒レシーバータンク11を介して管路で接続し、密閉式耐圧ジャケット4の通常は頂部にある出口部と該吸引ポンプ1の吸入口とを管路で接続し、さらに吸引ポンプ1の吐出口と冷熱媒貯液タンク3内部とを管路で接続する。ここで、該管路は該冷熱媒貯液タンクの液面内に入るようにするのが、空気の混入を防止する観点から好ましい。
 冷熱媒貯液タンクには通気口(通気管)を設ける必要がある。これは冷熱媒貯液タンク3を密閉系ではなく開放系としておく事が必要となるためである。この理由は戻り(吸引ポンプ1から冷熱媒貯液タンク3へ)の管路内の加圧状態の冷熱媒を常気圧に戻すことにより、行き(冷熱媒貯液タンク3から密閉式耐圧ジャケット4へ)の管路内を常に減圧下におくためである。
 冷熱媒の減圧状態で保つために、吸引ポンプ1を停止した際も密閉式耐圧ジャケット4内に冷熱媒が満たされた状態が必要である。すなわち、吸引ポンプ1を停止した際は、冷熱媒が冷熱媒貯液タンク3に排出されるのではなく、ただ冷熱媒の流れが止まっただけの状態が望ましい。これは吸引ポンプ1を停止した際も、密閉式耐圧ジャケット4内を減圧状態に保つために、冷熱媒が冷熱媒貯液タンク3に排出されては減圧状態が保たれなくなるからである。
 従って、吸引ポンプ1の吐出口から冷熱媒貯液タンク3内部までの管路において、吸引ポンプ1の吐出口からの管路を、冷熱媒貯液タンク3内の液面に入った状態にするか、冷熱媒貯液タンク3の液面以下の冷熱媒貯液タンク壁に取り付けるとよい。或いは、吸引ポンプ1の吐出口からの管路が冷熱媒貯液タンク3内の液面以上にあったとしても、密閉式耐圧ジャケット4と冷熱媒貯液タンク3との間に吸引ポンプ1が止まった時に閉じる電磁弁13を設置してもよい。
 流動体貯蔵タンク2の壁面上の密閉式耐圧ジャケット4内を減圧状態として流動体貯蔵タンク2内への冷熱媒の混入を防止する方法及び装置は、密閉式耐圧ジャケット4内を常に減圧状態(流動体貯蔵タンク2内の圧力に比べて相対的に圧力が低い状態)にする方法を意味するものであり、必ずしも上記に示す態様に限定されるものではない。
大型の流動体貯蔵タンクの場合
 ポンプによる冷熱媒吸い上げの高さ(C)を越えるような高さの密閉式耐圧ジャケットを必要とする大型流動体貯蔵タンクに本発明を適用する場合は、密閉式耐圧ジャケットの構造を多段とし、必要に応じて各段にサーバータンクおよび/又は減圧ユニットと、吸引ポンプを設けるとよい。
 即ち、密閉式耐圧ジャケットを多段にして、最下段の1段目を上記の小型の流動体貯蔵タンクの場合の装置と同様の構成とし、2段目以降の各段に1段目と同様の密閉式耐圧ジャケットを設け、2段目以降の構成を、1段目と同様の構成とするか(図5、図7参照)、或いは2段目以降の吸引ポンプを省略することもできる(図6、図8参照)。この際も、各密閉式耐圧ジャケット4a,4b,4c等の高さB’(m)を、吸引ポンプによる冷熱媒の最大吸い上げ高さ(Cmax)から安全運用値S(m)を引いた値以下(B’≦(Cmax-S)/ρ)とする。各段にサーバータンクを設けた場合は、各サーバータンクの液面から対応する各密閉式耐圧ジャケットの底部までの高さA’(m)も下記式(5’)を満たすように設定するのが好ましい。
A’≧{W(1-x+d)/ρ}  (5’)
W,x,d,ρは前記の通りである。
 第5、6図に示す3段構造の態様では、各段には冷熱媒サーバータンク10a、10b、10cを設けて、各冷熱媒サーバータンクの液面が、冷熱媒を送る各密閉式耐圧ジャケット4a,4b,4cの底部よりも下方になるように設置する。各密閉式耐圧ジャケット4a,4b,4cの出口部と冷熱媒貯液タンク3の間にそれぞれ吸引ポンプ1a、1b、1c等を設ける。二段目以降の吸引ポンプ1b、1cと冷熱媒貯液タンク3の間にそれぞれ冷熱媒レシーバータンク11b、11cを設けてもよい(図5)。或いは、二段目以降の密閉式耐圧ジャケット4b、4cの各装置単位においては、各密閉式耐圧ジャケットの出口部と冷熱媒貯液タンク3との間の高さが、吸引ポンプによる冷熱媒の吸い上げ高さを超えるので、吸引ポンプ1b、1cを省略して、その代わりに運転開始時の呼び水を供給するためのT型配管16とバルブ15を二段目以降の密閉式耐圧ジャケット4b、4cの各出口部と冷熱媒貯液タンク3との間の各管路に設けてもよい(図6、図8)。
 各段に冷熱媒サーバータンク10a、10b、10c等を設ける代わりに、図7、8に示すように、各段に設けた減圧ユニット12により冷熱媒貯液タンク3から直接、各密閉式耐圧ジャケット4a,4b,4cの底部に冷熱媒を送ってもよい。図7に示す態様では、各段に物理的減圧装置14a、14b、14c、及び電磁弁13が設けられ、二段目以降には冷熱媒レシーバータンク11b、11cが設けられている。図8に示す態様では、一段目のみに物理的減圧装置14及び電磁弁13が設けられ、二段目以降には吸引ポンプ1b、1cを省略して、その代わりに運転開始時の呼び水を供給するためのT型配管16とバルブ15を二段目以降の密閉式耐圧ジャケット4b、4cの各出口部と冷熱媒貯液タンク3との間の各管路に設けている。
 図11に示す態様は、図1に示す態様である冷熱媒を冷熱媒貯液タンク3から冷熱媒流動管路5を経て密閉式耐圧ジャケット4の底部に送る代わりに、密閉式耐圧ジャケット4の底部以外の箇所、例えば頂部、に送る態様を示す。
 本発明で使用することのできる冷熱媒は、通常は常温、大気圧で液体の媒体であり、冷媒と熱媒を含む。該冷媒とは、流動体貯蔵タンク内の流動体を冷却するための液体であって、その例としては、冷凍装置により冷却された冷却水や不凍液(一般にエチレングリコール液またはプロピレングリコール液)などが挙げられる。冷熱媒貯液タンクの冷媒は冷却装置により必要に応じて摂氏-10~5度程度、通常は-2~2度程度に冷却される。
 該熱媒とは、流動体貯蔵タンク内の流動体を加温するための液体であって、本発明で使用することのできる熱媒の例は、加熱装置により加熱された熱水、熱油などである。
 本発明では、前記冷媒及び前記熱媒は、液体の状態となる温度及び圧力の条件下で前記密閉式耐圧ジャケット内を流動させる。
 流動体貯蔵タンク内の流動体は、牛乳、ワイン、酒、飲料等、温度制御状態で液体のもの、又は粉体である。該貯蔵タンクは通常、大気圧に開放されているが、加圧密閉系でもよく、加圧密閉系の場合は、密閉式耐圧ジャケットが該貯蔵タンク内よりも更に相対的に減圧状態となる。
 本発明で使用することにできる吸引ホンプは自吸式ポンプが望ましく、自吸式の渦巻ポンプ、ピストンポンプなどである。自吸式ポンプの自吸ポンプ性能(Cmax)は、冷熱媒貯液タンク(又はサーバータンク)の液面から自吸式ポンプの吸入口までの高低レベル、即ち、該液面から密閉式耐圧ジャケットの最上部までの高さ(A+B)以上が必要である。
流動体貯蔵タンクの亀裂の検出
吸引ポンプ1から冷熱媒貯液タンク3へ冷熱媒が戻っていく配管にエアーだまり9をもうけることが望ましい。もしこのエアーだまりにエアーが溜まっていくようならば、装置自身になんらかの異常が生じていることが容易に察知可能である。
 冷熱媒貯液タンク3の冷熱媒をエアーだまり9からサンプリングし、ガスクロマトグラフィーもしくは液体クロマトグラフィーのような成分分析機器を用い、冷熱媒の成分を分析することを定期的に実施する。これにより、流動体貯蔵タンク2内の流動体が冷熱媒サンプルに検出された場合、密閉式耐圧ジャケット4と流動体貯蔵タンク2の間の壁面に何らかの亀裂が生じている可能性が高くなる。即ち、本発明によると、流動体貯蔵タンク壁面における異常が容易に察知可能である。
 このエアーだまり9は吸引ポンプ1から冷熱媒貯液タンク3へ冷熱媒が戻っていく配管中の、好ましくは冷熱媒貯液タンク3に近い位置で、且つ該貯液タンク3の液面以下の位置に取り付けることが望ましい。
 図4,7,8に示す態様に使用し得る減圧ユニット12は、図10に例示するように、減圧弁18と差圧弁19から構成される。減圧ユニット12は、加圧ポンプ17により加圧された冷熱媒を減圧弁18により減圧し且つ一定圧に保ち、差圧弁19により減圧状態にすることができる。減圧弁18通過後の冷熱媒の圧力が低すぎる(例えば、2気圧以下)と差圧弁19による減圧が作用しにくい怖れがあるので、減圧弁18通過後の冷熱媒の圧力は2気圧(atm)以上、好ましくは2~4気圧(atm)にする。減圧ユニットの設定圧力E(atm)は、E=x-dであり、ここで、x及びdは前記の通りある。
[実施例1]
 上部が大気に開放された流動体貯蔵タンク2の高さが約5mである、図1に示す一段式の装置において、冷熱媒(水)貯液タンク3の液面から密閉式耐圧ジャケット4の底部までの高さ(A)を1m、密閉式耐圧ジャケット4の底部から最上部までの高さ(B)を5mとし、自吸式渦巻ポンプ1(株式会社荏原製作所製、口径40mmの40FQD5.15A型、最大吸い上げ高さ(Cmax)7m、出力1.5KW)を用い、これらを冷熱媒流動管路5(40Aの塩ビ管)で接続する。
 冷熱媒貯液タンク3は接続する温度管理装置8により冷熱媒を任意の温度に冷却または加熱し、アイスバンカーまたはホットバンカーとして使用できるように常時温度管理装置8を自動運転して管理する。
 流動体貯蔵タンク2では、流動体投入管6により流動体を投入し、流動体取出管7に送り出す。流動体投入管6により流動体を流動体貯蔵タンク2に投入する前、又は投入の直後に、自吸式渦巻ポンプ1に冷熱媒をいれて運転を開始して、該冷熱媒を冷熱媒貯液タンク3から、冷熱媒流動管路5の冷熱媒流動方向5aに、流動体貯蔵タンク2の壁面に設置した密閉式耐圧ジャケット4内を流動させて自吸式渦巻ポンプ1まで吸い上げ、ついで該冷熱媒を冷熱媒貯液タンク3に戻すように循環させる。この冷熱媒の循環は、流動体貯蔵タンク2内に流動体が貯液されている間、その任意の温度管理状態を勘案して適宜に実施する。
 上記装置では、ポンプ1が停止した場合も含めて、冷熱媒(水)は流動体貯蔵タンク2内よりも減圧状態で密閉式耐圧ジャケット4内を流動した。
 図1~8で密閉式耐圧ジャケット4は、その底部が冷熱媒貯液タンク3、冷熱媒サーバータンク10a、10b、10c、冷熱媒レシーバータンク11b、11c又は減圧ユニット12と連結しているが、図11に示すように、密閉式耐圧ジャケット4の底部以外の部位で冷熱媒貯液タンク等に連結してもよい。
1  自吸式渦巻ポンプ(吸引ポンプ)
2  流動体貯蔵タンク
3  冷熱媒貯液タンク
4,4a,4b,4c 密閉式耐圧ジャケット
5  冷熱媒流動管路
5a 冷熱媒流動方向
6  流動体投入管
7  流動体取出管
8  温度管理設備
9  エアーだまり
10a、10b、10c 液面調整式冷熱媒サーバータンク
11b、11c 冷熱媒レシーバータンク
12  減圧ユニット
13  電磁弁
14  物理的減圧装置
15  運転開始時の呼び水用バルブ
16  T型配管
17  加圧ポンプ
18  減圧弁
19  差圧弁
 

Claims (13)

  1.  一定圧下にある流動体貯蔵タンクの壁面の外側周囲に設置した密閉式耐圧ジャケット内で液体状の冷熱媒を流動させて該冷熱媒により温度を管理する該流動体貯蔵タンクにおいて、該密閉式耐圧ジャケット内で冷熱媒を、該流動体貯蔵タンク内に加わる圧力x(atm)未満の圧力下で流動させることにより、該流動体貯蔵タンクの壁面の破損により、該流動体貯蔵タンク内の該流動体が該冷熱媒により汚染されるのを防止する方法。
  2.  大気に開放した冷熱媒貯液タンク又は前記流動体貯蔵タンクとは別に設けられた冷熱媒供給用のサーバータンクの液面を該密閉式耐圧ジャケットの底部よりも高さA(m)だけ下方レベルに設定し、該密閉式耐圧ジャケットの冷熱媒出口部と連結した吸引ポンプにより該冷熱媒を吸引して、該冷熱媒を該冷熱媒貯液タンクから管路を経て該密閉式耐圧ジャケットに送り、該密閉式耐圧ジャケット内を流動循環させ、該吸引ポンプを経て該冷熱媒貯液タンクに戻すことにより、該密閉式耐圧ジャケットに該冷熱媒を流動させ、該冷熱媒貯液タンク又は該サーバータンクの液面から該密閉式耐圧ジャケットの底部までの高さA(m)を、
    A≧{W(1-x+d)}/ρ
    (ここで、
    W(m)は、真空状態での水の吸い上げ高さ(m)(約10mである)であり;
    x(atm)は、該流動体貯蔵タンク内に加わる圧力(atm)であり;
    d(atm)は、該吸引ポンプ停止時に該密閉式耐圧ジャケットの底部で必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0であり;
    ρは該冷熱媒の比重である)
    とし、
    該高さA(m)と、該密閉式耐圧ジャケットの底部から最上部までの高さB(m)と、該吸引ポンプによる該冷熱媒の吸い上げ高さC(m)とが、
    B≦C-A
    〔ここで、
    C(m)は、C=(Cmax-S)/ρであり;
    max(m)は、該吸引ポンプによる該冷熱媒の最大吸い上げの高さ(m)(但し、Cmaxは冷熱媒を水とした場合の吸い上げ高さ)であり;
    S(m)は安全運用値であって、S>0であり;
    ρ及びAは、上記の通りである〕
    となるように設定することにより、該冷熱媒を上記圧力x(atm)未満の圧力下で該密閉式耐圧ジャケット内を流動させることを特徴とした、請求項1に記載の方法。
  3.  大気に開放した冷熱媒貯液タンクと該流動体貯蔵タンクの間に減圧ユニットを配置し、該密閉式耐圧ジャケットの冷熱媒出口部と連結した吸引ポンプにより該冷熱媒を吸引して、該冷熱媒を該冷熱媒貯液タンクから該減圧ユニットを経て該密閉式耐圧ジャケットに送り、該密閉式耐圧ジャケット内を流動循環させ、該吸引ポンプを経て該冷熱媒貯液タンクに戻すことにより、該密閉式耐圧ジャケットに該冷熱媒を流動させ、該密閉式耐圧ジャケット底部から最上部までの高さB(m)を、
    B≦C-{W(1-E)}/ρ
    〔ここで、常圧を1atmとし、
    C(m)は該吸引ポンプによる該冷熱媒の吸い上げ高さC(m)であって、
    C=(Cmax-S)/ρであり、
    max(m)は該吸引ポンプによる水の最大吸い上げの高さ(m)(但し、Cmaxは冷熱媒を水とした場合の吸い上げ高さ)であり、
    S(m)は安全運用値(m)であって、S>0であり、
    ρは該冷熱媒の比重であり、
    W(m)は真空状態での水の吸い上げ高さ(約10mである)であり、
    E(m)は該減圧ユニットの設定圧力(atm)であって、
    E=x-dであり、
    xは、該流動体貯蔵タンク内に加わる圧力(atm)であり、
    d(atm)は、該吸引ポンプ停止時に必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0である〕、
    とすることにより、該冷熱媒を上記圧力x(atm)未満の圧力下で該密閉式耐圧ジャケット内を流動させることを特徴とした、請求項1に記載の方法。
  4.  一定圧下にある流動体貯蔵タンクの壁面の外側周囲に設置した密閉式耐圧ジャケット内で液体状の冷熱媒を流動させて該冷熱媒により温度を管理する該流動体貯蔵タンクを備えた装置において、該密閉式耐圧ジャケット内で冷熱媒を、該流動体貯蔵タンク内に加わる圧力x(atm)未満の圧力下で流動させることにより、該流動体貯蔵タンクの壁面の破損により、該流動体貯蔵タンク内の該流動体が該冷熱媒により汚染されるのを防止した装置。
  5.  (a)該流動体貯蔵タンクの壁面の外側に設置した、該冷熱媒を流動循環させるための該密閉式耐圧ジャケット;
     (b)一端が該密閉式耐圧ジャケットと管路により連結された、通気口を有する冷熱媒貯液タンク又は前記流動体貯蔵タンクとは別に設けられた冷熱媒供給用のサーバータンク、ここで該冷熱媒貯液タンク又は該サーバータンクの液面は該流動体貯蔵タンクの底部よりも液面がA(m)(A>0)だけ下方レベルになるように設置される;及び
     (c)一端が該密閉式耐圧ジャケットに設けた冷熱媒出口部に連結し、そして他端が該冷熱媒貯液タンク又は該サーバータンクと連結する吸引ポンプ
    を有し、
    該冷熱媒貯液タンク又は該サーバータンクの液面から該密閉式耐圧ジャケットの底部までの高さA(m)を、
    A≧{W(1-x+d)}/ρ
    (ここで、
    W(m)は、真空状態での水の吸い上げ高さ(m)(約10mである)であり;
    x(atm)は、該流動体貯蔵タンク内に加わる圧力(atm)であり;
    dは、該吸引ポンプ停止時に該密閉式耐圧ジャケットの底部で必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0であり;
    ρは該冷熱媒の比重である)
    とし、
    該高さA(m)と、該密閉式耐圧ジャケットの底部から最上部までの高さB(m)と、該吸引ポンプによる該冷熱媒の吸い上げ高さC(m)とが、
    B≦C-A
    〔ここで、
    C(m)は、C=(Cmax-S)/ρであり;
    max(m)は、該吸引ポンプによる該冷熱媒の最大吸い上げの高さ(m)(但し、Cmaxは冷熱媒を水とした場合の吸い上げ高さであり;
    S(m)は安全運用値であって、S>0であり;
    ρ及びAは、上記の通りである〕
    となるように設定することにより、該冷熱媒を上記圧力x(atm)未満の圧力下で該密閉式耐圧ジャケット内を流動させることを特徴とした、請求項4に記載の装置。
  6.  (a)該流動体貯蔵タンクの壁面の外側に設置した、該冷熱媒を流動循環させるための該密閉式耐圧ジャケット;
     (b)一端が該密閉式耐圧ジャケットと管路により連結された、通気口を有する冷熱媒貯液タンク;
     (c)一端が該密閉式耐圧ジャケットに設けた冷熱媒出口部に管路で連結しそして他端が管路で該冷熱媒貯液タンクと連結する吸引ポンプ;及び
     (d)一端が該密閉式耐圧ジャケットの底部にそして他端が該冷熱媒貯液タンクにそれぞれ管路で連結された減圧ユニット;
    を有し、
    該密閉式耐圧ジャケット底部から最上部までの高さB(m)を、
    B≦C-{W(1-E)}/ρ
    〔ここで、常圧を1atmとし、
    C(m)は該吸引ポンプによる該冷熱媒の吸い上げ高さC(m)であって、
    C=(Cmax-S)/ρ)であり、
    max(m)は該吸引ポンプによる水の最大吸い上げの高さ(m)(但し、Cmaxは冷熱媒を水とした場合の吸い上げ高さ)であり、
    Sは安全運用値(m)であって、S>0であり、
    ρは該冷熱媒の比重であり、
    W(m)は真空状態での水の吸い上げ高さ(約10mである)であり、
    E(atm)は該減圧ユニットの設定圧力(atm)であって、
    E=x-dであり、
    x(atm)は、該流動体貯蔵タンク内に加わる圧力(atm)であり、
    d(atm)は、該吸引ポンプ停止時に必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0である〕
    と設定することにより、該冷熱媒を上記圧力x(atm)未満の圧力下で該密閉式耐圧ジャケット内を流動させることを特徴とした、請求項4に記載の装置。
  7.  上記の差圧d(atm)が0.2~0.4(atm)である、請求項5又は6に記載の装置。
  8.  該流動体貯蔵タンクの高さB(m)が、吸引ポンプによる冷熱媒の吸い上げ高さC(m)を越える大型タンクであり、密閉式耐圧ジャケットを2段以上の多段構造として、1段目は請求項5又は6の構成とし、2段目以降の各段には、それぞれ密閉式耐圧ジャケット、および該冷熱媒貯液タンクと各段の密閉式耐圧ジャケットの底部との間に配置した前記流動体貯蔵タンクとは別に設けられた冷熱媒供給用のサーバータンク又は減圧ユニットを設け、
     該サーバータンクを設けた場合は、各サーバータンクの液面から各密閉式耐圧ジャケットの底部までの高さA’を、
    A’≧{W(1-x+d)}/ρ
    (W,x,dおよびρは、前記の通りである)とし、そして、各サーバータンクの液面から各密閉式耐圧ジャケットの最上部までの高さA’+B’(m)を、
    A’+B’≦C
    (ここで、C=(Cmax-S)/ρであり、Cmax、Sおよびρは前記の通りである)
    とし、
     該減圧ユニットを設けた場合は、各密閉式耐圧ジャケットの底部から最上部までの高さB’(m)を、
    B’≦C-{W(1-E)}/ρ
    (ここで、C、W、Eおよびρは前記の通りである)
    とした、請求項4~7のいずれか1項に記載の装置。
  9.  該冷熱媒の成分を分析するために、該冷熱媒のサンプリング用のエアーだまりを該冷熱媒の通路に設けた、請求項4~8のいずれか1項に記載の装置。
  10.  (a)流動体貯蔵タンクの壁面の外側に設置した、液体状の冷熱媒を流動循環させるための密閉式耐圧ジャケット;
     (b)一端が該密閉式耐圧ジャケットと管路により連結された、通気口を有する冷熱媒貯液タンク;
     (c)一端が該密閉式耐圧ジャケットに設けた冷熱媒出口部に管路で連結しそして他端が管路で該冷熱媒貯液タンクと連結する吸引ポンプ;及び
     (d)一端が該密閉式耐圧ジャケットの底部にそして他端が該冷熱媒貯液タンクにそれぞれ管路で連結された減圧ユニット;
    を有し、
    該密閉式耐圧ジャケット底部から最上部までの高さB(m)を、
    B≦C-{W(1-E)}/ρ
    〔ここで、常圧を1atmとし、
    C(m)は該吸引ポンプによる該冷熱媒の吸い上げ高さC(m)であって、
    C=(Cmax-S)/ρ)であり、
    max(m)は該吸引ポンプによる水の最大吸い上げの高さ(m)(但し、Cmaxは冷熱媒を水とした場合の吸い上げ高さ)であり、
    Sは安全運用値(m)であって、S>0であり、
    ρは該冷熱媒の比重であり、
    W(m)は真空状態での水の吸い上げ高さ(約10mである)であり、
    E(atm)は該減圧ユニットの設定圧力(atm)であって、
    E=x-dであり、
    x(atm)は、該流動体貯蔵タンク内に加わる圧力(atm)であり、
    d(atm)は、該吸引ポンプ停止時に必要とする、該流動体貯蔵タンク内の圧力x(atm)から該密閉式耐圧ジャケットの底部の圧力(atm)を引いた差圧(atm)であって、d>0である〕
    と設定することにより、該冷熱媒を上記圧力x(atm)未満の圧力下で該密閉式耐圧ジャケット内を流動させることにより、該流動体貯蔵タンクの壁面の破損により、該流動体貯蔵タンク内の該流動体が該冷熱媒により汚染されるのを防止した装置に使用するための、加圧された該冷熱媒を減圧し且つ一定圧に保つ減圧弁と、該冷熱媒を更に減圧する差圧弁とから構成される減圧ユニット。
  11.  一定圧下にある流動体貯蔵タンクの壁面の外側周囲に設置した密閉式耐圧ジャケット内で液体状の冷熱媒を流動させて該冷熱媒により該流動体貯蔵タンク内の流動体の温度を管理する該流動体貯蔵タンクにおいて、該密閉式耐圧ジャケット内で該冷熱媒を、該流動体貯蔵タンク内の圧力x(atm)未満の圧力下で流動させることにより、該流動体貯蔵タンクの壁面の破損により、該流動体貯蔵タンク内の該流動体が該冷熱媒により汚染されるのを防止すると共に、該冷熱媒を該冷熱媒の通路に設けたエアーだまりからサンプリングし、該冷熱媒の成分を分析することを特徴とする、該流動体貯蔵タンクの亀裂の検出方法。
  12.  前記流動している空間において、前記冷熱媒の流動を止めてその空間を密閉し、物理的および強制的に減圧する、請求項1~3のいずれか1項に記載の方法。
  13.  前記流動している空間において、前記冷熱媒の流動を止めてその空間を密閉し、物理的および強制的に減圧する物理的減圧装置を更に設けた、請求項4~8のいずれか1項に記載の装置。
PCT/JP2011/059031 2010-04-13 2011-04-11 温度管理を要する流動体貯蔵タンク内の汚染防止方法、およびその装置 WO2011129306A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020127029644A KR101821434B1 (ko) 2010-04-13 2011-04-11 온도 관리가 필요한 유동체 저장 탱크 내의 오염 방지 방법 및 이를 위한 장치
AU2011242003A AU2011242003B2 (en) 2010-04-13 2011-04-11 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
CA2795434A CA2795434C (en) 2010-04-13 2011-04-11 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
MX2012011683A MX2012011683A (es) 2010-04-13 2011-04-11 Metodo para prevencion de contaminacion en tanque de almacenamiento, que requiere control de temperatura y dispositivo para el mismo.
US13/641,407 US9248480B2 (en) 2010-04-13 2011-04-11 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
BR112012025924-5A BR112012025924B1 (pt) 2010-04-13 2011-04-11 método para prevenir a contaminação de um fluido e instalação
CN201180019114.5A CN102985342B (zh) 2010-04-13 2011-04-11 用于在需要温度控制的流体贮藏罐中防止污染的方法及其装置
EP11768827.5A EP2559637B1 (en) 2010-04-13 2011-04-11 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
ES11768827.5T ES2642279T3 (es) 2010-04-13 2011-04-11 Método para la prevención de la contaminación en un tanque de almacenamiento de fluido que requiera control de temperatura, y dispositivo para el mismo
RU2012148126/12A RU2564583C2 (ru) 2010-04-13 2011-04-11 Способ предотвращения загрязнения в резервуаре для хранения текучей среды, требующем регулирования температуры, и устройство для реализации данного способа
US14/978,043 US10058903B2 (en) 2010-04-13 2015-12-22 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
US16/045,261 US10562082B2 (en) 2010-04-13 2018-07-25 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010092479A JP4707764B1 (ja) 2010-04-13 2010-04-13 温度管理を要する流動体貯蔵タンク内の汚染防止方法、およびその装置
JP2010-092479 2010-04-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/641,407 A-371-Of-International US9248480B2 (en) 2010-04-13 2011-04-11 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
US14/978,043 Continuation US10058903B2 (en) 2010-04-13 2015-12-22 Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor

Publications (1)

Publication Number Publication Date
WO2011129306A1 true WO2011129306A1 (ja) 2011-10-20

Family

ID=44292610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059031 WO2011129306A1 (ja) 2010-04-13 2011-04-11 温度管理を要する流動体貯蔵タンク内の汚染防止方法、およびその装置

Country Status (12)

Country Link
US (3) US9248480B2 (ja)
EP (1) EP2559637B1 (ja)
JP (1) JP4707764B1 (ja)
KR (1) KR101821434B1 (ja)
CN (1) CN102985342B (ja)
AU (1) AU2011242003B2 (ja)
BR (1) BR112012025924B1 (ja)
CA (1) CA2795434C (ja)
ES (1) ES2642279T3 (ja)
MX (1) MX2012011683A (ja)
RU (1) RU2564583C2 (ja)
WO (1) WO2011129306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233792B2 (en) 2012-11-02 2016-01-12 Trs Transportkoeling B.V. Tank container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788269B2 (en) * 2016-11-07 2020-09-29 Wabash National, L.P. Cooling system for mobile bulk tanks
CN111186650A (zh) * 2020-01-16 2020-05-22 海口海关技术中心 一种具有防潮保鲜隔热功能的中转储存罐
CN113859787B (zh) * 2021-09-03 2023-03-21 中建材创新科技研究院有限公司 一种料温可控的石膏料仓

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882912A (en) * 1988-10-12 1989-11-28 Container Design Limited Temperature controllable tank container
JPH09166375A (ja) * 1995-12-15 1997-06-24 Tlv Co Ltd 減圧加熱冷却装置
JP2001088894A (ja) * 1999-09-21 2001-04-03 Nihon Tetra Pak Kk タンク装置
JP2002320419A (ja) * 2001-04-26 2002-11-05 Rokko Engineering Co Ltd 冷却タンク
JP2009293844A (ja) * 2008-06-04 2009-12-17 Chugoku Electric Power Co Inc:The 高粘性液体燃料加温システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1987917A (en) * 1933-02-04 1935-01-15 Heil Co Refrigerated tank
US2434956A (en) * 1945-11-05 1948-01-27 Spencer S Prentiss Liquid oxygen "walkaround" unit
US3143167A (en) * 1961-05-19 1964-08-04 Tung Sol Electric Inc Temperature controlled enclosure for testing purposes
US3451225A (en) * 1968-02-08 1969-06-24 Daryl G Hill Water-jacket warmer for stationary fuel tank
US4298060A (en) * 1979-02-14 1981-11-03 Elliott Turbomachinery Limited Fluid jacket for a vessel
US4261415A (en) * 1979-10-19 1981-04-14 Autoclave Engineers, Inc. Method and apparatus for cooling a pressure vessel
US4502531A (en) * 1983-02-28 1985-03-05 Allied Corporation High-pressure vessel furnace
DE3643557A1 (de) * 1986-12-19 1988-06-23 Westerwaelder Eisen Gerhard Temperierbarer tankcontainer
US5170659A (en) * 1991-04-08 1992-12-15 Kemp Development Corporation Apparatus and method for detecting fluid leakage
US5552039A (en) * 1994-07-13 1996-09-03 Rpc Waste Management Services, Inc. Turbulent flow cold-wall reactor
US5743023A (en) * 1996-09-06 1998-04-28 Fay; John M. Method and apparatus for controlling freeze drying process
US6610250B1 (en) * 1999-08-23 2003-08-26 3M Innovative Properties Company Apparatus using halogenated organic fluids for heat transfer in low temperature processes requiring sterilization and methods therefor
CN1417527A (zh) * 2001-11-02 2003-05-14 量子能技术股份有限公司 改进的水加热器
JP2004316992A (ja) 2003-04-15 2004-11-11 Tlv Co Ltd 間接熱交換器
US7870891B2 (en) * 2004-05-29 2011-01-18 Kilr-Chilr, Llc Systems, devices and methods for regulating temperatures of tanks, containers and contents therein
JP4068108B2 (ja) * 2005-11-04 2008-03-26 大陽日酸株式会社 熱媒加熱冷却装置
CN2851175Y (zh) * 2005-11-23 2006-12-27 中国石油天然气股份有限公司 滩海油田温度、压力自控天然气加热储油罐装置
US7832466B2 (en) * 2006-11-29 2010-11-16 Abdullah Ahmad Al-Hashash Water supply system
KR100857551B1 (ko) 2007-03-07 2008-09-09 세메스 주식회사 액체 공급 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882912A (en) * 1988-10-12 1989-11-28 Container Design Limited Temperature controllable tank container
JPH09166375A (ja) * 1995-12-15 1997-06-24 Tlv Co Ltd 減圧加熱冷却装置
JP2001088894A (ja) * 1999-09-21 2001-04-03 Nihon Tetra Pak Kk タンク装置
JP2002320419A (ja) * 2001-04-26 2002-11-05 Rokko Engineering Co Ltd 冷却タンク
JP2009293844A (ja) * 2008-06-04 2009-12-17 Chugoku Electric Power Co Inc:The 高粘性液体燃料加温システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2559637A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233792B2 (en) 2012-11-02 2016-01-12 Trs Transportkoeling B.V. Tank container

Also Published As

Publication number Publication date
RU2564583C2 (ru) 2015-10-10
CN102985342B (zh) 2015-06-17
MX2012011683A (es) 2013-02-21
AU2011242003B2 (en) 2014-08-07
US20180326463A1 (en) 2018-11-15
CA2795434C (en) 2017-10-17
ES2642279T3 (es) 2017-11-16
KR20130055602A (ko) 2013-05-28
BR112012025924A2 (pt) 2016-06-28
US10562082B2 (en) 2020-02-18
US20160107208A1 (en) 2016-04-21
BR112012025924B1 (pt) 2019-11-19
CA2795434A1 (en) 2011-10-20
KR101821434B1 (ko) 2018-01-23
CN102985342A (zh) 2013-03-20
JP4707764B1 (ja) 2011-06-22
EP2559637A1 (en) 2013-02-20
RU2012148126A (ru) 2014-05-20
US9248480B2 (en) 2016-02-02
US10058903B2 (en) 2018-08-28
JP2011219148A (ja) 2011-11-04
EP2559637B1 (en) 2017-09-06
EP2559637A4 (en) 2015-07-01
AU2011242003A1 (en) 2012-10-25
US20130192684A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US10562082B2 (en) Method for contamination prevention in fluid storage tank requiring temperature control, and device therefor
US10252900B2 (en) Apparatuses, systems, and methods for dispensing beverages using alcoholic concentrates
US7901342B2 (en) Centrifugal separator with sterilizing apparatus
EP2683944B1 (en) Subsea motor-turbomachine
US20170009905A1 (en) Device for automatically filling fracking pump fuel tanks
US9908062B2 (en) Extraction apparatus and method
EP2289615A1 (en) High pressure treatment apparatus
US10365668B2 (en) Vapor control for storage tank with pump off unit
US9103190B2 (en) Inert gas supply equipment for oil and gas well operations
US20090266553A1 (en) Apparatus and method for preventing the penetration of seawater into a compressor module during lowering to or retrieval from the seabed
US20170097119A1 (en) Cryogenic tank with internal heat exchanger and fail-closed valve
CA2890974C (en) Method of supplying fluid to an electric submersible pump
US12005378B2 (en) System and method for separating parts of a liquid based on gas content
KR20190098950A (ko) 상용차용 스크루 압축기
US20210180751A1 (en) Portable, cryogenic fluid pump apparatus with associated instrumentation, conduit legs and accessories
EP3125680B1 (en) Bulk milk tank
GB2611219A (en) System for transferring solid food articles in liquid to and from a storage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019114.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2795434

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011768827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011768827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/011683

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011242003

Country of ref document: AU

Date of ref document: 20110411

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9470/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127029644

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012148126

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13641407

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025924

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012025924

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121010