WO2011127791A1 - 终端移动到增强utran时建立增强密钥的方法及系统 - Google Patents

终端移动到增强utran时建立增强密钥的方法及系统 Download PDF

Info

Publication number
WO2011127791A1
WO2011127791A1 PCT/CN2011/072442 CN2011072442W WO2011127791A1 WO 2011127791 A1 WO2011127791 A1 WO 2011127791A1 CN 2011072442 W CN2011072442 W CN 2011072442W WO 2011127791 A1 WO2011127791 A1 WO 2011127791A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
enhanced
terminal
target
utran
Prior art date
Application number
PCT/CN2011/072442
Other languages
English (en)
French (fr)
Inventor
冯成燕
王新台
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/515,186 priority Critical patent/US8712054B2/en
Priority to EP11768403.5A priority patent/EP2501164B1/en
Priority to CA2787969A priority patent/CA2787969C/en
Priority to JP2012545075A priority patent/JP5436694B2/ja
Publication of WO2011127791A1 publication Critical patent/WO2011127791A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • H04W12/73Access point logical identity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0038Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of security context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/047Key management, e.g. using generic bootstrapping architecture [GBA] without using a trusted network node as an anchor
    • H04W12/0471Key exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/108Source integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/30Security of mobile devices; Security of mobile applications
    • H04W12/37Managing security policies for mobile devices or for controlling mobile applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/40Security arrangements using identity modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • H04W12/71Hardware identity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • H04W12/72Subscriber identity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • H04W12/75Temporary identity

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a method and system for establishing an enhanced key when a terminal moves from an EUTRAN to an enhanced UTRAN in a wireless communication system.
  • 3GPP (3rd Generation Partnership Project, third-generation partner TIC'J) uses Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (Reference) in Release7 , referred to as ⁇ ) technology to complete HSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) future evolution road HSPA+.
  • HSPA+ is an enhancement technology for 3GPP HSPA (including HSDPA and HSUPA), providing HSPA operators with a low-complexity, low-cost path from HSPA to LTE.
  • HSPA+ uses high-order modulation (such as downlink 64QAM (Quadature Amplitude Modulation) and uplink 16QAM), MIMO, and high-stage modulation.
  • high-order modulation such as downlink 64QAM (Quadature Amplitude Modulation) and uplink 16QAM
  • MIMO multiplexing
  • HSPA+ also uses a series of other enhancement technologies to increase user capacity, reduce latency, reduce terminal power consumption, better support voice over IP (VOIP) and enhance the system.
  • Targets such as multicast/broadcast capabilities.
  • HSPA+ decentralizes the function of Radio Network Controller (RNC) to the base station Node B (Node B) on the system architecture to form a completely flat wireless access network architecture, as shown in Figure 1. Show. At this time, the Node B integrated with the full RNC function is called Evolved HSPA Node B, or simply called the enhanced node Node (Node B+ ).
  • SGSN+ is an SGSN (ServICE GPRS SUPPORT NODE, Serving GPRS Support Node; GPRS: General Packet Radio System) that has been upgraded to support HSPA+ functions.
  • ⁇ + is a user terminal device (also called UE+) that can support HSPA+ function.
  • the evolved HSPA system can use 3GPP Rel-5 and later air interface versions, and does not have any air interface HSPA services. Modified. After using this scheme, each Node B+ becomes a node equivalent to the RNC.
  • the Iu-PS interface can be directly connected to the PS CN (Core Network), and the Iu-PS user plane is terminated at the SGSN.
  • the network supports the direct tunnel function, and the Iu-PS user plane can also be terminated at the GGSN (Gateway GPRS Support Node).
  • the communication between the evolved HSPA Node Bs is performed through the lur interface.
  • Node B+ has the ability to independently network and support full mobility features, including inter-system and intra-system switching.
  • Node B+ can be thought of as a combination of Node B and RNC. Both are a physical entity, but are still two different logical entities. Therefore, the Node B+ that supports the HSPA+ enhanced key hierarchy in this article can also be equivalent to the RNC upgraded in UMTS. To distinguish, we can call it RNC+.
  • K Key
  • CK Chiping Key
  • IK Intelligent Security Key
  • UMTS Universal Mobile Telecommunications System
  • AuC Authentication Center
  • USIM UNIVERSAL SUBSCRIBER IDENTITY MODULE
  • CK and ⁇ are the user equipment and the HSS (Authentication and Key Agreement, Authentication and key agreement)
  • the secret key and integrity key calculated by K.
  • RNC uses CK and IK to encrypt and protect data.
  • CK and IK as traditional air interface security keys, referred to as traditional keys.
  • HSPA+ introduces a key hierarchy similar to EUTRAN (Evolved Universal Terrestrial Radio Access Network), namely UTRAN Key Hierarchy.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • UTRAN Key Hierarchy the intermediate key KR NC (also known as KASMEU) is the newly introduced key of HSPA+, derived from the traditional keys CK and IK.
  • KR NC generates CKu (also known as CK S ) and IKu (also known as IK S ), where CKu is used to encrypt user plane data and control plane signaling, and is used for integrity protection of control plane signaling.
  • CKu also known as CK S
  • IKu also known as IK S
  • CKu and nickname enhanced air interface security keys, referred to as enhanced keys.
  • LTE/SAE is a 3GPP evolution technology for UMTS, which supports spectrum bandwidth of 20MHz. Provides a peak rate of 100 Mbps downstream and 50 Mbps upstream.
  • the network of the LTE/SAE is composed of a User Equipment (UE), an access network, and a core network.
  • UE User Equipment
  • the entire LTE architecture is shown in Figure 3.
  • the base station device is an evolved Node-B (eNB), and is mainly responsible for wireless communication, wireless communication management, and mobility context management.
  • the core network includes a Mobility Management Entity (MME), which is responsible for control plane-related tasks such as mobility management, non-access stratum signaling processing, and user security mode management.
  • MME Mobility Management Entity
  • the source MME When the user moves from EUTRAN to UTRAN, the source MME generates a mapped legacy key IK', CK' according to the key KASME in LTE.
  • the traditional key derivation of the mapping is as follows:
  • IK' l l CK' KDF (KASME, downlink NAS COUNT)
  • KDF is a security algorithm defined by 3GPP, and the specific definition can refer to the relevant 3GPP specifications.
  • KASME is a key generated by the HSS based on CK and IK, and is sent to the MME in the AKA (Authentication and Key Agreement) process to derive the NAS (non-access stratum) layer key and the eNB.
  • AS access layer
  • the NAS COU T is the NAS count COUNT, a downlink NAS COUNT.
  • the NAS COUNT is 24 bits long and is maintained independently by the UE and the MME.
  • the source MME sends the derived mapped legacy keys IK' and CK' to the core network node SGSN of the target network.
  • the target SGSN protects the communication between the user and the network using the mapped legacy key.
  • the technical problem to be solved by the present invention is to provide a method and system for establishing an enhanced key when a terminal moves from EUTRAN to enhanced UTRAN, and ensures that the terminal can be enhanced in the enhanced UTRAN. Conduct normal communication all over the place.
  • the present invention provides a method for establishing an enhanced key when a terminal moves from an evolved universal terrestrial wireless access network (EUTRAN) to an enhanced universal terrestrial radio access network (UTRAN), including:
  • the enhanced QoS support service GPRS support node (SGSN+) derives the intermediate key used in the UTRAN based on the mapped legacy key obtained from the source mobility management entity when the terminal moves from the EUTRAN to the enhanced UTRAN;
  • the intermediate key used in the enhanced UTRAN is derived based on the mapping of the traditional key using the same algorithm as the target SGSN+.
  • the method further includes: when the terminal is in an active state, the target SGSN+, after deriving the intermediate key, sends the intermediate key to a target enhanced radio network controller in the enhanced UTRAN ( RNC+), derived by the target RNC+ according to the intermediate key, an enhanced air interface integrity key (IKu) and/or an enhanced air interface encryption key (CKu); after deriving the intermediate key, the terminal
  • the enhanced air interface key is derived from the intermediate key using the same algorithm as the target RNC+.
  • the method further includes: when the terminal is in an active state, the target SGSN+ derives the enhanced air interface integrity key (IKu) according to the intermediate key after deriving the intermediate key. And/or an enhanced air interface encryption key (CKu), and transmitting the derived enhanced air interface key to the target enhanced radio network controller (RNC+); after deriving the intermediate key, the terminal according to the middle
  • the key uses the same algorithm as the target SGSN+ to derive the enhanced air interface key.
  • the method further includes: the target SGSN+ deriving a modified intermediate key according to the mapped legacy key and the intermediate key, and transmitting the modified intermediate key to the target RNC+,
  • the morphing intermediate key is used to update the enhanced air interface key when the terminal performs a serving radio network controller (SRNC) migration within the enhanced UTRAN network.
  • SRNC serving radio network controller
  • the method further includes: the target SGSN+, when deriving the modified intermediate key, setting an associated counter for the modified intermediate key, wherein the counter is used to record the number of times the generated intermediate key is generated .
  • the method further includes: the target SGSN+ changing the counter value along with the change The intermediate key is sent to the target RNC+.
  • the message that the target SGSN+ sends a key to the target RNC+ is a migration request message.
  • the step of deriving the intermediate key used in the UTRAN includes: deriving an intermediate key used in the enhanced UTRAN according to the mapped legacy key in combination with the first parameter; the terminal is in accordance with the traditional mapping
  • the step of deriving the intermediate key used in the enhanced UTRAN by using the same algorithm as the target SGSN+ includes: recombining the first parameter according to the mapped legacy key with the same algorithm as the target SGSN+ Deriving an intermediate key used in the enhanced UTRAN; the first parameter is sent to the terminal by the target SGSN+, or the target SGSN+ is agreed with the terminal.
  • the enhanced air interface key is derived according to the intermediate key and the second parameter.
  • the first parameter comprises one or more of the following parameters: a service network identifier (PLMN identifier), a core network node type, a sequence number (SQN), a hidden key (AK), a user identity, a target SGSN+ The generated random number.
  • PLMN identifier service network identifier
  • SQN sequence number
  • AK hidden key
  • the second parameter comprises one or more of the following parameters: a refresh random number (FRESH) generated by a target radio network controller (RNC), an encryption algorithm identifier (enc-alg-ID), and an integrity algorithm identifier.
  • FRESH refresh random number
  • RNC target radio network controller
  • enc-alg-ID encryption algorithm identifier
  • integrity algorithm identifier int-alg-ID
  • PCI physical cell identifier
  • URFCN absolute frequency of the Node B
  • Scrambling Code assigned by the target RNC to the terminal the user identifier
  • target RNC identification start (START) parameter defined in the universal mobile communication system
  • RRC SN radio link control sequence number defined in the universal mobile communication system Parameter
  • random number generated by the target SGSN+ the random number generated by the target SGSN+.
  • the random number generated by the target SGSN+ is sent to the terminal by: the target SGSN+ forwarding migration response message sent to the source mobility management entity, the source mobility management entity The handover command message sent by the source base station and the slave E-UTRAN handover command message sent by the source base station to the terminal.
  • the step of deriving the intermediate key used in the UTRAN according to the traditional key of the mapping obtained by the target SGSN from the source mobility management entity comprises: the traditional key according to the mapping Deriving the intermediate key used in the enhanced UTRAN with the first parameter; the terminal deriving the intermediate used in the enhanced UTRAN according to the traditional key of the mapping and using the same algorithm as the target SGSN+
  • the step of the key comprises: deriving the intermediate key used in the enhanced UTRAN by recombining the first parameter according to the mapped legacy key and using the same algorithm as the target SGSN+.
  • the first parameter includes one or more of the following parameters: service network identifier
  • PLMN identifier core network node type, serial number (SQN), hidden key (AK), user identity, random number generated by target SGSN+, random number generated by the terminal.
  • the random number generated by the target SGSN+ is sent to the terminal by using a routing area update accept message.
  • the random number generated by the terminal is sent to the target SGSN+ by using the routing area update request message.
  • the present invention also provides a system for establishing an enhanced key when a terminal moves from an evolved universal terrestrial radio access network (EUTRAN) to an enhanced universal terrestrial radio access network (UTRAN), including a terminal, Enhanced Target Enhancement Service GPRS Support Node (SGSN+) in UTRAN:
  • EUTRAN evolved universal terrestrial radio access network
  • UTRAN enhanced universal terrestrial radio access network
  • SGSN+ Enhanced Target Enhancement Service GPRS Support Node
  • the SGSN+ is configured to: derive an intermediate key used in the UTRAN based on a mapped legacy key obtained from the source mobility management entity when the terminal moves from the EUTRAN to the enhanced UTRAN;
  • the terminal is configured to: derive a traditional key of the mapping, and derive the traditional key obtained by the mapping, and then derivate the enhanced key in the UTRAN according to the traditional algorithm of the mapping and the same algorithm as the SGSN+ The intermediate key used.
  • the system further includes a target enhanced radio network controller (RNC+) in the enhanced UTRAN, the SGSN+ comprising: a first receiving unit, a second key derivation unit and a first transmitting unit, wherein: the first receiving unit The first key derivation unit is configured to: derive the intermediate key according to the mapped traditional key;
  • RNC+ target enhanced radio network controller
  • the first sending unit is configured to: send the derived intermediate key to the RNC+; the RNC+ is set to: derive an enhanced air interface integrity key (IKu) and/or according to the intermediate key Enhanced air interface encryption key (CKu);
  • IKu enhanced air interface integrity key
  • CKu Enhanced air interface encryption key
  • the terminal includes: a second receiving unit and a second key deriving unit, where:
  • the second receiving unit is configured to: receive a command sent by the network side;
  • the second key derivation unit is configured to: derive a traditional key mapped according to the command, and derive the intermediate key by using the same algorithm as the SGSN+ according to the traditional key obtained by the derivation, And deriving the enhanced air interface key according to the intermediate key using the same algorithm as the RNC+.
  • the system further includes a target enhanced radio network controller (RNC+) in the enhanced UTRAN, the SGSN+ comprising: a first receiving unit, a first key derivation unit and a first transmitting unit, wherein: the first receiving unit And being configured to: receive a traditional key of the mapping sent by the source mobility management entity; the first key derivation unit is configured to: derive the intermediate key according to the mapped traditional key, and derive the intermediate key Enhanced air interface integrity key (IKu) and/or enhanced air interface encryption key (CKu);
  • RNC+ target enhanced radio network controller
  • the first sending unit is configured to: send the derived enhanced air interface key to the RNC+; the RNC+ is set to: save the received enhanced air interface key;
  • the terminal includes: a second receiving unit and a second key deriving unit, where:
  • the second receiving unit is configured to: receive a command sent by the network side;
  • the second key derivation unit is configured to: derive a traditional key mapped according to the command, and derivate the traditional key using the mapping obtained according to the derivation with the same algorithm as the SGSN+.
  • the intermediate key, and the enhanced air interface key are derived according to the intermediate key using the same algorithm as the SGSN+.
  • the first key derivation unit of the SGSN+ is further configured to: derive a modified intermediate key according to the mapped legacy key and the intermediate key, and send the modified intermediate key to the target RNC+
  • the variant intermediate key is used to update the enhanced air interface key when the terminal performs a serving radio network controller (SRNC) migration within the enhanced UTRAN network.
  • SRNC serving radio network controller
  • the network side and the terminal can respectively establish an enhanced key system according to the mapped legacy key, instead of performing the AKA process again, thereby enabling It saves network overhead, improves system efficiency, and ensures that the terminal can communicate securely with the enhanced UTRAN network.
  • FIG. 1 is a schematic structural diagram of a radio access network using HSPA+ technology in the prior art
  • FIG. 2 is a schematic diagram of a HiSPA+ enhanced security key hierarchy in the prior art
  • FIG. 3 is a schematic structural diagram of an LTE/SAE in the prior art
  • FIG. 5 is a flowchart of Embodiment 2 of the present invention.
  • Embodiment 6 of the present invention is a flowchart of Embodiment 6 of the present invention.
  • FIG. 10 is a flowchart of Embodiment 7 of the present invention
  • FIG. 11 is a flowchart of Embodiment 8 of the present invention.
  • the principle of the present invention is: when the terminal moves from the EUTRAN to the UTRAN supporting the HSPA+ security function (ie, the enhanced UTRAN, hereinafter referred to as the enhanced UTRAN), the intermediate key used in the UTRAN is enhanced; the terminal derives the traditional mapping of the mapping After the key, the intermediate key (KRNC) used in the enhanced UTRAN is derived according to the traditional key of the mapping using the same algorithm as the target SGSN+.
  • the target SGSN+ When the terminal is in an active state, the target SGSN+ obtains the mapped legacy key from the source mobility management entity by forwarding a migration request message. After deriving the intermediate key, the target SGSN+ transmits the intermediate key KR NC to a target radio network controller (RNC+) in the enhanced UTRAN through a key distribution message (such as a migration request message), by the target RNC+ An enhanced air interface key (IKu and/or CKu) is derived from the intermediate key KR NC . After deriving the intermediate key used in the enhanced UTRAN, the terminal derives an enhanced air interface key (IKu and/or CKu) according to the same algorithm as the target RNC+ according to the intermediate key.
  • RNC+ target radio network controller
  • the target SGSN+ derives the enhanced air interface key IKu and/or CKu according to the intermediate key, and distributes the enhanced air interface key IKu and/or CKu by key
  • the message (such as the migration request message) is sent to the target RNC+, the target RNC+ stores the air interface integrity key IKu and/or the encryption key CCu; the terminal after deriving the intermediate key used in the enhanced UTRAN,
  • the enhanced air interface key IKu and/or CKu is derived from the intermediate key using the same algorithm as the target SGSN+.
  • the target SGSN+ derives the modified intermediate key according to the mapped legacy key and the intermediate key, and transmits the modified intermediate key to the target wireless in the enhanced UTRAN through a key distribution message (such as a migration request message)
  • the network controller RNC+ the modified intermediate key is used to update the enhanced air interface keys IKu and CKu when the terminal performs a serving radio network controller (SRNC) migration within the enhanced UTRAN network.
  • SRNC serving radio network controller
  • the target SGSN+ sets an associated counter for the modified intermediate key while deriving the modified intermediate key, and the counter is used to record the number of times the deformed intermediate key is generated.
  • the target SGSN+ can also send the counter value to RNC+.
  • the target SGSN+ derives the intermediate key used in the enhanced UTRAN according to the mapped legacy key and the first parameter; the terminal in the process of deriving the intermediate key, the same Deriving an intermediate key used in the enhanced UTRAN according to the mapped legacy key and combining the first parameter with the same algorithm as the target SGSN+; the first parameter is sent to the terminal by the target SGSN+ Or the target SGSN+ is agreed with the terminal.
  • the enhanced air interface key IKu and / or CKu is derived according to the intermediate key and the second parameter.
  • the first parameter includes one or more of the following parameters: a service network identifier (PLMN identifier), a core network node type, a sequence number (SQN), a hidden key (AK), a user identity, and a target SGSN+ generated random number.
  • PLMN identifier service network identifier
  • SQN sequence number
  • AK hidden key
  • user identity a user identity
  • target SGSN+ generated random number a target SGSN+ generated random number.
  • the second parameter includes one or more of the following parameters: a refresh random number (FRESH) generated by a target radio network controller (RNC), an encryption algorithm identifier (enc-alg-ID), and an integrity algorithm identifier (int- alg-ID), enhance the physical cell identity (PCI) of the Node B, enhance the absolute frequency of the Node B (UARFCN), the scrambling code assigned by the target RNC to the terminal, the user identifier, the target RNC identifier, and the universal Start (START) parameter defined in the mobile communication system, integrity sequence number (COUNT-I) parameter defined in the universal mobile communication system, radio link control sequence number (RRC SN) parameter defined in the universal mobile communication system, target The random number generated by SGSN+.
  • FRESH refresh random number
  • RNC target radio network controller
  • enc-alg-ID an encryption algorithm identifier
  • int- alg-ID integrity algorithm identifier
  • enhance the physical cell identity (PCI) of the Node B enhance the absolute frequency
  • the target SGSN+ When the terminal is in an idle state, the target SGSN+ obtains the mapped legacy key from the source mobility management entity by using a context response message. In the process of deriving the intermediate key, the target SGSN+ derives the intermediate key used in the enhanced UTRAN according to the mapped legacy key and the first parameter; the terminal in the process of deriving the intermediate key, the same The intermediate key used in the enhanced UTRAN is derived from the mapped legacy key in conjunction with the first parameter using the same algorithm as the target SGSN+.
  • the first parameter includes one or more of the following parameters: a service network identifier (PLMN identifier), a core network node type, a sequence number (SQN), a hidden key (AK), a user identity, and a target SGSN+ generated random Number NONCESGSN, the random number generated by the terminal NONCEuEo
  • PLMN identifier a service network identifier
  • SQN sequence number
  • AK hidden key
  • NONCESGSN the random number generated by the terminal NONCEuEo
  • the random number NONCESGSN is generated by the target SGSN+ after receiving the forwarding migration request message sent by the source MME, and is forwarded to the terminal via the source MME and the source base station; or the random number is updated by the target SGSN+ in the routing area sent by the receiving terminal.
  • the request message is generated and sent to the terminal via the routing area update accept message.
  • the above random number NONCEUE is generated by the terminal before transmitting the routing area update request message to the target SGSN+, and is transmitted to the target SGSN+ via the routing area update request message.
  • the above FRESH is generated by the target RNC+ after receiving the migration request message sent by the target SGSN+.
  • the FRESH parameter is forwarded to the terminal via the target SGSN+ and the source MME and the source base station.
  • the terminal state in the embodiment 1-4 is an active state
  • the terminal state in the embodiment 5-6 is an idle state.
  • This embodiment illustrates an example of an air interface key management procedure when the terminal moves from the EUTRAN to the enhanced UTRAN.
  • the target SGSN+ is responsible for deriving the KRNC
  • the target RNC+ is responsible for deriving the enhanced keys CKu and IKu. As shown in Figure 4, the following steps are included:
  • Step 101 The source base station decides to switch from the E-UTRAN network to the target enhanced UTRAN network.
  • Step 103 The source ⁇ confirms that the terminal is to switch to the UTRAN, and derives the mapped traditional keys IK' and CK' according to the KASME;
  • KASME is stored at both the terminal and the MME.
  • the derivation of the mapped traditional keys IK, and CK, is defined in the LTE-related protocol, and is not described here.
  • Step 104 The source MME sends a Forward Migration Request message to the target SGSN, requesting the target SGSN. Allocating resources to the terminal; the message carries security-related parameters: for example, mapped traditional keys IK' and CK.
  • the migration process of the Serving GW may be performed at the same time.
  • Step 105 If the target SGSN supports the HSPA+ enhanced security function, that is, if the target SGSN is SGSN+, the target SGSN+ derives the intermediate key KR NC according to the received mapped traditional keys IK', CK';
  • the target SGSN+ derives the modified intermediate key KR NC * according to the mapped traditional key IK', CK' and the intermediate key KR NC , and the modified intermediate key is used when When the terminal performs SRNC migration in the enhanced UTRAN network, the enhanced air interface keys IKu and CKu are updated.
  • the morphing intermediate key KR NC * is associated with a counter NCC for recording the number of times the morphing intermediate key is generated.
  • the morphing intermediate key KRNC* is associated with the NCC. The value is 1.
  • target SGSN does not support the HSPA+ enhanced security function, the following processes are performed according to the procedures specified in the LTE specification, and are not described here.
  • Step 106 The target SGSN+ sends a migration request message to the target RNC+, requesting the target RNC+ to establish a wireless network resource for the terminal, where the message carries security-related information, and at least includes: KRNC and algorithm information;
  • the algorithm information includes integrity algorithm information and/or encryption algorithm information, and the integrity algorithm may be an integrity algorithm supported by the terminal, or an integrity algorithm selected by the network side; the encryption algorithm may be an encryption supported by the terminal. Algorithm, or an encryption algorithm selected on the network side. If integrity protection is required, the algorithm information contains at least an integrity algorithm.
  • the target SGSN+ may also carry: the modified intermediate key KRNC*. If the counter NCC is set for KRNC*, the counter NCC value can also be carried.
  • Step 107 The target RNC+ allocates radio resources to the terminal, and derives an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the received KRNC, and saves the generated IKu and/or CKu;
  • the derivation of IKu and CKu is as shown in Examples 10 and 11. If the refresh random number (FRESH) is needed during the derivation, the target RNC+ also needs to generate the FRESH parameter.
  • FRESH refresh random number
  • Step 108 The target RNC+ sends a migration request acknowledgement message to the target SGSN+.
  • the RNC+ needs to carry the RNC+ selected algorithm (integrity algorithm and/or encryption algorithm) in the migration request acknowledgement message.
  • the target RNC+ may add an indication in the migration request acknowledgement message to implicitly or explicitly instruct the terminal to perform the derivation of the enhanced key IKu and/or CKu, for example: adding the network side security in the migration request acknowledgement message Capability indication (implicit mode), or enhanced key enable indication (explicit mode).
  • the target SGSN+ and the serving gateway may perform an indirect data forwarding tunnel request message interaction process.
  • Step 109 The target SGSN+ sends a forwarding migration response message to the source MME.
  • the RNC+ selected algorithm is carried in the forward migration response message.
  • the target SGSN+ may also add an indication in the forwarding migration response message to implicitly or explicitly instruct the terminal to perform the derivation of the enhanced key IKu and/or CKu, for example: adding the network side security capability in the forwarding migration response message Indication (implicit mode), or enhanced key enable indication (explicit mode). If the target RNC+ carries the indication in step 108, the target SGSN+ may add the indication in the constructed forwarding migration response message.
  • Step 110 The source MME sends a handover command message to the source base station, indicating that the network completes the handover preparation process.
  • the handover command message sent by the source MME to the source base station also carries the parameter indicating the algorithm.
  • the source MME carries an indication of the target RNC+ or the target SGSN+ added in the handover command message to instruct the terminal to perform derivation of the enhanced key IKu and/or CKu.
  • Step 111 The source base station sends a handover command message from the EUTRAN to the terminal, instructing the terminal to switch to the target access network.
  • the handover command message carries radio parameters of the target RNC+ allocated to the terminal in the preparation phase, and algorithm information (including integrity algorithms and/or encryption algorithms).
  • the source base station also carries an indication added by the target RNC+ or the target SGSN+ in the message, to instruct the terminal to perform derivation of the enhanced keys IKu and CKu.
  • Step 112 The terminal derives the mapped traditional keys IK' and CK' according to the KASME, and then derives the KR NC according to the mapped traditional keys IK' and CK', and then derives the enhanced air interface integrity key IKu and / according to the KR NC. Or air interface encryption key CKu;
  • Step 113 The terminal sends a handover to the target RNC+ to the UTRAN complete message, where the message is integrity protected using the newly generated enhanced integrity key IKu, and/or encrypted using the enhanced encryption key CKu;
  • Step 114 The target RNC+ sends a migration complete message to the target SGSN+, indicating to the target SGSN+ that the terminal has successfully switched from the EUTRAN to the target RNC+;
  • Step 115 The target SGSN+ and the source MME perform message interaction, and confirm that the migration is complete.
  • This embodiment illustrates an example of an enhanced air key establishment procedure for a terminal moving from EUTRAN to an enhanced UTRAN.
  • the difference between this embodiment and the example 1 is that the enhanced air interface integrity key IKu and the air interface encryption key CKu are generated at the target SGSN+ and delivered to the target RNC+ in the migration request message through the target SGSN+. As shown in Figure 5, the following steps are included:
  • Steps 201-204 the same as the embodiment 1 steps 101-104;
  • Step 205 If the target SGSN supports the enhanced security function, that is, if the target SGSN is SGSN+, the target SGSN+ derives the KR NC according to the received traditional keys IK' and CK', and then derives according to the intermediate key KR NC.
  • the target SGSN+ derives the variant intermediate key KRNC* from the mapped legacy keys IK', CK' and the intermediate key KRNC.
  • enhanced air interface key information enhanced air interface integrity key IKu and/or Or air interface encryption key CCu
  • the algorithm information includes integrity algorithm information and/or encryption algorithm information.
  • the target SGSN+ further derives the modified intermediate key KR NC * in step 205
  • the target SGSN+ further carries: the modified intermediate key KR NC *.
  • the counter NCC is set for KRNC*, the counter NCC value can also be carried.
  • Step 207 the target RNC+ stores enhanced air interface key information
  • Steps 208-216 the same as Embodiment 1 steps 108-116.
  • This embodiment illustrates another example of an enhanced air key establishment procedure for a terminal moving from EUTRAN to enhanced UTRAN.
  • the difference between this embodiment and the example 1 is that a random number NONCESGSN is generated by the target SGSN+, and the intermediate key KRNC is derived using the random number NONCESGSN and the mapped legacy keys IK, and CK. As shown in Figure 6, the following steps are included:
  • Steps 301-304 the same as the embodiment 1 steps 101-104;
  • Step 305 if the target SGSN is SGSN+, the target SGSN+ generates a random number NONCESGSN, and derives the KRNC according to the received traditional key IK', CK' and the generated random number NONCESGSN;
  • the target SGSN+ derives the modified intermediate key KRNC* according to the mapped traditional key IK', CK' and the intermediate key KRNC, and the modified intermediate key is used when the terminal is in the terminal
  • the enhanced air interface keys IKu and CKu are updated.
  • the variant intermediate key KRNC* is associated with a counter NCC. In this embodiment, at this time, the NCC value associated with the modified intermediate key KASMEU* is 1.
  • Steps 306-308 the same as the embodiment 1 steps 106-108;
  • Step 309 The target SGSN+ sends a forwarding migration response message to the source MME, and carries the parameter: a random number NONCESGSN, and algorithm information, where the algorithm information includes: integrity algorithm information and/or encryption algorithm information;
  • the target SGSN+ may carry an indication in the message, and the source MME relays the terminal to perform the derivation of the enhanced keys IKu and CKu, which may be indicated in an implicit or explicit manner, for example: adding the inclusion in the forwarding migration response message Network side security capability indication (implicit mode), or enhanced key enable indication (explicit mode).
  • the source MME relays the terminal to perform the derivation of the enhanced keys IKu and CKu, which may be indicated in an implicit or explicit manner, for example: adding the inclusion in the forwarding migration response message Network side security capability indication (implicit mode), or enhanced key enable indication (explicit mode).
  • Step 310 The source MME sends a handover command message to the source base station, instructing the network to complete the handover preparation process, and carrying the parameter in the message: a random number NONCESGSN, and algorithm information;
  • Step 311 The source base station sends a handover command message from the EUTRAN to the terminal, instructing the terminal to switch to the target access network, and carries the radio parameters of the target RNC+ allocated to the terminal in the preparation phase, including: a random number NONCESGSN, and Algorithm information;
  • the source base station instructs the terminal to perform the derivation of the enhanced keys IKu and CKu in the message, which may be indicated in an implicit or explicit manner, for example: adding a network side security capability indication (implicit indication) in the handover command , or an enhanced key enable indicator (explicit indication).
  • Step 312 The terminal derives the mapped traditional keys IK' and CK' according to the KASME, and then derives the KRNC according to the mapped traditional keys IK', CK' and the random number NONCESGSN, and then derives the enhanced air interface integrity according to the KRNC.
  • Steps 313-316 the same as Embodiment 1 steps 113-116.
  • This embodiment illustrates an example of an enhanced air key establishment procedure for a terminal moving from EUTRAN to an enhanced UTRAN.
  • the difference between this embodiment and the example 3 is that the enhanced air interface integrity key IKu and the air interface encryption key CKu are generated at the target SGSN+ and delivered to the target RNC+ in the migration request message by the target SGSN+. As shown in Figure 7, the following steps are included:
  • Steps 401-404 the same as the embodiment 3 steps 301-304;
  • Step 405 If the target SGSN is SGSN+, the target SGSN+ generates a random number NONCESGSN, and derives according to the received traditional key IK', CK' and the generated random number NONCESGSN. KRNC, and then derive an enhanced air interface integrity key IKu and/or air interface encryption key CCu according to the intermediate key KR NC ; or, the target SGSN+ derives KRNC according to the received mapped traditional key IK', CK ', and then according to The intermediate key KRNC and the generated random number NONCESGSN derive an enhanced air interface integrity key IKu and/or an air interface encryption key CKu;
  • the target SGSN+ derives the modified intermediate key KRNC* from the mapped legacy key IK', CK' and the intermediate key KRNC, and sets the counter NCC for the modified intermediate key KRNC*.
  • Step 406 The target SGSN+ sends a migration request message to the target RNC+, requesting the target RNC+ to establish a wireless network resource for the terminal, and the message carrying the security-related information includes at least: enhanced air interface key information (enhanced air interface integrity key IKu and/or Air interface encryption key CCu) and algorithm information;
  • enhanced air interface key information enhanced air interface integrity key IKu and/or Air interface encryption key CCu
  • the algorithm information includes integrity algorithm information and/or encryption algorithm information.
  • the target SGSN+ further derives the modified intermediate key KRNC* in step 405
  • the target SGSN+ further carries: the modified intermediate key KRNC*. If the counter NCC is set for KRNC*, the counter NCC value can also be carried.
  • Step 407 the target RNC+ stores enhanced air interface key information
  • Steps 408-416 the same as the embodiment 3 steps 309-316.
  • the terminal derives the enhanced keys IKu and / or CKu in the same manner as the network side.
  • This embodiment shows an example of an enhanced air interface key establishment when the terminal moves from the EUTRAN to the enhanced UTRAN to perform routing area update in the idle mode. As shown in FIG. 8, the following steps are included:
  • Step 501 When the routing area update trigger condition is met, the terminal sends a routing area update request message to the target SGSN+, requesting to perform routing area update, and the message carries a NAS token (non-access stratum token) for the network to verify the terminal;
  • NAS token non-access stratum token
  • the derivation of the NAS token complies with the definition of the LTE-related protocol and will not be described here.
  • Step 502 The target SGSN+ sends a context request message to the source MME of the terminal, requesting the context of the terminal, and the message carries the parameter: NAS token;
  • Step 503 The source MME verifies the NAS token. If the verification succeeds, the source MME derives the mapped traditional keys IK' and CK' according to the KASME.
  • Step 504 The source MME sends a context response message to the target SGSN+, where the message carries parameters: the mapped traditional keys IK' and CK';
  • Step 505 the target SGSN+ is derived according to the received traditional keys IK' and CK' of the mapping
  • Step 506 The target SGSN+ sends a routing area update accept message to the terminal.
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform the KRNC derivation, for example: adding a network side security capability indication to the routing area update accept message (hidden) Mode), or enhanced key enable indication (explicit mode).
  • Step 507 The terminal derives the mapped traditional keys IK' and CK' according to the KASME, and then derives the KRNC from the mapped traditional keys IK' and CK'; wherein the mapping of the mapped traditional keys IK' and CK' may also occur Before this step;
  • Step 508 The terminal sends a routing area update complete message to the target SGSN+ to confirm that the routing area update is completed.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from the EUTRAN to the enhanced UTRAN for routing area update in the idle mode.
  • the difference between this embodiment and Embodiment 5 is that a random number NONCESGSN is generated by the target SGSN+, and the target SGSN+ and the terminal derive the intermediate key KRNC using the random number NONCESGSN and the mapped legacy keys IK', CK'.
  • the following steps are included:
  • Steps 601-604 the same as the embodiment 5 steps 501-504;
  • Step 605 The target SGSN+ generates a random number NONCESGSN, and derives a KRNC according to the received traditional key IK', CK' and the random number NONCESGSN.
  • Step 606 The target SGSN+ sends a routing area update accept message to the terminal, and carries the parameter in the message: a random number NONCESGSN;
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform KRNC derivation.
  • Step 607 The terminal derives the mapped traditional keys IK' and CK' according to the KASME, and then derives the KRNC according to the mapped traditional keys IK', CK', and NONCESGSN; wherein the mapping of the mapped traditional keys IK' and CK is also Occurs before this step;
  • Step 608 the same as step 5 of embodiment 5.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from the EUTRAN to the enhanced UTRAN for routing area update in the idle mode.
  • the difference between this embodiment and Embodiment 5 is that a random number NONCEUE is generated by the terminal, and the target SGSN+ and the terminal derive the intermediate key KRNC using the random number NONCEUE and the mapped legacy keys IK', CK'. As shown in Figure 10, the following steps are included:
  • Step 701 When the routing area update trigger condition is met, the terminal generates a random number NONCEUE.
  • the message carries a NAS token for network to authenticate the terminal.
  • the derivation of the NAS token complies with the definition of the LTE-related protocol and will not be described here.
  • Steps 703-705 the same as the embodiment 5 steps 502-504;
  • Step 706 the target SGSN+ is based on the received traditional key IK', CK' and the random number
  • Step 707 the same as step 506 of the embodiment 5;
  • Step 708 The terminal derives the mapped traditional keys IK' and CK' according to the KASME, and then derives the KRNC according to the mapped traditional keys IK', CK', and NONCEUE, wherein the mapping of the mapped traditional keys IK' and CK' is also Occurs before this step;
  • Step 709 the same as step 5 of embodiment 5.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from EUTRAN to enhanced UTRAN for routing area update in idle mode.
  • the terminal generates a random number NONCEUE
  • the target SGSN+ generates a random number NONCESGSN
  • the terminal and the target SGSN+ respectively use the random number NONCEUE, the random number NONCESGSN, and the mapped traditional secret.
  • the keys IK', CK' derive the intermediate key KR NC . As shown in FIG. 11, the following steps are included:
  • Step 801 When the routing area update trigger condition is met, the terminal generates a random number NONCEUE.
  • the derivation of the NAS token complies with the definition of the LTE-related protocol and will not be described here.
  • Steps 803-805 the same as the embodiment 5 steps 502-504;
  • Step 806 The target SGSN+ generates a random number NONCESGSN, and derives a KRNC according to the received traditional key IK, CK', and the random number NONCEUE and the random number NONCESGSN.
  • Step 807 The target SGSN+ sends a routing area update accept message to the terminal, and carries the parameter in the message: a random number NONCESGSN;
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform KRNC derivation.
  • Step 808 The terminal derives the mapped traditional keys IK' and CK' according to the KASME, and then combines the random Number NONCEUE, random number NONCESGSN derivation KRNC, wherein the derivation of the mapped traditional keys IK' and CK' may also occur before this step;
  • Step 809 the same as step 5 of embodiment 5.
  • This embodiment gives an example of the derivation of the intermediate key KRNC.
  • the generation parameter of the SGSN+ derived intermediate key KRNC includes one of the following parameters or a combination of any of the following parameters in addition to the mapped traditional encryption key CK and the mapped legacy integrity key IK: Service Network Identity (PLMN identifier) ), core network node type (TYPE, indicating packet switching or circuit switching), serial number (SQN), hidden key (AK), user identity (such as IMSI, IMEI or TMSI), random number NONCE; the serial number Both the hidden key and the hidden key are parameters generated by the user and the home user server respectively during the authentication and key agreement process.
  • PLMN identifier Service Network Identity
  • TYPE indicating packet switching or circuit switching
  • SQN serial number
  • AK hidden key
  • user identity such as IMSI, IMEI or TMSI
  • random number NONCE random number
  • KRNC F1 (CK,, IK', Type, SQN ® AK );
  • KRNC F1 (CK,, IK', PLMN identifier, SQN ® AK );
  • KRNC F1 (CK,, IK', Type, IMSI, SQN ® AK );
  • KRNC F1 (CK,, IK', PLMN identifier, SQN);
  • KRNC F1 (CK,, IK', PLMN identifier, AK);
  • KRNC F1 (CK,, IK', SQN ® AK );
  • KRNC F1 (CK,, IK', TYPE, AK);
  • KRNC F1 (CK,, IK', NONCESGSN, NONCEUE);
  • Fl is an arbitrary key generation algorithm, for example: A KDF algorithm that can be defined by 3GPP. " ® " refers to the 3GPP definition for an exclusive OR algorithm.
  • the target SGSN+ cannot obtain the value of SQN@AK, it can be initialized to
  • This embodiment gives an example of the derivation of the enhanced air interface integrity key IKu and air interface encryption key CKu.
  • the core network node SGSN+ sends the intermediate key KRNC to the RNC+, and the RNC+ calculates the encryption key CCu and the integrity key IKu according to the intermediate key KRNC and the existing parameters of the universal mobile communication system network, and the target SGSN+ and the terminal can be combined with the following
  • the existing parameters of the UMTS network calculate CKu and IKu.
  • the existing parameters of the UMTS network include one of the following parameters or a combination of any number: RNC+ generated refresh random number (FRESH), encryption algorithm identifier (enc-alg-ID), integrity algorithm identifier (int-alg-ID), Enhance Node B's physical cell identity (PCI), enhance Node B's Absolute Radio Frequency Channel Number (UARFCN), RNC+ Scrambling Code assigned to user equipment, User ID, RNC+ Logo, General
  • the START parameter defined in the mobile communication system the integrity sequence number (COU TI) parameter defined in the universal mobile communication system, and the radio link control sequence number (RRCSN) parameter defined in the universal mobile communication system.
  • CKu F2 ( KRNC, FRESH, enc-alg-ID),
  • IKu F3 (KRNC, FRESH, int-alg-ID);
  • IKu F2 ( KRNC, PCI, UARFCN, int-alg-ID );
  • IKu F2 ( KRNC, START, int-alg-ID );
  • IKu F2 ( KRNC, COUNT-I, int-alg-ID );
  • IKu F2 ( KRNC, RRC SN, int-alg-ID );
  • CKu, IKu F2 ( KRNC, NONCE );
  • NONCE can be a random number generated by SGSN+.
  • F is an arbitrary key generation algorithm, for example: A KDF algorithm that can be defined by 3GPP.
  • the random number FRESH is a parameter that has been defined in the UMTS. The random number is 32 bits long.
  • a random number FRESH is generated for each user by the RNC (corresponding to HSPA+, that is, Node B+), and is sent to the user through the security mode command message. Throughout the duration of the connection, the network and the user use the random number to calculate a message authentication code (MAC-I) for protecting the network from replay attacks of user signaling messages.
  • MAC-I message authentication code
  • the target RNC+ When the terminal switches from EUTRAN to UTRAN, the target RNC+ generates the FRESH parameter after receiving the migration request message sent by the target SGSN+.
  • the FRESH parameter is transmitted to the terminal via the relay of the target SGSN+ and the source MME and the source base station (i.e., steps 108-111 in Embodiment 1). The terminal uses this parameter
  • the start parameter is a parameter that has been defined in the UMTS and is stored in the user equipment (UE) and the Universal Subscriber Identity Module (USIM) for managing the encryption key and the integrity key.
  • the life cycle in a successful authentication and key agreement process, the START value associated with the newly generated key is initialized to 0 in the ME and USIM.
  • the user equipment controls the connection establishment completion message through the radio link to send the value of the start parameter to the radio network controller (RNC) during the wireless connection maintenance process.
  • RNC radio network controller
  • the user equipment and the radio network controller increment the start parameter value according to the network rule.
  • the START value reaches the specified threshold, the key is invalidated.
  • the integrity sequence number (COU T-I) is 32 bits long and consists of a 4-bit RRC sequence number (RRC SN) and a 28-bit superframe number. The superframe number is incremented in each RRC SN period, and the RRC sequence number (RRC SN) is incremented in each integrity protected radio link control message.
  • the physical cell identity (PCI) and absolute frequency of the enhanced Node B are broadcast in the system broadcast message of the enhanced Node B.
  • the scrambling code assigned by the enhanced Node B to the user equipment is obtained from the network side before the user establishes a wireless connection with the network.
  • This embodiment gives an example of another derivation of the enhanced air interface integrity key IKu and air interface encryption key CCu.
  • Intermediate key KRN C ( IK'UCK');
  • a system implementing the above method comprising a terminal, an enhanced service GPRS support node (SGSN+) in the enhanced UTRAN, wherein:
  • the SGSN+ for deriving an intermediate key used in the UTRAN according to a mapped legacy key obtained from a source mobility management entity (MME) when the terminal moves from the EUTRAN to the enhanced UTRAN;
  • MME source mobility management entity
  • the system further includes a target enhanced radio network controller (RNC+) in the enhanced UTRAN, the SGSN+ comprising: a first receiving unit, a first key derivation unit and a first transmitting unit, wherein: the first receiving unit a traditional key for receiving a mapping sent by the source mobility management entity; the first key derivation unit deriving the intermediate key according to the mapped legacy key; the first sending unit, configured to The derived intermediate key is sent to the RNC+; the RNC+ is used to derive an enhanced air interface integrity key (IKu) and/or an enhanced air interface encryption key (CKu) according to the intermediate key. ) ;
  • RNC+ target enhanced radio network controller
  • the terminal includes: a second receiving unit, a second key deriving unit, where:
  • the second receiving unit is configured to receive a command sent by the network side
  • the second key derivation unit is configured to derivate the traditional key mapped according to the command, and derive the intermediate key according to the traditional key of the mapping obtained by deriving, using the same algorithm as the SGSN+, And deriving the enhanced air interface key according to the intermediate key using the same algorithm as the RNC+.
  • the system further includes a target enhanced radio network controller (RNC+) in the enhanced UTRAN, the SGSN+ comprising: a first receiving unit, a first key derivation unit and a first transmitting unit, wherein: the first receiving unit a traditional key for receiving a mapping sent by the source mobility management entity; the first key derivation unit deriving the intermediate key according to the mapped legacy key, and deriving an enhanced according to the intermediate key Air interface integrity key (IKu) and/or enhanced air interface encryption key (CKu);
  • RNC+ target enhanced radio network controller
  • the first sending unit is configured to send the derived enhanced air interface key to the RNC+; the RNC+ is configured to save the received enhanced air interface key;
  • the terminal includes: a second receiving unit, a second key deriving unit, where:
  • the second receiving unit is configured to receive a command sent by the network side
  • the second key derivation unit is configured to derivate the traditional key mapped according to the command, and derive the intermediate key according to the traditional key of the mapping obtained by deriving, using the same algorithm as the SGSN+, And deriving the enhancement according to the same algorithm as the SGSN+ according to the intermediate key Air interface key.
  • the key derivation unit of the SGSN+ is further configured to derive a modified intermediate key according to the mapped traditional key and the intermediate key, and send the modified intermediate key to the target RNC+, where the middle of the deformation
  • the key is used to update the enhanced air interface key when the terminal performs a Serving Radio Network Controller (SRNC) migration within the enhanced UTRAN network.
  • SRNC Serving Radio Network Controller
  • each unit may be known by referring to the foregoing method.
  • the sending unit of the SGSN may also be used to send a parameter used when deriving a key to the terminal, and the sending unit of the terminal may also be used to send the SGSN+
  • the random number generated by the terminal is used for derivation of the key by the SGSN+, and is not described here again.
  • the network side and the terminal can respectively establish an enhanced key system according to the mapped legacy key, without performing the AKA process again. Therefore, network overhead can be saved, system efficiency can be improved, and the terminal can securely communicate with the enhanced UTRAN network.

Abstract

本发明公开了一种终端从EUTRAN移动到增强UTRAN时建立增强密钥的方法和系统,保证终端在增强的UTRAN中能够安全地进行正常的通信。所述方法包括:当终端从EUTRAN移动到增强的UTRAN时,增强UTRAN中的目标增强服务GPRS支持节点(SGSN+)根据从源移动管理实体处获得的映射的传统密钥推导UTRAN中所使用的中间密钥;所述终端推导映射的传统密钥后,再根据所述映射的传统密钥采用与所述目标SGSN+相同的算法推导增强UTRAN中所使用的中间密钥。

Description

终端移动到增强 UTRAN时建立增强密钥的方法及系统
技术领域
本发明涉及无线通信领域, 具体而言, 涉及一种无线通信系统中终端从 EUTRAN移动到增强的 UTRAN时增强密钥的建立的方法及系统。 背景技术
3GPP ( 3rd Generation Partnership Project , 第三代合作伙伴计戈 'J ) 在 Release7中釆用了正交频分复用 ( Orthogonal Frequency Division Multiplexing , 简称 OFDM )和多输入多输出 ( Multiple-Input Multiple-Output , 简称 ΜΙΜΟ ) 技术完成 HSDPA ( High Speed Downlink Packet Access , 高速下行链路分组接 入)和 HSUPA ( High Speed Uplink Packet Access , 高速上行链路分组接入) 的未来演进道路 HSPA+。 HSPA+是 3GPP HSPA (包括 HSDPA和 HSUPA)的增 强技术, 为 HSPA运营商提供低复杂度、 低成本的从 HSPA向 LTE平滑演进 的途径。
HSPA+通过釆用高阶调制 (例如下行 64QAM ( Quadrature Amplitude Modulation, 正交幅度调制)和上行 16QAM ) 、 MIMO 以及高阶段调制与
MIMO的结合等技术, 提升了峰值数据速率与频谱效率。 另一方面, 为了更 好的支持分组业务, HSPA+还釆用了一系列其它增强技术来达到增加用户容 量、 降低时延、 降低终端耗电, 更好地支持 IP语音通信 (VOIP)以及提升系统 的多播 /广播能力等目标。
相比较于 HSPA, HSPA+在系统架构上将无线网络控制器( Radio Network Controller, 简称 RNC )的功能下放到基站节点 B ( Node B ) , 形成完全扁平 化的无线接入网络架构,如图 1所示。此时称集成了完全 RNC功能的 Node B 为 Evolved HSPA Node B , 或者简称增强节点 Β ( Node B+ ) 。 SGSN+为进行 了升级能支持 HSPA+功能的 SGSN ( SERVICE GPRS SUPPORT NODE, 服 务 GPRS支持节点; GPRS: General Packet Radio System ,通用分组无线系统)。 ΜΕ+为能支持 HSPA+功能的用户终端设备(也可称为 UE+ ) 。 演进的 HSPA 系统能够使用 3GPP Rel-5和以后的空口版本, 对空口的 HSPA业务没有任何 修改。 釆用这种方案后, 每个 Node B+都成为一个相当于 RNC的节点, 具有 Iu-PS接口能够直接与 PS CN ( Core Network, 核心网)连接, Iu-PS用户面在 SGSN终结, 其中如果网络支持直通隧道功能, Iu-PS用户面也可以在 GGSN ( Gateway GPRS Support Node, 网关 GPRS支持节点)终结。 演进的 HSPA Node B之间的通信通过 lur接口执行。 Node B+具有独立组网的能力, 并支持 完整的移动性功能, 包括系统间和系统内切换。
在 HSPA+中, 可以将 Node B+看作 Node B和 RNC的结合。 二者是一个 物理实体, 但是仍然是 2个不同的逻辑实体。 因此本文中支持 HSPA+增强的 密钥层次的 Node B+也可以等同为 UMTS中进行了升级的 RNC。 为了区分, 我们可以称之为 RNC+。
目前提出的 HSPA+增强的安全密钥层次结构如图 2所示。其中, K( Key, 即才艮密钥) 、 CK ( Ciphering Key, 即加密密钥)和 IK ( Integrity Key, 即完 整性密钥 )的定义与 UMTS ( Universal Mobile Telecommunications System, 通 用移动通信系统) 中完全一致。 即 K是存储于 AuC ( Authentication Center, 鉴权中心)和 USIM ( UNIVERSAL SUBSCRIBER IDENTITY MODULE , 通 用订阅者身份模块) 中的根密钥, CK和 ΙΚ是用户设备与 HSS 进行 ΑΚΑ ( Authentication and Key Agreement, 认证和密钥协定) 时由 K计算出的力口密 密钥和完整性密钥。 在 UMTS中, RNC即使用 CK和 IK对数据进行加密和 完整性保护。我们可以将 CK和 IK称为传统的空口安全密钥,简称传统密钥。
由于 HSPA+架构中, 将 RNC的功能全部下放到基站 Node B+, 则加解 密都需在 Node B+处进行, 而 Node B+位于不安全的环境中, 安全性不是特 别高。 因此 HSPA+引入了一个类似于 EUTRAN ( Evolved Universal Terrestrial Radio Access Network , 演进的通用陆地无线接入网络) 的密钥层次, 即 UTRAN密钥层次( UTRAN Key Hierarchy ) 。 在 UTRAN密钥层次结构中, 中间密钥 KRNC (也有称为 KASMEU )是 HSPA+新引入的密钥 , 由传统密钥 CK 和 IK推导生成。进一步地, KRNC生成 CKu(也称为 CKS )和 IKu(也称为 IKS ) , 其中 CKu用于加密用户面数据和控制面信令,ΙΚυ用于对控制面信令进行完整 性保护。 我们将 CKu和 ΙΚυ称为增强的空口安全密钥, 简称增强密钥。
LTE/SAE是 3GPP对 UMTS的演进技术, 它支持在 20MHz频谱带宽下 提供下行 100Mbps、 上行 50Mbps的峰值速率。 LTE/SAE的网络由用户设备 ( UE ) 、 接入网以及核心网组成。 整个 LTE架构如图 3所示。 在 EUTRAN 中, 基站设备为演进的基站(evolved Node-B, 简称 eNB ) , 主要负责无线通 信、 无线通信管理、 和移动性上下文的管理。 核心网包含移动管理实体 ( Mobility Management Entity, 简称 MME ) , MME负责移动性的管理、 非 接入层信令的处理、 以及用户安全模式的管理等控制面相关的工作。
当用户从 EUTRAN移动到 UTRAN时 ,源 MME根据 LTE中的密钥 KASME 生成映射的传统密钥 IK'、 CK' , 映射的传统密钥推导式如下:
IK' l l CK' =KDF(KASME, downlink NAS COUNT)
其中, KDF是 3GPP定义的安全算法, 具体定义可参考 3GPP相关规范。
KASME是 HSS根据 CK、 IK生成的密钥, 并在 AKA ( Authentication and Key Agreement, 认证和密钥协定)过程中下发给 MME, 用以推导 NAS (非接入 层)层密钥以及 eNB上的 AS (接入层)层密钥。 NAS COU T是 NAS计数 COUNT, 一个 downlink NAS COUNT。 NAS COUNT长度为 24位, 由 UE和 MME独立维护。 当成功运行一次 AKA, 生成新的 KASME时, NAS COUNT 初始 为 0。
源 MME将推导的映射的传统密钥 IK'和 CK'发送给目标网络的核心网节 点 SGSN。 目标 SGSN使用该映射的传统密钥对用户和网络之间的通信进行 保护。
随着 HSPA+安全的引入, 由于增加了密钥层次, 用户和网络之间使用增 强密钥 IKu和 CKu对通信进行保护。 当用户从 EUTRAN移动到支持 HSPA+ 安全功能的 UTRAN时, 如何通过映射的传统密钥建立起 HSPA+的增强的安 全密钥, 是一个急需解决的问题。 发明内容
本发明要解决的技术问题是提供一种终端从 EUTRAN 移动到增强 UTRAN时建立增强密钥的方法和系统,保证终端在增强的 UTRAN中能够安 全地进行正常的通信。
为解决上述技术问题, 本发明提供了一种终端从演进的通用陆地无线接 入网络(EUTRAN )移动到增强的通用陆地无线接入网络(UTRAN )时建立 增强密钥的方法, 包括:
当终端从 EUTRAN移动到增强的 UTRAN时, 增强 UTRAN中的目标增 强服务 GPRS支持节点 (SGSN+ )根据从源移动管理实体处获得的映射的传 统密钥推导 UTRAN中所使用的中间密钥;
所述终端推导映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与所 述目标 SGSN+相同的算法推导增强 UTRAN中所使用的中间密钥。
优选的, 所述方法还包括: 所述终端为激活态时, 所述目标 SGSN+在推 导所述中间密钥后, 将所述中间密钥发送给增强的 UTRAN中的目标增强无 线网络控制器(RNC+ ) , 由所述目标 RNC+根据所述中间密钥推导增强的空 口完整性密钥(IKu )和 /或增强的空口加密密钥(CKu ); 所述终端在推导所 述中间密钥后, 再才艮据所述中间密钥釆用与所述目标 RNC+相同的算法推导 增强的空口密钥。
优选的, 所述方法还包括: 所述终端为激活态时, 所述目标 SGSN+在推 导所述中间密钥后, 再才艮据所述中间密钥推导增强的空口完整性密钥 (IKu ) 和 /或增强的空口加密密钥 (CKu ) , 并将推导的增强空口密钥发送给目标增 强无线网络控制器(RNC+ ); 所述终端在推导所述中间密钥后, 再根据所述 中间密钥釆用与所述目标 SGSN+相同的算法推导增强的空口密钥。
优选的, 所述方法还包括: 所述目标 SGSN+根据所述映射的传统密钥和 所述中间密钥推导变形中间密钥, 并将所述变形中间密钥发送给所述目标 RNC+,所述变形中间密钥用于当所述终端在增强的 UTRAN网络内进行服务 无线网络控制器(SRNC ) 迁移时, 更新所述增强的空口密钥。
优选的, 所述方法还包括: 所述目标 SGSN+在推导所述变形中间密钥的 同时, 为所述变形中间密钥设置一关联的计数器, 所述计数器用于记录生成 变形中间密钥的次数。
优选的, 所述方法还包括: 所述目标 SGSN+将所述计数器值随同所述变 形中间密钥一并发送给所述目标 RNC+。
优选的,所述目标 SGSN+向目标 RNC+发送密钥的消息为迁移请求消息。 优选的, 推导增强的空口密钥的算法为: 增强的空口完整性密钥 IKu = 映射的传统完整性密钥 ΙΚ'; 增强的空口加密密钥 CKu=映射的传统加密密钥 CK,。 钥推导 UTRAN中所使用的中间密钥的步骤包括: 根据所述映射的传统密钥 再结合第一参数推导所述增强的 UTRAN中所使用的中间密钥; 所述终端根 据所述映射的传统密钥釆用与所述目标 SGSN+相同的算法推导增强 UTRAN 中所使用的中间密钥的步骤包括: 同样根据映射的传统密钥再结合所述第一 参数釆用与所述目标 SGSN+相同的算法推导增强的 UTRAN中所使用的中间 密钥; 所述第一参数为目标 SGSN+发送给所述终端的, 或者是目标 SGSN+ 与所述终端约定好的。
优选的, 根据所述中间密钥推导增强的空口密钥的过程中, 根据中间密 钥再结合第二参数推导所述增强的空口密钥。
优选的, 所述第一参数包括以下参数的一种或多种: 服务网络标识 ( PLMN identifier ) , 核心网节点类型, 序列号(SQN ) , 隐藏密钥 (AK ) , 用户身份标识, 目标 SGSN+生成的随机数。
优选的, 所述第二参数包括以下参数的一种或多种: 目标无线网络控制 器(RNC )生成的刷新随机数(FRESH ) , 加密算法标识( enc-alg-ID ) , 完 整性算法标识(int-alg-ID ) , 增强节点 B的物理小区标识(PCI ) , 增强节点 B的绝对频点 (UARFCN ) , 目标 RNC为所述终端分配的 4尤码 ( Scrambling Code ),用户标识,目标 RNC标识,通用移动通信系统中定义的开始( START ) 参数, 通用移动通信系统中定义的完整性序列号 (COU T-I )参数, 通用移 动通信系统中定义的无线链路控制序列号 (RRC SN )参数, 目标 SGSN+生 成的随机数。
优选的, 所述目标 SGSN+生成的随机数通过以下路径发送给终端: 目标 SGSN+向源移动管理实体发送的转发迁移响应消息、 所述源移动管理实体向 源基站发送的切换命令消息和所述源基站向终端发送的从 E-UTRAN切换命 令消息。
优选的, 所述终端为空闲态时, 所述目标 SGSN根据从源移动管理实体 处获得的映射的传统密钥推导 UTRAN中所使用的中间密钥的步骤包括: 根 据所述映射的传统密钥再结合第一参数推导所述增强的 UTRAN中所使用的 中间密钥; 所述终端才艮据所述映射的传统密钥釆用与所述目标 SGSN+相同的 算法推导增强 UTRAN中所使用的中间密钥的步骤包括: 同样根据映射的传 统密钥再结合所述第一参数釆用与所述目标 SGSN+相同的算法推导增强的 UTRAN中所使用的中间密钥。
优选的, 所述第一参数包括以下参数的一种或多种: 服务网络标识
( PLMN identifier ) , 核心网节点类型, 序列号(SQN ) , 隐藏密钥 (AK ) , 用户身份标识, 目标 SGSN+生成的随机数, 终端生成的随机数。
优选的, 所述目标 SGSN+生成的随机数通过路由区更新接受消息发送给 终端。
优选的, 所述终端生成的随机数通过所述路由区更新请求消息发送给所 述目标 SGSN+。
为解决上述技术问题, 本发明还提供了一种终端从演进的通用陆地无线 接入网络(EUTRAN )移动到增强的通用陆地无线接入网络(UTRAN )时建 立增强密钥的系统, 包括终端、 增强 UTRAN中的目标增强服务 GPRS支持 节点 (SGSN+ ) :
所述 SGSN+设置为: 在终端从 EUTRAN移动到增强的 UTRAN时, 根 据从源移动管理实体处获得的映射的传统密钥推导 UTRAN中所使用的中间 密钥;
所述终端设置为: 推导映射的传统密钥, 以及推导获得所述映射的传统 密钥后, 再才艮据所述映射的传统密钥釆用与所述 SGSN+相同的算法推导增强 UTRAN中所使用的中间密钥。
优选的, 所述系统还包括增强的 UTRAN中的目标增强无线网络控制器( RNC+ ) , 所述 SGSN+包括: 第一接收单元,第二密钥推导单元和第一发送单元,其中: 所述第一接收单元设置为:接收源移动管理实体发送的映射的传统密钥; 所述第一密钥推导单元设置为: 根据所述映射的传统密钥推导所述中间 密钥;
所述第一发送单元设置为: 将推导出的所述中间密钥发送给所述 RNC+; 所述 RNC+设置为:根据所述中间密钥推导增强的空口完整性密钥( IKu ) 和 /或增强的空口加密密钥 (CKu ) ;
所述终端包括: 第二接收单元和第二密钥推导单元, 其中:
所述第二接收单元设置为: 接收网络侧发送的命令;
所述第二密钥推导单元设置为: 根据所述命令进行映射的传统密钥的推 导, 以及根据推导获得的映射的传统密钥釆用与所述 SGSN+相同的算法推导 所述中间密钥, 以及才艮据所述中间密钥釆用与所述 RNC+相同的算法推导增 强的空口密钥。
优选的,
所述系统还包括增强的 UTRAN中的目标增强无线网络控制器 ( RNC+ ) , 所述 SGSN+包括: 第一接收单元,第一密钥推导单元和第一发送单元,其中: 所述第一接收单元设置为:接收源移动管理实体发送的映射的传统密钥; 所述第一密钥推导单元设置为: 根据所述映射的传统密钥推导所述中间 密钥, 以及 居所述中间密钥推导增强的空口完整性密钥 (IKu )和 /或增强 的空口加密密钥 (CKu ) ;
所述第一发送单元设置为: 将推导出的增强空口密钥发送给所述 RNC+; 所述 RNC+设置为: 保存接收到的增强空口密钥;
所述终端包括: 第二接收单元和第二密钥推导单元, 其中:
所述第二接收单元设置为: 接收网络侧发送的命令;
所述第二密钥推导单元设置为: 根据所述命令进行映射的传统密钥的推 导, 以及根据推导获得的映射的传统密钥釆用与所述 SGSN+相同的算法推导 所述中间密钥, 以及才艮据所述中间密钥釆用与所述 SGSN+相同的算法推导增 强的空口密钥。
优选的,
所述 SGSN+的第一密钥推导单元还设置为: 根据所述映射的传统密钥和 所述中间密钥推导变形中间密钥, 并将所述变形中间密钥发送给所述目标 RNC+,所述变形中间密钥用于当所述终端在增强的 UTRAN网络内进行服务 无线网络控制器(SRNC ) 迁移时, 更新所述增强的空口密钥。
釆用本发明所述方法, 使得终端从 E-UTRAN移动到增强的 UTRAN时, 网络侧和终端可以分别根据映射的传统密钥建立增强的密钥体系, 而不用通 过再次进行 AKA过程, 从而能节省网络开销, 提高系统效率, 保证终端能和 增强的 UTRAN网络安全地进行通信。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。
图 1为现有技术中釆用 HSPA+技术的无线接入网络的架构示意图; 图 2为现有技术中 HSPA+增强的安全密钥层次结构示意图;
图 3为现有技术中 LTE/SAE的架构示意图;
图 4为本发明实施例一流程图;
图 5为本发明实施例二流程图;
图 6为本发明实施例三流程图;
图 7为本发明实施例四流程图;
图 8为本发明实施例五流程图;
图 9为本发明实施例六流程图;
图 10为本发明实施例七流程图; 图 11为本发明实施例八流程图。 本发明的较佳实施方式
本发明的原理为: 当终端从 EUTRAN移动到支持 HSPA+安全功能的 UTRAN (即增强的 UTRAN , 以下简称增强 UTRAN )时, 增强 UTRAN中的 所使用的中间密钥; 所述终端推导映射的传统密钥后, 再根据所述映射的传 统密钥釆用与所述目标 SGSN+相同的算法推导增强 UTRAN中所使用的中间 密钥 (KRNC ) 。
所述终端为激活态时, 所述目标 SGSN+通过转发迁移请求消息从源移动 管理实体处获得映射的传统密钥。 目标 SGSN+在推导出中间密钥后, 将所述 中间密钥 KRNC通过密钥分发消息 (如迁移请求消息)发送给增强的 UTRAN 中的目标无线网络控制器 (RNC+ ) , 由所述目标 RNC+根据所述中间密钥 KRNC推导出增强的空口密钥 (IKu和 /或 CKu ) 。 所述终端在推导出增强的 UTRAN中所使用的中间密钥后,再根据所述中间密钥釆用与所述目标 RNC+ 相同的算法推导出增强的空口密钥 (IKu和 /或 CKu ) 。
或者, 所述目标 SGSN+在推导出中间密钥后, 再根据所述中间密钥推导 出增强的空口密钥 IKu和 /或 CKu,并将增强的空口密钥 IKu和 /或 CKu通过密 钥分发消息 (如迁移请求消息 ) 下发给目标 RNC+, 目标 RNC+存储空口完 整性密钥 IKu和 /或加密密钥 CKu; 所述终端在推导出增强的 UTRAN中所使 用的中间密钥后, 再才艮据所述中间密钥釆用与所述目标 SGSN+相同的算法推 导出增强的空口密钥 IKu和 /或 CKu。
所述目标 SGSN+才艮据映射的传统密钥和中间密钥推导变形中间密钥, 并 通过密钥分发消息 (如迁移请求消息)将所述变形中间密钥发送给增强的 UTRAN中的目标无线网络控制器 RNC+,所述变形中间密钥用于当所述终端 在增强的 UTRAN网络内进行服务无线网络控制器 ( SRNC )迁移时, 更新所 述增强的空口密钥 IKu和 CKu。 优选地, 所述目标 SGSN+在推导所述变形中 间密钥的同时, 为所述变形中间密钥设置一关联的计数器, 所述计数器用于 记录生成变形中间密钥的次数。 目标 SGSN+可同时将计数器值也发送给 RNC+。
优选地, 推导增强的空口密钥的算法为: IKu = IK', CKu=CK'。
所述目标 SGSN+在推导中间密钥的过程中,根据映射的传统密钥再结合 第一参数推导出增强的 UTRAN中所使用的中间密钥; 所述终端在推导中间 密钥的过程中, 同样根据映射的传统密钥再结合所述第一参数釆用与所述目 标 SGSN+相同的算法推导出增强的 UTRAN中所使用的中间密钥; 所述第一 参数为目标 SGSN+发送给所述终端的, 或者是目标 SGSN+与所述终端约定 好的。
根据所述中间密钥推导出增强的空口密钥 (IKu和 /或 CKu ) 的过程中, 根据中间密钥再结合第二参数推导出增强的空口密钥 IKu和 /或 CKu。
所述第一参数包括以下参数的一种或多种: 服务网络标识 (PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥 (AK ) , 用户身 份标识, 目标 SGSN+生成的随机数。
所述第二参数包括以下参数的一种或多种: 目标无线网络控制器 ( RNC ) 生成的刷新随机数(FRESH ) , 加密算法标识(enc-alg-ID ) , 完整性算法标 识(int-alg-ID ) , 增强节点 B的物理小区标识(PCI ) , 增强节点 B的绝对 频点 ( UARFCN ) , 目标 RNC为所述终端分配的扰码 ( Scrambling Code ) , 用户标识, 目标 RNC标识,通用移动通信系统中定义的开始(START )参数, 通用移动通信系统中定义的完整性序列号 (COUNT-I )参数, 通用移动通信 系统中定义的无线链路控制序列号 (RRC SN )参数, 目标 SGSN+生成的随 机数。
所述终端为空闲态时, 所述目标 SGSN+通过上下文响应消息从源移动管 理实体处获得映射的传统密钥。 所述目标 SGSN+在推导中间密钥的过程中, 根据映射的传统密钥再结合第一参数推导出增强的 UTRAN中所使用的中间 密钥; 所述终端在推导中间密钥的过程中, 同样根据映射的传统密钥再结合 所述第一参数釆用与所述目标 SGSN+相同的算法推导出增强的 UTRAN中所 使用的中间密钥。 所述第一参数包括以下参数的一种或多种: 服务网络标识 (PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥 (AK ) , 用户身 份标识, 目标 SGSN+生成的随机数 NONCESGSN , 终端生成的随机数 NONCEuEo
上述随机数 NONCESGSN由目标 SGSN+在接收到源 MME发送的转发迁 移请求消息后生成, 并经由源 MME、 源基站的中转发送给终端; 或者该随机 数由目标 SGSN+在接收到终端发送的路由区更新请求消息后生成, 并经由路 由区更新接受消息发送给终端。
上述随机数 NONCEUE由终端在向目标 SGSN+发送路由区更新请求消息 前生成, 并经由路由区更新请求消息发送给目标 SGSN+。
上述 FRESH由目标 RNC+在接收到目标 SGSN+发送的迁移请求消息后 生成。该 FRESH参数经由目标 SGSN+和源 MME、源基站的中转发送给终端。
下面将参考附图并结合实施例, 来详细说明本发明, 其中, 实施例 1-4 中的终端状态为激活态, 实施例 5-6中的终端状态为空闲态。
实施例 1
本实施例说明了终端在从 EUTRAN移动到增强的 UTRAN时, 空口密钥 管理流程的示例, 在本实施例中, 由目标 SGSN+负责推导出 KRNC, 由目标 RNC+负责推导出增强密钥 CKu和 IKu, 如图 4所示, 包括以下步骤:
步骤 101 , 源基站决定从 E-UTRAN网络切换到目标增强 UTRAN网络; 步骤 102, 源基站向源 ΜΜΕ发送切换需要消息;
步骤 103 , 源 ΜΜΕ确认终端是要切换到 UTRAN , 根据 KASME推导映射 的传统密钥 IK'和 CK';
终端在 LTE网络中时, 终端和 MME处都保存有 KASME。 映射的传统密 钥 IK,和 CK,的推导式遵从 LTE相关协议定义, 此处不再赘述。
步骤 104,源 MME向目标 SGSN发送转发迁移请求消息,请求目标 SGSN 为终端分配资源; 该消息携带安全相关的参数: 例如映射的传统密钥 IK'和 CK,。
此后可能会同时进行服务网关 ( Serving GW ) 的迁移过程。
步骤 105,若目标 SGSN支持 HSPA+增强的安全功能, 即: 若目标 SGSN 为 SGSN+, 则该目标 SGSN+根据接收到的映射的传统密钥 IK'、 CK'推导中 间密钥 KRNC;
KRNC的推导式如实施例 9所述。
可选地, 目标 SGSN+在推导中间密钥 KRNC后,才艮据映射的传统密钥 IK'、 CK'和中间密钥 KRNC推导变形中间密钥 KRNC*,该变形中间密钥用于当终端在 增强的 UTRAN网络内进行 SRNC迁移时,更新增强的空口密钥 IKu和 CKu。 优选地, 变形中间密钥 KRNC*与一个计数器 NCC相关联,该计数器 NCC用于 记录生成变形中间密钥的次数, 在本实施例中, 此时, 该变形中间密钥 KRNC* 关联的 NCC值为 1。
若目标 SGSN不支持 HSPA+增强的安全功能, 则后面的流程按照 LTE 规范中规定的流程进行操作, 此处不再赘述。
步骤 106, 目标 SGSN+向目标 RNC+发送迁移请求消息,请求目标 RNC+ 为终端建立无线网络资源, 该消息携带安全相关的信息, 至少包括: KRNC和 算法信息;
所述算法信息包括完整性算法信息和 /或加密算法信息, 所述完整性算法 可以是终端支持的完整性算法, 或者是网络侧选择的完整性算法; 所述加密 算法可以是终端支持的加密算法, 或者是网络侧选择的加密算法。 如果要求 必须进行完整性保护, 则所述算法信息中至少包含完整性算法。
可选地, 如果步骤 105中, 目标 SGSN+还推导了变形中间密钥 KRNC* , 则目标 SGSN+还可以在该信息中携带: 变形中间密钥 KRNC*。 如果为 KRNC*设 置了计数器 NCC, 则还可携带计数器 NCC值。
步骤 107 , 目标 RNC+为终端分配无线资源, 并根据接收到的 KRNC推导 增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu,并保存所生成的 IKu和 / 或 CKu; IKu和 CKu的推导式如实施例 10、 11所示。 如果推导过程中需要用到刷 新随机数 ( FRESH ) , 则目标 RNC+还需要生成 FRESH参数。
步骤 108, 目标 RNC+向目标 SGSN+发送迁移请求确认消息;
如果在步骤 106中目标 SGSN+携带了算法信息, 则在本步骤中, RNC+ 需在所述迁移请求确认消息中携带 RNC+选择的算法(完整性算法和 /或加密 算法) 。
此外, 目标 RNC+可以在所述迁移请求确认消息增加指示, 用以隐式或 显式地指示终端进行增强密钥 IKu和 /或 CKu的推导, 例如: 在迁移请求确认 消息中增加包含网络侧安全能力指示 (隐式方式) , 或者增强密钥启用指示 (显式方式) 。
此后可能目标 SGSN+和服务网关进行创建间接数据转发隧道请求消息 交互过程。
步骤 109 , 目标 SGSN+向源 MME发送转发迁移响应消息;
如果目标 SGSN+收到目标 RNC+选择的算法, 则在该转发迁移响应消息 中携带 RNC+选择的算法。
目标 SGSN+也可以在所述转发迁移响应消息增加指示, 用以隐式或显式 地指示终端进行增强密钥 IKu和 /或 CKu的推导, 例如: 在转发迁移响应消息 中增加包含网络侧安全能力指示 (隐式方式) , 或者增强密钥启用指示 (显 式方式) 。 如果步骤 108中目标 RNC+携带了所述指示, 则目标 SGSN+可将 该指示添加在构造的转发迁移响应消息中。
步骤 110, 源 MME向源基站发送切换命令消息,指示网络完成切换准备 过程;
如果目标 SGSN+向源 MME发送的消息中携带有 RNC+选择的算法, 则 源 MME向源基站发送的该切换命令消息中也携带表示算法的参数。
此外, 源 MME在切换命令消息中携带目标 RNC+或者目标 SGSN+添加 的指示, 用以指示终端进行增强密钥 IKu和 /或 CKu的推导。
步骤 111 , 源基站向终端发送从 EUTRAN切换命令消息, 指示终端切换 到目标接入网络; 该切换命令消息携带目标 RNC+在准备阶段为终端分配的无线方面的参 数, 以及算法信息 (包括完整性算法和 /或加密算法) 。
优选地, 源基站也在该消息中携带目标 RNC+或者目标 SGSN+添加的指 示, 用以指示终端进行增强密钥 IKu和 CKu的推导。
步骤 112 , 终端根据 KASME推导映射的传统密钥 IK'和 CK' , 随后根据映 射的传统密钥 IK'和 CK'推导 KRNC, 然后再根据 KRNC推导增强的空口完整性 密钥 IKu和 /或空口加密密钥 CKu;
步骤 113 , 终端向目标 RNC+发送切换到 UTRAN完成消息, 该消息使用 新生成的增强完整性密钥 IKu进行完整性保护, 和 /或使用增强加密密钥 CKu 进行加密保护;
步骤 114, 目标 RNC+向目标 SGSN+发送迁移完成消息, 向目标 SGSN+ 指示终端已从 EUTRAN成功切换到目标 RNC+;
步骤 115, 目标 SGSN+和源 MME进行消息交互, 确认迁移完成; 步骤 116, 源 MME和源基站进行消息交互, 释放相关资源。
实施例 2
本实施例说明了终端在从 EUTRAN移动到增强的 UTRAN时,增强的空 口密钥建立流程的示例。 本实施例与例 1的区别在于: 增强的空口完整性密 钥 IKu和空口加密密钥 CKu在目标 SGSN+处生成, 并通过目标 SGSN+在迁 移请求消息中下发给目标 RNC+。 如图 5所示, 包括以下步骤:
步骤 201-204, 同实施例 1步骤 101-104;
步骤 205 , 若目标 SGSN 支持增强的安全功能, 即: 若目标 SGSN为 SGSN+,则该目标 SGSN+根据接收到的映射的传统密钥 IK'和 CK'推导 KRNC, 再根据中间密钥 KRNC推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
可选地, 目标 SGSN+根据映射的传统密钥 IK'、 CK'和中间密钥 KRNC推 导变形中间密钥 KRNC*。 步骤 206, 目标 SGSN+向目标 RNC+发送迁移请求消息,请求目标 RNC+ 为终端建立无线网络资源, 该消息携带安全相关的信息, 至少包括: 增强空 口密钥信息(增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu )以及算法 信息;
所述算法信息包括完整性算法信息和 /或加密算法信息。
可选地, 如果步骤 205中, 目标 SGSN+还推导了变形中间密钥 KRNC* , 则目标 SGSN+在该信息中还携带: 变形中间密钥 KRNC*。 如果为 KRNC*设置了 计数器 NCC, 则还可携带计数器 NCC值。
步骤 207, 目标 RNC+存储增强空口密钥信息;
步骤 208-216, 同实施例 1步骤 108-116。
实施例 3
本实施例说明了终端在从 EUTRAN移动到增强的 UTRAN时,增强的空 口密钥建立流程的另一种示例。 本实施例与例 1的区别在于, 由目标 SGSN+ 生成一个随机数 NONCESGSN, 并使用该随机数 NONCESGSN和映射的传统密 钥 IK,和 CK,推导中间密钥 KRNC。 如图 6所示, 包括以下步骤:
步骤 301-304, 同实施例 1步骤 101-104;
步骤 305 , 若目标 SGSN 为 SGSN+ , 则目标 SGSN+生成随机数 NONCESGSN, 并根据接收到的映射的传统密钥 IK'、 CK'和生成的随机数 NONCESGSN推导 KRNC;
KRNC的推导式如实施例 9所述。
可选地, 目标 SGSN+在推导中间密钥 KRNC后,才艮据映射的传统密钥 IK'、 CK'和中间密钥 KRNC推导变形中间密钥 KRNC*, 该变形中间密钥用于当终端 在增强的 UTRAN 网络内进行 SRNC 迁移时, 更新增强的空口密钥 IKu和 CKu。 优选地, 变形中间密钥 KRNC*与一个计数器 NCC相关联。 在本实施例 中 , 此时, 该变形中间密钥 KASMEU*关联的 NCC值为 1。
步骤 306-308, 同实施例 1步骤 106-108; 步骤 309 , 目标 SGSN+向源 MME发送转发迁移响应消息, 并在该消息 中携带参数: 随机数 NONCESGSN, 以及算法信息, 算法信息包括: 完整性算 法信息和 /或加密算法信息;
优选地, 目标 SGSN+可在该消息中携带指示, 经由源 MME中转指示终 端进行增强密钥 IKu和 CKu的推导,可以通过隐式或显式的方式指示,例如: 在转发迁移响应消息中增加包含网络侧安全能力指示 (隐式方式) , 或者增 强密钥启用指示 (显式方式) 。
步骤 310 , 源 MME向源基站发送切换命令消息,指示网络完成切换准备 过程, 并在该消息中携带参数: 随机数 NONCESGSN, 以及算法信息;
步骤 311 , 源基站向终端发送从 EUTRAN切换命令消息, 指示终端切换 到目标接入网络, 并在该消息中携带目标 RNC+在准备阶段为终端分配的无 线方面的参数, 包括: 随机数 NONCESGSN, 以及算法信息;
优选地, 源基站在该消息中指示终端进行增强密钥 IKu和 CKu的推导, 可以通过隐式或显式的方式指示, 例如: 在切换命令中增加包含网络侧安全 能力指示 (隐式指示) , 或者增强密钥启用指示 (显式指示) 。
步骤 312 , 终端根据 KASME推导映射的传统密钥 IK'和 CK' , 随后根据映 射的传统密钥 IK'、 CK'和随机数 NONCESGSN推导 KRNC, 然后再才艮据 KRNC 推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
步骤 313-316 , 同实施例 1步骤 113-116。
实施例 4
本实施例说明了终端在从 EUTRAN移动到增强的 UTRAN时,增强的空 口密钥建立流程的示例。 本实施例与例 3的区别在于: 增强的空口完整性密 钥 IKu和空口加密密钥 CKu在目标 SGSN+处生成, 并通过目标 SGSN+在迁 移请求消息中下发给目标 RNC+。 如图 7所示, 包括以下步骤:
步骤 401-404 , 同实施例 3步骤 301-304;
步骤 405 ,若目标 SGSN为 SGSN+,目标 SGSN+生成随机数 NONCESGSN, 并根据接收到的映射的传统密钥 IK'、 CK' 和生成的随机数 NONCESGSN推导 KRNC,再根据中间密钥 KRNC推导增强的空口完整性密钥 IKu和 /或空口加密密 钥 CKu;或者,目标 SGSN+根据接收到的映射的传统密钥 IK'、CK '推导 KRNC, 再根据中间密钥 KRNC和生成的随机数 NONCESGSN推导增强的空口完整性密 钥 IKu和 /或空口加密密钥 CKu;
可选地, 目标 SGSN+根据映射的传统密钥 IK'、 CK '和中间密钥 KRNC推 导变形中间密钥 KRNC*, 以及为该变形中间密钥 KRNC*设置计数器 NCC。
步骤 406, 目标 SGSN+向目标 RNC+发送迁移请求消息,请求目标 RNC+ 为终端建立无线网络资源, 该消息携带安全相关的信息至少包括: 增强空口 密钥信息(增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu ) 以及算法信 息;
所述算法信息包括完整性算法信息和 /或加密算法信息。
可选地, 如果步骤 405中, 目标 SGSN+还推导了变形中间密钥 KRNC* , 则目标 SGSN+在该信息中还携带: 变形中间密钥 KRNC*。如果为 KRNC*设置了 计数器 NCC, 则还可携带计数器 NCC值。
步骤 407, 目标 RNC+存储增强空口密钥信息;
步骤 408-416, 同实施例 3步骤 309-316。 在步骤 412中, 终端按照和网 络侧相同的方法来推导增强的密钥 IKu和 /或 CKu。
实施例 5
本实施例示出了终端在空闲模式下从 EUTRAN移动到增强的 UTRAN进 行路由区更新时的一种增强的空口密钥建立的示例, 如图 8所示, 包括以下 步骤:
步骤 501 , 当满足路由区更新触发条件时, 终端向目标 SGSN+发送路由 区更新请求消息,请求进行路由区更新, 该消息携带 NAS token (非接入层令 牌)用于网络对终端进行验证;
NAS token的推导式遵从 LTE相关协议的定义, 此处不再赘述。
步骤 502, 目标 SGSN+向该终端的源 MME发送上下文请求消息, 请求 该终端的上下文, 该消息携带参数: NAS token; 步骤 503 , 源 MME对 NAS token进行验证, 若验证通过, 则源 MME根 据 KASME推导映射的传统密钥 IK'和 CK' ;
映射的传统密钥 IK,和 CK,的推导式遵从 LTE相关协议定义, 此处不再 赘述。
步骤 504, 源 MME向目标 SGSN+发送上下文响应消息, 该消息携带参 数: 映射的传统密钥 IK'和 CK';
步骤 505 , 目标 SGSN+根据接收到的映射的传统密钥 IK'和 CK'推导
KRNC的推导式如实施例 9所述。
步骤 506 , 目标 SGSN+向终端发送路由区更新接受消息;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导, 例如: 在路由区更新接受消息中增加包 含网络侧安全能力指示(隐式方式), 或者增强密钥启用指示(显式方式)。
步骤 507 , 终端根据 KASME推导映射的传统密钥 IK'和 CK' , 再由映射的 传统密钥 IK'和 CK'推导出 KRNC;其中映射的传统密钥 IK'和 CK'的推导也可 发生于该步骤之前;
由于终端处于空闲态, 因此只需要推导出中间密钥 KRNC保存即可。
步骤 508 , 终端向目标 SGSN+发送路由区更新完成消息, 确认路由区更 新完成。
实施例 6
本实施例示出了终端在空闲模式下从 EUTRAN移动到增强的 UTRAN进 行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 5的区别在 于, 由目标 SGSN+生成一个随机数 NONCESGSN, 目标 SGSN+和终端使用该 随机数 NONCESGSN和映射的传统密钥 IK'、 CK'推导中间密钥 KRNC。 如图 9 所示, 包括以下步骤:
步骤 601-604, 同实施例 5步骤 501-504; 步骤 605 , 目标 SGSN+生成随机数 NONCESGSN, 并根据接收到的映射的 传统密钥 IK'、 CK'和随机数 NONCESGSN推导 KRNC;
KRNC的推导式如实施例 9所述。
步骤 606 , 目标 SGSN+向终端发送路由区更新接受消息, 并在消息中携 带参数: 随机数 NONCESGSN;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导。
步骤 607 , 终端根据 KASME推导映射的传统密钥 IK'和 CK' , 再根据映射 的传统密钥 IK'、 CK'和 NONCESGSN推导 KRNC; 其中映射的传统密钥 IK'和 CK,的推导也可发生于该步骤之前;
步骤 608 , 同实施例 5步骤 508。
实施例 7
本实施例示出了终端在空闲模式下从 EUTRAN移动到增强的 UTRAN进 行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 5的区别在 于, 由终端生成一个随机数 NONCEUE, 目标 SGSN+和终端使用该随机数 NONCEUE和映射的传统密钥 IK'、 CK'推导中间密钥 KRNC。 如图 10所示, 包 括以下步骤:
步骤 701 , 当满足路由区更新触发条件时, 终端生成随机数 NONCEUE; 步骤 702 , 终端向目标 SGSN+发送路由区更新请求消息, 请求进行路由 区更新, 该消息携带参数: 随机数 NONCEUE;
此外, 该消息还携带 NAS token用于网络对终端进行验证。 NAS token 的推导式遵从 LTE相关协议的定义, 此处不再赘述。
步骤 703-705 , 同实施例 5步骤 502-504;
步骤 706 , 目标 SGSN+根据接收到的映射的传统密钥 IK'、 CK'和随机数
NONCEUE推导 KRNC;
KRNC的推导式如实施例 9所述。 步骤 707 , 同实施例 5步骤 506;
步骤 708 , 终端根据 KASME推导映射的传统密钥 IK'和 CK' , 再根据映射 的传统密钥 IK'、 CK'和 NONCEUE推导 KRNC,其中映射的传统密钥 IK'和 CK' 的推导也可发生于该步骤之前;
步骤 709, 同实施例 5步骤 508。
实施例 8
本实施例示出了终端在空闲模式下从 EUTRAN移动到增强的 UTRAN进 行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 5的区别在 于, 在本实施例中, 终端生成一个随机数 NONCEUE, 目标 SGSN+生成一个 随机数 NONCESGSN, 终端和目标 SGSN+分别使用随机数 NONCEUE、 随机数 NONCESGSN和映射的传统密钥 IK'、 CK'推导中间密钥 KRNC。 如图 11所示, 包括如下步骤:
步骤 801 , 当满足路由区更新触发条件时, 终端生成随机数 NONCEUE; 步骤 802 , 终端向目标 SGSN+发送路由区更新请求消息, 请求进行路由 区更新, 该消息携带参数: 随机数 NONCEUE, 同时该消息还携带 NAS token 用于网络对终端进行验证;
NAS token的推导式遵从 LTE相关协议的定义, 此处不再赘述。
步骤 803-805 , 同实施例 5步骤 502-504;
步骤 806 , 目标 SGSN+生成随机数 NONCESGSN, 并根据接收到的映射的 传统密钥 IK,、 CK' , 以及随机数 NONCEUE、 随机数 NONCESGSN推导 KRNC;
KRNC的推导式如实施例 9所述。
步骤 807 , 目标 SGSN+向终端发送路由区更新接受消息, 并在消息中携 带参数: 随机数 NONCESGSN;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导。
步骤 808 , 终端根据 KASME推导映射的传统密钥 IK'和 CK' , 再结合随机 数 NONCEUE、随机数 NONCESGSN推导 KRNC,其中映射的传统密钥 IK'和 CK' 的推导也可发生于该步骤之前;
步骤 809, 同实施例 5步骤 508。
实施例 9
本实施例给出中间密钥 KRNC的推导式的示例。
SGSN+派生所述中间密钥 KRNC的生成参数除了映射的传统加密密钥 CK,和映射的传统完整性密钥 IK,外还包括以下参数之一或任意多个的组合: 服务网络标识( PLMN identifier ) , 核心网节点类型 (TYPE, 表示分组交换 或者电路交换),序列号(SQN), 隐藏密钥(AK),用户身份标识(如 IMSI, IMEI或 TMSI) , 随机数 NONCE; 所述序列号和隐藏密钥均是在认证和密 钥协定过程中由用户和归属用户服务器分别生成的参数。
以下给出派生 KRNC的几种示例, 其中括号内的参数排列不分前后顺序, 其中的多个参数可以以 "II" (级联) 的形式进行连接:
KRNC = F1 (CK,, IK', Type, SQN ® AK ) ;
或 KRNC =F1 (CK,, IK', PLMN identifier, SQN ® AK ) ;
或 KRNC =F1 (CK,, IK', PLMN identifier, Type, SQN ® AK ) ; 或 KRNC =F1 (CK,, IK', IMSI, SQN ® AK ) ;
或 KRNC =F1 (CK,, IK', Type, IMSI, SQN ® AK ) ;
或 KRNC =F1 (CK,, IK', PLMN identifier, Type, IMSI, SQN ® AK ) 或 KRNC =F1 (CK,, IK', PLMN identifier, SQN ® AK ) ;
或 KRNC =F1 (CK,, IK', PLMN identifier, SQN) ;
或 KRNC =F1 (CK,, IK', PLMN identifier, AK) ;
或 KRNC =F1 (CK,, IK', SQN ® AK ) ;
或 KRNC =F1 (CK,, IK', TYPE, AK) ;
或 KRNC =F1 (CK,, IK', NONCESGSN ) ; 或 KRNC = F1 (CK,, IK', NONCEUE ) ;
或 KRNC = F1 (CK,, IK', NONCESGSN, NONCEUE ) ;
其中 Fl为任意密钥生成算法, 例如: 可以为 3GPP定义的 KDF算法。 " ® "参照 3GPP定义表示异或算法。
可选地, 若目标 SGSN+无法获得 SQN@AK的值, 则可以将其初始化为
0或者某个特定的值。
实施例 10:
本实施例给出增强的空口完整性密钥 IKu和空口加密密钥 CKu的推导式 的示例。
核心网节点 SGSN+将中间密钥 KRNC发送给 RNC+ ,所述 RNC+根据中间 密钥 KRNC和通用移动通信系统网络现有参数计算加密密钥 CKu和完整性密 钥 IKu, 目标 SGSN+和终端均可结合以下 UMTS网络现有参数计算 CKu和 IKu。
UMTS网络现有参数包括以下参数之一或任意多个的组合: RNC+生成的 刷新随机数 (FRESH) , 加密算法标识 (enc-alg-ID) , 完整性算法标识 ( int-alg-ID ) , 增强节点 B的物理小区标识(PCI) , 增强节点 B的绝对频 点 ( UMTS Absolute Radio Frequency Channel Number,简称 UARFCN ) , RNC+ 为用户设备分配的扰码(Scrambling Code) , 用户标识, RNC+标识, 通用移 动通信系统中定义的开始 (START)参数, 通用移动通信系统中定义的完整 性序列号 (COU T-I)参数, 通用移动通信系统中定义的无线链路控制序列 号 (RRCSN)参数。
以下给出派生加密密钥 CKu和完整性密钥 IKu的几种示例, 其中括号内 的参数排列不分前后顺序, 其中的多个参数可以以 "||" 的形式进行连接: CKu = F2 (KRNC, FRESH, enc-alg-ID ) ,
和 IKu = F3 (KRNC, FRESH, int-alg-ID ) ;
或 (CKu, IKu) =F2 (KRNC, FRESH) ; 或 (CKu, IKu ) = F2 ( KRNC, PCI, UARFCN ) ;
或 (CKu, IKu ) = F2 ( KRNC, PCI, UARFCN, Scrambling Code ) ; 或 CKu = F2 ( KRNC, PCI, UARFCN, enc-alg-ID ) ,
和 IKu = F2 ( KRNC, PCI, UARFCN, int-alg-ID ) ;
或 CKu = F2 ( KRNC, START, enc-alg-ID ) ,
和 IKu = F2 ( KRNC, START, int-alg-ID ) ;
或 CKu = F2 ( KRNC, COU T-I, enc-alg-ID ) ,
和 IKu = F2 ( KRNC, COUNT-I, int-alg-ID ) ;
或 CKu = F2 ( KRNC, RRC SN, enc-alg-ID ) ,
和 IKu = F2 ( KRNC, RRC SN, int-alg-ID ) ;
或( CKu, IKu ) = F2 ( KRNC, NONCE ); 此处的 NONCE可以为 SGSN+ 生成的随机数。
其中 F为任意密钥生成算法, 例如: 可以为 3GPP定义的 KDF算法。 其中, 所述的随机数 FRESH是 UMTS中已经定义的一个参数。 该随机 数长度为 32位。 在连接建立时, 由 RNC (对应到 HSPA+中, 即为 Node B+ ) 为每一个用户生成一个随机数 FRESH,并通过安全模式命令消息下发给用户。 在整个连接的持续时间,网络和用户使用该随机数计算消息验证码( MAC-I ) , 用于保护网络免受用户信令消息的重放攻击。 当终端从 EUTRAN切换到 UTRAN时, 目标 RNC+在接收到目标 SGSN+发送的迁移请求消息后生成该 FRESH参数。该 FRESH参数经由目标 SGSN+和源 MME、源基站的中转(即 实施例 1中步骤 108-111 ) , 发送给终端。 终端使用该参数计算 CKu和 IKu。
其中, 开始参数(START )是 UMTS中已经定义的一个参数, 存储于用 户设备 ( UE )和全球用户识别卡( Universal Subscriber Identity Module , 简称 USIM )中, 用于管理加密密钥和完整性密钥的生命周期, 在一次成功的认证 和密钥协定过程之中,与新生成的密钥关联的 START值在 ME和 USIM中被 初始化为 0。 在建立无线连接时, 用户设备通过无线链路控制连接建立完成 消息将开始参数的值发送至无线网络控制器(RNC ) , 在无线连接维持过程 中, 用户设备与无线网络控制器根据网络规则递增开始参数值。 当 START 值达到规定的门限值后, 密钥被无效掉。
完整性序列号( COU T-I )长度为 32位,由 4位的 RRC序列号( RRC SN ) 和 28位的超帧号组成。超帧号在每一个 RRC SN周期递增, RRC序列号(RRC SN )在每个完整性保护的无线链路控制消息中递增。
增强节点 B的物理小区标识(PCI )和绝对频点在增强节点 B的系统广 播消息中会进行广播。 增强节点 B为用户设备分配的扰码是用户与网络建立 无线连接前从网络侧获得的。
实施例 11
本实施例给出增强的空口完整性密钥 IKu和空口加密密钥 CKu的另一种 推导的示例。 当目标 SGSN+收到源 MME发送的映射的传统密钥 IK'和 CK'后, 令增 强的空口密钥 IKu = IK', CKu=CK'; 在路由区更新流程中, 则目标 SGSN+ 令增强的中间密钥 KRNC= ( IK'UCK' ) ;
终端推导出映射的传统密钥 IK'和 CK'后, 令 IKu = IK', CKu=CK'。 在 路由区更新流程中, 则终端令增强的中间密钥 KRNC= ( IK'||CK' ) 。
实现上述方法的系统, 包括终端、 增强 UTRAN中的增强服务 GPRS支 持节点 (SGSN+ ) , 其中:
所述 SGSN+, 用于在终端从 EUTRAN移动到增强的 UTRAN时, 根据 从源移动管理实体处(MME )获得的映射的传统密钥推导 UTRAN中所使用 的中间密钥;
所述终端, 用于推导映射的传统密钥, 以及推导获得所述映射的传统密 钥后, 再根据所述映射的传统密钥釆用与所述 SGSN+相同的算法推导增强 UTRAN中所使用的中间密钥。
优选地: 所述系统还包括增强的 UTRAN中的目标增强无线网络控制器( RNC+ ) , 所述 SGSN+包括: 第一接收单元,第一密钥推导单元和第一发送单元,其中: 所述第一接收单元, 用于接收源移动管理实体发送的映射的传统密钥; 所述第一密钥推导单元, 根据所述映射的传统密钥推导所述中间密钥; 所述第一发送单元, 用于将推导出的所述中间密钥发送给所述 RNC+; 所述 RNC+, 用于才艮据所述中间密钥推导增强的空口完整性密钥 (IKu ) 和 /或增强的空口加密密钥 (CKu ) ;
所述终端包括: 第二接收单元, 第二密钥推导单元, 其中:
所述第二接收单元, 用于接收网络侧发送的命令;
所述第二密钥推导单元,用于根据所述命令进行映射的传统密钥的推导, 以及根据推导获得的映射的传统密钥釆用与所述 SGSN+相同的算法推导所 述中间密钥, 以及才艮据所述中间密钥釆用与所述 RNC+相同的算法推导增强 的空口密钥。
优选地:
所述系统还包括增强的 UTRAN中的目标增强无线网络控制器 ( RNC+ ) , 所述 SGSN+包括: 第一接收单元,第一密钥推导单元和第一发送单元,其中: 所述第一接收单元, 用于接收源移动管理实体发送的映射的传统密钥; 所述第一密钥推导单元, 根据所述映射的传统密钥推导所述中间密钥, 以及根据所述中间密钥推导增强的空口完整性密钥 (IKu )和 /或增强的空口 加密密钥 (CKu ) ;
所述第一发送单元, 用于将推导出的增强空口密钥发送给所述 RNC+; 所述 RNC+, 用于保存接收到的增强空口密钥;
所述终端包括: 第二接收单元, 第二密钥推导单元, 其中:
所述第二接收单元, 用于接收网络侧发送的命令;
所述第二密钥推导单元,用于根据所述命令进行映射的传统密钥的推导, 以及根据推导获得的映射的传统密钥釆用与所述 SGSN+相同的算法推导所 述中间密钥, 以及才艮据所述中间密钥釆用与所述 SGSN+相同的算法推导增强 的空口密钥。
优选地:
所述 SGSN+的密钥推导单元还用于根据所述映射的传统密钥和所述中 间密钥推导变形中间密钥, 并将所述变形中间密钥发送给所述目标 RNC+, 所述变形中间密钥用于当所述终端在增强的 UTRAN网络内进行服务无线网 络控制器(SRNC ) 迁移时, 更新所述增强的空口密钥。
上述各单元的功能可参照前述方法获知, 例如, 所述 SGSN的发送单元 还可以用于向终端发送推导密钥时所使用的参数, 所述终端的发送单元, 还 可以用于向 SGSN+发送所述终端生成的随机数, 供所述 SGSN+进行密钥的 推导, 此处不再——赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已。 本发明方案并不限于 HSPA+系 统, 可以将它的相关模式应用于其它无线通信系统中。 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所 作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性 釆用本发明所述方法, 使得终端从 E-UTRAN移动到增强的 UTRAN时, 网络侧和终端可以分别根据映射的传统密钥建立增强的密钥体系, 而不用通 过再次进行 AKA过程, 从而能节省网络开销, 提高系统效率, 保证终端能和 增强的 UTRAN网络安全地进行通信。

Claims

权 利 要 求 书
1、 一种终端从演进的通用陆地无线接入网络( EUTRAN )移动到增强的 通用陆地无线接入网络(UTRAN ) 时建立增强密钥的方法, 包括:
当终端从 EUTRAN移动到增强的 UTRAN时, 增强 UTRAN中的目标增 强服务通用分组无线服务支持节点 ( SGSN+ )根据从源移动管理实体处获得 的映射的传统密钥推导 UTRAN中所使用的中间密钥;
所述终端推导映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与所 述目标 SGSN+相同的算法推导增强 UTRAN中所使用的中间密钥。
2、 如权利要求 1所述的方法, 所述方法还包括:
所述终端为激活态时, 所述目标 SGSN+在推导所述中间密钥后, 将所述 中间密钥发送给增强的 UTRAN中的目标增强无线网络控制器 ( RNC+ ) , 由 所述目标 RNC+根据所述中间密钥推导增强的空口完整性密钥( IKu )和 /或增 强的空口加密密钥 (CKu ) ;
所述终端在推导所述中间密钥后, 再才艮据所述中间密钥釆用与所述目标 RNC+相同的算法推导增强的空口密钥。
3、 如权利要求 1所述的方法, 所述方法还包括:
所述终端为激活态时, 所述目标 SGSN+在推导所述中间密钥后, 再才艮据 所述中间密钥推导增强的空口完整性密钥 (IKu )和 /或增强的空口加密密钥 ( CKu ),并将推导的增强空口密钥发送给目标增强无线网络控制器( RNC+ ); 所述终端在推导所述中间密钥后, 再才艮据所述中间密钥釆用与所述目标
SGSN+相同的算法推导增强的空口密钥。
4、 如权利要求 2或 3所述的方法, 所述方法还包括:
所述目标 SGSN+根据所述映射的传统密钥和所述中间密钥推导变形中 间密钥, 并将所述变形中间密钥发送给所述目标 RNC+, 所述变形中间密钥 用于当所述终端在增强的 UTRAN网络内进行服务无线网络控制器 ( SRNC ) 迁移时, 更新所述增强的空口密钥。
5、 如权利要求 4所述的方法, 所述方法还包括:
所述目标 SGSN+在推导所述变形中间密钥的同时, 为所述变形中间密钥 设置一关联的计数器, 所述计数器用于记录生成变形中间密钥的次数。
6、 如权利要求 5所述的方法, 所述方法还包括:
所述目标 SGSN+将所述计数器值随同所述变形中间密钥一并发送给所 述目标 RNC+。
7、 如权利要求 2或 3或 4所述的方法, 其中,
所述目标 SGSN+向目标 RNC+发送密钥的消息为迁移请求消息。
8、 如权利要求 2或 3所述的方法, 其中,
推导增强的空口密钥的算法为:
增强的空口完整性密钥 IKu =映射的传统完整性密钥 ΙΚ';
增强的空口加密密钥 CKu=映射的传统加密密钥 CK'。
9、 如权利要求 2或 3所述的方法, 其中,
所述目标 SGSN+根据从源移动管理实体处获得的映射的传统密钥推导 UTRAN中所使用的中间密钥的步骤包括:根据所述映射的传统密钥再结合第 一参数推导所述增强的 UTRAN中所使用的中间密钥;
所述终端根据所述映射的传统密钥釆用与所述目标 SGSN+相同的算法 推导增强 UTRAN中所使用的中间密钥的步骤包括: 同样根据映射的传统密 钥再结合所述第一参数釆用与所述目标 SGSN+相同的算法推导增强的 UTRAN中所使用的中间密钥;
所述第一参数为目标 SGSN+发送给所述终端的, 或者是目标 SGSN+与 所述终端约定好的。
10、 如权利要求 2或 3所述的方法, 其中,
根据所述中间密钥推导增强的空口密钥的过程中, 根据中间密钥再结合 第二参数推导所述增强的空口密钥。
11、 如权利要求 9所述的方法, 其中,
所述第一参数包括以下参数的一种或多种: 服务网络标识 (PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥 (AK ) , 用户身 份标识, 目标 SGSN+生成的随机数。
12、 如权利要求 10所述的方法, 其中,
所述第二参数包括以下参数的一种或多种: 目标无线网络控制器 ( RNC ) 生成的刷新随机数(FRESH ) , 加密算法标识(enc-alg-ID ) , 完整性算法标 识(int-alg-ID ) , 增强节点 B的物理小区标识( PCI ) , 增强节点 B的绝对 频点 ( UARFCN ) , 目标 RNC为所述终端分配的扰码 ( Scrambling Code ) , 用户标识, 目标 RNC标识,通用移动通信系统中定义的开始(START )参数, 通用移动通信系统中定义的完整性序列号 (COU T-I )参数, 通用移动通信 系统中定义的无线链路控制序列号 (RRC SN )参数, 目标 SGSN+生成的随 机数。
13、 如权利要求 11或 12所述的方法, 其中,
所述目标 SGSN+生成的随机数通过以下路径发送给终端: 目标 SGSN+ 向源移动管理实体发送的转发迁移响应消息、 所述源移动管理实体向源基站 发送的切换命令消息和所述源基站向终端发送的从 E-UTRAN切换命令消息。
14、 如权利要求 1所述的方法, 其中, 所述终端为空闲态时,
所述目标 SGSN+根据从源移动管理实体处获得的映射的传统密钥推导 UTRAN中所使用的中间密钥的步骤包括:根据所述映射的传统密钥再结合第 一参数推导所述增强的 UTRAN中所使用的中间密钥;
所述终端根据所述映射的传统密钥釆用与所述目标 SGSN+相同的算法 推导增强 UTRAN中所使用的中间密钥的步骤包括: 同样根据映射的传统密 钥再结合所述第一参数釆用与所述目标 SGSN+相同的算法推导增强的 UTRAN中所使用的中间密钥。
15、 如权利要求 14所述的方法, 其中,
所述第一参数包括以下参数的一种或多种: 服务网络标识 (PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥 (ΑΚ ) , 用户身 份标识, 目标 SGSN+生成的随机数, 终端生成的随机数。
16、 如权利要求 15所述的方法, 其中,
所述目标 SGSN+生成的随机数通过路由区更新接受消息发送给终端。
17、 如权利要求 15所述的方法, 其中,
所述终端生成的随机数通过所述路由区更新请求消息发送给所述目标 SGSN+0
18、 一种终端从演进的通用陆地无线接入网络(EUTRAN )移动到增强 的通用陆地无线接入网络 ( UTRAN )时建立增强密钥的系统, 包括终端和增 强 UTRAN中的目标增强服务通用分组无线服务支持节点 ( SGSN+ ) :
所述 SGSN+设置为: 在终端从 EUTRAN移动到增强的 UTRAN时, 根 据从源移动管理实体处获得的映射的传统密钥推导 UTRAN中所使用的中间 密钥;
所述终端设置为: 推导映射的传统密钥, 以及推导获得所述映射的传统 密钥后, 再才艮据所述映射的传统密钥釆用与所述 SGSN+相同的算法推导增强 UTRAN中所使用的中间密钥。
19、 如权利要求 18所述的系统, 所述系统还包括增强的 UTRAN中的 目标增强无线网络控制器 ( RNC+ ) ;
所述 SGSN+包括: 第一接收单元, 第一密钥推导单元和第一发送单元, 其中:
所述第一接收单元设置为:接收源移动管理实体发送的映射的传统密钥; 所述第一密钥推导单元设置为: 根据所述映射的传统密钥推导所述中间 密钥;
所述第一发送单元设置为: 将推导出的所述中间密钥发送给所述 RNC+; 所述 RNC+设置为:根据所述中间密钥推导增强的空口完整性密钥(IKu ) 和 /或增强的空口加密密钥 (CKu ) ; 所述终端包括: 第二接收单元和第二密钥推导单元, 其中: 所述第二接收单元设置为: 接收网络侧发送的命令;
所述第二密钥推导单元设置为: 根据所述命令进行映射的传统密钥的推 导, 以及根据推导获得的映射的传统密钥釆用与所述 SGSN+相同的算法推导 所述中间密钥, 以及才艮据所述中间密钥釆用与所述 RNC+相同的算法推导增 强的空口密钥。
20、 如权利要求 18所述的系统, 所述系统还包括增强的 UTRAN中的 目标增强无线网络控制器 ( RNC+ ) ;
所述 SGSN+包括: 第一接收单元, 第一密钥推导单元和第一发送单元, 其中:
所述第一接收单元设置为:接收源移动管理实体发送的映射的传统密钥; 所述第一密钥推导单元设置为: 根据所述映射的传统密钥推导所述中间 密钥, 以及 居所述中间密钥推导增强的空口完整性密钥 (IKu )和 /或增强 的空口加密密钥 (CKu ) ;
所述第一发送单元设置为: 将推导出的增强空口密钥发送给所述 RNC+; 所述 RNC+设置为: 保存接收到的增强空口密钥;
所述终端包括: 第二接收单元和第二密钥推导单元, 其中:
所述第二接收单元设置为: 接收网络侧发送的命令;
所述第二密钥推导单元设置为: 根据所述命令进行映射的传统密钥的推 导, 以及根据推导获得的映射的传统密钥釆用与所述 SGSN+相同的算法推导 所述中间密钥, 以及才艮据所述中间密钥釆用与所述 SGSN+相同的算法推导增 强的空口密钥。
21、 如权利要求 19或 20所述的系统, 其中,
所述 SGSN+的第一密钥推导单元还设置为: 根据所述映射的传统密钥和 所述中间密钥推导变形中间密钥, 并将所述变形中间密钥发送给所述目标 RNC+,所述变形中间密钥用于当所述终端在增强的 UTRAN网络内进行服务 无线网络控制器(SRNC ) 迁移时, 更新所述增强的空口密钥。
PCT/CN2011/072442 2010-04-16 2011-04-02 终端移动到增强utran时建立增强密钥的方法及系统 WO2011127791A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/515,186 US8712054B2 (en) 2010-04-16 2011-04-02 Method and system for establishing enhanced key when terminal moves to enhanced universal terminal radio access network (UTRAN)
EP11768403.5A EP2501164B1 (en) 2010-04-16 2011-04-02 Method and system for establishing enhanced key when terminal moves to enhanced universal terrestrial radio access network(utran)
CA2787969A CA2787969C (en) 2010-04-16 2011-04-02 Method and system for establishing enhanced key when terminal moves to enhanced universal terrestrial radio access network (utran)
JP2012545075A JP5436694B2 (ja) 2010-04-16 2011-04-02 端末が強化型utranに移動する時に強化キーを確立する方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010165581.6 2010-04-16
CN201010165581A CN101835152A (zh) 2010-04-16 2010-04-16 终端移动到增强utran时建立增强密钥的方法及系统

Publications (1)

Publication Number Publication Date
WO2011127791A1 true WO2011127791A1 (zh) 2011-10-20

Family

ID=42719041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072442 WO2011127791A1 (zh) 2010-04-16 2011-04-02 终端移动到增强utran时建立增强密钥的方法及系统

Country Status (6)

Country Link
US (1) US8712054B2 (zh)
EP (1) EP2501164B1 (zh)
JP (1) JP5436694B2 (zh)
CN (1) CN101835152A (zh)
CA (1) CA2787969C (zh)
WO (1) WO2011127791A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512181A (ja) * 2012-01-30 2015-04-23 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 異なる機密保護コンテキストをサポートする複数のセルラ通信システムノード間の呼のハンドオーバ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2385690T3 (es) 2007-12-11 2012-07-30 Telefonaktiebolaget L M Ericsson (Publ) Métodos y aparatos que generan una clave para estación de base de radio en un sistema celular de radio
CN101835152A (zh) * 2010-04-16 2010-09-15 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统
CN101860862B (zh) * 2010-05-17 2015-05-13 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统
CN102469454A (zh) * 2010-11-08 2012-05-23 华为技术有限公司 Rnc切换中的密钥设置方法及无线网络控制器、终端
CN102137398B (zh) * 2011-03-10 2017-04-12 中兴通讯股份有限公司 增强密钥的更新方法、装置和用户设备
CN104010276B (zh) * 2013-02-27 2019-02-15 中兴通讯股份有限公司 一种宽带集群系统的组密钥分层管理方法、系统和终端
US9510376B2 (en) 2013-09-25 2016-11-29 At&T Intellectual Property I, L.P. Tunneling packet exchange in long term evolution protocol based networks
US9538563B2 (en) 2014-10-13 2017-01-03 At&T Intellectual Property I, L.P. System and methods for managing a user data path
WO2017084043A1 (en) * 2015-11-18 2017-05-26 Alcatel-Lucent Shanghai Bell Co., Ltd. Handover between e-utran and wlan
BR112019015387B1 (pt) 2017-01-30 2020-11-03 Telefonaktiebolaget Lm Ericsson (Publ) manuseio de contexto de segurança em 5g durante modo conectado
CN109511113B (zh) 2017-07-28 2020-04-14 华为技术有限公司 安全实现方法、相关装置以及系统
US10542428B2 (en) 2017-11-20 2020-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Security context handling in 5G during handover
US10355773B1 (en) * 2018-01-02 2019-07-16 Talal Awad Connectivity system and method for high speed aircraft internet
EP3837873A1 (en) 2018-08-13 2021-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Protection of non-access stratum communication in a wireless communication network
CN112019489B (zh) * 2019-05-31 2022-03-04 华为技术有限公司 验证方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232731A (zh) * 2008-02-04 2008-07-30 中兴通讯股份有限公司 用于ue从utran切换到eutran的密钥生成方法和系统
CN101835152A (zh) * 2010-04-16 2010-09-15 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857075B2 (en) * 2000-12-11 2005-02-15 Lucent Technologies Inc. Key conversion system and method
US8462742B2 (en) * 2006-03-31 2013-06-11 Samsung Electronics Co., Ltd System and method for optimizing authentication procedure during inter access system handovers
ES2659368T3 (es) * 2007-12-19 2018-03-15 Nokia Technologies Oy Métodos, aparatos, sistema y productos de programa informático relacionados para la seguridad del traspaso
AU2009233486B2 (en) * 2008-04-04 2012-07-26 Nokia Technologies Oy Methods, apparatuses, and computer program products for providing multi-hop cryptographic separation for handovers
CN101257723A (zh) * 2008-04-08 2008-09-03 中兴通讯股份有限公司 密钥生成方法、装置及系统
CN101304311A (zh) * 2008-06-12 2008-11-12 中兴通讯股份有限公司 密钥生成方法和系统
JP4390842B1 (ja) * 2008-08-15 2009-12-24 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、無線基地局及び移動局
CN101931951B (zh) * 2009-06-26 2012-11-07 华为技术有限公司 密钥推演方法、设备及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232731A (zh) * 2008-02-04 2008-07-30 中兴通讯股份有限公司 用于ue从utran切换到eutran的密钥生成方法和系统
CN101835152A (zh) * 2010-04-16 2010-09-15 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on the Introduction of the EPS Key Hierarchy in UMTS (Release 9)", 3GPP TR33.CDE VX.Y.Z, 7 April 2008 (2008-04-07), XP050280555 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512181A (ja) * 2012-01-30 2015-04-23 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 異なる機密保護コンテキストをサポートする複数のセルラ通信システムノード間の呼のハンドオーバ
US10433161B2 (en) 2012-01-30 2019-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Call handover between cellular communication system nodes that support different security contexts

Also Published As

Publication number Publication date
JP2013516092A (ja) 2013-05-09
EP2501164B1 (en) 2019-09-04
CN101835152A (zh) 2010-09-15
CA2787969A1 (en) 2011-10-20
JP5436694B2 (ja) 2014-03-05
US8712054B2 (en) 2014-04-29
EP2501164A1 (en) 2012-09-19
CA2787969C (en) 2015-12-01
US20130028421A1 (en) 2013-01-31
EP2501164A4 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
US11785510B2 (en) Communication system
WO2011127791A1 (zh) 终端移动到增强utran时建立增强密钥的方法及系统
EP2429227B1 (en) Method and system for updating air interface keys
CN110224982B (zh) 双连接性中的安全性密钥推导
EP3453149B1 (en) Secure signaling before performing an authentication and key agreement
US8565433B2 (en) Method and system for managing air interface key
Forsberg LTE key management analysis with session keys context
WO2011088770A1 (zh) 一种派生空中接口密钥的方法及系统
WO2011153852A1 (zh) 空中接口密钥的更新方法、核心网节点及无线接入系统
EP2648437B1 (en) Method, apparatus and system for key generation
WO2011131063A1 (zh) 一种建立增强的空口密钥的方法及系统
WO2013075417A1 (zh) 切换过程中密钥生成方法及系统
WO2011143977A1 (zh) 终端移动到增强通用陆地无线接入网络(utran)时建立增强密钥的方法及系统
WO2011095077A1 (zh) 无线通信系统中管理空口映射密钥的方法、系统和装置
WO2012025020A1 (zh) Geran与增强utran间建立密钥的方法、系统及增强sgsn
WO2012009981A1 (zh) 空中接口密钥的更新方法、核心网节点及无线接入系统
Mukherjee et al. WiMAX, LTE, and WiFi Interworking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011768403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13515186

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012545075

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2787969

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE