WO2011129172A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2011129172A1
WO2011129172A1 PCT/JP2011/056078 JP2011056078W WO2011129172A1 WO 2011129172 A1 WO2011129172 A1 WO 2011129172A1 JP 2011056078 W JP2011056078 W JP 2011056078W WO 2011129172 A1 WO2011129172 A1 WO 2011129172A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
pair
light
emitting element
emitting device
Prior art date
Application number
PCT/JP2011/056078
Other languages
French (fr)
Japanese (ja)
Inventor
形部 浩介
草野 民男
裕樹 森
利弥 田中
常幸 平林
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2011129172A1 publication Critical patent/WO2011129172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a light emitting device including a light emitting element.
  • An object of the present invention is to improve the directivity of light extracted from a light-emitting device.
  • a light emitting device is provided across a substrate, a pair of electrode layers provided on the substrate with a space between each other, and both electrode layers of the pair of electrode layers, Each of the pair of electrode layers is provided so as to overlap with the pair of insulating sheets and the pair of insulating sheets provided to leave a part of each of the pair of electrode layers and to be spaced apart from each other.
  • a light emitting element electrically connected to a part of the light emitting element. Further, in the light emitting device, the upper surfaces of the pair of insulating sheets are in contact with the lower surfaces of the light emitting elements.
  • FIG. 5 is a cross-sectional view of the light emitting device along X-X ′ shown in FIG. 4.
  • the light emitting device 1 is provided across a substrate 2, a pair of electrode layers 3 provided on the substrate 2 with a space therebetween, and a pair of electrode layers 3.
  • a pair of insulating sheets 4 provided to be spaced apart from each other so as to cover a part 3A of both electrode layers 3 of the electrode layer 3, and a pair of insulating sheets 4 so as to overlap and be exposed.
  • a light emitting element 5 electrically connected to a part 3A of both electrode layers 3.
  • the light emitting element 5 is, for example, a light emitting diode, and is emitted as excitation light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.
  • the substrate 2 may be composed of a sintered body such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide, a ceramic material such as mullite or glass ceramic, or a composite material obtained by mixing a plurality of these materials. it can.
  • the substrate 2 can be made of a polymer resin in which metal oxide fine particles are dispersed.
  • the thermal conductivity of the substrate 2 is set to, for example, 1 [W / m ⁇ K] or more and 250 [W / m ⁇ K] or less.
  • the substrate 2 may be bonded with a reflecting plate made of a porous material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide so as to surround the light emitting element 5 on the upper surface thereof. Since the reflecting plate is made of a porous material, many fine holes are formed on the surface of the reflecting plate.
  • a reflecting plate made of a porous material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide so as to surround the light emitting element 5 on the upper surface thereof. Since the reflecting plate is made of a porous material, many fine holes are formed on the surface of the reflecting plate.
  • a pair of electrode layers 3 are formed on the substrate 2.
  • the electrode layer 3 is formed extending from one end side to the other end side of the upper surface of the substrate 2.
  • the pair of electrode layers 3 are spaced apart from each other and are electrically independent.
  • the electrode layer 3 is made of a conductive material such as tungsten, molybdenum, manganese, or copper.
  • the thermal conductivity of the electrode layer 3 is set to, for example, 100 [W / m ⁇ K] or more and 400 [W / m ⁇ K] or less.
  • the electrode layer 3 is provided symmetrically with respect to the center of the substrate 2 in plan view.
  • the heat concentrates on a specific location with respect to the substrate 2. Can be suppressed.
  • the stress concentration caused by the heat concentration on the substrate 2 can be alleviated, and the electrode layer 3 can be prevented from peeling off the substrate 2.
  • the electrode layer 3 is provided symmetrically with respect to the center of the substrate 2 in a plan view when the deviation width in the planar direction of both the electrode layers 3 with respect to the center of the substrate 2 in a plan view is 5 mm or less.
  • the thickness of the electrode layer 3 is set to, for example, 0.1 ⁇ m or more and 100 ⁇ m or less. And the difference of the thickness of both the electrode layers 3 is set to 50 micrometers or less, for example. By reducing the difference in thickness between the two electrode layers 3, the height position of the insulating sheet 4 formed on the two electrode layers 3 can be adjusted. Furthermore, the inclination at the time of mounting of the light emitting element 5 formed on the insulating sheet 4 can be adjusted.
  • a pair of insulating sheets 4 that are provided over both the electrode layers 3 and expose a part 3 ⁇ / b> A of both the electrode layers 3 are provided.
  • the pair of insulating sheets 4 are arranged symmetrically with respect to the exposed part 3A of both electrode layers 3.
  • the insulating sheets 4 are each formed in a rectangular shape in plan view. Note that the pair of insulating sheets 4 are arranged symmetrically with respect to the exposed part 3A when the two sheets 4 are arranged in a plan view of the two sheets 4 with respect to the center of the substrate 2 in plan view.
  • the deviation width is 5 mm or less.
  • the heat generated from the light emitting element 5 is transmitted to the electrode layer 3, and further the heat transmitted to the electrode layer 3 is transmitted to the insulating sheet 4.
  • the heat can be easily transmitted to the entire upper surface of the substrate 2 or the atmosphere via the heat transmitted to the insulating sheet 4.
  • the heat transmitted to the insulating sheet 4 can be transmitted to the entire substrate 2 and the temperature of the light emitting element 5 can be prevented from rising.
  • the insulating sheet 4 is formed from the upper surface of the electrode layer 3 to the upper surface of the substrate 2 through the side surface of the electrode layer 3.
  • the insulating sheet 4 has a function of suppressing peeling of the electrode layer 3.
  • the insulating sheet 4 is made of a material such as a ceramic material made of aluminum oxide or the like, a glass made of a light transmissive inorganic material, an epoxy resin made of a light transmissive organic material, an acrylic resin, or a silicon resin.
  • the thermal conductivity of the insulating sheet 4 is set to, for example, 1 [W / m ⁇ K] or more and 250 [W / m ⁇ K] or less.
  • the pair of insulating sheets 4 are set to the same size.
  • being set to the same size means a state in which the deviation width in the planar direction of both sheets 4 is 5 mm or less when viewed in plan, for example, the deviation width of both sheets 4 by overlapping both sheets 4. Can be measured.
  • both sheets are in contact with the light emitting element 5.
  • a part of the insulating sheet 4 is interposed between the electrode layer 3 and the light emitting element 5.
  • the insulating sheet 4 is interposed between the electrode layer 3 and the light emitting element 5, and the inclination of the light emitting element 5 can be adjusted by adjusting the thickness of the insulating sheet 4. As a result, the luminance of the light emitting device due to the inclination of the light emitting element 5 is controlled to a desired luminance.
  • the height position of the upper surface in contact with the light emitting element 5 is set to the same height position in both sheets.
  • the height position where the height position of the upper surface of a pair of insulating sheets 4 is the same means that the error of the height position of both sheets is 10 micrometers or less, for example.
  • the height position of the portion where one upper surface of the pair of insulating sheets 4 and the lower surface of the light emitting element 5 are in contact with each other becomes a pair of insulating sheets.
  • 4 can be set to have the same height position as the height position where the other upper surface of 4 contacts the lower surface of the light emitting element 5.
  • the light emitting element 5 when the error in the height position of the pair of insulating sheets 4 is large, the light emitting element 5 is mounted with a large inclination with respect to the upper surface of the insulating sheet 4.
  • the light emitting element 5 has a large intensity of light emitted in a direction perpendicular to the upper surface of the light emitting element 5 due to the characteristics of the optical semiconductor layer. On the other hand, it proceeds vertically. As a result, the light extracted from the light emitting device 1 cannot be extracted in a desired direction, and the directivity of the light extracted from the light emitting device 1 may be reduced.
  • the inclination of the light emitting element 5 with respect to the upper surface of the insulating sheet 4 can be suppressed, and the light emitted from the light emitting element 5 can be reduced. Can emit a lot of light in the vertical direction. As a result, the directivity of light extracted from the light emitting device 1 can be improved, and for example, in the residential lighting field, the light emitting device 1 that can illuminate a desired place brightly can be provided.
  • the insulating sheet 4 is preferably translucent to the light from the light emitting element 5 and the light from the wavelength conversion unit 6. Thereby, the light from the light emitting element 5 and the wavelength conversion unit 6 is reflected by the reflection characteristics of the upper surface of the substrate 2 without being absorbed by the insulating sheet 4. Is incident on the wavelength converter 6 and is converted by the wavelength converter 6. As a result, the light emitting device 1 can maintain a desired light output.
  • the electrode layer 3 may be formed so that the reflectance is different between the portion where the insulating sheet 4 is provided and the part 3A of both electrode layers 3 exposed without the insulating sheet 4 being provided.
  • the electrode layer 3 is formed by electrically connecting and fixing the light emitting element 5 to the substrate 2, for example, a portion where the conductive material E such as solder or brazing material is disposed and a portion where the conductive material E is not disposed.
  • the light emitting element 5 is mounted on a part 3A of the electrode layer 3 through a conductive material E having wettability such as solder or brazing material.
  • the light emitting element 5 is electrically connected to the pair of electrode layers 3.
  • the conductive material having wettability refers to a material in which the contact angle of the conductive material deposited on the upper surface of the electrode layer 3 with respect to the upper surface of the electrode layer 3 is 15 ° to 50 °.
  • connection portion R between the lower surface of the light emitting element 5 and a part 3A of the electrode layer 3.
  • the connection portion R shows a state in which a conductive material E having wettability such as solder or brazing material has spread.
  • the pair of insulating sheets 4 exposes part 3 ⁇ / b> A of the pair of electrode layers 3.
  • the surface of the pair of electrode layers 3 adjacent to the part 3 ⁇ / b> A is covered with an insulating sheet 4.
  • the insulating sheet 4 can prevent the conductive material E such as solder or brazing material from spreading on the surface of the electrode layer 3 covered with the insulating sheet 4.
  • the thickness of the conductive material E such as solder or brazing material formed at the connection location R can be adjusted.
  • the light emitting element 5 is mounted across the pair of insulating sheets 4 via the conductive material E wetted and spread at the connection location R. And the directivity of the excitation light which the light emitting element 5 emits can be adjusted, Furthermore, the direction of the light taken out outside can also be adjusted.
  • the conductive material E leaks and spreads on the pair of electrode layers 3, and the thickness of the conductive material E is adjusted so as to correspond to the thickness of the insulating sheet 4. Can be electrically connected.
  • the light emitting element 5 has a translucent base and an optical semiconductor layer formed on the translucent base.
  • the translucent substrate may be any substrate that can grow an optical semiconductor layer using a chemical vapor deposition method such as a metal organic chemical vapor deposition method or a molecular beam epitaxial growth method.
  • a material used for the light-transmitting substrate for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, silicon carbide, silicon, or zirconium diboride can be used.
  • substrate is 50 micrometers or more and 1000 micrometers or less, for example.
  • the optical semiconductor layer includes a first semiconductor layer formed on the translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer. .
  • the first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphide or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride, or indium nitride.
  • a physical semiconductor or the like can be used.
  • the thickness of the first semiconductor layer is, for example, 1 ⁇ m to 5 ⁇ m
  • the thickness of the light emitting layer is, for example, 25 nm to 150 nm
  • the thickness of the second semiconductor layer is, for example, 50 nm to 600 nm.
  • an element that emits excitation light in a wavelength range of, for example, 370 nm to 420 nm can be used.
  • the light-emitting element 5 is provided so as to overlap from one side of the pair of electrode layers 3 to the other when seen in a plan view. Part of the heat generated by the light emitting element 5 together with the excitation light is transmitted to the insulating sheet 4 and the substrate 2 through the electrode layer 3. Since the light emitting element 5 is widely provided over both electrode layers 3, heat generated by the light emitting element 5 can be transmitted to both electrode layers 3. Then, the heat generated by the light emitting element 5 can be easily transmitted to the entire surface of the substrate 2, the heat is prevented from being concentrated on a part of the substrate 2, and the light emitting element 5 is peeled off from the substrate 2 or cracked in the substrate 2. Can be effectively suppressed.
  • the insulating sheet 4 is provided so as to overlap from one to the other of the pair of electrode layers 3, so that the temperature transmitted to each of the pair of electrode layers 3 can be shared by both through the insulating sheet 4.
  • the temperature difference between the two can be reduced.
  • the temperature distribution difference on the upper surface of the substrate 2 can be suppressed, and it is possible to reduce each layer on the substrate 2 from being peeled due to thermal stress.
  • the occurrence of cracks in the substrate 2 can be suppressed.
  • the wavelength converter 6 is provided on the substrate 2 so as to cover the insulating sheet 4 and the light emitting element 5.
  • the wavelength conversion unit 6 has a function of emitting visible light having a wavelength longer than that of the excitation light due to the excitation light emitted from the light emitting element 5.
  • the wavelength conversion unit 6 is made of, for example, a silicon resin, an acrylic resin, an epoxy resin, or the like, and a blue phosphor that emits fluorescence of, for example, 430 nm or more and 490 nm or less, for example, green fluorescence that emits fluorescence of 500 nm or more and 560 nm or less.
  • Body for example, a phosphor 7 such as a yellow phosphor that emits fluorescence of 540 nm to 600 nm, for example, a red phosphor that emits fluorescence of 590 nm to 700 nm.
  • the phosphor 7 is uniformly dispersed in the wavelength conversion unit 6.
  • the wavelength conversion unit 6 is designed so as to have a dome shape on the substrate 2 by dropping a material constituting the wavelength conversion unit 6 on the upper surface of the substrate 2 by using, for example, a potting method.
  • the thickness of the wavelength conversion unit 6 is set to, for example, 1 mm or more and 10 mm or less, and is set to have the largest thickness immediately above the light emitting element 5.
  • the amount of excitation of the phosphor in the wavelength conversion unit 6 is adjusted to be substantially uniform over the entire surface of the wavelength conversion unit 6 in plan view. And the uniformity of the light taken out from the wavelength conversion part 6 can be improved by irradiating the whole wavelength conversion part 6 with the excitation light which the light emitting element 5 emits.
  • the light emitting element In the development of light emitting devices, it is required to improve the directivity of light emitted from the light emitting devices and extract light in the desired direction. If the light emitting element is mounted on the mounting surface with the light emitting element tilted with respect to the mounting surface, light is emitted in an unintended direction depending on the magnitude of the tilt.
  • the present embodiment it is possible to provide a light emitting device that can adjust the inclination angle of the light emitting element 5 with respect to the substrate 2 and can improve the directivity of light extracted from the light emitting element 5.
  • the substrate 2 is prepared.
  • the substrate 2 is made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the aluminum oxide raw material powder, and the mixture is made into a sheet and dried before sintering.
  • the substrate 2 is formed.
  • a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the powder to obtain a metal paste.
  • the pattern used as a pair of electrode layer 3 is printed with respect to the board
  • an organic binder, a plasticizer is applied to the aluminum oxide raw material powder by using, for example, a screen printing method so that a part 3 ⁇ / b> A of the electrode layer 3 is exposed on the pair of electrode layers 3.
  • an insulating paste mixed with a solvent or the like is applied and fired to form the substrate 2 made of a sintered body.
  • the insulating sheet 4 can be formed by, for example, adding and mixing an organic binder, a plasticizer, a solvent, or the like to glass powder containing silicon oxide as a main raw material, and using a screen printing method.
  • the insulating sheet 4 is provided across both electrode layers 3 of a pair of electrode layers provided on the substrate 2 at a distance from each other by screen printing, and a part of each of the pair of electrode layers 3. It can be formed on the substrate 2 by being coated and fired so as to be provided with a gap between them.
  • the light emitting element 5 is made of a conductive material made of, for example, gold-tin. To implement through. Then, the light emitting element 5 and the pair of electrode layers 3 are electrically connected through a conductive material.
  • the wavelength conversion unit 6 uses a mixture of an uncured resin and a phosphor 7. And the material which comprises the wavelength conversion part 6 is dripped using the potting method from upper direction toward the downward direction with respect to the light emitting element 5 of the board
  • ⁇ Modification> 10 to 12 are schematic perspective views of the light emitting device 1 according to a modification. Note that, in the light emitting device 1 according to the modification of the present embodiment, the same portions as those of the light emitting device 1 according to the present embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the end portions of the pair of electrode layers 3 are covered with the insulating sheet 4, but the present invention is not limited thereto.
  • the insulating sheet 4 may be provided so as to expose the ends of the pair of electrode layers 3.
  • productivity can be improved when a mother substrate from which a plurality of substrates 2 can be taken out is used.
  • a mother substrate from which a plurality of substrates 2 can be taken out is used.
  • a plurality of pairs of electrode layers 3 are formed on a mother substrate.
  • a plurality of insulating sheets 4 are arranged on the mother substrate.
  • the insulating sheet 4 is set to a size that fits in each substrate 2 and is arranged on the mother substrate.
  • the insulating sheet 4 does not contact the blade of the blade, and the possibility that the insulating sheet 4 is peeled off from the substrate 2 when the mother substrate is cut can be reduced, and the productivity of the light emitting device 1 can be improved. it can.
  • the end face of the electrode layer 3 formed on the substrate 2 And the end surface of the insulating sheet 4 can be coat
  • moisture in the operating environment of the light emitting device 1 can be prevented from reaching the end surface of the electrode layer 3 and the end surface of the insulating sheet 4 located on the substrate 2 from the outside, and the bonding strength to the substrate 2 can be improved.
  • peeling of the electrode layer 3 and the insulating sheet 4 from the substrate 2 due to the stress generated by the heat from the light emitting element 5 can be suppressed.
  • the light emitting device 1 has the operational effect of being able to operate normally over a long period of time due to suppression of malfunctions and long-term reliability degradation due to moisture in the operating environment and heat from the light emitting element 5.
  • the upper surfaces of the pair of insulating sheets 4 are formed flat, but the present invention is not limited thereto.
  • the upper surfaces of the pair of insulating sheets 4a may not be flat.
  • the pair of insulating sheets 4a are positioned such that the height position of the region overlapping the pair of electrode layers 3 in plan view is higher than the height position of the region not overlapping the pair of electrode layers 3 in plan view. Further, in the light emitting element 4, the portion protruding above the upper surface of the insulating sheet 4 is in contact with the lower surface of the light emitting element 5. At this time, since the region of the pair of insulating sheets 4a that protrudes from the pair of electrode layers 3 protrudes upward, two protrusions are formed on one of the pair of insulating sheets 4a, and the other of the pair of insulating sheets 4a also has two protrusions. Two ledges are formed.
  • the four protrusions of the pair of insulating sheets 4 a support the four places on the lower surface of the light emitting element 5. It is possible to prevent the light emitting element 5 from being inclined with respect to the upper surface of the substrate 2 by contacting the four portions on the lower surface of the light emitting element 5 with the insulating sheet 4a.
  • the lower surface of the light emitting element 5 is in contact with the upper surface of the pair of insulating sheets 4a and a region where the pair of insulating sheets 4a and the pair of electrode layers 3 overlap in plan view.
  • the light traveling downward is reflected by the electrode layer 3 and travels upward.
  • a large amount of light emitted from the light emitting element 5 can be emitted in a direction perpendicular to the upper surface of the insulating sheet 4a.
  • the directivity of light extracted from the light emitting device 1 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Disclosed is a light emitting device (1) which is provided with: a substrate (2); a pair of electrode layers (3), which are provided on the substrate (2) by being spaced apart from each other; a pair of insulating sheets (4), which are provided over both the electrode layers (3) by being spaced apart from each other, and which cover the electrode layers (3) by leaving respective parts thereof uncovered; and a light emitting element (5), which is provided over the insulating sheets (4) such that the light emitting element overlaps the insulating sheets, and which is electrically connected to respective parts of the electrode layers (3). Furthermore, in the light emitting device (1), the upper surfaces of the insulating sheets (4) and the lower surface of the light emitting element (5) are in contact with each other.

Description

発光装置Light emitting device
 本発明は、発光素子を含む発光装置に関するものである。 The present invention relates to a light emitting device including a light emitting element.
 近年、発光素子を有する発光装置の開発が進められている(例えば、特開2007-201171号公報)。当該発光装置は、消費電力または製品寿命に関して注目されている。発光装置の開発において、例えば住宅用照明分野などにおいて、光の指向性を向上させることが求められている。本発明は、発光装置から取り出される光の指向性を良好にすることを目的とする。 In recent years, development of a light-emitting device having a light-emitting element has been advanced (for example, Japanese Patent Application Laid-Open No. 2007-201171). The light-emitting device has attracted attention with respect to power consumption or product life. In the development of light emitting devices, for example, in the field of residential lighting, it is required to improve the directivity of light. An object of the present invention is to improve the directivity of light extracted from a light-emitting device.
 本発明の一実施形態に係る発光装置は、基板と、前記基板上に相互に間隔を空けて設けられた一対の電極層と、前記一対の電極層の両電極層に渡って設けられ、前記一対の電極層のそれぞれの一部を残して覆うとともに相互に間隔を空けて設けられた一対の絶縁シートと、前記一対の絶縁シートに渡って重なるように設けられ、前記一対の電極層のそれぞれの一部と電気的に接続された発光素子と、を備えている。さらに、発光装置は、一対の絶縁シートのそれぞれの上面と前記発光素子の下面とが接している。 A light emitting device according to an embodiment of the present invention is provided across a substrate, a pair of electrode layers provided on the substrate with a space between each other, and both electrode layers of the pair of electrode layers, Each of the pair of electrode layers is provided so as to overlap with the pair of insulating sheets and the pair of insulating sheets provided to leave a part of each of the pair of electrode layers and to be spaced apart from each other. A light emitting element electrically connected to a part of the light emitting element. Further, in the light emitting device, the upper surfaces of the pair of insulating sheets are in contact with the lower surfaces of the light emitting elements.
本実施形態に係る発光装置の概観斜視図であって、波長変換部を取り除いた状態を示す。It is a general-view perspective view of the light-emitting device which concerns on this embodiment, Comprising: The state which removed the wavelength conversion part is shown. 本実施形態に係る発光装置の概観斜視図であって、発光素子および波長変換部を取り除いた状態を示す。It is a general | schematic perspective view of the light-emitting device which concerns on this embodiment, Comprising: The state which removed the light emitting element and the wavelength conversion part is shown. 本実施形態に係る発光装置の概観斜視図であって、発光素子を透過させた状態を示す。It is an outline perspective view of the light emitting device concerning this embodiment, and shows the state where the light emitting element was permeated. 本実施形態に係る発光装置の平面図であって、発光素子を透過させた状態を示す。It is a top view of the light-emitting device which concerns on this embodiment, Comprising: The state which permeate | transmitted the light emitting element is shown. 図4に示すX-X’に沿った発光装置の断面図である。FIG. 5 is a cross-sectional view of the light emitting device along X-X ′ shown in FIG. 4. 本実施形態に係る発光装置の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the light-emitting device concerning this embodiment. 本実施形態に係る発光装置の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the light-emitting device concerning this embodiment. 本実施形態に係る発光装置の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the light-emitting device concerning this embodiment. 本実施形態に係る発光装置の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the light-emitting device concerning this embodiment. 一変形例に係る発光装置の概観斜視図であって、波長変換部を取り除いた状態を示す。It is an external appearance perspective view of the light-emitting device which concerns on one modification, Comprising: The state which removed the wavelength conversion part is shown. 一変形例に係る発光装置の概観斜視図であって、波長変換部を取り除いた状態を示す。It is an external appearance perspective view of the light-emitting device which concerns on one modification, Comprising: The state which removed the wavelength conversion part is shown. 一変形例に係る発光装置の概観斜視図であって、発光素子および波長変換部を取り除いた状態を示す。It is a general | schematic perspective view of the light-emitting device which concerns on one modification, Comprising: The state which remove | eliminated the light emitting element and the wavelength conversion part is shown.
 以下に添付図面を参照して、本発明にかかる発光装置の実施形態を説明する。なお、本発明は以下の実施形態に限定されないものとする。 Embodiments of a light emitting device according to the present invention will be described below with reference to the accompanying drawings. In addition, this invention shall not be limited to the following embodiment.
  <発光装置の構成>
 本実施形態に係る発光装置1は、基板2と、基板2上に相互に間隔を空けて設けられた一対の電極層3と、一対の電極層3の両電極層に渡って設けられ、一対の電極層3の両電極層の一部3Aを残して覆うように相互に間隔を空けて設けられた一対の絶縁シート4と、一対の絶縁シート4に渡って重なるように設けられ、露出する両電極層3の一部3Aと電気的に接続された発光素子5と、を含んでいる。なお、発光素子5は、例えば、発光ダイオードであって、半導体を用いたpn接合中の電子と正孔が再結合することによって、外部に向かって励起光として放出される。
<Configuration of light emitting device>
The light emitting device 1 according to the present embodiment is provided across a substrate 2, a pair of electrode layers 3 provided on the substrate 2 with a space therebetween, and a pair of electrode layers 3. A pair of insulating sheets 4 provided to be spaced apart from each other so as to cover a part 3A of both electrode layers 3 of the electrode layer 3, and a pair of insulating sheets 4 so as to overlap and be exposed. And a light emitting element 5 electrically connected to a part 3A of both electrode layers 3. The light emitting element 5 is, for example, a light emitting diode, and is emitted as excitation light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.
 基板2は、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等の焼結体、ムライトまたはガラスセラミック等のセラミック材料、あるいはこれらの材料のうち複数の材料を混合した複合系材料から構成することができる。また、基板2は、金属酸化物微粒子を分散させた高分子樹脂を用いることができる。なお、基板2の熱伝導率は、例えば1[W/m・K]以上250[W/m・K]以下に設定されている。 The substrate 2 may be composed of a sintered body such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide, a ceramic material such as mullite or glass ceramic, or a composite material obtained by mixing a plurality of these materials. it can. The substrate 2 can be made of a polymer resin in which metal oxide fine particles are dispersed. The thermal conductivity of the substrate 2 is set to, for example, 1 [W / m · K] or more and 250 [W / m · K] or less.
 また、基板2は、その上面に発光素子5を取り囲むように、例えば酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等の多孔質材料からなる反射板が接着されてもよい。反射板は多孔質材料からなるため、反射板の表面は微細な孔が多数形成される。 Further, the substrate 2 may be bonded with a reflecting plate made of a porous material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide so as to surround the light emitting element 5 on the upper surface thereof. Since the reflecting plate is made of a porous material, many fine holes are formed on the surface of the reflecting plate.
 基板2上には、一対の電極層3が形成されている。電極層3は、基板2の上面の一端側から他端側に向かって延在して形成される。一対の電極層3は、それぞれ間を空けて離間して配置されており、電気的には独立している。電極層3は、例えばタングステン、モリブデン、マンガンまたは銅等の導電材料からなる。なお、電極層3の熱伝導率は、例えば100[W/m・K]以上400[W/m・K]以下に設定されている。 A pair of electrode layers 3 are formed on the substrate 2. The electrode layer 3 is formed extending from one end side to the other end side of the upper surface of the substrate 2. The pair of electrode layers 3 are spaced apart from each other and are electrically independent. The electrode layer 3 is made of a conductive material such as tungsten, molybdenum, manganese, or copper. The thermal conductivity of the electrode layer 3 is set to, for example, 100 [W / m · K] or more and 400 [W / m · K] or less.
 また、電極層3は、平面視して基板2の中心に対して対称に設けられ、電極層3に外部から熱が伝熱したときに、基板2に対して特定箇所に熱が集中するのを抑制することができる。その結果、基板2に対して熱が集中することによって生じる応力集中を緩和することができ、基板2に対して電極層3が剥離するのを抑制することができる。なお、電極層3が、平面視して基板2の中心に対して対称に設けられるとは、平面視して基板2の中心に対する両電極層3の平面方向のずれ幅が、5mm以下の状態をいう。 The electrode layer 3 is provided symmetrically with respect to the center of the substrate 2 in plan view. When heat is transferred from the outside to the electrode layer 3, the heat concentrates on a specific location with respect to the substrate 2. Can be suppressed. As a result, the stress concentration caused by the heat concentration on the substrate 2 can be alleviated, and the electrode layer 3 can be prevented from peeling off the substrate 2. Note that the electrode layer 3 is provided symmetrically with respect to the center of the substrate 2 in a plan view when the deviation width in the planar direction of both the electrode layers 3 with respect to the center of the substrate 2 in a plan view is 5 mm or less. Say.
 電極層3の厚みは、例えば0.1μm以上100μm以下に設定されている。そして、両電極層3の厚みの差は、例えば50μm以下に設定されている。両電極層3の厚みの差を小さくすることで、両電極層3上に形成される絶縁シート4の高さ位置を調整することができる。さらには、絶縁シート4上に形成される発光素子5の実装時の傾きを調整することができる。 The thickness of the electrode layer 3 is set to, for example, 0.1 μm or more and 100 μm or less. And the difference of the thickness of both the electrode layers 3 is set to 50 micrometers or less, for example. By reducing the difference in thickness between the two electrode layers 3, the height position of the insulating sheet 4 formed on the two electrode layers 3 can be adjusted. Furthermore, the inclination at the time of mounting of the light emitting element 5 formed on the insulating sheet 4 can be adjusted.
 一対の電極層3上には、両電極層3に渡って設けられ、両電極層3の一部3Aを露出する一対の絶縁シート4が設けられている。一対の絶縁シート4は、露出する両電極層3の一部3Aに対して、対称に配置されている。なお、絶縁シート4は、平面視してそれぞれ矩形状に形成されている。なお、一対の絶縁シート4が、露出する一部3Aに対して対称に配置されるとは、両シート4を配置したときに、平面視して基板2の中心に対する両シート4の平面方向のずれ幅が、5mm以下の状態をいう。 On the pair of electrode layers 3, a pair of insulating sheets 4 that are provided over both the electrode layers 3 and expose a part 3 </ b> A of both the electrode layers 3 are provided. The pair of insulating sheets 4 are arranged symmetrically with respect to the exposed part 3A of both electrode layers 3. The insulating sheets 4 are each formed in a rectangular shape in plan view. Note that the pair of insulating sheets 4 are arranged symmetrically with respect to the exposed part 3A when the two sheets 4 are arranged in a plan view of the two sheets 4 with respect to the center of the substrate 2 in plan view. The deviation width is 5 mm or less.
 発光素子5から発生する熱は電極層3に伝わり、さらに電極層3に伝わる熱が絶縁シート4に伝わる。一対の絶縁シート4を電極層3の一部3Aに対して対称に配置することで、絶縁シート4に伝わる熱を介して基板2の上面全体または大気中に伝わりやすくすることができる。その結果、絶縁シート4に伝わった熱を基板2全体に伝え、発光素子5の温度が上昇するのを抑制することができる。 The heat generated from the light emitting element 5 is transmitted to the electrode layer 3, and further the heat transmitted to the electrode layer 3 is transmitted to the insulating sheet 4. By arranging the pair of insulating sheets 4 symmetrically with respect to the part 3 </ b> A of the electrode layer 3, the heat can be easily transmitted to the entire upper surface of the substrate 2 or the atmosphere via the heat transmitted to the insulating sheet 4. As a result, the heat transmitted to the insulating sheet 4 can be transmitted to the entire substrate 2 and the temperature of the light emitting element 5 can be prevented from rising.
 電極層3の端部の一部は、絶縁シート4によって被覆されている。絶縁シート4は、電極層3の上面から電極層3の側面を介して基板2の上面にまで形成される。絶縁シート4は、電極層3の剥離を抑制する機能を備えている。絶縁シート4が電極層3の端部を被覆することにより、電極層3の端部が基板2から剥がれるのを抑制することができる。なお、絶縁シート4は、例えば酸化アルミニウム等からなるセラミックス材料、透光性の無機材料から成るガラス、透光性の有機材料から成るエポキシ樹脂、アクリル樹脂またはシリコン樹脂等の材料からなる。絶縁シート4の熱伝導率は、例えば1[W/m・K]以上250[W/m・K]以下に設定されている。なお、一対の絶縁シート4は、同じ大きさに設定される。ここで、同じ大きさに設定されているとは、平面視したときに両シート4の平面方向のずれ幅が5mm以下の状態をいい、例えば両シート4を重ね合わせて両シート4のずれ幅を計測することができる。 A part of the end of the electrode layer 3 is covered with an insulating sheet 4. The insulating sheet 4 is formed from the upper surface of the electrode layer 3 to the upper surface of the substrate 2 through the side surface of the electrode layer 3. The insulating sheet 4 has a function of suppressing peeling of the electrode layer 3. By covering the end portion of the electrode layer 3 with the insulating sheet 4, it is possible to prevent the end portion of the electrode layer 3 from peeling off from the substrate 2. The insulating sheet 4 is made of a material such as a ceramic material made of aluminum oxide or the like, a glass made of a light transmissive inorganic material, an epoxy resin made of a light transmissive organic material, an acrylic resin, or a silicon resin. The thermal conductivity of the insulating sheet 4 is set to, for example, 1 [W / m · K] or more and 250 [W / m · K] or less. The pair of insulating sheets 4 are set to the same size. Here, being set to the same size means a state in which the deviation width in the planar direction of both sheets 4 is 5 mm or less when viewed in plan, for example, the deviation width of both sheets 4 by overlapping both sheets 4. Can be measured.
 一対の絶縁シート4は、両シートのそれぞれが発光素子5と接している。絶縁シート4の一部は、電極層3と発光素子5との間に介在されている。絶縁シート4が電極層3と発光素子5との間に介在され、絶縁シート4の厚みを調整することで、発光素子5の傾きを調整することができる。その結果、発光素子5の傾きに起因する発光装置の輝度は、所望の輝度に制御される。 In the pair of insulating sheets 4, both sheets are in contact with the light emitting element 5. A part of the insulating sheet 4 is interposed between the electrode layer 3 and the light emitting element 5. The insulating sheet 4 is interposed between the electrode layer 3 and the light emitting element 5, and the inclination of the light emitting element 5 can be adjusted by adjusting the thickness of the insulating sheet 4. As a result, the luminance of the light emitting device due to the inclination of the light emitting element 5 is controlled to a desired luminance.
 絶縁シート4は、発光素子5と接する上面の高さ位置が、両シートとも同じ高さ位置に設定されている。なお、一対の絶縁シート4の上面の高さ位置が同じ高さ位置とは、両シートの高さ位置の誤差が例えば10μm以下のことをいう。その結果、発光素子5の傾きに起因する発光装置の輝度は、基板2の上面に対する垂直方向において最大とされる。 In the insulating sheet 4, the height position of the upper surface in contact with the light emitting element 5 is set to the same height position in both sheets. In addition, the height position where the height position of the upper surface of a pair of insulating sheets 4 is the same means that the error of the height position of both sheets is 10 micrometers or less, for example. As a result, the luminance of the light emitting device due to the inclination of the light emitting element 5 is maximized in the direction perpendicular to the upper surface of the substrate 2.
 一対の絶縁シート4の高さ位置の誤差を例えば10μm以下と小さくすることで、一対の絶縁シート4の一方の上面と発光素子5の下面との接する個所の高さ位置が、一対の絶縁シート4の他方の上面と発光素子5の下面との接する個所の高さ位置と同じ高さ位置となるように設定することができる。 By reducing the error of the height position of the pair of insulating sheets 4 to, for example, 10 μm or less, the height position of the portion where one upper surface of the pair of insulating sheets 4 and the lower surface of the light emitting element 5 are in contact with each other becomes a pair of insulating sheets. 4 can be set to have the same height position as the height position where the other upper surface of 4 contacts the lower surface of the light emitting element 5.
 仮に、一対の絶縁シート4の高さ位置の誤差が大きい場合は、発光素子5が絶縁シート4の上面に対して大きく傾いて実装される。発光素子5は、光半導体層の特性上、発光素子5の上面に対して垂直方向に発せられる光の強度が大きいため、発光素子5が発する光の多くが、絶縁シート4の傾斜した面に対して垂直方向に進行する。その結果、発光装置1から取り出される光を所望する方向に向かって取り出すことができず、発光装置1から取り出される光の指向性が低下する虞がある。 Temporarily, when the error in the height position of the pair of insulating sheets 4 is large, the light emitting element 5 is mounted with a large inclination with respect to the upper surface of the insulating sheet 4. The light emitting element 5 has a large intensity of light emitted in a direction perpendicular to the upper surface of the light emitting element 5 due to the characteristics of the optical semiconductor layer. On the other hand, it proceeds vertically. As a result, the light extracted from the light emitting device 1 cannot be extracted in a desired direction, and the directivity of the light extracted from the light emitting device 1 may be reduced.
 そこで、一対の絶縁シート4の高さ位置の誤差を小さくすることで、発光素子5の絶縁シート4の上面に対する傾きを抑制することができ、発光素子5から発せられる光を絶縁シート4の上面に対して垂直方向に多くの光を発することができる。その結果、発光装置1から取り出される光の指向性を良好にすることができ、例えば住宅照明分野においては所望する個所を明るく照らすことができる発光装置1を提供することができる。 Therefore, by reducing the error in the height position of the pair of insulating sheets 4, the inclination of the light emitting element 5 with respect to the upper surface of the insulating sheet 4 can be suppressed, and the light emitted from the light emitting element 5 can be reduced. Can emit a lot of light in the vertical direction. As a result, the directivity of light extracted from the light emitting device 1 can be improved, and for example, in the residential lighting field, the light emitting device 1 that can illuminate a desired place brightly can be provided.
 一対の絶縁シート4の上面の高さ位置を合わせ、両シートに跨って発光素子5を実装する。両シートの高さ位置が一致していることで、発光素子5の実装される高さ位置を調整することができ、発光素子5の下面を基板2の上面に対して平行に設定することができる。その結果、発光素子5の発する励起光の指向性を調整することができ、さらには、発光装置1の外部に取り出される光の方向も調整することができる。 Align the height position of the upper surface of the pair of insulating sheets 4 and mount the light emitting element 5 across both sheets. Since the height positions of both sheets coincide, the height position where the light emitting element 5 is mounted can be adjusted, and the lower surface of the light emitting element 5 can be set parallel to the upper surface of the substrate 2. it can. As a result, the directivity of the excitation light emitted from the light emitting element 5 can be adjusted, and further, the direction of the light extracted outside the light emitting device 1 can also be adjusted.
 また、絶縁シート4は、発光素子5からの光や波長変換部6からの光に対し、透光性であることが好ましい。これにより、発光素子5や波長変換部6からの光は、絶縁シート4で光吸収されることなく、基板2上面の反射特性に従って反射されることから、発光素子4から所望の光のエネルギー量が波長変換部6へ入射され、波長変換部6によって波長変換される。その結果、発光装置1は、所望の光出力を維持することができる。 The insulating sheet 4 is preferably translucent to the light from the light emitting element 5 and the light from the wavelength conversion unit 6. Thereby, the light from the light emitting element 5 and the wavelength conversion unit 6 is reflected by the reflection characteristics of the upper surface of the substrate 2 without being absorbed by the insulating sheet 4. Is incident on the wavelength converter 6 and is converted by the wavelength converter 6. As a result, the light emitting device 1 can maintain a desired light output.
 さらに、電極層3は、絶縁シート4が設けられ部位と、絶縁シート4が設けられずに露出する両電極層3の一部3Aとの反射率が異なるように形成されてもよい。その結果、電極層3は、発光素子5を基板2に電気的に接続して固定する、例えば半田またはロー材等の導電材料Eが配置される部位と、導電材料Eが配置されない部位との視認性が向上することにより、発光素子5や導電材料Eを自動機等によって正確な部位に設置することができ、発光装置1を作製する際の歩留まりを向上することができる。 Furthermore, the electrode layer 3 may be formed so that the reflectance is different between the portion where the insulating sheet 4 is provided and the part 3A of both electrode layers 3 exposed without the insulating sheet 4 being provided. As a result, the electrode layer 3 is formed by electrically connecting and fixing the light emitting element 5 to the substrate 2, for example, a portion where the conductive material E such as solder or brazing material is disposed and a portion where the conductive material E is not disposed. By improving the visibility, the light emitting element 5 and the conductive material E can be installed in an accurate part by an automatic machine or the like, and the yield when the light emitting device 1 is manufactured can be improved.
 発光素子5は、例えば半田またはろう材等の濡れ性を有する導電材料Eを介して電極層3の一部3Aに実装される。そして、発光素子5は、一対の電極層3と電気的に接続される。なお、ここで濡れ性を有する導電材料とは、電極層3の上面に被着した導電材料の電極層3の上面に対する接触角が、15°以上50°以下になる材料をいう。 The light emitting element 5 is mounted on a part 3A of the electrode layer 3 through a conductive material E having wettability such as solder or brazing material. The light emitting element 5 is electrically connected to the pair of electrode layers 3. Here, the conductive material having wettability refers to a material in which the contact angle of the conductive material deposited on the upper surface of the electrode layer 3 with respect to the upper surface of the electrode layer 3 is 15 ° to 50 °.
 図3および図4に示すハッチング部分は、発光素子5の下面と電極層3の一部3Aとの接続箇所Rを示している。接続箇所Rは、半田またはろう材等の濡れ性を備えた導電材料Eが濡れ広がった状態を示している。一対の絶縁シート4は、一対の電極層3の一部3Aを露出している。一部3Aと隣接する一対の電極層3の表面は、絶縁シート4によって被覆されている。絶縁シート4は、絶縁シート4にて被覆された電極層3の表面に、半田またはろう材等の導電材料Eが濡れ広がるのを抑制することができる。その結果、接続箇所Rに形成される半田またはろう材等の導電材料Eの厚みを調整することができる。また、発光素子5は、接続箇所Rに濡れ広がった導電材料Eを介して一対の絶縁シート4に跨って実装される。そして、発光素子5の発する励起光の指向性を調整することができ、さらには、外部に取り出す光の方向も調整することができる。 The hatched portions shown in FIG. 3 and FIG. 4 indicate a connection portion R between the lower surface of the light emitting element 5 and a part 3A of the electrode layer 3. The connection portion R shows a state in which a conductive material E having wettability such as solder or brazing material has spread. The pair of insulating sheets 4 exposes part 3 </ b> A of the pair of electrode layers 3. The surface of the pair of electrode layers 3 adjacent to the part 3 </ b> A is covered with an insulating sheet 4. The insulating sheet 4 can prevent the conductive material E such as solder or brazing material from spreading on the surface of the electrode layer 3 covered with the insulating sheet 4. As a result, the thickness of the conductive material E such as solder or brazing material formed at the connection location R can be adjusted. Further, the light emitting element 5 is mounted across the pair of insulating sheets 4 via the conductive material E wetted and spread at the connection location R. And the directivity of the excitation light which the light emitting element 5 emits can be adjusted, Furthermore, the direction of the light taken out outside can also be adjusted.
 発光素子5の下面は、絶縁シート4の上面の高さ位置に合わさるため、発光素子5の下面と一対の電極層3の上面との間には、絶縁シート4の厚み分の間が空く。そこで、導電材料Eを一対の電極層3上に漏れ広がるようにして、導電材料Eの厚みを絶縁シート4の厚みに対応するように調整することで、発光素子5と一対の電極層3とが電気的に接続することができる。 Since the lower surface of the light emitting element 5 is aligned with the height position of the upper surface of the insulating sheet 4, there is a gap between the lower surface of the light emitting element 5 and the upper surfaces of the pair of electrode layers 3 by the thickness of the insulating sheet 4. Therefore, the conductive material E leaks and spreads on the pair of electrode layers 3, and the thickness of the conductive material E is adjusted so as to correspond to the thickness of the insulating sheet 4. Can be electrically connected.
 発光素子5は、透光性基体と、透光性基体上に形成される光半導体層とを有している。透光性基体は、有機金属気相成長法または分子線エピタキシャル成長法等の化学気相成長法を用いて、光半導体層を成長させることが可能なものであればよい。透光性基体に用いられる材料としては、例えばサファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウム等を用いることができる。なお、透光性基体の厚みは、例えば50μm以上1000μm以下である。 The light emitting element 5 has a translucent base and an optical semiconductor layer formed on the translucent base. The translucent substrate may be any substrate that can grow an optical semiconductor layer using a chemical vapor deposition method such as a metal organic chemical vapor deposition method or a molecular beam epitaxial growth method. As a material used for the light-transmitting substrate, for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, silicon carbide, silicon, or zirconium diboride can be used. In addition, the thickness of a translucent base | substrate is 50 micrometers or more and 1000 micrometers or less, for example.
 光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層とから構成されている。 The optical semiconductor layer includes a first semiconductor layer formed on the translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer. .
 第1半導体層、発光層および第2半導体層は、例えば、III族窒化物半導体、ガリウム燐またはガリウムヒ素等のIII-V族半導体、あるいは、窒化ガリウム、窒化アルミニウムまたは窒化インジウム等のIII族窒化物半導体などを用いることができる。なお、第1半導体層の厚みは、例えば1μm以上5μm以下であって、発光層の厚みは、例えば25nm以上150nm以下であって、第2半導体層の厚みは、例えば50nm以上600nm以下である。また、このように構成された発光素子5では、例えば370nm以上420nm以下の波長範囲の励起光を発する素子を用いることができる。 The first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphide or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride, or indium nitride. A physical semiconductor or the like can be used. The thickness of the first semiconductor layer is, for example, 1 μm to 5 μm, the thickness of the light emitting layer is, for example, 25 nm to 150 nm, and the thickness of the second semiconductor layer is, for example, 50 nm to 600 nm. In the light emitting element 5 configured as described above, an element that emits excitation light in a wavelength range of, for example, 370 nm to 420 nm can be used.
 発光素子5は、平面透視したときに一対の電極層3の一方から他方にかけて重なるように設けられている。発光素子5が励起光とともに発する熱の一部は、電極層3を介して絶縁シート4および基板2に伝わる。発光素子5が、両電極層3にかけて広く設けられることで、両電極層3に発光素子5が発する熱を伝えることができる。そして、発光素子5が発する熱を基板2の全面に伝わりやすくすることができ、熱が基板2の一部に集中するのを抑制し、発光素子5が基板2から剥がれることや基板2にクラックが発生することを効果的に抑えることができる。 The light-emitting element 5 is provided so as to overlap from one side of the pair of electrode layers 3 to the other when seen in a plan view. Part of the heat generated by the light emitting element 5 together with the excitation light is transmitted to the insulating sheet 4 and the substrate 2 through the electrode layer 3. Since the light emitting element 5 is widely provided over both electrode layers 3, heat generated by the light emitting element 5 can be transmitted to both electrode layers 3. Then, the heat generated by the light emitting element 5 can be easily transmitted to the entire surface of the substrate 2, the heat is prevented from being concentrated on a part of the substrate 2, and the light emitting element 5 is peeled off from the substrate 2 or cracked in the substrate 2. Can be effectively suppressed.
 また、絶縁シート4は、一対の電極層3の一方から他方にかけて重なるように設けられることで、一対の電極層3のそれぞれに伝わる温度を、絶縁シート4を介して両者で共有することができ、両者の温度差を小さくすることができる。その結果、基板2の上面の温度分布差を抑制することができ、基板2上の各層が熱応力に起因して剥離しようとするのを低減することができる。また、基板2にクラックが発生するのも抑制することができる。 Further, the insulating sheet 4 is provided so as to overlap from one to the other of the pair of electrode layers 3, so that the temperature transmitted to each of the pair of electrode layers 3 can be shared by both through the insulating sheet 4. The temperature difference between the two can be reduced. As a result, the temperature distribution difference on the upper surface of the substrate 2 can be suppressed, and it is possible to reduce each layer on the substrate 2 from being peeled due to thermal stress. In addition, the occurrence of cracks in the substrate 2 can be suppressed.
 波長変換部6は、絶縁シート4および発光素子5を被覆するように基板2上に設けられる。波長変換部6は、発光素子5から発せられる励起光に起因して、励起光よりも長波長の可視光を発する機能を備えている。なお、波長変換部6は、例えばシリコン樹脂、アクリル樹脂またはエポキシ樹脂等から成り、その樹脂中に、例えば430nm以上490nm以下の蛍光を発する青色蛍光体、例えば500nm以上560nm以下の蛍光を発する緑色蛍光体、例えば540nm以上600nm以下の蛍光を発する黄色蛍光体、例えば590nm以上700nm以下の蛍光を発する赤色蛍光体等の蛍光体7が含有されている。なお、蛍光体7は、波長変換部6中に均一に分散するようにしている。 The wavelength converter 6 is provided on the substrate 2 so as to cover the insulating sheet 4 and the light emitting element 5. The wavelength conversion unit 6 has a function of emitting visible light having a wavelength longer than that of the excitation light due to the excitation light emitted from the light emitting element 5. The wavelength conversion unit 6 is made of, for example, a silicon resin, an acrylic resin, an epoxy resin, or the like, and a blue phosphor that emits fluorescence of, for example, 430 nm or more and 490 nm or less, for example, green fluorescence that emits fluorescence of 500 nm or more and 560 nm or less. Body, for example, a phosphor 7 such as a yellow phosphor that emits fluorescence of 540 nm to 600 nm, for example, a red phosphor that emits fluorescence of 590 nm to 700 nm. The phosphor 7 is uniformly dispersed in the wavelength conversion unit 6.
 また、波長変換部6は、例えばポッティング法を用いて、基板2上面に対して波長変換部6を構成する材料を滴下して、基板2上にドーム形状となるように設計されている。波長変換部6の厚みは、図5に示すように、例えば1mm以上10mm以下に設定されており、発光素子5の直上で最も厚みが大きくなるように設定されている。波長変換部6をドーム形状に設計することにより、発光素子5からの励起光にて励起される光の量を一様になるように調整することができ、波長変換部6における輝度むらを抑制することができる。 Further, the wavelength conversion unit 6 is designed so as to have a dome shape on the substrate 2 by dropping a material constituting the wavelength conversion unit 6 on the upper surface of the substrate 2 by using, for example, a potting method. As shown in FIG. 5, the thickness of the wavelength conversion unit 6 is set to, for example, 1 mm or more and 10 mm or less, and is set to have the largest thickness immediately above the light emitting element 5. By designing the wavelength conversion unit 6 in a dome shape, the amount of light excited by the excitation light from the light emitting element 5 can be adjusted to be uniform, and luminance unevenness in the wavelength conversion unit 6 is suppressed. can do.
 波長変換部6内で蛍光体を励起する量は、平面視して波長変換部6の全面で略均一になるように調整される。そして、発光素子5が発する励起光を波長変換部6の全体に照射することで、波長変換部6から取り出される光の均一性を向上させることができる。 The amount of excitation of the phosphor in the wavelength conversion unit 6 is adjusted to be substantially uniform over the entire surface of the wavelength conversion unit 6 in plan view. And the uniformity of the light taken out from the wavelength conversion part 6 can be improved by irradiating the whole wavelength conversion part 6 with the excitation light which the light emitting element 5 emits.
 発光装置の開発において、発光装置の発する光の指向性を向上させて、いかに所望する方向に光を取り出すことが求められている。仮に、実装面に発光素子を実装したときに、発光素子が実装面に対して傾いて実装されると、傾きの大きさに応じて、光が所望しない意図しない方向に照射される。 In the development of light emitting devices, it is required to improve the directivity of light emitted from the light emitting devices and extract light in the desired direction. If the light emitting element is mounted on the mounting surface with the light emitting element tilted with respect to the mounting surface, light is emitted in an unintended direction depending on the magnitude of the tilt.
 本実施形態によれば、発光素子5の基板2に対する傾斜角度を調整することができ、発光素子5から取り出される光の指向性を良好にすることが可能な発光装置を提供することができる。 According to the present embodiment, it is possible to provide a light emitting device that can adjust the inclination angle of the light emitting element 5 with respect to the substrate 2 and can improve the directivity of light extracted from the light emitting element 5.
 なお、本発明は上述の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention.
  <発光装置の製造方法>
 まず、基板2を準備する。基板2が例えば酸化アルミニウム質焼結体から成る場合、酸化アルミニウムの原料粉末に、有機バインダー、可塑剤または溶剤等を添加混合し、この混合物をシート状にするとともに乾燥させることにより、焼結前の基板2が成形される。
<Method for manufacturing light emitting device>
First, the substrate 2 is prepared. When the substrate 2 is made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the aluminum oxide raw material powder, and the mixture is made into a sheet and dried before sintering. The substrate 2 is formed.
 次に、タングステンまたはモリブデン等の高融点金属粉末を準備し、この粉末に有機バインダー、可塑剤または溶剤等を添加混合して金属ペーストを得る。そして、焼結前の基板2に対して、例えば印刷法を用いて、一対の電極層3となるパターンを印刷する。 Next, a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the powder to obtain a metal paste. And the pattern used as a pair of electrode layer 3 is printed with respect to the board | substrate 2 before sintering using a printing method, for example.
 そして、図7に示すように、一対の電極層3上に、電極層3の一部3Aを露出するように、例えばスクリーン印刷法を用いて、酸化アルミニウムの原料粉末に、有機バインダー、可塑剤または溶剤等を添加混合した絶縁性ペーストを塗布し、焼成することによって焼結体からなる基板2が成形される。 Then, as shown in FIG. 7, an organic binder, a plasticizer is applied to the aluminum oxide raw material powder by using, for example, a screen printing method so that a part 3 </ b> A of the electrode layer 3 is exposed on the pair of electrode layers 3. Alternatively, an insulating paste mixed with a solvent or the like is applied and fired to form the substrate 2 made of a sintered body.
 また、絶縁シート4は、例えば、酸化珪素を主原料とするガラス粉末に、有機バインダー、可塑剤または溶剤等を添加混合し、この混合物をスクリーン印刷法を用いて形成することができる。絶縁シート4は、スクリーン印刷法を用いて、基板2上に相互に間隔を空けて設けられた一対の電極層の両電極層3に渡って設けられ、一対の電極層3のそれぞれの一部を残して覆うとともに相互に間隔を空けて設けられるように塗布され、焼成されることで、基板2上に形成することができる。 The insulating sheet 4 can be formed by, for example, adding and mixing an organic binder, a plasticizer, a solvent, or the like to glass powder containing silicon oxide as a main raw material, and using a screen printing method. The insulating sheet 4 is provided across both electrode layers 3 of a pair of electrode layers provided on the substrate 2 at a distance from each other by screen printing, and a part of each of the pair of electrode layers 3. It can be formed on the substrate 2 by being coated and fired so as to be provided with a gap between them.
 次に、図8に示すように、基板2の一対の絶縁シート4で挟まれる領域に位置する電極層3の露出する一部3A上に、発光素子5を例えば金-スズから成る導電材料を介して実装する。そして、発光素子5と一対の電極層3とを導電材料を介して電気的に接続する。 Next, as shown in FIG. 8, on the exposed part 3A of the electrode layer 3 located in the region sandwiched between the pair of insulating sheets 4 of the substrate 2, the light emitting element 5 is made of a conductive material made of, for example, gold-tin. To implement through. Then, the light emitting element 5 and the pair of electrode layers 3 are electrically connected through a conductive material.
 次に、波長変換部6を準備する。波長変換部6は、未硬化の樹脂に蛍光体7を混合したものを用いる。そして、平面視して基板2の発光素子5上に対して、上方から下方に向けて、例えばポッティング法を用いて、波長変換部6を構成する材料を滴下する。さらに、波長変換部6は、波長変換部6を構成する材料がドーム形状となるように滴下して、熱を加えて硬化して形成する。このようにして、発光装置1を作製することができる。 Next, the wavelength converter 6 is prepared. The wavelength conversion unit 6 uses a mixture of an uncured resin and a phosphor 7. And the material which comprises the wavelength conversion part 6 is dripped using the potting method from upper direction toward the downward direction with respect to the light emitting element 5 of the board | substrate 2 in planar view. Furthermore, the wavelength conversion unit 6 is formed by dripping the material constituting the wavelength conversion unit 6 into a dome shape and applying heat to cure. In this way, the light emitting device 1 can be manufactured.
  <変形例>
 図10から図12は、一変形例に係る発光装置1の概観斜視図である。なお、本実施形態の変形例に係る発光装置1のうち、本実施形態に係る発光装置1と同様な部分については、同一の符号を付して適宜説明を省略する。
<Modification>
10 to 12 are schematic perspective views of the light emitting device 1 according to a modification. Note that, in the light emitting device 1 according to the modification of the present embodiment, the same portions as those of the light emitting device 1 according to the present embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 上記実施形態に係る発光装置1は、一対の電極層3の端部を絶縁シート4にて被覆していたが、これに限られない。例えば、図10に示すように、一対の電極層3の端部を露出するように絶縁シート4を設けてもよい。 In the light emitting device 1 according to the above-described embodiment, the end portions of the pair of electrode layers 3 are covered with the insulating sheet 4, but the present invention is not limited thereto. For example, as shown in FIG. 10, the insulating sheet 4 may be provided so as to expose the ends of the pair of electrode layers 3.
 発光装置1を多数個取りにより製造するときに、基板2を複数取り出すことができるマザー基板を用いたときに、生産性を向上させることができる。まずは、マザー基板上に一対の電極層3を複数形成する。そして、絶縁シート4を、マザー基板上に、複数個配置する。このとき、絶縁シート4は、平面視して、マザー基板から基板2を取り出したときを想定して、それぞれの基板2内に収まる大きさに設定して、マザー基板上に配置する。その後、マザー基板を切断して、複数の発光装置1を取り出すときに、絶縁シート4同士の間を切断するようにする。その結果、絶縁シート4がブレードの刃と接することがなく、マザー基板の切断時に、絶縁シート4が基板2から剥離する虞を低減することができ、発光装置1の生産性を向上させることができる。 When manufacturing a large number of light emitting devices 1, productivity can be improved when a mother substrate from which a plurality of substrates 2 can be taken out is used. First, a plurality of pairs of electrode layers 3 are formed on a mother substrate. Then, a plurality of insulating sheets 4 are arranged on the mother substrate. At this time, assuming that the insulating sheet 4 is taken out of the mother substrate 2 in plan view, the insulating sheet 4 is set to a size that fits in each substrate 2 and is arranged on the mother substrate. After that, when the mother substrate is cut and the plurality of light emitting devices 1 are taken out, the space between the insulating sheets 4 is cut. As a result, the insulating sheet 4 does not contact the blade of the blade, and the possibility that the insulating sheet 4 is peeled off from the substrate 2 when the mother substrate is cut can be reduced, and the productivity of the light emitting device 1 can be improved. it can.
 また、絶縁シート4を平面視して、基板2内に収まる大きさに設定されることで、波長変換部6を基板2上面に塗布する場合、基板2上に形成される電極層3の端面および絶縁シート4の端面を被覆することができる。その結果、発光装置1の作動環境における水分が、基板2上に位置する電極層3の端面および絶縁シート4の端面に外部から達するのを抑制することができ、基板2対する接合強度を良好に維持することができる。さらに、発光素子5からの熱により発生する応力に起因した、基板2対する電極層3および絶縁シート4の剥離を抑制することができる。その結果、発光装置1は、作動環境における水分、発光素子5からの熱に起因した動作不良や長期信頼性の低下が抑制され、長期間にわたって正常に作動できるという作用効果を奏する。 In addition, when the wavelength conversion unit 6 is applied to the upper surface of the substrate 2 by setting the size of the insulating sheet 4 to be accommodated in the substrate 2 in plan view, the end face of the electrode layer 3 formed on the substrate 2 And the end surface of the insulating sheet 4 can be coat | covered. As a result, moisture in the operating environment of the light emitting device 1 can be prevented from reaching the end surface of the electrode layer 3 and the end surface of the insulating sheet 4 located on the substrate 2 from the outside, and the bonding strength to the substrate 2 can be improved. Can be maintained. Furthermore, peeling of the electrode layer 3 and the insulating sheet 4 from the substrate 2 due to the stress generated by the heat from the light emitting element 5 can be suppressed. As a result, the light emitting device 1 has the operational effect of being able to operate normally over a long period of time due to suppression of malfunctions and long-term reliability degradation due to moisture in the operating environment and heat from the light emitting element 5.
 また、上記実施形態に係る発光装置1は、一対の絶縁シート4の上面が平坦に形成されたが、これに限られない。例えば、図11または図12に示すように、一対の絶縁シート4aの上面が平坦でなくてもよい。 In the light emitting device 1 according to the above embodiment, the upper surfaces of the pair of insulating sheets 4 are formed flat, but the present invention is not limited thereto. For example, as shown in FIG. 11 or FIG. 12, the upper surfaces of the pair of insulating sheets 4a may not be flat.
 一対の絶縁シート4aは、平面視して一対の電極層3と重なる領域の高さ位置が、平面視して一対の電極層3と重ならない領域の高さ位置よりも上方に位置する。また、発光素子4は、絶縁シート4の上面の上方に出っ張っている個所と発光素子5の下面とが接する。このとき、一対の絶縁シート4aは、一対の電極層3と重なる領域が上方に出っ張るため、一対の絶縁シート4aの一方には二つの出っ張りが形成され、一対の絶縁シート4aの他方にも二つの出っ張りが形成される。一対の絶縁シート4aの四つの出っ張りは、発光素子5の下面の四箇所を支持する。発光素子5の下面の四箇所が絶縁シート4aと当接することによって、発光素子5が基板2の上面に対して傾斜するのを抑制することができる。 The pair of insulating sheets 4a are positioned such that the height position of the region overlapping the pair of electrode layers 3 in plan view is higher than the height position of the region not overlapping the pair of electrode layers 3 in plan view. Further, in the light emitting element 4, the portion protruding above the upper surface of the insulating sheet 4 is in contact with the lower surface of the light emitting element 5. At this time, since the region of the pair of insulating sheets 4a that protrudes from the pair of electrode layers 3 protrudes upward, two protrusions are formed on one of the pair of insulating sheets 4a, and the other of the pair of insulating sheets 4a also has two protrusions. Two ledges are formed. The four protrusions of the pair of insulating sheets 4 a support the four places on the lower surface of the light emitting element 5. It is possible to prevent the light emitting element 5 from being inclined with respect to the upper surface of the substrate 2 by contacting the four portions on the lower surface of the light emitting element 5 with the insulating sheet 4a.
 また、発光素子5の下面は、一対の絶縁シート4aの上面であって平面視して一対の絶縁シート4aと一対の電極層3とが重なる領域と接している。平面視したときに、発光素子5から発せられる光のうち、下方に向かって進行する光は、電極層3にて反射して上方に向かって進行する。その結果、発光素子5から発せられる光を絶縁シート4aの上面に対して垂直方向に多くの光を発することができる。その結果、発光装置1から取り出される光の指向性を良好にすることができる。
 
The lower surface of the light emitting element 5 is in contact with the upper surface of the pair of insulating sheets 4a and a region where the pair of insulating sheets 4a and the pair of electrode layers 3 overlap in plan view. Of the light emitted from the light emitting element 5 when seen in a plan view, the light traveling downward is reflected by the electrode layer 3 and travels upward. As a result, a large amount of light emitted from the light emitting element 5 can be emitted in a direction perpendicular to the upper surface of the insulating sheet 4a. As a result, the directivity of light extracted from the light emitting device 1 can be improved.

Claims (7)

  1.  基板と、
    前記基板上に相互に間隔を空けて設けられた一対の電極層と、
    前記一対の電極層の両電極層に渡って設けられ、前記一対の電極層のそれぞれの一部を残して覆うとともに相互に間隔を空けて設けられた一対の絶縁シートと、
    前記一対の絶縁シートに渡って重なるように設けられ、前記一対の電極層のそれぞれの一部と電気的に接続された発光素子を備え、
    前記一対の絶縁シートのそれぞれの上面と前記発光素子の下面とが接していることを特徴とする発光装置。
    A substrate,
    A pair of electrode layers spaced apart from each other on the substrate;
    A pair of insulating sheets provided across both electrode layers of the pair of electrode layers, covering and leaving part of each of the pair of electrode layers, and spaced apart from each other;
    A light-emitting element provided to overlap over the pair of insulating sheets and electrically connected to a part of each of the pair of electrode layers;
    A light emitting device, wherein the upper surface of each of the pair of insulating sheets is in contact with the lower surface of the light emitting element.
  2.  請求項1に記載の発光装置であって、
    前記一対の絶縁シートの一方と前記発光素子との接する個所の高さ位置と、前記一対の絶縁シートの他方と前記発光素子との接する個所の高さ位置との差が、10μm以下であることを特徴とする発光装置。
    The light-emitting device according to claim 1,
    The difference between the height position of the portion where the one of the pair of insulating sheets and the light emitting element are in contact with the height position of the portion where the other of the pair of insulating sheets and the light emitting element are in contact is 10 μm or less. A light emitting device characterized by the above.
  3.  請求項1または請求項2に記載の発光装置であって、
    前記一対の絶縁シートは、平面視して前記一対の電極層と重なる領域の高さ位置が、平面視して前記一対の電極層と重ならない領域の高さ位置よりも上方に位置することを特徴とする発光装置。
    The light-emitting device according to claim 1 or 2,
    The pair of insulating sheets is positioned such that the height position of a region overlapping the pair of electrode layers in plan view is higher than the height position of a region not overlapping the pair of electrode layers in plan view. A light emitting device characterized.
  4.  請求項1ないし請求項3のいずれかに記載の発光装置であって、
    前記発光素子の下面は、前記一対の絶縁シートの上面であって平面視して前記一対の絶縁シートと前記一対の電極層とが重なる領域に接していることを特徴とする発光装置。
    The light-emitting device according to any one of claims 1 to 3,
    The lower surface of the light emitting element is an upper surface of the pair of insulating sheets and is in contact with a region where the pair of insulating sheets and the pair of electrode layers overlap in plan view.
  5.  請求項1ないし請求項4のいずれかに記載の発光装置であって、
    前記一対の絶縁シートは、前記一部に対して、対称に配置されていることを特徴とする発光装置。
    The light-emitting device according to any one of claims 1 to 4,
    The light-emitting device, wherein the pair of insulating sheets are arranged symmetrically with respect to the part.
  6.  請求項1ないし請求項5のいずれかに記載の発光装置であって、
    前記一部の上面に濡れ性を有する導電材料が形成されており、前記導電材料を介して前記発光素子が前記一対の電極層と電気的に接続されていることを特徴とする発光装置。
    A light-emitting device according to any one of claims 1 to 5,
    A light-emitting device, wherein a conductive material having wettability is formed on a part of the upper surface, and the light-emitting element is electrically connected to the pair of electrode layers through the conductive material.
  7.  請求項1ないし請求項6のいずれかに記載の発光装置であって、
    前記基板上には、前記一対の絶縁シートおよび前記発光素子を被覆するようにドーム形状の波長変換部が設けられていることを特徴とする発光装置。
     
     
     
     
     
    The light-emitting device according to any one of claims 1 to 6,
    A light-emitting device, wherein a dome-shaped wavelength converter is provided on the substrate so as to cover the pair of insulating sheets and the light-emitting element.




PCT/JP2011/056078 2010-04-13 2011-03-15 Light emitting device WO2011129172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010092137 2010-04-13
JP2010-092137 2010-04-13

Publications (1)

Publication Number Publication Date
WO2011129172A1 true WO2011129172A1 (en) 2011-10-20

Family

ID=44798551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056078 WO2011129172A1 (en) 2010-04-13 2011-03-15 Light emitting device

Country Status (1)

Country Link
WO (1) WO2011129172A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045607A (en) * 2015-08-26 2017-03-02 積水化学工業株式会社 Conducive material, connection structure, and manufacturing method of connection structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043622A (en) * 2003-07-28 2005-02-17 Toshiba Corp Optical semiconductor module and manufacturing method thereof
JP2006011239A (en) * 2004-06-29 2006-01-12 Kyocera Corp Liquid crystal display device
JP2006013324A (en) * 2004-06-29 2006-01-12 Toyoda Gosei Co Ltd Light emitting device
JP2007273592A (en) * 2006-03-30 2007-10-18 Kyocera Corp Light emitting element wiring board and light emitting device
JP2009158634A (en) * 2007-12-26 2009-07-16 Kyocera Corp Light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043622A (en) * 2003-07-28 2005-02-17 Toshiba Corp Optical semiconductor module and manufacturing method thereof
JP2006011239A (en) * 2004-06-29 2006-01-12 Kyocera Corp Liquid crystal display device
JP2006013324A (en) * 2004-06-29 2006-01-12 Toyoda Gosei Co Ltd Light emitting device
JP2007273592A (en) * 2006-03-30 2007-10-18 Kyocera Corp Light emitting element wiring board and light emitting device
JP2009158634A (en) * 2007-12-26 2009-07-16 Kyocera Corp Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045607A (en) * 2015-08-26 2017-03-02 積水化学工業株式会社 Conducive material, connection structure, and manufacturing method of connection structure

Similar Documents

Publication Publication Date Title
US9941447B2 (en) Semiconductor light emitting device and method for producing the same
US8287148B2 (en) Light emitting module
JP5393796B2 (en) Light emitting device
WO2011052502A1 (en) Light emitting device
EP3511981B1 (en) High light extraction efficiency, wavelength-converted devices
JP5568476B2 (en) Optoelectronic parts
US11101411B2 (en) Solid-state light emitting devices including light emitting diodes in package structures
JP2012114336A (en) Light emitting device and lighting device
WO2011125428A1 (en) Light emitting device
KR20180059157A (en) Light emitting diode having plurality of wavelength converter
WO2013015140A1 (en) Lighting device
WO2011129172A1 (en) Light emitting device
JP5683352B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
WO2013035529A1 (en) Light emitting device
JP5261578B2 (en) Light emitting device
JP5748599B2 (en) Lighting device
JP5748575B2 (en) Light emitting device
JP2014160811A (en) Light-emitting device
JP2021108358A (en) Light emitting device and light emitting module, manufacturing method of light emitting device, and manufacturing method of light emitting module
JP5806153B2 (en) Light emitting device
US20230352458A1 (en) Light-emitting device and light-emitting module
JP5934016B2 (en) Lighting device
WO2012124473A1 (en) Light emitting device
JP5890212B2 (en) Lighting device
WO2015182537A1 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP