WO2012025020A1 - Geran与增强utran间建立密钥的方法、系统及增强sgsn - Google Patents

Geran与增强utran间建立密钥的方法、系统及增强sgsn Download PDF

Info

Publication number
WO2012025020A1
WO2012025020A1 PCT/CN2011/078405 CN2011078405W WO2012025020A1 WO 2012025020 A1 WO2012025020 A1 WO 2012025020A1 CN 2011078405 W CN2011078405 W CN 2011078405W WO 2012025020 A1 WO2012025020 A1 WO 2012025020A1
Authority
WO
WIPO (PCT)
Prior art keywords
enhanced
key
air interface
sgsn
geran
Prior art date
Application number
PCT/CN2011/078405
Other languages
English (en)
French (fr)
Inventor
李阳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012025020A1 publication Critical patent/WO2012025020A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a method, system and enhanced SGSN for a terminal to move from a GERAN to an enhanced UTRAN in a wireless communication system, and to enhance a key establishment when moving from an enhanced UTRAN to a GERAN.
  • Background technique
  • 3GPP (3rd Generation Partnership Project, third-generation partner ⁇ 'J) uses Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (Reference) in Release7 , referred to as MIMO technology, completes the future evolution path HSPA+ of HSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access).
  • HSPA+ is an enhancement technology for 3GPP HSPA (including HSDPA and HSUPA), providing HSPA operators with a low-complexity, low-cost path from HSPA to LTE.
  • HSPA+ improves peak data rate and spectral efficiency by combining high-order modulation (such as downlink 64QAM (Quadature Amplitude Modulation) and uplink 16QAM), MIMO, and high-end modulation combined with MIMO.
  • high-order modulation such as downlink 64QAM (Quadature Amplitude Modulation) and uplink 16QAM
  • MIMO Multiple Access Multimedia Subsystem
  • high-end modulation combined with MIMO.
  • HSPA+ also uses a series of other enhancement technologies to increase user capacity, reduce latency, reduce terminal power consumption, better support voice over IP (VOIP) and enhance the system.
  • Targets such as multicast/broadcast capabilities.
  • HSPA+ decentralizes the function of Radio Network Controller (RNC) to the base station Node B (Node B) on the system architecture to form a completely flat wireless access network architecture, as shown in Figure 1. Show. At this time, the Node B integrated with the full RNC function is called Evolved HSPA Node B, or simply called the enhanced node Node (Node B+ ).
  • SGSN+ is an SGSN (ServICE GPRS SUPPORT NODE, Serving GPRS Support Node; GPRS: General Packet Radio System) that has been upgraded to support HSPA+ functions.
  • ME+ is a user terminal device (also called UE+) that can support HSPA+ function.
  • each Node B+ becomes a node equivalent to the RNC.
  • the Iu-PS interface can be directly connected to the PS CN (Core Network), and the Iu-PS user plane is terminated at the SGSN.
  • the network supports the direct tunnel function, and the Iu-PS user plane can also be terminated at the GGSN (Gateway GPRS Support Node).
  • the communication between the evolved HSPA Node Bs is performed through the lur interface.
  • Node B+ has the ability to independently network and support full mobility features, including inter-system and intra-system switching.
  • Node B+ can be thought of as a combination of Node B and RNC. Both are a physical entity, but are still two different logical entities. Therefore, the Node B+ that supports the HSPA+ enhanced key hierarchy in this article can also be equivalent to the RNC upgraded in UMTS. To distinguish, we can call it RNC+.
  • K Key
  • CK Ciphering Key
  • IK Intelligent Security Key
  • UMTS Universal Mobile Telecommunications System
  • K is the root key stored in the AuC (Authentication Center) and USIM (UNIVERSAL SUBSCRIBER IDENTITY MODULE).
  • the CK and IK are the AKA (Authentication and Key Agreement) of the user equipment and the HSS. Authentication and key agreement)
  • the secret key and integrity key calculated by K.
  • RNC uses CK and IK to encrypt and protect data.
  • HSPA+ introduces a key hierarchy similar to EUTRAN (Evolved Universal Terrestrial Radio Access Network), namely UTRAN Key Hierarchy.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • UTRAN Key Hierarchy the intermediate key KR NC (also known as KASMEU) is the newly introduced key of HSPA+, derived from the traditional keys CK and IK.
  • the KR NC generates CKu and IKu, wherein CKu is used to encrypt user plane data and control plane signaling, and IKu is used to perform integrity protection on control plane signaling.
  • CKu and IKu as enhanced air interface security keys, referred to as enhanced keys.
  • Two HSPA+ enhanced security key hierarchies are currently presented as shown in Figures 2a/2b.
  • K, IK/CK in this case, IK/CK means IK and CK
  • the CKu and IKu in Fig. 2a are the same as the CKu and ⁇ in Fig. 2, but the derivation is different.
  • the CKu and IKu under the key structure are directly derived by CK/IK without any intermediate key.
  • the KASMEU in the key architecture shown in Figure 2b is an intermediate key, which is the same as the KRNC in the key architecture shown in Figure 2. It is derived by IK/CK, but the derivation formula may be slightly different; the architecture
  • the following CKL and IKL, CKS and IKs are similar to CKu and IKu in the architecture of Figure 2, and are used for air interface encryption integrity protection, where CKL and IKL are used in existing UTRAN networks, and CKs and IKs are used for enhanced UTRAN. In the network.
  • GERAN The full name of the GSM EDGE Radio Access Network, which is a GSM/EDGE wireless access network, uses EDGE's wireless transmission technology and has the same network composition as GPRS.
  • the entire GERAN architecture is shown in Figure 3.
  • GERAN is the wireless access part of GSM/EDGE, including base stations and base station controllers and their interfaces.
  • GERAN is primarily responsible for the management of wireless communications, wireless communications management, and mobility contexts.
  • the core network includes MSC/SGSN, etc., and is responsible for control plane-related tasks such as mobility management, non-access stratum signaling processing, and user security mode management.
  • the SGSN When the user moves from the GERAN to the UTRAN, if the SGSN served by the GERAN saves the IK/CK after the AKA, the SGSN transmits the IK/CK to the target SGSN, and the target SGSN directly uses it as the air interface key. If the SGSN serving GERAN does not save IK/CK, but saves Kc, then directly transmits Kc to the target SGSN. If the source SGSN is R99+, then the target SGSN derives IK/CK according to Kc; if the source SGSN is R98 -, the target SGSN re-initiates AKA to generate a new IK/CK.
  • the source SGSN When the user moves from UTRAN to GERAN, if the target SGSN is R99+, then the source SGSN directly passes the IK/CK to the target SGSN, and the target SGSN derives the Kc used by the target SGSN by IK/CK, and uses it as an air interface. If the target SGSN is R98-, the source SGSN will derive the Kc for the target SGSN according to IK/CK and deliver it to the target SGSN. After the target SGSN receives it, it saves it and uses it as an air interface. key.
  • the technical problem to be solved by the present invention is to provide a method, system and device for establishing a key between a GERAN and an enhanced UTRAN, so as to ensure that the terminal can perform normal communication securely in the enhanced UTRAN and GERAN.
  • the present invention provides a method for establishing a key between a GERAN and an enhanced UTRAN, including:
  • the enhanced SGSN for the enhanced UTRAN service obtains security-related parameters from the GERAN, and generates the air interface key of the enhanced UTRAN according to the security-related parameter;
  • the air interface key of the GERAN is generated for the enhanced SGSN of the enhanced UTRAN service and sent to the GERAN.
  • the above method may also have the following characteristics, the security related parameters are IK and CK, or
  • the step of generating the air interface key for enhancing the UTRAN according to the parameter of the security related parameter includes:
  • the enhanced SGSN generates an intermediate key KR NC according to the IK and CK; or, the enhanced SGSN generates IK and CK according to the Kc, and generates an intermediate key KR: according to the obtained IK and CK.
  • the above method may also have the following characteristics, the security related parameters are IK and CK, or
  • the step of generating the air interface key of the enhanced UTRAN according to the security related parameter includes:
  • the enhanced SGSN generates an intermediate key KR NC according to the IK and CK and the first parameter, or the enhanced SGSN generates IK and CK according to the Kc, and generates according to the obtained IK and CK and the first parameter.
  • Intermediate key KR NC is
  • the first parameter is a random number or a count value generated by a counter.
  • the above method may also have the following characteristics, the security related parameters are IK and CK, or
  • the step of generating the air interface key of the enhanced UTRAN according to the security related parameter includes:
  • the enhanced SGSN generates an intermediate key according to the IK and CK, the first parameter and the second parameter
  • KRNC or the enhanced SGSN generates IK and CK according to the Kc, and generates an intermediate key KR NC according to the obtained IK and CK, the first parameter and the second parameter;
  • the first parameter and the second parameter are random numbers or count values generated by a counter.
  • the above method may also have the following features, the method further comprising:
  • the enhanced SGSN sends the KR NC to an enhanced RNC, according to the enhanced RNC
  • the KR NC generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu.
  • the above method may also have the following characteristics, the security related parameters are IK and CK, or
  • the step of generating the air interface key of the enhanced UTRAN according to the security related parameter includes:
  • the enhanced SGSN generates an intermediate key KR NC according to the IK and CK, and then generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KR NC ; or the enhanced SGSN directly according to the IK and CK generate an enhanced air interface integrity key IKu and/or air interface encryption key CKu;
  • the enhanced SGSN generates IK and CK according to the Kc, and then according to the obtained IK and
  • CK generates an intermediate key KR NC , and then generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KR NC ; or, the enhanced SGSN generates IK and CK according to the Kc, and then obtains The IK and CK directly generate an enhanced air interface integrity key IKu and/or an air interface encryption key CKu.
  • the above method may also have the following characteristics, the security related parameters are IK and CK, or
  • the step of generating the air interface key of the enhanced UTRAN according to the security related parameter includes:
  • the enhanced SGSN is based on IK and CK generated by Kc or IK and acquired from GERAN
  • the first parameter generates an intermediate key KRNC, and then generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KRNC;
  • the enhanced SGSN generates an intermediate key KR NC according to IK and CK generated by Kc or IK and CK acquired from GERAN, and generates an enhanced air interface integrity key IKu and / according to the KR NC and the first parameter.
  • the enhanced SGSN generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu directly according to IK and CK generated by Kc or IK and CK obtained from GERAN, and the first parameter;
  • the first parameter is a random number or a count value generated by a counter.
  • the above method may also have the following characteristics, the security related parameters are IK and CK, or
  • the step of generating the air interface key of the enhanced UTRAN according to the security related parameter includes:
  • the enhanced SGSN is based on IK and CK generated by Kc or IK and obtained from GERAN
  • the enhanced SGSN generates an intermediate key KR NC according to IK and CK generated by Kc or IK and CK acquired from GERAN, and then generates an enhanced air interface integrity according to the KR NC and the first parameter and the second parameter.
  • KR NC an intermediate key generated by Kc or IK and CK acquired from GERAN
  • CKu Key IKu and/or air interface encryption key CKu;
  • the enhanced SGSN generates an enhanced air interface integrity key IKu and/or air interface encryption directly according to IK and CK generated by Kc or IK and CK obtained from GERAN, and the first parameter and the second parameter.
  • IKu an enhanced air interface integrity key generated by Kc or IK and CK obtained from GERAN
  • the first parameter and the second parameter are random numbers or count values generated by a counter.
  • the above method may also have the following features: the first parameter is generated by the enhanced SGSN, or generated by the user equipment and sent to the enhanced SGSN.
  • the above method may also have the following feature, the first parameter is generated by the enhanced SGSN, and the second parameter is generated by the user equipment and sent to the enhanced SGSN.
  • the foregoing method may further have the following feature: when the user equipment moves from the enhanced UTRAN to the GERAN, the enhanced SGSN generates the air interface key of the GERAN and sends the information to the GERAN, including: the enhanced SGSN generates Kc according to IKVCK', or IKu and CKu generate Kc and send the Kc to the GERAN.
  • the present invention also provides an enhanced SGSN,
  • the enhanced SGSN is configured to: when the user equipment moves from the GERAN to the enhanced UTRAN of the enhanced SGSN service, obtain security-related parameters from the GERAN, and generate the air interface key of the enhanced UTRAN according to the security-related parameter And/or, when the user equipment moves from the enhanced UTRAN served by the enhanced SGSN to the GERAN, the air interface key of the GERAN is generated and sent to the GERAN.
  • the enhanced SGSN may also have the following features: the enhanced SGSN is configured to: acquire IK and CK from the GERAN, generate an intermediate key KRNC according to the IK and CK; or acquire Kc from the GERAN, according to the Kc generates IK and CK, and then generates an intermediate key KR based on the obtained IK and CK.
  • Zengqian SGSN may also have the following features, the enhanced SGSN is set to: from the
  • the GERAN acquires IK and CK, generates an intermediate key KR NC according to the IK and CK and the first parameter, or acquires Kc from the GERAN, generates IK and CK according to the Kc, and according to the obtained IK and CK sum
  • the first parameter generates an intermediate key KR NC ; the first parameter is a random number or a count value generated by a counter.
  • the enhanced SGSN may also have the following features, the enhanced SGSN is set to: from the
  • the GERAN acquires IK and CK, generates an intermediate key KR NC according to the IK and CK, the first parameter and the second parameter, or acquires Kc from the GERAN, generates IK and CK according to the Kc, and according to the obtained IK And CK, the first parameter and the second parameter generate an intermediate key KR NC ; the first parameter and the second parameter are random numbers or count values generated by a counter.
  • the enhanced SGSN may also have the following features, and the enhanced SGSN is further configured to:
  • the KR NC is sent to the enhanced RNC such that the enhanced RNC generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KR NC .
  • the enhanced SGSN may also have the following features, the enhanced SGSN, for using the GERAN Acquiring IK and CK, generating an intermediate key KR NC according to the IK and CK, and generating an enhanced air interface integrity key IKu and/or an air interface encryption key CCu according to the KR NC ; or acquiring an IK from the GERAN And CK, generating an enhanced air interface integrity key IKu and/or an air interface encryption key CCu directly according to the IK and CK; or acquiring Kc from the GERAN, generating IK and CK according to the Kc, and then obtaining the IK and CK generate an intermediate key KR NC , and then generate an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KR NC ; or, obtain Kc from the GERAN, generate IK and according to the Kc CK, and then directly generate an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the obtained I
  • the enhanced SGSN may also have the following features: the enhanced SGSN is configured to: acquire IK and CK or Kc from the GERAN; generate IK and CK according to Kc or IK and CK obtained from GERAN, and generate the first parameter.
  • the intermediate key KRNC generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KRNC; or
  • the KRNC generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KRNC and the first parameter;
  • the enhanced SGSN may also have the following features: the enhanced SGSN is set to: acquire IK and CK or Kc from the GERAN; according to IK and CK generated by Kc or IK and CK obtained from GERAN, and the first parameter sum The second parameter generates an intermediate key KRNC, and then generates an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the KRNC;
  • Encryption key CKu ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the first parameter and the second parameter are random numbers or count values generated by a counter.
  • the enhanced SGSN may also be characterized in that the enhanced SGSN is further configured to: generate the first parameter, or receive the first parameter generated by the user equipment.
  • the enhanced SGSN may also have the following features.
  • the enhanced SGSN is further configured to: generate the first parameter, and receive the second parameter generated by the user equipment.
  • the enhanced SGSN may also have the following features:
  • the enhanced SGSN is configured to: generate Kc according to IKVCK' when the user equipment moves from the enhanced UTRAN to the GERAN, or generate Kc according to IKu and CKu, and send the Kc to The GERAN
  • the present invention also provides a system for establishing a key between a GERAN and an enhanced UTRAN, the system comprising an enhanced SGSN as described above.
  • the network side and the terminal can ensure compatibility with the security functions of the existing GERAN system, or according to the existing key.
  • An enhanced key system is established without increasing the network compatibility by saving the AKA process again, saving network overhead, improving system efficiency, and ensuring that the terminal can communicate securely with the enhanced UTRAN and GERAN networks.
  • FIG. 1 is a schematic structural diagram of a radio access network using HSPA+ technology in the prior art
  • FIG. 2 is a schematic diagram of a HiSPA+ enhanced security key hierarchy in the prior art
  • FIG. 2a is a schematic diagram of a second enhanced security key hierarchy in HSPA+ in the prior art
  • FIG. 2b is a schematic diagram of a third enhanced security key hierarchy in HSPA+ in the prior art
  • FIG. 3 is a prior art GERAN Schematic diagram of the architecture
  • FIG. 3a is a schematic structural diagram of a hybrid network of GERAN and HSPA+ in the prior art
  • FIG. Figure 4 is a flowchart of Embodiment 1 of the present invention
  • FIG. 5 is a flow chart of Embodiment 2 of the present invention.
  • FIG. 6 is a flow chart of Embodiment 3 of the present invention.
  • FIG. 7 is a flow chart of Embodiment 4 of the present invention.
  • Figure 8 is a flow chart of Embodiment 5 of the present invention.
  • Figure 9 is a flow chart of Embodiment 6 of the present invention.
  • FIG. 10 is a flowchart of Embodiment 7 of the present invention.
  • FIG. 11 is a flowchart of Embodiment 8 of the present invention.
  • FIG. 12 is a flowchart of Embodiment 9 of the present invention.
  • Figure 13 is a flow chart of Embodiment 10 of the present invention.
  • Figure 14 is a flow chart of Embodiment 11 of the present invention.
  • the enhanced UTRAN key is derived at the SGSN+ serving the enhanced UTRAN; when the UE moves from the enhanced UTRAN to the GRAN, the key in the GERAN is also SGSN+ derivation for enhanced UTRAN services. As shown in Figure 3a.
  • the terminal state in the embodiment 1-6 is an active state
  • the terminal state in the embodiment 7-11 is an idle state.
  • This embodiment illustrates an example of an air interface key management procedure when the terminal moves from GERAN to the enhanced UTRAN.
  • the target SGSN+ is responsible for deriving the KRNC
  • the target RNC+ is responsible for deriving the enhanced keys CKu and IKu.
  • the method includes the following steps: Step 101: The source BSC decides to switch from the GERAN network to the target enhanced UTRAN network. Step 102: The source BSC sends a handover request message to the source SGSN. Step 103: The source SGSN sends a preparation switching message to the target SGSN+. If the source SGSN is R99+ SGSN, the message carries the security-related parameter CK/IK; if the source SGSN is the R98-SGSN, the message carries the security-related parameter Kc;
  • Step 104 If the target SGSN supports the HSPA+ enhanced security function, that is, if the target SGSN is SGSN+, the target SGSN+ derives the intermediate key KR NC according to the received IK/CK; if the target SGSN+ receives the Kc, then the target SGSN+ first derives IK/CK from Kc, and then derives KRNC based on the IK/CK; or directly uses CK/IK as CKU/IKIL
  • the target SGSN+ derives a modified intermediate key KRNC* according to the key IK/CK and the intermediate key KRNC, and the modified intermediate key is used when the terminal performs in the enhanced UTRAN network.
  • the enhanced air interface keys IKu and CKu are updated.
  • the modified intermediate key KRNC* is associated with a counter NCC for recording the number of times the variant intermediate key KRNC* is generated, in this embodiment, at this time, the modified intermediate key KRNC* is associated
  • the NCC value is 1.
  • the target SGSN does not support the HSPA+ enhanced security function, the subsequent processes are performed according to the procedures specified in the UMTS specification, and are not described here.
  • Step 105 The target SGSN+ sends a migration request message to the target RNC+, requesting the target RNC+ to establish a wireless network resource for the terminal, where the message carries security-related information, and at least includes: KRNC and algorithm information;
  • the algorithm information includes integrity algorithm information and/or encryption algorithm information, and the integrity algorithm may be an integrity algorithm supported by the terminal, or an integrity algorithm selected by the network side; the encryption algorithm may be an encryption supported by the terminal. Algorithm, or an encryption algorithm selected on the network side. If integrity protection is required, the algorithm information contains at least an integrity algorithm.
  • the target SGSN+ may also carry: the modified intermediate key KR NC * in the migration request message. If the counter NCC is set for KRNC*, the counter NCC value can also be carried.
  • Step 106 the target RNC+ allocates radio resources to the terminal, and derives an enhanced air interface integrity key IKu and/or an air interface encryption key CKu according to the received KRNC, and saves the generated IKu and/or CKu;
  • Step 107 The target RNC+ sends a migration request acknowledgement message to the target SGSN+.
  • the RNC+ needs to carry the RNC+ selected algorithm (integrity algorithm and/or encryption algorithm) in the migration request acknowledgement message.
  • the target RNC+ may add an indication in the migration request acknowledgement message to implicitly or explicitly instruct the terminal to perform the derivation of the enhanced key IKu and/or CKu, for example: adding the network side security in the migration request acknowledgement message Capability indication (implicit mode), or enhanced key enable indication (display mode).
  • the target SGSN+ and the serving gateway may perform an indirect data forwarding tunnel request message interaction process.
  • Step 108 The target SGSN+ sends a preparation handover response message to the source SGSN.
  • the target SGSN+ receives the algorithm selected by the target RNC+, the RNC+ selected algorithm is carried in the preparation handover response message.
  • the target SGSN+ may also add an indication to the preparation handover response message to implicitly or explicitly instruct the terminal to perform derivation of the enhanced key IKu and/or CKu, for example: adding network side security in the preparation handover response message Capability indication (implicit mode), or enhanced key enable indication (display mode). If the indication is carried in the migration request acknowledgement message sent by the target RNC+ to the target SGSN+ in step 107, the target SGSN+ may add the indication to the constructed preparation handover response message.
  • Step 109 The source SGSN sends a handover command message to the source BSC, instructing the network to complete the handover preparation process.
  • the preparation switching response message sent by the target SGSN+ to the source SGSN carries the algorithm selected by the RNC+
  • the handover command message sent by the source SGSN to the source BSC also carries the parameter indicating the algorithm.
  • the source SGSN carries an indication of the target RNC+ or the target SGSN+ added in the handover command message to instruct the terminal to perform derivation of the enhanced key IKu and/or CKu.
  • Step 110 The source BSC sends a handover command message from the GERAN to the terminal, instructing the terminal to switch to the target access network.
  • the handover command message carries radio parameters of the target RNC+ allocated to the terminal in the preparation phase, and algorithm information (including integrity algorithms and/or encryption algorithms).
  • the source BSC also carries an indication added by the target RNC+ or the target SGSN+ in the message to instruct the terminal to perform derivation of the enhanced keys IKu and CKu.
  • Step 111 The terminal derives an enhanced air interface integrity key IKu and/or an air interface encryption key CCu; wherein, the terminal may derive the intermediate key KRNC according to IK/CK; or, if there is only Kc in the terminal, the terminal first derives according to Kc IK/CK, and then derive KR NC based on the IK/CK; then derive the enhanced air interface integrity key IKu and/or the air interface encryption key CKu according to KR NC ; or, the terminal directly derives the enhanced air interface according to IK/CK Integrity key IKu and/or air interface encryption key CKu;
  • Step 112 The terminal sends a handover to the target RNC+ to the UTRAN complete message, where the message is integrity protected using the newly generated enhanced integrity key IKu, and/or encrypted using the enhanced encryption key CKu;
  • Step 113 The target RNC+ sends a migration complete message to the target SGSN+, indicating to the target SGSN+ that the terminal has successfully switched from the GERAN to the target RNC+;
  • Step 114 The target SGSN+ and the source SGSN perform message interaction to confirm that the migration is complete.
  • Step 115 The source SGSN and the source BSC exchange messages to release related resources.
  • This embodiment illustrates an example of an enhanced air key establishment procedure for a terminal moving from GERAN to an enhanced UTRAN.
  • the difference between this embodiment and the example 1 is that the source SGSN and the target SGSN+ are the same SGSN, and both are enhanced SGSNs, that is, SGSN+.
  • the following steps are included:
  • This embodiment illustrates an example of an enhanced air key establishment procedure for a terminal moving from GERAN to an enhanced UTRAN.
  • the difference between this embodiment and the example 1 is that the enhanced air interface integrity key IKu and the air interface encryption key CKu are generated at the target SGSN+ and delivered to the target RNC+ through the target SGSN+ in the migration request message. As shown in Figure 6, the following steps are included:
  • Steps 301-303 the same as step 1 101-103 of the embodiment 1;
  • Step 304 If the target SGSN supports enhanced security functions, that is: if the target SGSN is SGSN+, then:
  • the target SGSN+ derives KR NC according to the received keys IK and CK; if the target SGSN+ receives Kc, the target SGSN+ first derives IK/CK according to Kc, and then derives KR NC based on the IK/CK;
  • the enhanced air interface integrity key IKu and/or the air interface encryption key CKu are derived according to the intermediate key KR NC ; or the target SGSN directly derives the enhanced air interface integrity key IKu and/or the air interface encryption key CKu according to IK/CK.
  • the target SGSN+ also derives the variant intermediate key KRNC* from the mapped legacy keys IK, CK and the intermediate key KRNC.
  • Step 305 The target SGSN+ sends a migration request message to the target RNC+, requesting the target RNC+ to establish a wireless network resource for the terminal, where the message carries security-related information, and at least includes: enhanced air interface key information (enhanced air interface integrity key IKu and/or Or air interface encryption key CCu) and algorithm information;
  • enhanced air interface key information enhanced air interface integrity key IKu and/or Or air interface encryption key CCu
  • the algorithm information includes integrity algorithm information and/or encryption algorithm information.
  • the target SGSN+ further derives the modified intermediate key KRNC* in step 304, the target SGSN+ further carries: a modified intermediate key KRNC*. If the counter NCC is set for KRNC*, the counter NCC value can also be carried.
  • Step 306 the target RNC+ stores enhanced air interface key information
  • Steps 307-310 the same as step 1 107-110 of the embodiment 1.
  • Step 311 The terminal derives the intermediate key KRNC according to IK/CK; if there is only Kc in the terminal, the terminal first derives IK/CK according to Kc, and then derives KR NC based on the IK/CK; KR NC derives an enhanced air interface integrity key IKu and/or air interface encryption key CCu; or the terminal directly derives an enhanced air interface integrity key IKu and/or air interface encryption key CKu according to IK/CK;
  • Steps 312-315 the same as Embodiment 1 steps 112-115.
  • This embodiment illustrates another example of an enhanced air key establishment procedure for a terminal moving from GERAN to an enhanced UTRAN.
  • the difference between this embodiment and Embodiment 1 is that a random number NONCESGSN is generated by the target SGSN+, and the intermediate key KRNC is derived using the random number NONCESGSN and the keys IK and CK. As shown in Figure 7, the following steps are included:
  • Steps 401-403 the same as the embodiment 1 steps 101-103;
  • Step 404 If the target SGSN is SGSN+, the target SGSN+ generates a random number NONCESGSN, and derives an intermediate key KRNC according to the received IK/CK and the generated random number NONCESGSN. If the target SGSN+ receives Kc, then the target SGSN+ First, derive IK/CK according to Kc, and then derive KR NC based on the IK/CK and the generated random number NONCESGSN; optionally, after deriving the intermediate key KR NC , the target SGSN+ is based on the key IK, CK and intermediate key The KRNC derives the morphing intermediate key KRNC*, which is used to update the enhanced air interface keys IKu and CKu when the terminal performs SRNC migration within the enhanced UTRAN network.
  • the variant intermediate key KRNC* is associated with a counter NCC. In this embodiment, at this time, the NCC value associated with the modified intermediate key KASMEU* is 1.
  • Steps 405-407 the same as the embodiment 1 steps 105-107;
  • Step 408 The target SGSN+ sends a preparation handover response message to the source SGSN, and carries the parameter: a random number NONCESGSN, and algorithm information, where the algorithm information includes: integrity algorithm information and/or encryption algorithm information;
  • the target SGSN+ may carry an indication in the message, and the source SGSN relays the terminal to perform the derivation of the enhanced keys IKu and CKu, which may be indicated in an implicit or explicit manner, for example: adding the inclusion in the forwarding migration response message Network side security capability indication (implicit mode), or enhanced key enable indication (display mode).
  • the source SGSN may carry an indication in the message
  • the source SGSN relays the terminal to perform the derivation of the enhanced keys IKu and CKu, which may be indicated in an implicit or explicit manner, for example: adding the inclusion in the forwarding migration response message Network side security capability indication (implicit mode), or enhanced key enable indication (display mode).
  • Step 409 The source SGSN sends a handover command message to the source BSC, indicating that the network completes the handover criterion. a standby process, and carrying a parameter in the message: a random number NONCESGSN, and algorithm information;
  • the source base station instructs the terminal to perform the derivation of the enhanced keys IKu and CKu in the message, which may be indicated in an implicit or explicit manner, for example: adding a network side security capability indication (implicit indication) in the handover command , or enhanced key enable indication (display indication).
  • the terminal instructs the terminal to perform the derivation of the enhanced keys IKu and CKu in the message, which may be indicated in an implicit or explicit manner, for example: adding a network side security capability indication (implicit indication) in the handover command , or enhanced key enable indication (display indication).
  • Step 411 The terminal derives the intermediate key KR NC according to the IK/CK and the random number NONCESGSN. If there is only Kc in the terminal, the terminal first derives IK/CK according to Kc, and then derives KR NC based on the IK/CK and the random number NONCESGSN; Then, according to the KRNC, the enhanced air interface integrity key IKu and/or the air interface encryption key CKu are derived;
  • the terminal derives the enhanced air interface integrity key IKu and/or the air interface encryption key CKu directly from the IK/CK and the random number NONCESGSN.
  • Steps 412-415 the same as Embodiment 1 steps 112-115.
  • This embodiment illustrates an example of an enhanced air key establishment procedure for a terminal moving from GERAN to an enhanced UTRAN.
  • the difference between this embodiment and the example 4 is that the enhanced air interface integrity key IKu and the air interface encryption key CKu are generated at the target SGSN+ and delivered to the target RNC+ through the target SGSN+ in the migration request message. As shown in Figure 8, the following steps are included:
  • Step 504 If the target SGSN is SGSN+, the target SGSN+ generates a random number NONCESGSN, and derives an intermediate key KRNC according to the received IK/CK and the generated random number NONCESGSN. If the target SGSN+ receives Kc, the target SGSN+ First deriving IK/CK according to Kc, then deriving KR NC based on the IK/CK and the generated random number NONCESGSN; and deriving the enhanced air interface integrity key IKu and/or air interface encryption key CCu according to the intermediate key KRNC; or The target SGSN+ derives the KRNC according to the key IK, CK, and derives the enhanced air interface integrity key IKu and/or the air interface encryption key according to the intermediate key KRNC and the generated random number NONCESGSN. CKu;
  • the target SGSN+ derives the variant intermediate key KRNC* from the key IK, CK and the intermediate key KRNC, and sets the counter NCC for the variant intermediate key KRNC*.
  • Step 505 The target SGSN+ sends a migration request message to the target RNC+, requesting the target RNC+ to establish a wireless network resource for the terminal, and the message carrying the security-related information includes at least: enhanced air interface key information (enhanced air interface integrity key IKu and/or Air interface encryption key CCu) and algorithm information;
  • enhanced air interface key information enhanced air interface integrity key IKu and/or Air interface encryption key CCu
  • the algorithm information includes integrity algorithm information and/or encryption algorithm information.
  • the target SGSN+ further derives the modified intermediate key KRNC* in step 504, the target SGSN+ further carries: the modified intermediate key KRNC*. If the counter NCC is set for KRNC*, the counter NCC value can also be carried.
  • Step 506 the target RNC+ stores enhanced air interface key information
  • Steps 507-515 the same as the embodiment 4 steps 407-415.
  • the terminal derives the enhanced key IKu and / or CKu in the same manner as the network side.
  • This embodiment illustrates an example of an air interface key management process when the terminal moves from the enhanced UTRAN to the GERAN.
  • the source SGSN+ is responsible for deriving Kc.
  • the method includes the following steps:
  • Step 601 The source RNC+ decides to switch from the enhanced UMTS network to the target GERAN network.
  • Step 603 The source SGSN+ derives the Kc according to the IKVCK', and the derivation mode uses the existing Kc derivation mode, which is not described herein.
  • Kc can also be derived via IKu and CKu.
  • IKVCK' is the key in SGSN+.
  • Step 604 the source SGSN+ sends a preparation handover message to the target SGSN, where the message carries a security-related parameter Kc;
  • Step 605 The target SGSN sends a handover request message to the target BSC, requesting the target BSC to establish a wireless network resource for the terminal.
  • Step 606 The target BSC allocates a radio resource to the terminal, and sends a handover request acknowledgement message to the target SGSN.
  • Step 607 The target SGSN sends a preparation handover response message to the source SGSN+.
  • Step 608 The source SGSN+ sends a migration command message to the source RNC+, instructing the network to complete the handover preparation process.
  • Step 609 The source BSC sends a handover command message from the UTRAN to the terminal, instructing the terminal to switch to the target access network.
  • Step 610 the terminal uses the method of step 603 to derive Kc;
  • Step 611 The terminal sends a handover complete message to the target BSC.
  • Step 612 The target BSC sends a handover complete message to the target SGSN, indicating to the target SGSN that the terminal has successfully switched from the enhanced UMTS to the target BSC;
  • Step 613 The target SGSN and the source SGSN+ perform message interaction to confirm that the migration is complete.
  • This embodiment shows an example of an enhanced air interface key establishment when the terminal moves from the GERAN to the enhanced UTRAN to perform routing area update in the idle mode. As shown in FIG. 10, the following steps are included:
  • Step 701 When the routing area update trigger condition is met, the terminal sends a routing area update request message to the target SGSN+, requesting to perform routing area update;
  • Step 702 The target SGSN+ sends a context request message to the source SGSN of the terminal to request the context of the terminal.
  • Step 703 The source SGSN sends a context response message to the target SGSN+. If the source SGSN is the R99+ SGSN, the message carries the security-related parameter CK/IK. If the source SGSN is the R98-SGSN, the message carries the security-related parameter Kc. Step 704: If the target SGSN+ receives the IK/CK, the target SGSN+ derives the KRNC according to the received keys IK and CK. If the target SGSN+ receives the Kc, the target SGSN+ first derives the IK/CK according to the Kc.
  • the target SGSN+ further derives the enhanced air interface integrity key IKu and/or the air interface encryption key CKu according to the intermediate key KR NC ; Selecting, or the target SGSN+ directly derives the enhanced air interface integrity key IKu and/or the air interface encryption key CKu according to IK/CK;
  • Step 705 The target SGSN+ sends a routing area update accept message to the terminal.
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform the KRNC derivation, for example: adding a network side security capability indication to the routing area update accept message (hidden) Mode), or enhanced key enable indication (display mode).
  • Step 706 The terminal deriving the KRNC in the same manner as step 704, optionally further deriving the enhanced air interface integrity key IKu and/or the air interface encryption key CKu.
  • Step 707 The terminal sends a routing area update complete message to the target SGSN+ to confirm that the routing area update is completed.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from the GERAN to the enhanced UTRAN for routing area update in the idle mode.
  • the difference between this embodiment and Embodiment 7 is that a random number NONCESGSN is generated by the target SGSN+, and the target SGSN+ and the terminal use the random number NONCESGSN and the keys IK, CK to derive the intermediate key KRNC.
  • the following steps are included:
  • Steps 801-803 the same as step 7 of the embodiment 7 701-703;
  • Step 804 The target SGSN+ generates a random number NONCESGSN; if the target SGSN+ receives IK/CK, the target SGSN+ derives the KRNC according to the received key IK/CK and the random number NONCESGSN; if the target SGSN+ receives the Kc, Then the target SGSN+ first derives IK/CK according to Kc, and then derives KRNC based on the IK/CK and the random number NONCESGSN; optionally, the target SGSN+ then derives the enhanced air interface integrity key IKu and/or according to the intermediate key KR NC.
  • Air interface encryption key CCu; optionally, or target SGSN+ directly based on IK/CK and random number NONCESGSN derives an enhanced air interface integrity key IKu and/or air interface encryption key CKu;
  • the target SGSN+ derives IK/CK according to IK/CK (received or derived by Kc); then derives KR NC based on the IK/CK; further, derives from the intermediate key KR NC and the random number NONCESGSN Enhanced air interface integrity key IKu and/or air interface encryption key CKu;
  • Step 805 The target SGSN+ sends a routing area update accept message to the terminal, and carries the parameter in the message: a random number NONCESGSN;
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform KRNC derivation.
  • Step 806 The terminal derives the KRNC according to the received NONCESGSN and the same method as step 804.
  • the enhanced air interface integrity key IKu and/or the air interface encryption key CKu are further derived.
  • Step 807 which is the same as step 707 of the embodiment 7.
  • the target SGSN may generate a count value COU TSGSN when the NONCESGSN is generated, and the target SGSN uses the same message to deliver the COUNT SGSN to the terminal, and both sides use the COUNT SGSN instead of the NONCESGSN to achieve the same key fresh effect when deriving the key. .
  • the COU TSGSN is maintained at the same time on both sides.
  • the COUNTSGSN is generated by the counter COUNT.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from the GERAN to the enhanced UTRAN for routing area update in the idle mode.
  • a random number NONCEUE is generated by the terminal, and the target SGSN+ and the terminal use the random number NONCEUE and the keys IK, CK to derive the intermediate key KRNC.
  • the method includes the following steps: Step 901: When the routing area update trigger condition is met, the terminal generates a random number NONCEUE. Step 902: The terminal sends a routing area update request message to the target SGSN+, requesting to perform routing area update, the message Carrying parameters: random number NONCEUE;
  • Steps 903-904 the same as step 7 of the embodiment 7 703-704;
  • Step 905 if the target SGSN+ receives IK/CK, the target SGSN+ is received according to The obtained key IK/CK and the random number NONCEUE derive KR NC ; if the target SGSN+ receives Kc, then the target SGSN+ first derives IK/CK according to Kc, and then derives KR NC based on the IK/CK and the random number NONCEUE;
  • the target SGSN+ further derives the enhanced air interface integrity key IKu and/or the air interface encryption key CCu according to the intermediate key KR NC ; optionally, or the target SGSN+ directly derives the enhanced according to the IK/CK and the random number NONCEUE Air interface integrity key IKu and/or air interface encryption key CCu; or, target SGSN+ derives IK/CK according to IK/CK (received or derived by Kc); and then derives KR NC based on the IK/CK; Further, the enhanced air interface integrity key IKu and
  • Step 906 the same as embodiment 7 step 705;
  • Step 907 The terminal derives the KRNC according to the previously generated NONCEUE and the same method as step 905; optionally further derives the enhanced air interface integrity key IKu and/or the air interface encryption key CKu.
  • Step 908 is the same as step 707 of the embodiment 7.
  • the terminal may generate a COU TUE when the NONCEUE is generated, and the terminal uses the same message to deliver the COUNT UE to the target SGSN, and both sides use COUNTUE instead of NONCEUE to achieve the same key fresh effect when deriving the key.
  • the COUNTUE is maintained on both sides.
  • This embodiment shows an example in which an enhanced air interface key is established when a terminal moves from GERAN to an enhanced UTRAN for routing area update in idle mode.
  • the terminal generates a random number NONCEUE
  • the target SGSN+ generates a random number NONCESGSN
  • the terminal and the target SGSN+ respectively use the random number NONCEUE, the random number NONCESGSN
  • the key IK, CK derives the intermediate key KR:.
  • the method includes the following steps: Step 1001: When the routing area update trigger condition is met, the terminal generates a random number NONCEUE; Step 1002: The terminal sends a routing area update request message to the target SGSN+ to request routing area update, the message Carrying parameters: random number NONCEUE; Step 1003-1004, the same as step 7 703-704 of the embodiment 7;
  • Step 1005 The target SGSN+ generates a random number NONCESGSN; if the target SGSN+ receives IK/CK, the target SGSN+ derives the KRNC according to the received key IK/CK and the random number NONCESGSN, NONCEUE; if the target SGSN+ receives KC, then the target SGSN+ first derives IK/CK according to Kc, and then derives KRNC based on the IK/CK and the random number NONCESGSN, NONCEUE; optionally, the target SGSN+ derives the enhanced air interface integrity key IKu according to the intermediate key KRNC And/or the air interface encryption key CCu; or alternatively, the target SGSN+ directly derives the enhanced air interface integrity key IKu and/or the air interface encryption key CCu according to the IK/CK, the random number NONCEUE and the random number NONCESGSN; or, the target SGSN+ derives IK/CK based on IK/CK (
  • the NONCESGSN derives the enhanced air interface integrity key IKu and/or the air interface encryption key CKu;
  • Step 1006 The target SGSN+ sends a routing area update accept message to the terminal, and carries the parameter in the message: a random number NONCESGSN;
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform KRNC derivation.
  • Step 1007 The terminal derives the KRNC according to the previously generated NONCEUE and the same method as step 1005; optionally further derives the enhanced air interface integrity key IKu and/or the air interface encryption key CKu.
  • Step 1008 is the same as step 708 of Embodiment 7.
  • the terminal may generate a COU TUE when the NONCE UE is generated, and the target SGSN may generate a COU TSGSN when the NONCESGSN is generated, and the terminal transmits the COUNT UE to the target SGSN by using the same message, and the target SGSN uses the same message to transmit the COUNT SGSN.
  • both sides use COUNTUE and COUNTSGSN instead of NONCEUE and NONCESGSN to achieve the same key fresh effect when deriving the key.
  • the COUNTUE and COU TSGSN are maintained on both sides. COUNTUE and COUNTSGSN are generated by a counter.
  • Example 11 This embodiment shows an example of an enhanced air interface key establishment when the terminal moves from the enhanced UTRAN to the GERAN for routing area update in the idle mode. As shown in FIG. 14, the method includes the following steps:
  • Step 1101 When the routing area update trigger condition is met, the terminal sends a routing area update request message to the target SGSN, requesting to perform routing area update;
  • Step 1102 The target SGSN sends a context request message to the source SGSN+ of the terminal, requesting the context of the terminal.
  • step 1103 the source SGSN+ derives the Kc according to the IKVCK', and the derivation mode uses the existing Kc derivation mode, and will not be described again.
  • Kc can also be derived via IKu and CKu.
  • Step 1104 the source SGSN+ sends a context response message to the target SGSN, where the message carries the security parameter Kc;
  • Step 1105 The target SGSN sends a routing area update accept message to the terminal.
  • step 1106 the terminal uses the same method as step 1103 to derive Kc.
  • Step 1107 The terminal sends a routing area update complete message to the target SGSN, and confirms that the routing area update is completed.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may use software functions.
  • the form of the module is implemented. The invention is not limited to any specific form of combination of hardware and software.
  • the network side and the terminal can ensure compatibility with the security functions of the existing GERAN system, and can also be enhanced according to the existing key.
  • the key system does not need to perform the AKA process again, thereby increasing network compatibility, saving network overhead, improving system efficiency, and ensuring that the terminal can communicate securely with the enhanced UTRAN and GERAN networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明提供一种GERAN与增强UTRAN间建立密钥的方法、系统和增强SGSN,所述方法包括:当用户设备从GERAN移动到增强UTRAN时,为所述增强UTRAN服务的增强SGSN从所述GERAN获取安全相关的参数,根据所述安全相关的参数生成所述增强UTRAN的空口密钥;和/或,当用户设备从增强UTRAN移动到GERAN时,为所述增强UTRAN服务的增强SGSN生成所述GERAN的空口密钥并发送给所述GERAN。

Description

GERA 与增强 UTRAN间建立密钥的方法、 系统及增强 SGSN
技术领域
本发明涉及无线通信领域, 具体而言, 涉及一种无线通信系统中终端从 GERAN移动到增强的 UTRAN、 和从增强的 UTRAN移动到 GERAN时增强 建立密钥的方法、 系统及增强 SGSN。 背景技术
3GPP ( 3rd Generation Partnership Project , 第三代合作伙伴计戈 'J ) 在 Release7中釆用了正交频分复用 ( Orthogonal Frequency Division Multiplexing, 简称 OFDM )和多输入多输出 ( Multiple-Input Multiple-Output, 简称 MIMO ) 技术完成 HSDPA ( High Speed Downlink Packet Access , 高速下行链路分组接 入)和 HSUPA ( High Speed Uplink Packet Access, 高速上行链路分组接入) 的未来演进道路 HSPA+。 HSPA+是 3GPP HSPA (包括 HSDPA和 HSUPA)的增 强技术, 为 HSPA运营商提供低复杂度、 低成本的从 HSPA向 LTE平滑演进 的途径。
HSPA+通过釆用高阶调制 (例如下行 64QAM ( Quadrature Amplitude Modulation, 正交幅度调制)和上行 16QAM ) 、 MIMO 以及高阶段调制与 MIMO的结合等技术, 提升了峰值数据速率与频谱效率。 另一方面, 为了更 好的支持分组业务, HSPA+还釆用了一系列其它增强技术来达到增加用户容 量、 降低时延、 降低终端耗电, 更好地支持 IP语音通信 (VOIP)以及提升系统 的多播 /广播能力等目标。
相比较于 HSPA, HSPA+在系统架构上将无线网络控制器( Radio Network Controller, 简称 RNC )的功能下放到基站节点 B ( Node B ) , 形成完全扁平 化的无线接入网络架构,如图 1所示。此时称集成了完全 RNC功能的 Node B 为 Evolved HSPA Node B , 或者简称增强节点 Β ( Node B+ ) 。 SGSN+为进行 了升级能支持 HSPA+功能的 SGSN ( SERVICE GPRS SUPPORT NODE, 服 务 GPRS支持节点; GPRS: General Packet Radio System,通用分组无线系统)。 ME+为能支持 HSPA+功能的用户终端设备 (也可称为 UE+ ) 。 演进的 HSPA 系统能够使用 3GPP Rel-5和以后的空口版本, 对空口的 HSPA业务没有任何 修改。 釆用这种方案后, 每个 Node B+都成为一个相当于 RNC的节点, 具有 Iu-PS接口能够直接与 PS CN ( Core Network, 核心网)连接, Iu-PS用户面在 SGSN终结, 其中如果网络支持直通隧道功能, Iu-PS用户面也可以在 GGSN ( Gateway GPRS Support Node, 网关 GPRS支持节点)终结。 演进的 HSPA Node B之间的通信通过 lur接口执行。 Node B+具有独立组网的能力, 并支持 完整的移动性功能, 包括系统间和系统内切换。
在 HSPA+中, 可以将 Node B+看作 Node B和 RNC的结合。 二者是一个 物理实体, 但是仍然是 2个不同的逻辑实体。 因此本文中支持 HSPA+增强的 密钥层次的 Node B+也可以等同为 UMTS中进行了升级的 RNC。 为了区分, 我们可以称之为 RNC+。
目前提出的一种 HSPA+增强的安全密钥层次结构如图 2所示。 其中, K ( Key, 即才艮密钥) 、 CK ( Ciphering Key, 加密密钥)和 IK ( Integrity Key, 完整性密钥 ) 的定义与 UMTS ( Universal Mobile Telecommunications System, 通用移动通信系统)中完全一致。 即 K是存储于 AuC ( Authentication Center, 鉴权中心)和 USIM ( UNIVERSAL SUBSCRIBER IDENTITY MODULE, 通 用订阅者身份模块) 中的根密钥, CK和 IK是用户设备与 HSS 进行 AKA ( Authentication and Key Agreement, 认证和密钥协定) 时由 K计算出的力口密 密钥和完整性密钥。 在 UMTS中, RNC即使用 CK和 IK对数据进行加密和 完整性保护。我们可以将 CK和 IK称为传统的空口安全密钥,简称传统密钥。
由于 HSPA+架构中, 将 RNC的功能全部下放到基站 Node B+, 则加解 密都需在 Node B+处进行, 而 Node B+位于不安全的环境中, 安全性不是特 别高。 因此 HSPA+引入了一个类似于 EUTRAN ( Evolved Universal Terrestrial Radio Access Network , 演进的通用陆地无线接入网络) 的密钥层次, 即 UTRAN密钥层次( UTRAN Key Hierarchy ) 。 在 UTRAN密钥层次结构中 , 中间密钥 KRNC (也有称为 KASMEU )是 HSPA+新引入的密钥, 由传统密钥 CK 和 IK推导生成。 进一步地, KRNC生成 CKu和 IKu, 其中 CKu用于加密用户面 数据和控制面信令, IKu用于对控制面信令进行完整性保护。 我们将 CKu和 IKu称为增强的空口安全密钥, 简称增强密钥。 目前提出的还有两种 HSPA+增强的安全密钥层次结构如图 2a/2b所示。 这两个密钥架构中的 K、 IK/CK (本文中, IK/CK表示 IK和 CK )与图 2所示 密钥架构中的作用是相同的。 图 2a中的 CKu和 IKu与图 2中的 CKu和 ΙΚυ相 同, 只是推导方式不同, 该密钥架构下的 CKu和 IKu是由 CK/IK直接推导, 不经过任何中间密钥。 图 2b所示密钥架构中的 KASMEU是一个中间密钥, 与图 2所示密钥架构中的 KRNC作用是相同的, 都是由 IK/CK推导, 只是推导公式 可能略有不同;该架构下的 CKL和 IKL、 CKS和 IKs与图 2架构中的 CKu和 IKu 相似, 都是用于空口加密完整性保护, 其中 CKL和 IKL用于已有 UTRAN网 络中, CKs和 IKs用于增强的 UTRAN网络中。
GERAN: 全称 GSM EDGE Radio Access Network ,是 GSM/EDGE无线接 入网,它釆用了 EDGE的无线传输技术,网络组成与 GPRS相同。整个 GERAN 架构如图 3 所示。 GERAN是 GSM/EDGE 的无线接入部分,包括基站 (base stations)和基站控制器 (base station controllers)以及它们的接口。 GERAN主要 负责无线通信、 无线通信管理、 和移动性上下文的管理。 核心网包含 MSC/SGSN等, 负责移动性的管理、 非接入层信令的处理、 以及用户安全模 式的管理等控制面相关的工作。
当用户从 GERAN移动到 UTRAN时, 如果为 GERAN服务的 SGSN保 存有 AKA后的 IK/CK, 那么该 SGSN把该 IK/CK传送给目标 SGSN, 目标 SGSN直接将其作为空口密钥使用。 如果为 GERAN服务的 SGSN没有保存 IK/CK, 而是保存的 Kc, 那么直接把 Kc传送给目标 SGSN, 如果源 SGSN是 R99+的, 那么目标 SGSN根据 Kc推导出 IK/CK; 如果源 SGSN是 R98-的, 目标 SGSN重新发起 AKA, 以产生新的 IK/CK。
当用户从 UTRAN移动到 GERAN时, 如果目标 SGSN是 R99+的, 那么 源 SGSN直接把 IK/CK传递给目标 SGSN, 目标 SGSN会由 IK/CK推导出供 目标 SGSN使用的 Kc, 并将其作为空口密钥使用; 如果目标 SGSN是 R98- 的,那么源 SGSN会根据 IK/CK推导出供目标 SGSN使用的 Kc ,并将其传递 给目标 SGSN, 目标 SGSN收到后保存并将其用作空口密钥。
随着 HSPA+安全的引入, 由于增加了密钥层次, 用户和网络之间使用增 强密钥 IKu和 CKu对通信进行保护。当用户在 GERAN与 HSPA+之间移动时, 密钥如何建立, 以及用户由 GERAN移动到 HSPA+时、 和由 HSPA+移动到 GERAN时密钥具体如何推导, 是一个急需解决的问题。 发明内容
本发明要解决的技术问题是提供一种终端在 GERAN与增强 UTRAN之 间密钥建立方法、 系统和装置, 以保证终端在增强的 UTRAN和 GERAN中 能够安全地进行正常的通信。
为了解决上述问题, 本发明提供了一种 GERAN与增强 UTRAN间建立 密钥的方法, 包括:
当用户设备从 GERAN移动到增强 UTRAN时, 为所述增强 UTRAN服 务的增强 SGSN从所述 GERAN获取安全相关的参数, 根据所述安全相关的 参数生成所述增强 UTRAN的空口密钥;
和 /或,当用户设备从增强 UTRAN移动到 GERAN时,为所述增强 UTRAN 服务的增强 SGSN生成所述 GERAN的空口密钥并发送给所述 GERAN。
上述方法还可具有以下特点, 所述安全相关的参数为 IK和 CK, 或者为
Kc;
所述根据所述安全相关参数的参数生成所述增强 UTRAN的空口密钥的 步骤包括:
所述增强 SGSN根据所述 IK和 CK生成中间密钥 KRNC; 或者, 所述增强 SGSN根据所述 Kc生成 IK和 CK,再根据得到的 IK和 CK生成中间密钥 KR :。
上述方法还可具有以下特点, 所述安全相关的参数为 IK和 CK, 或者为
Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据所述 IK和 CK和第一参数生成中间密钥 KRNC,或者, 所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK和所述 第一参数生成中间密钥 KRNC;
所述第一参数为随机数或者为计数器产生的计数值。 上述方法还可具有以下特点, 所述安全相关的参数为 IK和 CK, 或者为
Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据所述 IK和 CK、 第一参数和第二参数生成中间密钥
KRNC, 或者, 所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK 和 CK、 所述第一参数和所述第二参数生成中间密钥 KRNC;
所述第一参数和第二参数为随机数或者为计数器产生的计数值。
上述方法还可具有以下特点, 所述方法还包括:
所述增强 SGSN将所述 KRNC发送给增强 RNC, 所述增强 RNC根据所述
KRNC生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
上述方法还可具有以下特点, 所述安全相关的参数为 IK和 CK, 或者为
Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据所述 IK和 CK生成中间密钥 KRNC,再根据所述 KRNC 生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者, 所述增强 SGSN直接根据所述 IK和 CK生成增强的空口完整性密钥 IKu和 /或空口加密 密钥 CKu;
或者, 所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK和
CK生成中间密钥 KRNC, 然后根据所述 KRNC生成增强的空口完整性密钥 IKu 和 /或空口加密密钥 CKu; 或者,所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK直接生成增强的空口完整性密钥 IKu和 /或空口加密密 钥 CKu。
上述方法还可具有以下特点, 所述安全相关的参数为 IK和 CK, 或者为
Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括: 所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和
CK, 以及第一参数生成中间密钥 KRNC,再根据所述 KRNC生成增强的空口完整 性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中间密钥 KRNC ,再根据所述 KRNC和第一参数生成增强的空口完 整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN直接根据由 Kc生成的 IK和 CK或从 GERAN获 取的 IK和 CK、 以及所述第一参数生成增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu;
所述第一参数为随机数或者为计数器产生的计数值。
上述方法还可具有以下特点, 所述安全相关的参数为 IK和 CK, 或者为
Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和
CK、 以及第一参数和第二参数生成中间密钥 KRNC,再根据所述 KRNC生成增强 的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中间密钥 KRNC,再根据所述 KRNC和第一参数和第二参数生成增 强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN直接根据由 Kc生成的 IK和 CK或从 GERAN获 取的 IK和 CK、 以及所述第一参数和所述第二参数生成增强的空口完整性密 钥 IKu和 /或空口加密密钥 CKu;
所述第一参数和第二参数为随机数或者为计数器产生的计数值。
上述方法还可具有以下特点, 所述第一参数由所述增强 SGSN产生, 或 者, 由所述用户设备生成并发送给所述增强 SGSN。
上述方法还可具有以下特点, 所述第一参数由所述增强 SGSN生成, 所 述第二参数由所述用户设备生成并发送给所述增强 SGSN。 上述方法还可具有以下特点,当用户设备从增强 UTRAN移动到 GERAN 时, 增强 SGSN生成所述 GERAN的空口密钥并发送给所述 GERAN包括: 所述增强 SGSN根据 IKVCK'生成 Kc, 或者, 根据 IKu和 CKu生成 Kc, 并将所述 Kc发送给所述 GERAN。
本发明还提供一种增强 SGSN,
所述增强 SGSN设置为: 当用户设备从 GERAN移动到所述增强 SGSN 服务的增强 UTRAN时, 从所述 GERAN获取安全相关的参数, 根据所述安 全相关的参数生成所述增强 UTRAN的空口密钥; 和 /或, 当用户设备从所述 增强 SGSN服务的增强 UTRAN移动到 GERAN时, 生成所述 GERAN的空 口密钥并发送给所述 GERAN。
上述增强 SGSN还可具有以下特点, 所述增强 SGSN是设置为: 从所述 GERAN获取 IK和 CK, 根据所述 IK和 CK生成中间密钥 KRNC; 或者, 从所 述 GERAN获取 Kc, 根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK生 成中间密钥 KR :。
上述曾倩 SGSN还可具有以下特点, 所述增强 SGSN是设置为: 从所述
GERAN获取 IK和 CK, 根据所述 IK和 CK和第一参数生成中间密钥 KRNC, 或者, 从所述 GERAN获取 Kc, 根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK和所述第一参数生成中间密钥 KRNC; 所述第一参数为随机数或者为 计数器产生的计数值。
上述增强 SGSN还可具有以下特点, 所述增强 SGSN是设置为: 从所述
GERAN获取 IK和 CK, 根据所述 IK和 CK、 第一参数和第二参数生成中间 密钥 KRNC, 或者, 从所述 GERAN获取 Kc, 根据所述 Kc生成 IK和 CK, 再 根据得到的 IK和 CK、 所述第一参数和所述第二参数生成中间密钥 KRNC; 所述第一参数和第二参数为随机数或者为计数器产生的计数值。
上述增强 SGSN还可具有以下特点, 所述增强 SGSN还设置为: 将所述
KRNC发送给增强 RNC,以使所述增强 RNC根据所述 KRNC生成增强的空口完 整性密钥 IKu和 /或空口加密密钥 CKu。
上述增强 SGSN还可具有以下特点,所述增强 SGSN,用于从所述 GERAN 获取 IK和 CK, 根据所述 IK和 CK生成中间密钥 KRNC, 再根据所述 KRNC生 成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;或者,从所述 GERAN 获取 IK和 CK, 直接根据所述 IK和 CK生成增强的空口完整性密钥 IKu和 / 或空口加密密钥 CKu; 或者, 从所述 GERAN获取 Kc, 根据所述 Kc生成 IK 和 CK, 再根据得到的 IK和 CK生成中间密钥 KRNC, 然后根据所述 KRNC生成 增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者, 从所述 GERAN 获取 Kc,根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK直接生成增强 的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
上述增强 SGSN还可具有以下特点, 所述增强 SGSN是设置为: 从所述 GERAN获取 IK和 CK或者 Kc; 根据由 Kc生成的 IK和 CK或从 GERAN获 取的 IK和 CK, 以及第一参数生成中间密钥 KRNC, 再根据所述 KRNC生成增强 的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者,
根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中间密钥
KRNC, 再根据所述 KRNC和第一参数生成增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu;
或者, 直接根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK、 以及所述第一参数生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 所述第一参数为随机数或者为计数器产生的计数值。
上述增强 SGSN还可具有以下特点, 所述增强 SGSN是设置为: 从所述 GERAN获取 IK和 CK或者 Kc; 根据由 Kc生成的 IK和 CK或从 GERAN获 取的 IK和 CK、以及第一参数和第二参数生成中间密钥 KRNC,再根据所述 KRNC 生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中 间密钥 KRNC, 再根据所述 KRNC和第一参数和第二参数生成增强的空口完整性 密钥 IKu和 /或空口加密密钥 CKu;
或者, 直接根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK、 以及所述第一参数和所述第二参数生成增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu; 所述第一参数和第二参数为随机数或者为计数器产生的计数值。
上述增强 SGSN还可具有以下特点, 所述增强 SGSN还设置为: 生成所 述第一参数, 或者, 接收由所述用户设备生成的所述第一参数。 上述增强 SGSN还可具有以下特点, 所述增强 SGSN还设置为: 生成所 述第一参数, 和, 接收由所述用户设备生成的所述第二参数。
上述增强 SGSN还可具有以下特点, 所述增强 SGSN是设置为: 当用户 设备从增强 UTRAN移动到 GERAN时, 根据 IKVCK'生成 Kc, 或者, 根据 IKu和 CKu生成 Kc , 并将所述 Kc发送给所述 GERAN„
本发明还提供一种 GERAN与增强 UTRAN间建立密钥的系统, 所述系 统包括如上面所述的增强 SGSN。
釆用上述方案, 使得终端从 GERAN移动到增强的 UTRAN时和终端从 增强的 UTRAN移动到 GERAN时, 网络侧和终端既可以保证完全兼容已有 GERAN系统的安全功能,也可以根据已有密钥建立增强的密钥体系, 而不用 通过再次进行 AKA过程, 从而增加了网络兼容性, 节省网络开销, 提高系统 效率, 保证终端能和增强的 UTRAN、 GERAN网络安全地进行通信。
附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。
图 1为现有技术中釆用 HSPA+技术的无线接入网络的架构示意图; 图 2为现有技术中 HSPA+增强的安全密钥层次结构示意图;
图 2a为现有技术中 HSPA+中第二种增强的安全密钥层次结构示意图; 图 2b为现有技术中 HSPA+中第三种增强的安全密钥层次结构示意图; 图 3为现有技术中 GERAN的架构示意图;
图 3a为现有技术中 GERAN与 HSPA+混合组网的架构示意图; 图 4为本发明实施例 1流程图;
图 5为本发明实施例 2流程图;
图 6为本发明实施例 3流程图;
图 7为本发明实施例 4流程图;
图 8为本发明实施例 5流程图;
图 9为本发明实施例 6流程图;
图 10为本发明实施例 7流程图;
图 11为本发明实施例 8流程图;
图 12为本发明实施例 9流程图;
图 13为本发明实施例 10流程图;
图 14为本发明实施例 11流程图。
本发明的较佳实施方式
本发明的实施方式中, UE从 GERAN移动到增强的 UTRAN时, 增强的 UTRAN的密钥在为增强的 UTRAN服务的 SGSN+推导; UE从增强的 UTRAN 移动到 GRAN时, GERAN中的密钥也在为增强的 UTRAN服务的 SGSN+推 导。 如图 3a所示。
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。 其中, 实施例 1-6中的终端状态为激活态, 实施例 7-11中的终端状态为空闲 态。
实施例 1
本实施例说明了终端在从 GERAN移动到增强的 UTRAN时, 空口密钥 管理流程的示例, 在本实施例中, 由目标 SGSN+负责推导出 KRNC, 由目标 RNC+负责推导出增强密钥 CKu和 IKu, 如图 3a和图 4所示, 包括以下步骤: 步骤 101 , 源 BSC决定从 GERAN网络切换到目标增强 UTRAN网络; 步骤 102, 源 BSC向源 SGSN发送切换需要消息; 步骤 103 , 源 SGSN向目标 SGSN+发送准备切换消息, 如果源 SGSN是 R99+ SGSN,消息中携带安全相关的参数 CK/IK;如果源 SGSN是 R98- SGSN, 消息中携带安全相关的参数 Kc;
步骤 104,若目标 SGSN支持 HSPA+增强的安全功能, 即: 若目标 SGSN 为 SGSN+ , 则该目标 SGSN+根据接收到的 IK/CK推导中间密钥 KRNC; 如果 目标 SGSN+接收到的是 Kc,那么目标 SGSN+首先根据 Kc推导 IK/CK, 然后 再基于该 IK/CK推导 KRNC; 或者把 CK/IK直接作为 CKU/IKIL
可选地, 目标 SGSN+在推导中间密钥 KRNC后, 根据密钥 IK/CK和中间 密钥 KRNC推导变形中间密钥 KRNC* , 该变形中间密钥用于当终端在增强的 UTRAN网络内进行 SRNC迁移时, 更新增强的空口密钥 IKu和 CKu。 优选 地, 变形中间密钥 KRNC*与一个计数器 NCC相关联,该计数器 NCC用于记录 生成变形中间密钥 KRNC*的次数,在本实施例中 ,此时,该变形中间密钥 KRNC* 关联的 NCC值为 1。
若目标 SGSN不支持 HSPA+增强的安全功能, 则后面的流程按照 UMTS 规范中规定的流程进行操作, 此处不再赘述。
步骤 105, 目标 SGSN+向目标 RNC+发送迁移请求消息,请求目标 RNC+ 为终端建立无线网络资源, 该消息携带安全相关的信息, 至少包括: KRNC和 算法信息;
所述算法信息包括完整性算法信息和 /或加密算法信息, 所述完整性算法 可以是终端支持的完整性算法, 或者是网络侧选择的完整性算法; 所述加密 算法可以是终端支持的加密算法, 或者是网络侧选择的加密算法。 如果要求 必须进行完整性保护, 则所述算法信息中至少包含完整性算法。
可选地, 如果步骤 104中, 目标 SGSN+还推导了变形中间密钥 KRNC* , 则目标 SGSN+还可以在该迁移请求消息中携带: 变形中间密钥 KRNC*。 如果 为 KRNC*设置了计数器 NCC, 则还可携带计数器 NCC值。
步骤 106 , 目标 RNC+为终端分配无线资源, 并根据接收到的 KRNC推导 增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu,并保存所生成的 IKu和 / 或 CKu; 步骤 107, 目标 RNC+向目标 SGSN+发送迁移请求确认消息;
如果在步骤 105中目标 SGSN+携带了算法信息, 则在本步骤中, RNC+ 需在所述迁移请求确认消息中携带 RNC+选择的算法(完整性算法和 /或加密 算法) 。
此外, 目标 RNC+可以在所述迁移请求确认消息增加指示, 用以隐式或 显式地指示终端进行增强密钥 IKu和 /或 CKu的推导, 例如: 在迁移请求确认 消息中增加包含网络侧安全能力指示 (隐式方式) , 或者增强密钥启用指示 (显示方式) 。
此后可能目标 SGSN+和服务网关进行创建间接数据转发隧道请求消息 交互过程。
步骤 108, 目标 SGSN+向源 SGSN发送准备切换响应消息;
如果目标 SGSN+收到目标 RNC+选择的算法, 则在该准备切换响应消息 中携带 RNC+选择的算法。
目标 SGSN+也可以在所述准备切换响应消息增加指示, 用以隐式或显式 地指示终端进行增强密钥 IKu和 /或 CKu的推导, 例如: 在该准备切换响应消 息中增加包含网络侧安全能力指示(隐式方式),或者增强密钥启用指示(显 示方式 ) 。 如果步骤 107中目标 RNC+发送给目标 SGSN+的迁移请求确认消 息中携带了所述指示, 则目标 SGSN+可将该指示添加在构造的准备切换响应 消息中。
步骤 109, 源 SGSN向源 BSC发送切换命令消息, 指示网络完成切换准 备过程;
如果目标 SGSN+向源 SGSN发送的准备切换响应消息中携带有 RNC+选 择的算法, 则源 SGSN向源 BSC发送的该切换命令消息中也携带表示算法的 参数。
此外, 源 SGSN在切换命令消息中携带目标 RNC+或者目标 SGSN+添加 的指示, 用以指示终端进行增强密钥 IKu和 /或 CKu的推导。
步骤 110, 源 BSC向终端发送从 GERAN切换命令消息, 指示终端切换 到目标接入网络; 该切换命令消息携带目标 RNC+在准备阶段为终端分配的无线方面的参 数, 以及算法信息 (包括完整性算法和 /或加密算法) 。
优选地,源 BSC也在该消息中携带目标 RNC+或者目标 SGSN+添加的指 示, 用以指示终端进行增强密钥 IKu和 CKu的推导。
步骤 111 ,终端推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 其中, 终端可以根据 IK/CK推导中间密钥 KRNC; 或者, 如果终端中只有 Kc, 那么终端首先根据 Kc推导 IK/CK, 然后再基于该 IK/CK推导 KRNC; 然后再根据 KRNC推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者, 终端直接根据 IK/CK推导增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu;
步骤 112, 终端向目标 RNC+发送切换到 UTRAN完成消息, 该消息使用 新生成的增强完整性密钥 IKu进行完整性保护, 和 /或使用增强加密密钥 CKu 进行加密保护;
步骤 113 , 目标 RNC+向目标 SGSN+发送迁移完成消息, 向目标 SGSN+ 指示终端已从 GERAN成功切换到目标 RNC+;
步骤 114, 目标 SGSN+和源 SGSN进行消息交互, 确认迁移完成; 步骤 115, 源 SGSN和源 BSC进行消息交互, 释放相关资源。
实施例 2
本实施例说明了终端在从 GERAN移动到增强的 UTRAN时, 增强的空 口密钥建立流程的示例。本实施例与例 1的区别在于:源 SGSN与目标 SGSN+ 是同一个 SGSN, 都是增强的 SGSN, 即 SGSN+。 如图 5所示, 包括以下步 骤:
所有步骤与实施例 1基本相同,只是在实施例 1中源 SGSN和目标 SGSN+ 中的处理都在本实施例的 SGSN+中, 没有了实施例 1 中的源 SGSN与目标 SGSN+之间的信令交互。 实施例 3
本实施例说明了终端在从 GERAN移动到增强的 UTRAN时, 增强的空 口密钥建立流程的示例。 本实施例与例 1的区别在于: 增强的空口完整性密 钥 IKu和空口加密密钥 CKu在目标 SGSN+处生成, 并通过目标 SGSN+在迁 移请求消息中下发给目标 RNC+。 如图 6所示, 包括以下步骤:
步骤 301-303 , 同实施例 1步骤 101-103 ;
步骤 304 , 若目标 SGSN 支持增强的安全功能, 即: 若目标 SGSN为 SGSN+, 则:
该目标 SGSN+根据接收到的密钥 IK和 CK推导 KRNC; 如果目标 SGSN+ 接收到的是 Kc,那么目标 SGSN+首先根据 Kc推导 IK/CK, 然后再基于该 IK/CK推导 KRNC;
再根据中间密钥 KRNC推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者目标 SGSN直接根据 IK/CK推导增强的空口完整性密钥 IKu和 /或 空口加密密钥 CKu; 可选地, 目标 SGSN+还根据映射的传统密钥 IK、 CK和中间密钥 KRNC 推导变形中间密钥 KRNC*。
步骤 305 , 目标 SGSN+向目标 RNC+发送迁移请求消息,请求目标 RNC+ 为终端建立无线网络资源, 该消息携带安全相关的信息, 至少包括: 增强空 口密钥信息(增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu )以及算法 信息;
所述算法信息包括完整性算法信息和 /或加密算法信息。
可选地, 如果步骤 304中, 目标 SGSN+还推导了变形中间密钥 KRNC* , 则目标 SGSN+在该信息中还携带: 变形中间密钥 KRNC*。 如果为 KRNC*设置了 计数器 NCC, 则还可携带计数器 NCC值。
步骤 306 , 目标 RNC+存储增强空口密钥信息;
步骤 307-310 , 同实施例 1步骤 107-110。
步骤 311 ,终端根据 IK/CK推导中间密钥 KRNC; 如果终端中只有 Kc,那么 终端首先根据 Kc推导 IK/CK, 然后再基于该 IK/CK推导 KRNC; 然后再根据 KRNC推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者终端直接 根据 IK/CK推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
步骤 312-315, 同实施例 1步骤 112-115。
实施例 4
本实施例说明了终端在从 GERAN移动到增强的 UTRAN时, 增强的空 口密钥建立流程的另一种示例。 本实施例与实施例 1 的区别在于, 由目标 SGSN+生成一个随机数 NONCESGSN, 并使用该随机数 NONCESGSN和密钥 IK 和 CK推导中间密钥 KRNC。 如图 7所示, 包括以下步骤:
步骤 401-403 , 同实施例 1步骤 101-103;
步骤 404 , 若目标 SGSN 为 SGSN+ , 则该目标 SGSN+生成随机数 NONCESGSN , 并根据接收到的 IK/CK和生成的随机数 NONCESGSN推导中间 密钥 KRNC; 如果目标 SGSN+接收到的是 Kc, 那么目标 SGSN+首先根据 Kc 推导 IK/CK, 然后再基于该 IK/CK和生成的随机数 NONCESGSN推导 KRNC; 可选地, 目标 SGSN+在推导中间密钥 KRNC后, 根据密钥 IK、 CK和中间 密钥 KRNC推导变形中间密钥 KRNC* , 该变形中间密钥用于当终端在增强的 UTRAN网络内进行 SRNC迁移时, 更新增强的空口密钥 IKu和 CKu。 优选 地, 变形中间密钥 KRNC*与一个计数器 NCC相关联。 在本实施例中, 此时, 该变形中间密钥 KASMEU*关联的 NCC值为 1。
步骤 405-407, 同实施例 1步骤 105-107;
步骤 408 , 目标 SGSN+向源 SGSN发送准备切换响应消息, 并在该消息 中携带参数: 随机数 NONCESGSN, 以及算法信息, 算法信息包括: 完整性算 法信息和 /或加密算法信息;
优选地, 目标 SGSN+可在该消息中携带指示, 经由源 SGSN中转指示终 端进行增强密钥 IKu和 CKu的推导,可以通过隐式或显式的方式指示,例如: 在转发迁移响应消息中增加包含网络侧安全能力指示 (隐式方式) , 或者增 强密钥启用指示 (显示方式) 。
步骤 409, 源 SGSN向源 BSC发送切换命令消息, 指示网络完成切换准 备过程, 并在该消息中携带参数: 随机数 NONCESGSN, 以及算法信息; 步骤 410 , 源 BSC向终端发送从 GERAN切换命令消息, 指示终端切换 到目标接入网络, 并在该消息中携带目标 RNC+在准备阶段为终端分配的无 线方面的参数, 包括: 随机数 NONCESGSN, 以及算法信息;
优选地, 源基站在该消息中指示终端进行增强密钥 IKu和 CKu的推导, 可以通过隐式或显式的方式指示, 例如: 在切换命令中增加包含网络侧安全 能力指示 (隐式指示) , 或者增强密钥启用指示 (显示指示) 。
步骤 411 , 终端根据 IK/CK和随机数 NONCESGSN推导中间密钥 KRNC; 如 果终端中只有 Kc, 那么终端首先根据 Kc推导 IK/CK, 然后再基于该 IK/CK 和随机数 NONCESGSN推导 KRNC; 然后再根据 KRNC推导增强的空口完整性密 钥 IKu和 /或空口加密密钥 CKu;
或者,终端直接根据 IK/CK和随机数 NONCESGSN推导增强的空口完整性 密钥 IKu和 /或空口加密密钥 CKu。
步骤 412-415 , 同实施例 1步骤 112-115。
实施例 5
本实施例说明了终端在从 GERAN移动到增强的 UTRAN时, 增强的空 口密钥建立流程的示例。 本实施例与例 4的区别在于: 增强的空口完整性密 钥 IKu和空口加密密钥 CKu在目标 SGSN+处生成, 并通过目标 SGSN+在迁 移请求消息中下发给目标 RNC+。 如图 8所示, 包括以下步骤:
步骤 501-503 , 同实施例 4步骤 401-403 ;
步骤 504 , 若目标 SGSN 为 SGSN+ , 则该目标 SGSN+生成随机数 NONCESGSN , 并根据接收到的 IK/CK和生成的随机数 NONCESGSN推导中间 密钥 KRNC; 如果目标 SGSN+接收到的是 Kc,那么目标 SGSN+首先根据 Kc推 导 IK/CK,然后再基于该 IK/CK和生成的随机数 NONCESGSN推导 KRNC; 再根 据中间密钥 KRNC推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;或 者, 目标 SGSN+根据接密钥 IK、 CK推导 KRNC, 再根据中间密钥 KRNC和生 成的随机数 NONCESGSN推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
可选地, 目标 SGSN+根据密钥 IK、 CK和中间密钥 KRNC推导变形中间 密钥 KRNC*, 以及为该变形中间密钥 KRNC*设置计数器 NCC。
步骤 505, 目标 SGSN+向目标 RNC+发送迁移请求消息,请求目标 RNC+ 为终端建立无线网络资源, 该消息携带安全相关的信息至少包括: 增强空口 密钥信息(增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu ) 以及算法信 息;
所述算法信息包括完整性算法信息和 /或加密算法信息。
可选地, 如果步骤 504中, 目标 SGSN+还推导了变形中间密钥 KRNC* , 则目标 SGSN+在该信息中还携带: 变形中间密钥 KRNC*。如果为 KRNC*设置了 计数器 NCC, 则还可携带计数器 NCC值。
步骤 506, 目标 RNC+存储增强空口密钥信息;
步骤 507-515, 同实施例 4步骤 407-415。 在步骤 511中, 终端按照和网 络侧相同的方法来推导增强的密钥 IKu和 /或 CKu。
实施例 6
本实施例说明了终端在从增强的 UTRAN移动到 GERAN时, 空口密钥 管理流程的示例, 在本实施例中, 由源 SGSN+负责推导出 Kc, 如图 9所示, 包括以下步骤:
步骤 601 , 源 RNC+决定从增强的 UMTS网络切换到目标 GERAN网络; 步骤 602, 源 RNC+向源 SGSN+发送迁移需要消息;
步骤 603 , 源 SGSN+根据 IKVCK'推导 Kc, 推导方式釆用已有的 Kc推 导方式, 不在赘述。 或者, 如果空口密钥 IKu和 CKu是在 SGSN+中产生的, 也可以通过 IKu和 CKu推导 Kc。
IKVCK'是在 SGSN+中的密钥。
步骤 604 , 源 SGSN+向目标 SGSN发送准备切换消息, 消息中携带安全 相关的参数 Kc; 步骤 605, 目标 SGSN向目标 BSC发送切换请求消息, 请求目标 BSC为 终端建立无线网络资源;
步骤 606, 目标 BSC为终端分配无线资源, 向目标 SGSN发送切换请求 确认消息;
步骤 607 , 目标 SGSN向源 SGSN+发送准备切换响应消息;
步骤 608, 源 SGSN+向源 RNC+发送迁移命令消息, 指示网络完成切换 准备过程;
步骤 609, 源 BSC向终端发送从 UTRAN切换命令消息, 指示终端切换 到目标接入网络;
步骤 610, 终端采用步骤 603方法推导 Kc;
步骤 611 , 终端向目标 BSC发送切换完成消息;
步骤 612, 目标 BSC向目标 SGSN发送切换完成消息, 向目标 SGSN指 示终端已从增强的 UMTS成功切换到目标 BSC;
步骤 613 , 目标 SGSN和源 SGSN+进行消息交互, 确认迁移完成; 步骤 614, 源 SGSN+和源 RNC+进行消息交互, 释放相关资源。
实施例 7
本实施例示出了终端在空闲模式下从 GERAN移动到增强的 UTRAN进 行路由区更新时的一种增强的空口密钥建立的示例, 如图 10所示, 包括以下 步骤:
步骤 701 , 当满足路由区更新触发条件时, 终端向目标 SGSN+发送路由 区更新请求消息 , 请求进行路由区更新;
步骤 702, 目标 SGSN+向该终端的源 SGSN发送上下文请求消息, 请求 该终端的上下文;
步骤 703 , 源 SGSN向目标 SGSN+发送上下文响应消息, 如果源 SGSN 是 R99+ SGSN, 消息中携带安全相关的参数 CK/IK; 如果源 SGSN是 R98- SGSN, 消息中携带安全相关的参数 Kc。 步骤 704 , 若目标 SGSN+接收到的是 IK/CK, 则该目标 SGSN+根据接收 到的密钥 IK和 CK推导 KRNC; 如果目标 SGSN+接收到的是 Kc, 那么目标 SGSN+首先根据 Kc推导 IK/CK, 然后再基于该 IK/CK推导 KRNC; 进一步可 选地, 可选地, 目标 SGSN+再才艮据中间密钥 KRNC推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 可选地, 或者目标 SGSN+直接根据 IK/CK推导 增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
步骤 705 , 目标 SGSN+向终端发送路由区更新接受消息;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导, 例如: 在路由区更新接受消息中增加包 含网络侧安全能力指示(隐式方式), 或者增强密钥启用指示(显示方式)。
步骤 706 ,终端釆用和步骤 704同样的方法推导 KRNC,可选地进一步推导 增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
步骤 707 , 终端向目标 SGSN+发送路由区更新完成消息, 确认路由区更 新完成。
实施例 8
本实施例示出了终端在空闲模式下从 GERAN移动到增强的 UTRAN进 行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 7的区别在 于, 由目标 SGSN+生成一个随机数 NONCESGSN, 目标 SGSN+和终端使用该 随机数 NONCESGSN和密钥 IK、 CK推导中间密钥 KRNC。 如图 11所示, 包括 以下步骤:
步骤 801-803 , 同实施例 7步骤 701-703 ;
步骤 804 , 目标 SGSN+生成随机数 NONCESGSN; 若目标 SGSN+接收到 的是 IK/CK,则该目标 SGSN+根据接收到的密钥 IK/CK和随机数 NONCESGSN 推导 KRNC; 如果目标 SGSN+接收到的是 Kc, 那么目标 SGSN+首先根据 Kc 推导 IK/CK, 然后再基于该 IK/CK和随机数 NONCESGSN推导 KRNC; 可选地, 目标 SGSN+再根据中间密钥 KRNC推导增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu ; 可选地, 或者目标 SGSN+直接根据 IK/CK 和随机数 NONCESGSN推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 目标 SGSN+根据 IK/CK (接收到的或者由 Kc推导得到的 )推导 IK/CK; 然后再基于该 IK/CK推导 KRNC; 进一步地, 再根据中间密钥 KRNC和 随机数 NONCESGSN推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
步骤 805 , 目标 SGSN+向终端发送路由区更新接受消息, 并在消息中携 带参数: 随机数 NONCESGSN;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导。
步骤 806 , 终端根据接收到的 NONCESGSN釆用和步骤 804同样的方法推 导 KRNC; 可选地进一步推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
步骤 807 , 同实施例 7步骤 707。
可选地 , 目标 SGSN在产生 NONCESGSN时可以产生计数值 COU TSGSN 取代之, 目标 SGSN使用同样的消息把 COUNTSGSN传递给终端, 两侧在推导 密钥的时候用 COUNTSGSN代替 NONCESGSN达到同样密钥新鲜的效果。 后续 两侧同时维护该 COU TSGSN。 COUNTSGSN由计数器 COUNT产生。
实施例 9
本实施例示出了终端在空闲模式下从 GERAN移动到增强的 UTRAN进 行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 7的区别在 于, 由终端生成一个随机数 NONCEUE, 目标 SGSN+和终端使用该随机数 NONCEUE和密钥 IK、 CK推导中间密钥 KRNC。 如图 12所示, 包括以下步骤: 步骤 901 , 当满足路由区更新触发条件时, 终端生成随机数 NONCEUE; 步骤 902 , 终端向目标 SGSN+发送路由区更新请求消息, 请求进行路由 区更新, 该消息携带参数: 随机数 NONCEUE;
步骤 903-904 , 同实施例 7步骤 703-704;
步骤 905 , 若目标 SGSN+接收到的是 IK/CK, 则该目标 SGSN+根据接收 到的密钥 IK/CK和随机数 NONCEUE推导 KRNC; 如果目标 SGSN+接收到的是 Kc,那么目标 SGSN+首先根据 Kc推导 IK/CK,然后再基于该 IK/CK和随机数 NONCEUE推导 KRNC; 可选地, 目标 SGSN+再根据中间密钥 KRNC推导增强的 空口完整性密钥 IKu和 /或空口加密密钥 CKu; 可选地,或者目标 SGSN+直接 根据 IK/CK和随机数 NONCEUE推导增强的空口完整性密钥 IKu和 /或空口加 密密钥 CKu; 或者, 目标 SGSN+根据 IK/CK (接收到的或者由 Kc推导得到 的)推导 IK/CK; 然后再基于该 IK/CK推导 KRNC; 进一步地, 再根据中间密 钥 KRNC和随机数 NONCEUE推导增强的空口完整性密钥 IKu和 /或空口加密密 钥 CKu;
步骤 906 , 同实施例 7骤 705;
步骤 907 ,终端根据之前产生的 NONCEUE釆用和步骤 905同样的方法推 导 KRNC; 可选地进一步推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
步骤 908 , 同实施例 7骤 707。
可选地, 终端在产生 NONCEUE时可以产生 COU TUE取代之, 终端使用 同样的消息把 COUNTUE传递给目标 SGSN , 两侧在推导密钥的时候用 COUNTUE代替 NONCEUE达到同样密钥新鲜的效果。 后续两侧同时维护该 COUNTUE。
实施例 10
本实施例示出了终端在空闲模式下从 GERAN移动到增强的 UTRAN进 行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 7的区别在 于, 在本实施例中, 终端生成一个随机数 NONCEUE, 目标 SGSN+生成一个 随机数 NONCESGSN, 终端和目标 SGSN+分别使用随机数 NONCEUE、 随机数 NONCESGSN和密钥 IK、 CK推导中间密钥 KR:。如图 13所示,包括如下步骤: 步骤 1001 , 当满足路由区更新触发条件时, 终端生成随机数 NONCEUE; 步骤 1002 ,终端向目标 SGSN+发送路由区更新请求消息,请求进行路由 区更新, 该消息携带参数: 随机数 NONCEUE; 步骤 1003-1004 , 同实施例 7步骤 703-704;
步骤 1005 , 目标 SGSN+生成随机数 NONCESGSN; 若目标 SGSN+接收到 的是 IK/CK , 则该目标 SGSN+根据接收到的密钥 IK/CK 和随机数 NONCESGSN, NONCEUE推导 KRNC; 如果目标 SGSN+接收到的是 KC, 那么目 标 SGSN+首先根据 Kc 推导 IK/CK , 然后再基于该 IK/CK 和随机数 NONCESGSN, NONCEUE推导 KRNC;可选地, 目标 SGSN+再根据中间密钥 KRNC 推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 可选地, 或者目标 SGSN+直接根据 IK/CK、 随机数 NONCEUE和随机数 NONCESGSN推导增强的 空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者, 目标 SGSN+根据 IK/CK (接收到的或者由 Kc推导得到的)推导 IK/CK; 然后再基于该 IK/CK推导
KRNC; 进一步地, 再根据中间密钥 KRNC和随机数 NONCEUE , NONCESGSN推 导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
步骤 1006 , 目标 SGSN+向终端发送路由区更新接受消息, 并在消息中携 带参数: 随机数 NONCESGSN;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导。
步骤 1007 ,终端根据之前产生的 NONCEUE釆用和步骤 1005同样的方法 推导 KRNC;可选地进一步推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
步骤 1008 , 同实施例 7步骤 708。
可选地,终端在产生 NONCEUE时可以产生 COU TUE取代之,目标 SGSN 在产生 NONCESGSN时可以产生 COU TSGSN取代之, 终端使用同样的消息把 COUNTUE传递给目标 SGSN, 目标 SGSN使用同样的消息把 COUNTSGSN传 递给终端, 两侧在推导密钥的时候同时使用 COUNTUE和 COUNTSGSN代替 NONCEUE和 NONCESGSN达到同样密钥新鲜的效果。 后续两侧同时维护该 COUNTUE和 COU TSGSN。 COUNTUE和 COUNTSGSN由计数器产生。
实施例 11 本实施例示出了终端在空闲模式下从增强的 UTRAN移动到 GERAN进 行路由区更新时的一种增强的空口密钥建立的示例, 如图 14所示, 包括以下 步骤:
步骤 1101 , 当满足路由区更新触发条件时, 终端向目标 SGSN发送路由 区更新请求消息, 请求进行路由区更新;
步骤 1102, 目标 SGSN向该终端的源 SGSN+发送上下文请求消息,请求 该终端的上下文;
步骤 1103 , 源 SGSN+根据 IKVCK'推导 Kc, 推导方式釆用已有的 Kc推 导方式, 不再赘述。 或者, 如果空口密钥 IKu和 CKu是在 SGSN+中产生的, 也可以通过 IKu和 CKu推导 Kc。
步骤 1104, 源 SGSN+向目标 SGSN发送上下文响应消息, 消息中携带安 全参数 Kc;
步骤 1105, 目标 SGSN向终端发送路由区更新接受消息;
步骤 1106, 终端釆用和步骤 1103同样的方法推导 Kc。
步骤 1107, 终端向目标 SGSN发送路由区更新完成消息, 确认路由区更 新完成。
以上所述仅为本发明的优选实施例而已。 本发明方案并不限于 HSPA+系 统, 可以将它的相关模式应用于其它无线通信系统中。 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所 作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现, 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性 上述实施方式使得终端从 GERAN移动到增强的 UTRAN时和终端从增 强的 UTRAN移动到 GERAN 时, 网络侧和终端既可以保证完全兼容已有 GERAN系统的安全功能,也可以根据已有密钥建立增强的密钥体系, 而不用 通过再次进行 AKA过程, 从而增加了网络兼容性, 节省网络开销, 提高系统 效率, 保证终端能和增强的 UTRAN、 GERAN网络安全地进行通信。

Claims

权 利 要 求 书
1、 一种全球移动通信系统 /增强型数据速率全球移动通信系统演进技术 无线接入网 (GERAN ) 与增强通用陆地无线接入网 (UTRAN ) 间建立密钥 的方法, 其包括:
当用户设备从 GERAN移动到增强 UTRAN时, 为所述增强 UTRAN服 务的增强服务通用分组无线系统支持节点( SGSN )从所述 GERAN获取安全 相关的参数, 根据所述安全相关的参数生成所述增强 UTRAN的空口密钥; 和 /或,当用户设备从增强 UTRAN移动到 GERAN时,为所述增强 UTRAN 服务的增强 SGSN生成所述 GERAN的空口密钥并发送给所述 GERAN。
2、 如权利要求 1所述的方法, 其中,
所述安全相关的参数为完整性密钥(IK )和加密密钥(CK ) , 或者为通 讯密钥 (Kc ) ;
所述根据所述安全相关参数的参数生成所述增强 UTRAN的空口密钥的 步骤包括:
所述增强 SGSN根据所述 IK和 CK生成中间密钥 KRNC; 或者, 所述增强
SGSN根据所述 Kc生成 IK和 CK,再根据得到的 IK和 CK生成中间密钥 KR :。
3、 如权利要求 1所述的方法, 其中,
所述安全相关的参数为 IK和 CK, 或者为 Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据所述 IK和 CK和第一参数生成中间密钥 KRNC,或者, 所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK和所述 第一参数生成中间密钥 KRNC;
所述第一参数为随机数或者为计数器产生的计数值。
4、 如权利要求 1所述的方法, 其中,
所述安全相关的参数为 IK和 CK, 或者为 Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据所述 IK和 CK、 第一参数和第二参数生成中间密钥 KRNC, 或者, 所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK 和 CK、 所述第一参数和所述第二参数生成中间密钥 KRNC;
所述第一参数和第二参数为随机数或者为计数器产生的计数值。
5、 如权利要求 2、 3或 4所述的方法, 所述方法还包括:
所述增强 SGSN将所述 KRNC发送给增强无线网络控制器(RNC ) , 所述 增强 RNC根据所述 KRNC生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
6、 如权利要求 1所述的方法, 其中,
所述安全相关的参数为 IK和 CK, 或者为 Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据所述 IK和 CK生成中间密钥 KRNC,再根据所述 KRNC 生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者, 所述增强 SGSN直接根据所述 IK和 CK生成增强的空口完整性密钥 IKu和 /或空口加密 密钥 CKu;
或者, 所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK生成中间密钥 KRNC, 然后根据所述 KRNC生成增强的空口完整性密钥 IKu 和 /或空口加密密钥 CKu; 或者,所述增强 SGSN根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK直接生成增强的空口完整性密钥 IKu和 /或空口加密密 钥 CKu。
7、 如权利要求 1所述的方法, 其中,
所述安全相关的参数为 IK和 CK, 或者为 Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK, 以及第一参数生成中间密钥 KRNC,再根据所述 KRNC生成增强的空口完整 性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中间密钥 KRNC ,再根据所述 KRNC和第一参数生成增强的空口完 整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN直接根据由 Kc生成的 IK和 CK或从 GERAN获 取的 IK和 CK、 以及所述第一参数生成增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu;
所述第一参数为随机数或者为计数器产生的计数值。
8、 如权利要求 1所述的方法, 其中,
所述安全相关的参数为 IK和 CK, 或者为 Kc;
所述根据所述安全相关的参数生成所述增强 UTRAN的空口密钥的步骤 包括:
所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK、 以及第一参数和第二参数生成中间密钥 KRNC,再根据所述 KRNC生成增强 的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中间密钥 KRNC,再根据所述 KRNC和第一参数和第二参数生成增 强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
或者, 所述增强 SGSN直接根据由 Kc生成的 IK和 CK或从 GERAN获 取的 IK和 CK、 以及所述第一参数和所述第二参数生成增强的空口完整性密 钥 IKu和 /或空口加密密钥 CKu;
所述第一参数和第二参数为随机数或者为计数器产生的计数值。
9、如权利要求 3或 7所述的方法,其中,所述第一参数由所述增强 SGSN 产生, 或者, 由所述用户设备生成并发送给所述增强 SGSN。
10、如权利要求 4或 8所述的方法,其中,所述第一参数由所述增强 SGSN 生成, 所述第二参数由所述用户设备生成并发送给所述增强 SGSN。
11、 如权利要求 1所述的方法, 其中, 当用户设备从增强 UTRAN移动 到 GERAN时,增强 SGSN生成所述 GERAN的空口密钥并发送给所述 GERAN 的步骤包括:
所述增强 SGSN根据 IKVCK'生成 Kc, 或者, 根据 IKu和 CKu生成 Kc, 并将所述 Kc发送给所述 GERAN。
12、 一种增强服务通用分组无线系统支持节点 (SGSN ) , 其设置为: 当用户设备从全球移动通信系统 /增强型数据速率全球移动通信系统演 进技术无线接入网(GERAN )移动到所述增强 SGSN服务的增强通用陆地无 线接入网 (UTRAN )时, 从所述 GERAN获取安全相关的参数, 根据所述安 全相关的参数生成所述增强 UTRAN的空口密钥; 和 /或, 当用户设备从所述 增强 SGSN服务的增强 UTRAN移动到 GERAN时, 生成所述 GERAN的空 口密钥并发送给所述 GERAN。
13、 如权利要求 12所述的增强 SGSN, 所述增强 SGSN是设置为: 从所述 GERAN获取完整性密钥(IK )和加密密钥(CK ) , 根据所述 IK 和 CK生成中间密钥 KRNC; 或者, 从所述 GERAN获取通讯密钥 ( Kc ) , 根 据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK生成中间密钥 KR :。
14、 如权利要求 12所述的增强 SGSN
所述增强 SGSN是设置为: 从所述 GERAN获取 IK和 CK, 根据所述 IK 和 CK和第一参数生成中间密钥 KRNC; 或者, 从所述 GERAN获取 Kc, 根据 所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK和所述第一参数生成中间密 钥 KRNC; 所述第一参数为随机数或者为计数器产生的计数值。
15、 如权利要求 12所述的增强 SGSN
所述增强 SGSN设置为:从所述 GERAN获取 IK和 CK,根据所述 IK和 CK、 第一参数和第二参数生成中间密钥 KRNC; 或者, 从所述 GERAN获取 Kc, 根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK、 所述第一参数和 所述第二参数生成中间密钥 KRNC; 所述第一参数和第二参数为随机数或者为计数器产生的计数值。
16、 如权利要求 13、 14或 15所述的增强 SGSN, 所述增强 SGSN还设 置为: 将所述 KRNC发送给增强无线网络控制器(RNC ) , 以使所述增强 RNC 根据所述 KRNC生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu。
17、 如权利要求 12所述的增强 SGSN,
所述增强 SGSN是设置为: 从所述 GERAN获取 IK和 CK, 根据所述 IK 和 CK生成中间密钥 KRNC, 再根据所述 KRNC生成增强的空口完整性密钥 IKu 和 /或空口加密密钥 CKu; 或者, 从所述 GERAN获取 IK和 CK, 直接根据所 述 IK和 CK生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 或者, 从所述 GERAN获取 Kc, 根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK生成中间密钥 KRNC, 然后根据所述 KRNC生成增强的空口完整性密钥 IKu 和 /或空口加密密钥 CKu; 或者, 从所述 GERAN获取 Kc, 根据所述 Kc生成 IK和 CK, 再根据得到的 IK和 CK直接生成增强的空口完整性密钥 IKu和 / 或空口加密密钥 CKu。
18、 如权利要求 12所述的增强 SGSN,
所述增强 SGSN是设置为: 从所述 GERAN获取 IK和 CK或者 Kc; 根 据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK, 以及第一参数生成 中间密钥 KRNC,再根据所述 KRNC生成增强的空口完整性密钥 IKu和 /或空口加 密密钥 CKu; 或者,
根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中间密钥
KRNC, 再根据所述 KRNC和第一参数生成增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu;
或者, 直接根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK、 以及所述第一参数生成增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu; 所述第一参数为随机数或者为计数器产生的计数值。
19、 如权利要求 12所述的增强 SGSN,
所述增强 SGSN是设置为: 从所述 GERAN获取 IK和 CK或者 Kc; 根 据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK、 以及第一参数和第 二参数生成中间密钥 KRNC, 再根据所述 KRNC生成增强的空口完整性密钥 IKu 和 /或空口加密密钥 CKu; 或者, 根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK生成中 间密钥 KRNC, 再根据所述 KRNC和第一参数和第二参数生成增强的空口完整性 密钥 IKu和 /或空口加密密钥 CKu;
或者, 直接根据由 Kc生成的 IK和 CK或从 GERAN获取的 IK和 CK、 以及所述第一参数和所述第二参数生成增强的空口完整性密钥 IKu和 /或空口 加密密钥 CKu;
所述第一参数和第二参数为随机数或者为计数器产生的计数值。
20、 如权利要求 14或 18所述的增强 SGSN, 所述增强 SGSN还设置为: 生成所述第一参数, 或者, 接收由所述用户设备生成的所述第一参数。
21、如权利要求 15或 19所述的增强 SGSN,所述增强 SGSN,还设置为: 生成所述第一参数, 和, 接收由所述用户设备生成的所述第二参数。
22、 如权利要求 12所述的增强 SGSN, 所述增强 SGSN是设置为: 当用 户设备从增强 UTRAN移动到 GERAN时, 根据 IKVCK'生成 Kc, 或者, 根 据 IKu和 CKu生成 Kc , 并将所述 Kc发送给所述 GERAN。
23、 一种全球移动通信系统 /增强型数据速率全球移动通信系统演进技术 无线接入网 (GERAN ) 与增强通用陆地无线接入网 (UTRAN ) 间建立密钥 的系统, 所述系统包括如权利要求 12-22中任意一项所述的增强 SGSN。
PCT/CN2011/078405 2010-08-24 2011-08-15 Geran与增强utran间建立密钥的方法、系统及增强sgsn WO2012025020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010267115.9A CN101917717B (zh) 2010-08-24 2010-08-24 一种geran与增强utran间互联互通时建立密钥的方法及系统
CN201010267115.9 2010-08-24

Publications (1)

Publication Number Publication Date
WO2012025020A1 true WO2012025020A1 (zh) 2012-03-01

Family

ID=43325076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078405 WO2012025020A1 (zh) 2010-08-24 2011-08-15 Geran与增强utran间建立密钥的方法、系统及增强sgsn

Country Status (2)

Country Link
CN (1) CN101917717B (zh)
WO (1) WO2012025020A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917717B (zh) * 2010-08-24 2016-03-30 中兴通讯股份有限公司 一种geran与增强utran间互联互通时建立密钥的方法及系统
CN102137398B (zh) * 2011-03-10 2017-04-12 中兴通讯股份有限公司 增强密钥的更新方法、装置和用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299888A (zh) * 2008-06-16 2008-11-05 中兴通讯股份有限公司 密钥生成方法、切换方法、移动管理实体和用户设备
CN101742498A (zh) * 2009-12-18 2010-06-16 中兴通讯股份有限公司 空口密钥的管理方法和系统
CN101917717A (zh) * 2010-08-24 2010-12-15 中兴通讯股份有限公司 一种geran与增强utran间互联互通时建立密钥的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299888A (zh) * 2008-06-16 2008-11-05 中兴通讯股份有限公司 密钥生成方法、切换方法、移动管理实体和用户设备
CN101742498A (zh) * 2009-12-18 2010-06-16 中兴通讯股份有限公司 空口密钥的管理方法和系统
CN101917717A (zh) * 2010-08-24 2010-12-15 中兴通讯股份有限公司 一种geran与增强utran间互联互通时建立密钥的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Services and System Aspects:", 3GPP TS 33.102 V9.2.0 (RELEASE 9)", 31 March 2010 (2010-03-31) *

Also Published As

Publication number Publication date
CN101917717B (zh) 2016-03-30
CN101917717A (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
TWI700008B (zh) 與傳統無線電存取技術互動工作用於連接到下一代核心網路
EP2184933B1 (en) A method and apparatus for new key derivation upon handoff in wireless networks
JP4965655B2 (ja) 無線通信システム用の鍵管理のためのシステムおよび方法
CA2787969C (en) Method and system for establishing enhanced key when terminal moves to enhanced universal terrestrial radio access network (utran)
JP5223994B2 (ja) 無線通信システム、無線通信装置、および暗号化方法
TW201841532A (zh) 無線通訊系統中的使用者平面重定位技術
WO2011085682A1 (zh) 一种空中接口密钥的更新方法及系统
TWI452914B (zh) 處理單一無線語音通話連續性交遞之安全性之方法及其相關通訊裝置
JP2013081252A (ja) 無線電気通信における暗号化
WO2011072599A1 (zh) 空口密钥的管理方法和系统
JPWO2005091668A1 (ja) 移動体通信システム、基地局及びそれらに用いるhsdpa伝送方法
WO2011088770A1 (zh) 一种派生空中接口密钥的方法及系统
WO2014110908A1 (zh) 数据安全传输方法及lte接入网系统
JP5458456B2 (ja) 強化型無線インタフェース・キーの確立方法及び強化型無線インタフェース・キーの確立システム
CN101860862B (zh) 终端移动到增强utran时建立增强密钥的方法及系统
WO2011095077A1 (zh) 无线通信系统中管理空口映射密钥的方法、系统和装置
WO2012025020A1 (zh) Geran与增强utran间建立密钥的方法、系统及增强sgsn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819395

Country of ref document: EP

Kind code of ref document: A1