WO2012009981A1 - 空中接口密钥的更新方法、核心网节点及无线接入系统 - Google Patents

空中接口密钥的更新方法、核心网节点及无线接入系统 Download PDF

Info

Publication number
WO2012009981A1
WO2012009981A1 PCT/CN2011/072182 CN2011072182W WO2012009981A1 WO 2012009981 A1 WO2012009981 A1 WO 2012009981A1 CN 2011072182 W CN2011072182 W CN 2011072182W WO 2012009981 A1 WO2012009981 A1 WO 2012009981A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
enhanced
core network
network node
migration
Prior art date
Application number
PCT/CN2011/072182
Other languages
English (en)
French (fr)
Inventor
冯成燕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012009981A1 publication Critical patent/WO2012009981A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a SRNC (Serving Radio Network Controller) migration of a wireless communication system
  • SRNC Serving Radio Network Controller
  • HSPA+ is an enhancement of 3GPP HSPA (including HSDPA and HSUPA), providing HSPA operators with a low-complexity, low-cost path from HSPA to LTE (Long Term Evolution).
  • HSPA+ will be a wireless network controller in the system architecture ( Radio Network
  • the function of the Controller (“RNC” for short) is placed on the Node B of the base station to form a completely flattened wireless access network architecture, as shown in Figure 1.
  • the Node B integrated with the full RNC function is Evolved HSPA Node B, or simply referred to as Enhanced Node B (Node B+ ) plague SGSN+ is the SGSN that has been upgraded to support HSPA+ function ( SERVICE GPRS SUPPORT NODE, ⁇ GPRS ( GPRS: General Packet Radio System) support node;) ME+ is a user terminal device capable of supporting HSPA+ function.
  • Evolved HSPA system can use 3GPP Rel-5 and later air interface versions, HSPA for air interface There is no modification of the service.
  • each Node B+ becomes a node equivalent to the RNC, and the Iu-PS interface can directly communicate with the PS CN (Core Network) (such as the SGSN in Figure 1).
  • PS CN Core Network
  • GGSN Gateway GPRS Support Node
  • Iu-PS user plane is terminated in SGSN, if the network supports direct tunneling function, Iu-PS user plane can also be terminated in GGSN (Gateway GPRS Support Node).
  • Evolved HSPA Node B The communication is performed through the Iur interface.
  • Node B+ has the ability to independently network and support complete mobility functions, including inter-system and intra-system handover.
  • K is the root key stored in AuC (Authentication Center) and USIM (UNIVERSAL SUBSCRIBER IDENTITY MODULE), and CK and IK are user equipment and HSS (Home Subscriber Server, home subscriber)
  • AuC Authentication Center
  • USIM UNIVERSAL SUBSCRIBER IDENTITY MODULE
  • CK and IK are user equipment and HSS (Home Subscriber Server, home subscriber)
  • the encryption key and integrity key calculated by K when AKA (Authentication and Key Agreement) is performed which is called the traditional key.
  • RNC encrypts and integrity protects data using traditional air interface keys CK and IK. Since the functions of the RNC are all decentralized to the base station Node B+ in the HSPA+ architecture, the encryption and decryption are performed at the Node B+, and the Node B+ is located in an unsecure environment, and the security is not high.
  • HSPA+ introduces a key hierarchy similar to E-UTRAN (Evolved Universal Terrestrial Radio Access Network), namely UTRAN Key Hierarchy phenomena in UTRAN Key Hierarchy
  • the air interface keys K ASMEU , CKs/IKs and CKi7IK L are newly introduced keys of HSPA+, wherein the intermediate key K ASMEU is derived and generated by the legacy keys CK and IK at the core network node (SGSN+ or MSC+); S / IK S (also known as CKu / IKu ) is called an enhanced key, generated by the intermediate key K ASMEU at the core network node, and the enhanced key CK S is used to encrypt the user plane data and control plane signaling, enhanced The key IK S is used for integrity protection of the control plane signaling.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • CKi7IK L is called a mapping key and is generated by the intermediate key K ASMEU at the core network node for the UE to move to a traditional UMTS network that does not support enhanced security.
  • the intermediate time is used as the encryption key and integrity protection key of the air interface.
  • SRNC/DRNC drift RNC
  • Both SRNC and DRNC are for The logical concept of a specific UE.
  • a UE it is directly connected to the CN (Core Network), and the RNC that controls all resources of the UE (User Equipment) is The SRNC of the UE; the UE is not connected to the CN, and the RNC that only provides resources for the UE is the DRNC of the UE.
  • the UE in the connected state must have only one SRNC, and may have 0 or more DRNCs.
  • SRNC Relocation refers to the process in which the SRNC of the UE changes from one RNC to another. According to the location of the UE before and after the migration, it can be divided into static migration and accompanying migration.
  • the condition for a static migration is that the UE accesses from one DRNC and only from one DRNC. Since the migration process does not require UE participation, it is also referred to as UE Not Involved migration.
  • the connection of the Iur interface is released, the Iu interface is migrated, and the original DRNC becomes the SRNC, as shown in Figure 3.
  • Static migration is caused by soft handoffs because of the Iur interface, so migration begins after all wireless links are linked to the DRNC.
  • the accompanying migration refers to a process in which the UE hard-switches from the SRNC to the target RNC while the Iu interface changes, as shown in FIG. 4 . Since the migration process requires the participation of the UE, it is also called UE-volved (UE Involved) migration.
  • UE Involved UE-volved
  • HSPA+ because Node B+ is in a physically insecure environment, it is vulnerable to malicious attacks and security is threatened.
  • traditional UMTS before and after SRNC migration, the encryption key CK and the integrity key IK are the same, which causes: On the one hand, after a base station is attacked by an attacker, the attacker may derive the security secret of the next hop target base station.
  • a primary object of the present invention is to provide a method for updating an air interface key, a core network node, and a wireless access system, so as to solve the problem that the communication security of the user cannot be caused by the same key during the SRNC migration in the related art. Guarantee issues.
  • a method for updating an air interface key including: receiving, by a core network node, a migration completion indication message of a target radio network controller RNC, where the migration completion indication message is used to indicate a user equipment
  • the UE successfully migrates from the source RNC to the target RNC; calculates the next hop enhanced key using the key parameter, the key parameter includes the intermediate key and the current enhanced key; and sends the next mega enhanced key to the target RNC.
  • the key parameter also includes a legacy key.
  • the method for updating the air interface key further comprises: the core network node attaches to the network for the first time in the user equipment UE, or the UE transitions from the idle mode to the connected mode, or the UE from the evolved universal terrestrial radio access network E-UTRAN Or when the GSM network of the Global System for Mobile Communications moves to the enhanced universal terrestrial radio access network UTRAN, or when the UE moves from the legacy UTRAN to the enhanced UTRAN, the core network node calculates the current enhanced key according to the intermediate key; Send the current enhanced key to the monthly service radio network controller SRNC.
  • the core network node attaches to the network for the first time in the user equipment UE, or the UE transitions from the idle mode to the connected mode, or the UE from the evolved universal terrestrial radio access network E-UTRAN Or when the GSM network of the Global System for Mobile Communications moves to the enhanced universal terrestrial radio access network UTRAN, or when the UE moves from the legacy UTRAN to the enhanced UTRAN, the core network node calculates the current enhanced key according
  • the core network node further comprises: calculating, by the core network node, the initial next mega enhanced key according to the intermediate key and the current enhanced key; or The core network node calculates the initial next hop enhanced key according to the stored traditional key and the current enhanced key; or, the core network node calculates the initial key according to the stored traditional key, the intermediate key, and the current enhanced key.
  • One megabit enhanced key is the core network node.
  • the method for updating the air interface key further comprises: the core network node attaches to the network for the first time in the user equipment UE, or the UE transitions from the idle mode to the connected mode, or the UE from the evolved universal terrestrial radio access network E-UTRAN Or when the GSM network of the Global System for Mobile Communications moves to the enhanced universal terrestrial radio access network UTRAN, or when the UE moves from the legacy UTRAN to the enhanced UTRAN, the core network node calculates the current enhanced key according to the intermediate key; The initial next hop enhanced key is calculated according to the current enhanced key; the core network node sends the current enhanced key and/or the initial next hop enhanced key to the serving radio network controller SRNC.
  • the core network node attaches to the network for the first time in the user equipment UE, or the UE transitions from the idle mode to the connected mode, or the UE from the evolved universal terrestrial radio access network E-UTRAN Or when the GSM network of the Global System for Mobile Communications moves to the enhanced universal terrestrial radio access network UTRAN, or when
  • the step of calculating, by the core network node, the initial next hop enhanced key according to the current enhanced key comprises: calculating, by the core network node, the initial next mega enhanced key according to the intermediate key and the current enhanced key; or The core network node calculates the initial next hop enhanced key according to the stored traditional key and the current enhanced key; or, the core network node calculates the initial key according to the stored traditional key, the intermediate key, and the current enhanced key.
  • One megabit enhanced key is preferredly, the next hop counter network NCC is set in the core network node, and the number of times of calculating the next hop enhanced key for the core network node is counted.
  • the core network node before the step of receiving the migration completion indication message of the target RNC, the core network node further includes: the source RNC sending a migration requirement message to the core network node, where the migration requirement message includes a next hop enhanced encryption key CK S of the source RNC and / or next hop enhanced integrity key IK S ;
  • the core network node receives the migration required message and sends a migration request message to the target RNC, the migration request message including the next hop CKs and / or IK S sent by the source RNC.
  • both the migration required message and the migration request message further include information indicated by the network NCC.
  • the method further includes: receiving, by the core network node, a migration request acknowledgement message of the target RNC, and sending a migration command message to the source RNC, where the migration command message includes the network NCC indication
  • the source RNC receives the migration command message, and sends a migration message to the user equipment UE, where the migration message includes information indicated by the network NCC.
  • the source RNC receives the migration command message, and after sending the migration message to the UE,
  • the UE includes: receiving, by the UE, a migration message, determining whether the next hop counter terminal NCC is equal to the network NCC; if yes, the UE uses the pre-stored IK S and/or CK S corresponding to the terminal NCC; if not, the UE calculates IK S and/or CK S , and increment the corresponding terminal NCC until the terminal NCC is equal to the network NCC.
  • the source RNC and the target RNC are the same RNC.
  • the core network node uses a four-layer security key hierarchy, and the four-layer security key hierarchy includes a key layer, a legacy key layer, an intermediate key layer, and an enhanced key layer.
  • the method further includes: the SRNC receiving and storing the current enhanced key, and sending a security mode command message to the UE; the UE receiving the security mode command message, using the intermediate key to calculate Current enhanced key.
  • the method further includes: the UE calculating the next hop enhanced key by using the intermediate key and the current enhanced key.
  • the method further includes: the SRNC receiving and storing the current enhanced key and/or the initial next hop enhanced key, and Sending a security mode command message to the UE; the UE receives the security mode command message and calculates the current enhanced key using the intermediate key.
  • the method further includes: the UE calculating the next hop enhanced key by using the intermediate key and the current enhanced key.
  • the core network node before the step of receiving the migration completion indication message of the target RNC, the core network node further includes: the source RNC sending an enhanced migration request message to the target RNC, where the enhanced migration request message includes a next hop enhanced encryption key sent by the source RNC.
  • the method further comprises: the target RNC receiving the enhanced migration request message, sent by using the source RNC The next hop enhanced encryption key CK S and/or the next i mega enhanced integrity key IK S updates its own key.
  • an air interface key update method including: the core network node receives the migration completion indication message of the target radio network controller RNC, the migration The completion indication message is used to indicate that the user equipment UE migrates from the source RNC to the target RNC successfully, and the core network node uses a four-layer security key hierarchy, including the key layer, the traditional key layer, Intermediate key layer and enhanced key layer; calculating a next hop enhanced key using a key parameter including a legacy key of a legacy key layer and a current enhanced key of the enhanced key layer; enhancing the next hop The key is sent to the target RNC.
  • the key parameter further includes an intermediate key of the intermediate key layer.
  • a core network node including: a receiving module, configured to receive a migration completion indication message of a target radio network controller RNC, where the migration completion indication message is used to indicate that the user equipment UE is from the source RNC The migration to the target RNC is successful; the calculation module is configured to calculate a next hop enhanced key using the key parameter, the key parameter includes an intermediate key and a current enhanced key; and the sending module is configured to send the next hop enhanced key to Target RNC.
  • the key parameter further includes a legacy key.
  • a wireless access system including: a source radio network controller RNC, a target RNC, a core network node, and a user equipment UE, where the core network node includes: a receiving module, setting In order to receive the migration completion indication message of the target RNC, the migration completion indication message indicates that the user equipment UE migrates from the source RNC to the target RNC successfully; and the calculation module is configured to calculate the next hop enhancement key by using the key parameter, where the key parameter includes the intermediate key Key and current enhanced key; sending module, configured to send the next hop enhanced key to the target RNC.
  • the key parameter further includes a legacy key.
  • the intermediate key calculation at the core network node is calculated and generated.
  • One-hop enhanced key IK S and/or CK S and sends the next hop enhanced key to the target RNC for use in the next SRNC migration, so that the source RNC and the target RNC use different enhanced keys IK S And CK S.
  • the enhanced air interface key used by the next hop target RNC is derived from the core network, after two SRNC migrations, the source RNC cannot know the air interface key of the target RNC after the two hops.
  • FIG. 1 is a schematic structural diagram of a radio access network using HSPA+ technology according to the related art
  • FIG. 2 is a schematic diagram of a HSPA+ security key hierarchy according to the related art
  • FIG. 3 is a related art according to the related art.
  • FIG. 4 is a schematic diagram of a SRNC companion migration according to the related art;
  • FIG. 5 is a flow chart of a method for updating an air interface key according to an embodiment of the present invention;
  • FIG. 7 is a flowchart of an initial air interface key establishment process according to an embodiment of the present invention;
  • FIG. 8 is a flowchart according to an embodiment of the present invention;
  • FIG. 9 is a flowchart of updating an air interface key when performing SRNC static migration according to an embodiment of the present invention;
  • FIG. 9 is a flowchart of updating an air interface key when performing SRNC static migration according to an embodiment of the present invention
  • FIG. 11 is a structural block diagram of a wireless access system according to an embodiment of the present invention
  • FIG. 12 is a structural block diagram of a wireless access system according to an embodiment of the present invention
  • the SRNC migration involved in the UTRAN radio access system involves a core network node (SGSN+ or MSC+), a source RNC (i.e., SRNC), a target RNC, a Node B, and a UE.
  • Node B+ can be regarded as a combination of Node B and RNC, which are one physical entity but still two different logical entities.
  • the Node B+ supporting the enhanced security key hierarchy in the embodiment of the present invention may also be equivalent to the RNC (RNC+) upgraded in the UMTS, and the SRNC and the source RNC (source Node B+) in the embodiment of the present invention are equivalent.
  • the DRNC is equivalent to the target RNC (target Node B+).
  • Step 4 S502: The core network node receives the migration of the target RNC. The indication message; wherein the migration completion indication message indicates that the user equipment UE migrates from the source RNC to the target RNC successfully.
  • Step S504 The core network node calculates a next mega-enhanced key by using a key parameter.
  • the key parameter includes an intermediate key and a current enhanced key
  • the current enhanced key includes a current enhanced integrity key IK S and/or current Enhanced encryption key CK S .
  • the stored traditional key may be used, and the traditional key includes a traditional integrity key and/or Traditional encryption key CK.
  • the intermediate key may be replaced by a traditional key, that is, the core network node calculates the next mega enhanced key using the legacy key and the current enhanced key.
  • the core network node is based on the intermediate key K ASMEU at the core network node and the currently used enhanced key IK S and / or CK S , or the core network node is based on the traditional key IK and / or CK at the core network node And/or the intermediate key K ASMEU and the currently used enhanced key IK S and / or CK S , using the key generation function to calculate the next hop enhanced key IK S and / or CK S .
  • the next hop enhanced key is referred to as IK, s and CK, s in the embodiment of the present invention.
  • Step S506 The core network node sends the next hop enhanced key to the target RNC.
  • the core network node sends IK, s, and CK, s to the target RNC for storage, so that the target RNC is used for the next SRNC migration.
  • the traditional UTRAN does not change the key before and after the migration when the SRNC is migrated, but by using the four-layer key structure of the 40 core network nodes in this embodiment, the next mega-enhanced key is calculated and updated.
  • the updated next hop enhanced key is sent to the target RNC for use by the user equipment in the next SRNC migration, such that the source RNC and the target RNC use different keys.
  • the source RNC cannot obtain the enhanced key used by the target base station after two hops, thereby ensuring the forward security of the user communication and improving the communication security of the wireless access system. Thereby, key update and communication security under the four-layer key structure are effectively realized.
  • the intermediate key K ASMEU the current enhanced keys IKs and CK S , one of the following parameters or Any combination: serial number SQN XOR hidden key AK, user identification (such as international subscriber identity IMSI, temporary mobile subscriber identity TMSI), service network identity, core network node type.
  • the embodiment of the present invention provides the following key function for calculating each security key, including a key function for calculating each security key at the initial time and during SRNC migration.
  • (IK, S , CK's) F2 (K AMSEU , IK, S — old
  • IKs IK's old
  • CK S IK's old
  • (IK's, CK's ) F2 ( IK
  • IK S represents an enhanced integrity key
  • CK S represents an enhanced encryption key
  • IK, S represents a next hop enhanced integrity key
  • S represents a next hop enhanced encryption key
  • IK, S — Old indicates the currently enhanced integrity key
  • CK, S — old indicates the currently enhanced encryption key.
  • II" means cascading. Fresh indicates a parameter, which can be a random number or a counter, or a traditional key.
  • the UE When the UE enters the connected state from the idle state, it needs to ensure that the freshs used each time are different.
  • the above key function can be used in all embodiments of the present invention. Of course, those skilled in the art can also use other suitable key calculation methods in the actual situation, which is not limited by the present invention.
  • the processing of the next megabit enhanced key by the core network node is generally divided into two cases.
  • the core network node initially sends the next hop enhanced key IK, s / CK, s to the SRNC.
  • the source RNC sends the next hop enhanced key to the target RNC, and the target RNC and the UE respectively use the next hop enhanced key as IK S and CK S ; the other is that the core network node does not initially
  • the next megabit enhanced key is sent to the SRNC.
  • the source RNC sends the current enhanced key IK S /CK S to the target RNC.
  • the target RNC and the UE use the keys IK S and CK S respectively to communicate with each other. safety protection.
  • Step S702 A core network node (such as SGSN+ or MSC+) is stored according to IK and CK calculates the intermediate key K ASMEU .
  • the triggering condition of this step is: when the UE first attaches to the network after running the AKA, or when the UE transitions from the idle mode to the connected mode, or the UE moves from the evolved universal terrestrial radio access network E-UTRAN or GSM to the enhanced universal When the terrestrial radio access network UTRAN, or the user equipment moves from the legacy UTRAN (which does not support HSPA+ security) to the enhanced UTRAN.
  • a valid intermediate key K ASMEU is also stored at the SGSN+ or the MSC/VLR+, the step is optional, and the stored intermediate key can be used directly without recalculation.
  • Step S704 The core network node calculates the enhanced key IKs and/or CKs according to the intermediate key K ASMEU calculated in step S702; calculates the next hop enhanced key IK's/CK's o according to the enhanced key IKs and/or CKs.
  • the calculation of the next i?mega enhanced key IK's/CK's includes: intermediate key K ASMEU , and/or traditional integrity key IK, encryption Key CK.
  • Step S706 The core network node sends a security mode command message to the SRNC, where the message carries the enhanced keys IK S and CK S , and/or the next hop enhanced key IK, s/CK' s.
  • the security mode command message may also carry one of the following parameters or any combination thereof: user equipment security capability, key set identifier, selected integrity algorithm set, and encryption algorithm set.
  • the delivery of the next hop enhanced key IKVCK, s is optional. That is, when the initial connection is established, the next mega enhanced key IK, S / CK, s may not be sent, and only the enhanced key IK S is sent. /CK S.
  • Step S708 SRNC after receiving the security mode command message, storing the received enhanced IKs and key CK S, and / or the next hop enhanced key IK, s / CK 's.
  • Step S710 The SRNC sends a security mode command message to the UE.
  • the security mode command message may carry a message verification code calculated by using IKs, and may also carry one of the following parameters or any combination thereof: user equipment security capability, key set identifier, selected integrity algorithm, and encryption algorithm.
  • Step S712 After receiving the security mode command message, the UE stores the encryption algorithm and the integrity algorithm, and then calculates the intermediate key K ASMEU according to the traditional encryption key CK generated by the AKA process and the traditional integrity key IK (the process may also be Occurs before the secure mode command message is received). In this step, if a valid intermediate key K ASMEU is still stored at the UE, the intermediate key can be directly used without recalculation.
  • Step S714 The UE derives the enhanced key IK S and/or CK S and the next hop enhanced key IK, s/CK' s according to the same key derivation algorithm as the network side.
  • the calculation step 4 of the next mega-enhanced key IK, S / CK, s is optional, that is, the UE can not calculate the next hop enhanced key when it is ; and then calculate it when necessary.
  • the UE and the SRNC share the same enhanced integrity key IK S and/or enhanced encryption.
  • the key CK S can be used to protect communication between the two parties using the above key.
  • Step S716 The UE uses the IKs to verify the received security mode command message.
  • Step S720 The SRNC verifies the received security mode completion message by using the IK S ; or, the CK S is used to decrypt the message, and then the IKs is used to verify the received security mode completion message.
  • Step S722 If the security mode complete message verification is successful, the SRNC sends a security mode complete message to the core network node, where the message may carry parameters: the selected integrity algorithm and/or the encryption algorithm. Thereafter, the UE and the SRNC can start the encryption and decryption operation according to the above key.
  • the core network node maintains a next hop counter network NCC for counting the number of times of calculating the next mega enhanced key to synchronize with the user side key.
  • the initial value of the network NCC is 0.
  • the security mode command message may also carry the parameter network NCC and send it to the SRNC, which is received and stored by the SRNC.
  • the UE also maintains a next hop counter terminal NCC for counting the number of times the UE calculates the next hop enhanced key to synchronize with the network side key, and the initial value is 0; when the UE first calculates the next mega enhanced key Key, at this time, the corresponding terminal NCC value is 1.
  • the UE calculates the next hop enhanced key and increments the corresponding terminal NCC until the terminal NCC is equal to the network NCC, so that the UE and the target RNC use the secret.
  • the keys are the same.
  • the NCC to synchronize the network side and the user side key, the consistency between the network side and the user side key is effectively ensured.
  • Fig. 8 there is shown a flowchart of updating an air interface key when performing SRNC companion migration according to the present embodiment.
  • the message interaction between the SRNC and the target RNC needs to be relayed through the core network node CNN+ (SGSN+ or MSC+).
  • Step S802 The source RNC (ie, SRNC) decides to perform SRNC migration.
  • the triggering of the decision may be: the source RNC receives the measurement report of the UE, or receives the target RNC.
  • the transmitted uplink signaling transmission indicates that a cell update or URA update or the like is required.
  • Step S804 The source RNC sends a migration required message to the core network node. If the source RNC connects two CNN+ nodes at the same time, the source RNC sends a migration requirement message to the two CNN+ nodes simultaneously; if the source RNC and the target RNC are located under two different CNN+ nodes, the message needs to pass through the two CNN+ nodes. Transit.
  • the migration needs to carry the parameters in the message: the next hop enhanced integrity key IK, S , and/or the next hop enhanced encryption key CK, S .
  • one or any combination of the following parameters can be carried: user equipment security capabilities, user-supported encryption algorithms, user-supported integrity algorithms, selected encryption algorithms, selected integrity algorithms, and enhanced air interfaces.
  • the security material is carried in a transparent container from the source RNC to the target RNC.
  • the source RNC considers the next hop enhanced integrity key IK' S as the enhanced integrity key IK S and the next hop enhanced encryption key CK as the enhanced encryption key CK S .
  • the migration required by the source RNC needs to carry parameters in the message: enhanced integrity key IKs, and/or enhanced encryption key CK S .
  • the source RNC since the source RNC may not be able to determine whether the target RNC supports enhanced security, the source RNC places the next hop enhancement keys IK's and CK, S respectively in the IK and CK fields of the migration required message.
  • the network entity supporting the enhanced security function coexists with the network entity supporting only the traditional security.
  • the UE migrates from a SRNC+ that supports enhanced security functions to a non-enhanced security function. The scenario of the target RNC. When SRNC+ makes a migration decision, it is likely that the target RNC does not support enhanced security features.
  • Step S806 The core network node sends a migration request message to the target RNC, where the message carries the next hop enhanced keys IK's and CK's, and/or the network NCC.
  • the network side core network node maintains a next hop counter network NCC. Therefore, the migration request message may also carry network NCC information.
  • the network NCC information is sent to the target RNC to conveniently achieve the consistency of the key between the target RNC and the user.
  • the core network node CK 'S disposed in the CK field of the request message of migration, and / or the IK' S disposed in the IK field migration request message is transmitted to the target RNC.
  • the source RNC may directly send a migration request message to the target RNC.
  • the migration request message is referred to as an enhanced migration request message.
  • the enhanced migration request message carries the next hop enhanced integrity key IK, S , and/or the next hop enhanced encryption key CK, S , and the source RNC will next hop enhanced keys 1, 8, and 0 ⁇ , 8 are placed in the IK and CK fields of the migration required message and sent to the target RNC.
  • Step S808 The target RNC stores the received key. If the target RNC supports enhanced security, the target RNC uses the value of the IK field in the received message as the enhanced key IK S , the value of the CK field as the enhanced key CKs; if the target RNC does not support enhanced security, the target The RNC uses the value of the IK field in the received message as the value of the legacy key IK, CK field as the legacy key CK.
  • RRC Radio Resource Control
  • the message needs to transit through the two CNN+ nodes.
  • the migration confirmation message carries the next hop counter network NCC information.
  • Step S812 The core network node sends a migration command message to the source RNC.
  • the migration command message carries the next hop counter network NCC information of the core network node.
  • the physical channel reconfiguration message or the UTRAN mobility information message carries the next hop counter network NCC information.
  • Step S816 If the UE supports enhanced security, the UE updates the enhanced integrity key IK S and/or the encryption key CK S according to the same algorithm as the network side. In this step, the UE sets the next hop counter terminal NCC, and the UE receives the network NCC, and determines whether the terminal NCC corresponding to the currently activated enhanced key is equal to the network NCC. If the two are equal, the UE directly uses the enhanced integrity saved by itself. Key IK S and/or enhanced encryption key CK S ; If the network NCC is greater than the terminal NCC, the UE calculates the enhanced key IK S /CK S and increments the corresponding terminal NCC until the terminal NCC is equal to the network NCC.
  • Step S818 The UE sends a physical channel reconfiguration complete message or a UTRAN mobility information acknowledgement message to the target RNC.
  • the above message may be integrity protected with the updated integrity key IKs, or both the integrity and encryption protection of the message with the updated integrity key IK S and encryption key CK S .
  • the user equipment security capability parameter may also be carried in the message.
  • Step S820 The target RNC performs security verification on the message with the updated integrity key IK S and/or the encryption key CK S .
  • Step S822 The core network node of a core network based on the key and the current key enhanced IK S, CK S calculated at the next hop enhanced key IK, S, CK, S.
  • the core network key includes: an intermediate key K ASMEU , and/or a legacy key IK and/or CK.
  • Step S824 The core network node sends a migration completion confirmation message to the target RNC, where the message carries the next hop enhanced key IK, S , CK's, and/or the associated network NCC.
  • Step S826 The target RNC stores the next hop enhanced key IK, S , CK, S , and/or the associated network NCC for use in the next SRNC migration.
  • Step S828 The core network node (SGSN+ or MSC/VLR+) releases the Iu interface with the source RNC.
  • the security operation in the embodiment shown in FIG. 8 is also applicable to the enhanced SRNC migration process.
  • the source RNC communicates directly with the target RNC without passing through the core network node.
  • the message shown in steps S804 and S806 in FIG. 8 is replaced by the source RNC sending an enhanced migration request message to the target RNC, and the message shown in steps S810 and S812 in FIG. 8 is replaced by the target RNC transmitting an enhanced migration response message to the source RNC.
  • the messages shown in steps S820, S824 in FIG. 8 are replaced with an enhanced migration completion request message and an enhanced migration completion response message between the target RNC and the core network node, respectively.
  • the parameters carried in the message, and the operations of other steps are exactly the same, and will not be mentioned here.
  • the initial core network node sends the next hop enhanced key to the SRNC
  • the UE performs When the SRNC migration process is first used, the above key update process can be used.
  • the security operation of the SRNC migration defined by the traditional UMTS is performed, that is, the source RNC will use the currently used enhancement.
  • the key IK S and/or CK S is sent to the target RNC, and the UE and the target RNC directly use the current enhanced key.
  • the target RNC may initiate an internal migration of the SRNC.
  • both the source RNC and the target RNC are the same SRNC, so as to achieve the purpose of forward security.
  • FIG. 9 a flow chart of updating an air interface key enhanced when performing SRNC static migration according to an embodiment of the present invention is shown.
  • the traditional SRNC migration process is used, that is, the process of the message exchange between the SRNC and the target RNC passes through the core network node.
  • Step S902 The UE sends a URA update message, or a cell update message, or a measurement report message to the UTRAN.
  • Step S904 The target RNC sends an uplink signaling transmission indication message to the source RNC of the UE by receiving the URA update message or the cell update message of the UE, or the measurement report message.
  • Step S906 The source RNC (ie, SRNC) decides to perform SRNC migration.
  • Step S908 The source RNC sends a migration requirement message to the core network node.
  • the message carries the next hop enhanced key IK, s and CK, s, and can also carry the network NCC.
  • Step S910 The core network node sends a migration request message to the target RNC, where the message carries the next hop enhanced keys IK's and CK's, and/or the network NCC.
  • the network side core network node maintains a next hop counter network NCC. Therefore, the migration request message may also carry network NCC information.
  • Step S914 The target RNC sends a migration request acknowledgement message to the core network node.
  • the target RNC and the core network node can establish a new Iu payload, and allocate resources such as RRC (Radio Resource Control) connection resources and radio links to the UE.
  • the migration confirmation message carries the next hop counter network NCC information.
  • the core network node sends a migration command message to the source RNC.
  • the migration command message carries the next hop counter network NCC information of the core network node.
  • the source RNC sends a migration commit message to the target RNC.
  • the target RNC sends a migration detection message to the core network node.
  • Step 4 S922: The target RNC sends a Cell Update Confirm message, or a URA Update Confirm message, or a RAN Mobility Information message to the UE.
  • the message carries indication information of the security capabilities of the target RNC.
  • the foregoing message carries the next hop counter network NCC information.
  • Step S924 If the UE supports enhanced security, the UE updates the enhanced integrity key IK S and/or the encryption key CK S according to the same algorithm as the network side. In this step, the UE sets the next hop counter terminal NCC, and the UE receives the network NCC, and determines whether the terminal NCC corresponding to the currently activated enhanced key is equal to the network NCC. If the two are equal, the UE directly uses the enhanced integrity saved by itself.
  • Step S926 The UE sends a UTRAN mobility information acknowledgement message or a RAN mobility information acknowledgement message to the target RNC.
  • the above message may be integrity protected with the updated integrity key IKs, or both the integrity and encryption protection of the message with the updated integrity key IK S and encryption key CK S .
  • the user equipment security capability parameter may also be carried in the message.
  • Step S928 The target RNC performs security verification on the message with the updated integrity key IK S and/or the encryption key CK S .
  • Step S930 The core network node at the core network based on the key and the current key enhanced IK S, CK S calculate a next hop enhanced key IK, S, CK, S.
  • the core network key includes: an intermediate key K ASMEU , and/or a traditional key IK and/or CK.
  • Step S932 The core network node sends a migration completion confirmation message to the target RNC, where the message carries the next hop enhanced key IK, S , CK's, and/or the associated network NCC.
  • Step S934 The target RNC stores the received next hop enhanced key IK, S , CK, S , and/or the associated network NCC for use in the next SRNC migration.
  • Step S936 The core network node (SGSN+ or MSC+) releases the Iu interface with the source RNC.
  • the release of the Iu interface between the core network node (SGSN+ or MSC/VLR+) and the source RNC may also occur before step S930. It should be noted that all the foregoing embodiments are also applicable to the internal migration of the SRNC, that is, the scenario where the source RNC and the target RNC are the same RNC. Referring to FIG.
  • a structural block diagram of a core network node including: a receiving module 1002, configured to receive a migration completion indication message of a target RNC, where the migration completion indication message is used to indicate that the UE is from a source The RNC is successfully migrated to the target RNC; the calculating module 1004 is configured to calculate the next hop enhanced key by using the intermediate key and/or the traditional key and the current enhanced key after the receiving module 1002 receives the migration completion indication message; Module 1006 is configured to send the next mega enhanced key to the target RNC.
  • the core network node further includes: a first initial module, configured to be first attached to the network by the user equipment UE, or the UE transitions from the idle mode to the connected mode, or the UE from the evolved universal terrestrial radio access network E-UTRAN or Global System for Mobile Communications GSM network moves to enhanced universal terrestrial radio access network UTRAN, or UE moves from legacy UTRAN to enhanced In the UTRAN, the current enhanced key is calculated according to the intermediate key; and the current enhanced key is sent to the serving SRNC.
  • a first initial module configured to be first attached to the network by the user equipment UE, or the UE transitions from the idle mode to the connected mode, or the UE from the evolved universal terrestrial radio access network E-UTRAN or Global System for Mobile Communications GSM network moves to enhanced universal terrestrial radio access network UTRAN, or UE moves from legacy UTRAN to enhanced In the UTRAN, the current enhanced key is calculated according to the intermediate key; and the current enhanced key is sent to the serving SRNC.
  • the first initial module further calculates a next hop enhanced key according to the intermediate key and the current enhanced key, or calculates a next hop enhanced key according to the stored traditional key and the current enhanced key, or The next mega-enhanced key is calculated based on the stored legacy key and/or intermediate key, and the current enhanced key.
  • the core network node further includes: a second initial module, configured to be first attached to the network when the UE is attached to the network, or the UE transitions from the idle mode to the connected mode, or the UE moves from the evolved universal terrestrial radio access network E-UTRAN or globally
  • the core network node calculates the current enhanced key according to the intermediate key; The current enhanced key calculates a next hop enhanced key; the core network node sends a next hop enhanced key to the serving SRNC.
  • the second initial module calculates the next hop enhanced key according to the intermediate key and the current enhanced key, or calculates the next hop enhanced key according to the stored traditional key and the current enhanced key, or The stored legacy key and/or intermediate key, and the current enhanced key calculate the next hop enhanced key.
  • the core network node in this embodiment may further include: a next hop counter network NCC, configured to count the number of times the core network node calculates the next hop enhanced key.
  • the receiving module 1002 is further configured to: before receiving the migration completion indication message of the target RNC, receive a migration requirement message sent by the source RNC, where the migration requirement message includes a next hop CK' S and/or IK' S of the source RNC; sending module 1006 is further configured to send a relocation request message to the target RNC, the relocation request message includes a source RNC CK's next-hop transmission and / or the IK 'S.
  • the migration required message and the migration request message both further include information indicated by the network NCC. Referring to FIG.
  • a block diagram of a wireless access system including: a source RNC 1102, a target RNC 1104, a core network node 1106, and a user equipment UE 1108.
  • the core network node 1106 includes: a receiving module 11062, configured to receive a migration completion indication message of the target RNC 1104, where the migration completion indication message indicates that the UE 1108 is successfully migrated from the source RNC 1102 to the target RNC 1104.
  • the calculation module 11064 is configured to receive at the receiving module 11062. After the migration completion indication message, the next mega enhanced key is calculated using the intermediate key and/or the legacy key, and the current enhanced key; the sending module 11066 is configured to send the next mega enhanced key to the target RNC 1104.
  • the source RNC 1102 is configured to send a migration required message to the core network node 1106, where The migration requires the next mega-enhanced key of the active RNC 1102 to be carried in the message; the migration command of the core network node 1106 is received, and the migration message is sent to the UE 1108.
  • the target RNC 1104 is configured to receive a migration request message sent by the core network node 1106, where the migration request message carries a next hop enhanced key sent by the active RNC 1102, and send a migration completion indication message to the core network node 1106, and receive the core.
  • the migration completion confirmation message of the network node 1106 includes the next mega enhanced key of the target RNC 1104.
  • the UE1108 is configured to synchronize its own enhanced key according to the migration message sent by the source RNC 1102.
  • the core network node 1106 further includes: a next hop counter network NCC, configured to count the number of times the core network node 1106 calculates the next mega enhanced key.
  • the UE1108 includes: a next hop counter terminal NCC, which is set to count the number of times the UE 1108 calculates the next hop enhanced key.
  • the UE1108 further includes: a determining module 11082, configured to determine whether the terminal NCC is equal to the network NCC; and a determining module 11084, configured to use the pre-stored CK S and/or corresponding to the terminal NCC if the determining result of the determining module 11082 is YES Or IK S ; negation module 11086, is set to calculate CK S and / or IK S if the judgment result of the determination module 11082 is no, and increment the corresponding terminal NCC until the terminal NCC is equal to the network NCC.
  • FIG. 12 there is shown a flowchart of updating an air interface key when performing SRNC companion migration according to an embodiment of the present invention.
  • Step S 1202 The source RNC (ie, SRNC) decides to perform SRNC migration.
  • the triggering of the decision may be: the source RNC receives the measurement report of the UE, or receives an uplink signaling transmission indication sent by the target RNC, requesting cell update or URA update, and the like.
  • Step S1204 The source RNC sends an enhanced migration request message to the target RNC, where the message carries the next hop enhanced key IK, s and CK, s, and/or the network NCC.
  • the enhanced migration request message carries parameters: the next hop enhanced integrity key IK, S , and/or the next hop enhanced encryption key CK, S .
  • one or any combination of the following parameters can be carried: user equipment security capabilities, user-supported encryption algorithms, user-supported integrity algorithms, selected encryption algorithms, selected integrity algorithms, and enhanced air interfaces.
  • the security material is carried in a transparent container from the source RNC to the target RNC.
  • the source RNC considers the next hop enhanced integrity key IK' S as the enhanced integrity key IK S and the next hop enhanced encryption key CK, s as the enhanced encryption key CK S.
  • the migration required by the source RNC needs to carry the parameters in the message: Enhanced Integrity Key IKs, and/or Enhanced Encryption Key CK S .
  • the source RNC places the next hop enhancement keys IK, S and CK, S in the IK and CK fields of the enhanced migration request message, respectively.
  • the network entity supporting the enhanced security function coexists with the network entity supporting only the traditional security.
  • the UE migrates from a SRNC+ that supports enhanced security functions to a non-enhanced security function. The scenario of the target RNC.
  • Step S 1206 The target RNC stores the received key. If the target RNC supports enhanced security, the target RNC uses the value of the IK field in the received message as the enhanced key IK S , the value of the CK field as the enhanced key CKs; if the target RNC does not support enhanced security, the target The RNC uses the value of the IK field in the received message as the value of the legacy key IK, CK field as the legacy key CK.
  • Step S1208 The target RNC sends an enhanced migration response message to the source RNC.
  • the target RNC allocates resources such as RRC (Radio Resource Control) connection resources and radio links to the UE.
  • the enhanced migration response message carries the next hop counter network NCC information.
  • S1210 The source RNC sends a migration message, that is, a physical channel reconfiguration message or a UTRAN mobility information message, to the UE.
  • the physical channel reconfiguration message or the UTRAN mobility information message carries the next hop counter network NCC information.
  • Step S1212 If the UE supports enhanced security, the UE updates the enhanced integrity key IK S and/or the encryption key CK S according to the same algorithm as the network side.
  • the UE sets the next hop counter terminal NCC, and the UE receives the network NCC, and determines whether the terminal NCC corresponding to the currently activated enhanced key is equal to the network NCC. If the two are equal, the UE directly uses the enhanced integrity saved by itself. Key IKu and/or enhanced encryption key CCu; If the network NCC is greater than the terminal NCC, the UE calculates the enhanced key IKu/CKu and increments the corresponding terminal NCC until the terminal NCC is equal to the network NCC.
  • Step S1214 The UE sends a physical channel reconfiguration complete message or a UTRAN mobility information acknowledgement message to the target RNC.
  • the above message may be integrity protected with the updated integrity key IKu, or both the integrity and encryption protection of the message with the updated integrity key IK S and encryption key CK S .
  • the user equipment security capability parameter may also be carried in the message.
  • Step S 1216 The target RNC performs security verification on the message with the updated integrity key IK S and/or the encryption key CK S . If the target RNC successfully verifies the message sent by the UE, the target RNC sends an enhanced migration completion request message to the core network node (SGSN+ or MSC/VLR+), where the message carries information indicating that the migration is completed to the core network node, optionally, There can also be network NCC information.
  • the core network node SGSN+ or MSC/VLR+
  • the message carries information indicating that the migration is completed to the core network node, optionally, There can also be network NCC information.
  • Step S 1218 based on the core network core network node key and the current key reinforcing IK S, CK S calculated at the next hop enhanced key IK, S, CK, S.
  • the core network key includes: an intermediate key K ASMEU , and/or a traditional key IK and/or CK.
  • the core network node increments the network NCC before or after calculating the next hop enhanced key IK, S , CK, S.
  • Step S1220 The core network node sends an enhanced migration complete request message to the target RNC, the message carrying the next hop enhanced key IK, S , C'Ks, and/or the associated network NCC.
  • Step S 1222 The target RNC stores the received next hop enhanced key IK, S , CK, S , and/or the associated network NCC for use in the next SRNC migration.
  • Step S 1224 The core network node (SGSN+ or MSC/VLR+) releases the Iu interface with the source RNC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

空中接口密钥的更新方法、 核心网节点及无线接入系统 技术领域 本发明涉及无线通信领域, 具体而言, 涉及一种无线通信系统的 SRNC ( Serving Radio Network Controller, 服务无线网络控制器) 迁移时的空中接 口密钥的更新方法、 核心网节点及无线接入系统。 背景技术
3GPP ( 3rd Generation Partnership Project , 第三代合作伙伴计划) 在 Release7 中 采用 了 正交频分复用 ( Orthogonal Frequency Division Multiplexing,简称 "OFDM" )和多输入多输出( Multiple-Input Multiple-Output, 简称 " MIMO" ) 技术完成 HSDPA ( High Speed Downlink Packet Access, 高 速下行链路分组接入 )和 HSUPA ( High Speed Uplink Packet Access, 高速上 行链路分组接入) 的未来演进道路 HSPA+。 HSPA+是 3GPP HSPA (包括 HSDPA和 HSUPA ) 的增强技术, 为 HSPA运营商提供低复杂度、 低成本的 从 HSPA向 LTE ( Long Term Evolution, 长期演进 ) 平滑演进的途径。 相比较于 HSPA, HSPA+在系统架构上将无线网络控制器( Radio Network
Controller, 简称 "RNC" ) 的功能下放到基站节点 B ( Node B ), 形成完全扁 平化的无线接入网络架构,如图 1所示。此时称集成了完全 RNC功能的 Node B为 Evolved HSPA Node B , 或者简称为增强节点 B ( Node B+ )„ SGSN+为 进行了升级能支持 HSPA+功能的 SGSN ( SERVICE GPRS SUPPORT NODE, 月艮务 GPRS ( GPRS: General Packet Radio System, 通用分组无线系统)支持 节点;)。 ME+为能支持 HSPA+功能的用户终端设备。 演进的 HSPA系统能够 使用 3GPP Rel-5和以后的空中接口版本,对空中接口的 HSPA业务没有任何 修改。 釆用这种方案后, 每个 Node B+都成为一个相当于 RNC的节点, 具有 Iu-PS接口能够直接与 PS CN ( Core Network, 核心网)(如图 1中的 SGSN 和 GGSN ) 连接, Iu-PS用户面在 SGSN终结, 其中如果网络支持直通隧道 功能, Iu-PS用户面也可以在 GGSN( Gateway GPRS Support Node,网关 GPRS 支持节点) 终结。 演进的 HSPA Node B之间的通信通过 Iur接口执行。 Node B+具有独立组网的能力, 并支持完整的移动性功能, 包括系统间和系统内切 换。 由于扁平化后, 用户面数据可以不经过 RNC, 直接到达 GGSN, 这意味 着用户平面的加密和完整性保护功能必须前移至 Node B+。 目前, 爱立信提 出了一种 HSPA+安全密钥层次结构, 如图 2所示。 其中, K ( Key, 才艮密钥)、 CK ( Ciphering Key, 加密密钥) 和 IK ( Integrity Key, 完整性密钥) 的定义 与 UMTS ( Universal Mobile Telecommunications System, 通用移动通信系统 ) 中完全一致, 即 K是存储于 AuC ( Authentication Center,鉴权中心)和 USIM ( UNIVERSAL SUBSCRIBER IDENTITY MODULE, 通用订阅者身份模块) 中的根密钥, CK和 IK是用户设备与 HSS ( Home Subscriber Server, 归属用 户月艮务器 )进行 AKA ( Authentication and Key Agreement, 认证和密钥十办定 ) 时由 K计算出的加密密钥和完整性密钥, 称为传统密钥。 在 UMTS中, RNC 使用传统的空中接口密钥 CK 和 IK 对数据进行加密和完整性保护。 由于 HSPA+架构中, 将 RNC的功能全部下放到基站 Node B+, 则加解密都需在 Node B+处进行, 而 Node B+位于不安全的环境中,安全性不高。 因此 HSPA+ 引入了一个类似、于 E-UTRAN ( Evolved Universal Terrestrial Radio Access Network, 演进的通用陆地无线接入网络)的密钥层次, 即 UTRAN密钥层次 ( UTRAN Key Hierarchy )„ 在 UTRAN密钥层次结构中, 空口密钥 KASMEU、 CKs/IKs和 CKi7IKL是 HSPA+新引入的密钥。 其中, 中间密钥 KASMEU由传统 密钥 CK和 IK在核心网节点 ( SGSN+或 MSC+ ) 处推导生成; CKS/IKS (也 可称作 CKu/IKu ) 称为增强密钥, 由中间密钥 KASMEU在核心网节点处生成, 增强密钥 CKS用于加密用户面数据和控制面信令, 增强密钥 IKS用于对控制 面信令进行完整性保护。 CKi7IKL称为映射密钥, 由中间密钥 KASMEU在核心 网节点处生成, 用于 UE移动到不支持增强安全的传统 UMTS网络中时作为 空中接口的加密密钥和完整性保护密钥使用。 在 WCDMA系统中, 由于 Iur接口的引入而产生了 SRNC/DRNC ( Drift RNC, 漂移 RNC )的概念。 SRNC和 DRNC都是对于某一个具体的 UE的逻 辑概念。 简单的说, 对于某一个 UE, 其直接与 CN ( Core Network, 核心网) 相连, 并对 UE ( User Equipment, 用户设备) 的所有资源进行控制的 RNC 为该 UE的 SRNC; UE与 CN没有连接, 仅为 UE提供资源的 RNC为该 UE 的 DRNC。 处于连接状态的 UE必须而且只能有一个 SRNC, 可以有 0个或 者多个 DRNC。
WCDMA系统中, SRNC迁移( SRNC Relocation )指 UE的 SRNC从一 个 RNC变成另一个 RNC的过程。 才艮据发生迁移前后 UE所处位置的不同, 可以分为静态迁移和伴随迁移两种情况。 发生静态迁移的条件是 UE从一个 DRNC,而且只从一个 DRNC中接入。 由于迁移过程不需要 UE 的参与, 所以也称之为 UE 不涉及的 (UE Not Involved ) 迁移。 发生迁移后, Iur接口的连接被释放, Iu接口发生迁移, 原 DRNC变成 SRNC, 如图 3所示。 静态迁移是软切换时引起的, 因为 Iur接 口, 所以迁移在所有的无线链路 链接到 DRNC后才开始。 伴随迁移指 UE从 SRNC硬切换到目标 RNC, 同时 Iu接口发生变化的 过程, 如图 4所示。 由于迁移过程需要 UE的参与, 所以也称之为 UE涉及 的 (UE Involved ) 迁移。 在 HSPA+中, 由于 Node B+处于物理不安全的环境中, 容易受到恶意攻 击, 安全性受到威胁。 而传统 UMTS中, SRNC迁移前后, 加密密钥 CK和 完整性密钥 IK相同, 这会造成: 一方面, 某个基站被攻击者攻破后, 攻击 者可能推导出下一跳目标基站的安全密钥; 另一方面, 若密钥泄漏或者被攻 击者非法获取, 则攻击者可以一直监听用户的通信, 也可以伪造用户与网络 之间的数据传输, 这样都会导致用户的通信安全不能够被保障。 发明内容 本发明的主要目的在于提供一种空中接口密钥的更新方法、 核心网节点 及一种无线接入系统, 以解决相关技术中因为 SRNC迁移时密钥相同而导致 用户的通信安全不能够保障问题。 才艮据本发明的一个方面, 提供了一种空中接口密钥的更新方法, 包括: 核心网节点接收到目标无线网络控制器 RNC 的迁移完成指示消息, 该迁移 完成指示消息用于指示用户设备 UE从源 RNC迁移到目标 RNC成功; 使用 密钥参数计算下一跳增强密钥, 密钥参数包括中间密钥和当前增强密钥; 将 下一兆增强密钥发送给目标 RNC。 优选地, 密钥参数还包括传统密钥。 优选地,该空中接口密钥的更新方法还包括:核心网节点在用户设备 UE 首次附着到网络, 或者 UE从空闲模式转换到连接模式, 或者 UE从演进的 通用陆地无线接入网络 E-UTRAN或全球移动通信系统 GSM网络移动到增 强的通用陆地无线接入网络 UTRAN, 或者 UE从传统的 UTRAN移动到增 强的 UTRAN时, 核心网节点才艮据中间密钥计算当前增强密钥; 核心网节点 发送当前增强密钥给月艮务无线网络控制器 SRNC。 优选地, 在核心网节点才艮据中间密钥计算当前增强密钥的步骤之后, 还 包括: 核心网节点才艮据中间密钥和当前增强密钥计算初始下一兆增强密钥; 或者, 核心网节点才艮据存储的传统密钥和当前增强密钥计算初始下一跳增强 密钥; 或者, 核心网节点才艮据存储的传统密钥、 中间密钥和当前增强密钥计 算初始下一兆增强密钥。 优选地,该空中接口密钥的更新方法还包括:核心网节点在用户设备 UE 首次附着到网络, 或者 UE从空闲模式转换到连接模式, 或者 UE从演进的 通用陆地无线接入网络 E-UTRAN或全球移动通信系统 GSM网络移动到增 强的通用陆地无线接入网络 UTRAN, 或者 UE从传统的 UTRAN移动到增 强的 UTRAN时, 核心网节点才艮据中间密钥计算当前增强密钥; 核心网节点 才艮据当前增强密钥计算初始下一跳增强密钥; 核心网节点发送当前增强密钥 和 /或初始下一跳增强密钥给服务无线网络控制器 SRNC。 优选地, 核心网节点才艮据当前增强密钥计算初始下一跳增强密钥的步骤 包括: 核心网节点才艮据中间密钥和当前增强密钥计算初始下一兆增强密钥; 或者, 核心网节点才艮据存储的传统密钥和当前增强密钥计算初始下一跳增强 密钥; 或者, 核心网节点才艮据存储的传统密钥、 中间密钥和当前增强密钥计 算初始下一兆增强密钥。 优选地, 在核心网节点中设置下一跳计数器网络 NCC, 对核心网节点计 算下一跳增强密钥的次数计数。 优选地, 在核心网节点接收到目标 RNC的迁移完成指示消息步骤之前, 还包括:源 RNC向核心网节点发送迁移需要消息,迁移需要消息包括源 RNC 的下一跳增强加密密钥 CKS和 /或下一跳增强完整性密钥 IKS; 核心网节点接 收迁移需要消息, 并向目标 RNC 发送迁移请求消息, 迁移请求消息包括源 RNC发送的下一跳 CKs和 /或 IKS。 优选地, 迁移需要消息和迁移请求消息均还包括网络 NCC指示的信息。 优选地, 在核心网节点向目标 RNC 发送迁移请求消息的步骤之后, 还 包括: 核心网节点接收目标 RNC的迁移请求确认消息, 并向源 RNC发送迁 移命令消息, 迁移命令消息包括网络 NCC指示的信息; 源 RNC接收迁移命 令消息,向用户设备 UE发送迁移消息,迁移消息包括网络 NCC指示的信息。 优选地, 源 RNC接收迁移命令消息, 向 UE发送迁移消息步骤之后, 还 包括: UE接收迁移消息, 判断下一跳计数器终端 NCC是否等于网络 NCC; 若是, 则 UE使用终端 NCC对应的预先存储的 IKS和 /或 CKS; 若否, 则 UE 计算 IKS和 /或 CKS, 并递增相对应的终端 NCC, 直到终端 NCC等于网络 NCC。 优选地, 源 RNC和目标 RNC为同一个 RNC。 优选地, 核心网节点使用四层安全密钥层次结构, 四层安全密钥层次结 构包括才艮密钥层、 传统密钥层、 中间密钥层和增强密钥层。 优选地, 在核心网节点发送当前增强密钥给 SRNC步骤之后, 还包括: SRNC接收并存储当前增强密钥, 并向 UE发送安全模式命令消息; UE接收 安全模式命令消息, 使用中间密钥计算当前增强密钥。 优选地, 在 UE接收安全模式命令消息, 使用中间密钥计算当前增强密 钥步骤之后, 还包括: UE 使用中间密钥和当前增强密钥计算下一跳增强密 钥。 优选地, 在核心网节点发送当前增强密钥和 /或初始下一跳增强密钥给 SRNC步骤之后, 还包括: SRNC接收并存储当前增强密钥和 /或初始下一跳 增强密钥, 并向 UE发送安全模式命令消息; UE接收安全模式命令消息, 使 用中间密钥计算当前增强密钥。 优选地, 在 UE接收安全模式命令消息, 使用中间密钥计算当前增强密 钥步骤之后, 还包括: UE 使用中间密钥和当前增强密钥计算下一跳增强密 钥。 优选地, 在核心网节点接收到目标 RNC的迁移完成指示消息步骤之前, 还包括: 源 RNC向目标 RNC发送增强的迁移请求消息, 增强的迁移请求消 息包括源 RNC发送的下一跳增强加密密钥 CKS和 /或下一跳增强完整性密钥 IKs„ 优选地, 在源 RNC向目标 RNC发送增强的迁移请求消息步骤之后, 还 包括: 目标 RNC接收增强的迁移请求消息, 使用源 RNC发送的下一跳增强 加密密钥 CKS和 /或下一 i?兆增强完整性密钥 IKS更新自身的密钥。 根据本发明的一个方面,还提供了一种空中接口密钥的更新方法, 包括: 核心网节点接收到目标无线网络控制器 RNC 的迁移完成指示消息, 该迁移 完成指示消息用于指示用户设备 UE从源 RNC迁移到目标 RNC成功, 核心 网节点使用四层安全密钥层次结构 ,该四层安全密钥层次结构包括才艮密钥层、 传统密钥层、 中间密钥层和增强密钥层; 使用密钥参数计算下一跳增强密钥, 密钥参数包括传统密钥层的传统密钥和增强密钥层的当前增强密钥; 将下一 跳增强密钥发送给所述目标 RNC。 优选地, 该空中接口密钥的更新方法中, 密钥参数还包括中间密钥层的 中间密钥。 根据本发明的另一方面, 提供了一种核心网节点, 包括: 接收模块, 设 置为接收目标无线网络控制器 RNC 的迁移完成指示消息, 该迁移完成指示 消息用于指示用户设备 UE从源 RNC迁移到目标 RNC成功; 计算模块, 设 置为使用密钥参数计算下一跳增强密钥, 密钥参数包括中间密钥和当前增强 密钥; 发送模块, 设置为将下一跳增强密钥发送给目标 RNC。 优选地, 该核心网节点中, 密钥参数还包括传统密钥。 才艮据本发明的另一方面, 提供了一种无线接入系统, 包括: 源无线网络 控制器 RNC、 目标 RNC、 核心网节点和用户设备 UE, 其中, 核心网节点包 括: 接收模块, 设置为接收目标 RNC 的迁移完成指示消息, 迁移完成指示 消息指示用户设备 UE从源 RNC迁移到目标 RNC成功; 计算模块, 设置为 使用密钥参数计算下一跳增强密钥,密钥参数包括中间密钥和当前增强密钥; 发送模块, 设置为将下一跳增强密钥发送给目标 RNC。 优选地, 该无线接入系统中, 密钥参数还包括传统密钥。 通过本发明, 针对核心网节点的四层密钥结构, 无线接入系统的核心网 节点在终端初始附着时, 或 SRNC迁移成功完成后, 才艮据核心网节点处的中 间密钥计算生成下一跳增强密钥 IKS和 /或 CKS, 并将下一跳增强密钥发送给 目标 RNC, 以备下一次 SRNC迁移时使用, 从而使得源 RNC和目标 RNC 使用不同的增强密钥 IKS和 CKS。并且由于下一跳目标 RNC使用的增强的空 中接口密钥是由核心网推导出来的, 两次 SRNC迁移后, 源 RNC则无法获 知两跳后的目标 RNC 的空中接口密钥。 因此即使某个基站被攻击者攻破或 非法控制, 两次 SRNC迁移后也能保证用户进行安全的通信, 保障了用户的 前向安全, 从而整体提高了无线接入系统的通信安全性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的一种釆用 HSPA+技术的无线接入网络的架构示意 图; 图 2是根据相关技术的一种 HSPA+安全密钥层次结构示意图; 图 3是根据相关技术的一种 SRNC静态迁移示意图; 图 4是根据相关技术的一种 SRNC伴随迁移示意图; 图 5 是根据本发明实施例的一种空中接口密钥的更新方法的步骤流程 图; 图 6是才艮据本发明实施例的一种空中接口密钥更新的密钥链的示意图; 图 7是才艮据本发明实施例的一种初始空中接口密钥建立过程的流程图; 图 8是根据本实施例的一种进行 SRNC伴随迁移时的空中接口密钥的更 新流程图; 图 9是根据本发明实施例的一种进行 SRNC静态迁移时的空中接口密钥 的更新流程图; 图 10为根据本发明实施例的一种核心网节点的结构框图; 图 11为根据本发明实施例的一种无线接入系统的结构框图; 图 12为根据本发明实施例的另一种进行 SRNC伴随迁移时的空中接口 密钥的更新流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在釆用 UTRAN的无线接入系统中涉及到的 SRNC迁移, 如图 3和图 4 所示, 涉及核心网节点( SGSN+或 MSC+ ), 源 RNC (即 SRNC )、 目标 RNC、 Node B和 UE。在釆用 HSPA+的无线接入系统中,可以将 Node B+看作 Node B和 RNC的结合, 二者是一个物理实体, 但仍然是两个不同的逻辑实体。 需 要说明的是, 本发明实施例中支持增强安全密钥层次的 Node B+也可以等同 为 UMTS中进行了升级的 RNC( RNC+ ),本发明实施例中的 SRNC和源 RNC (源 Node B+ ) 等同, DRNC和目标 RNC (目标 Node B+ ) 等同。 参照图 5 , 示出了根据本发明实施例的一种空中接口密钥的更新方法的 步 4聚流程图, 包括以下步 4聚: 步 4聚 S502 : 核心网节点接收到目标 RNC的迁移完成指示消息; 其中, 迁移完成指示消息指示用户设备 UE从源 RNC迁移到目标 RNC 成功。 步骤 S504 : 核心网节点使用密钥参数计算下一兆增强密钥; 其中, 密钥参数包括中间密钥和当前增强密钥, 当前增强密钥包括当前 增强完整性密钥 IKS和 /或当前增强加密密钥 CKS。 优选的, 在核心网节点计算下一兆增强密钥时, 除了使用中间密钥和当 前增强密钥外, 还可以使用存储的传统密钥, 传统密钥包括传统完整性密钥 ΙΚ和 /或传统加密密钥 CK。 另外, 本步骤中, 中间密钥可以用传统密钥代替, 即核心网节点使用传 统密钥和当前增强密钥计算下一兆增强密钥。 核心网节点根据核心网节点处的中间密钥 KASMEU和当前使用的增强密 钥 IKS和 /或 CKS , 或者, 核心网节点才艮据核心网节点处的传统密钥 IK和 /或 CK, 和 /或中间密钥 KASMEU和当前使用的增强密钥 IKS和 /或 CKS , 使用密钥 生成函数计算下一跳增强密钥 IKS和 /或 CKS。 为了和当前使用的当前增强密 钥 IKS/CKS相区别, 本发明的实施例中称下一跳增强密钥为 IK, s和 CK, s。 步骤 S506 : 核心网节点将下一跳增强密钥发送给目标 RNC。 本步骤中, 核心网节点将 IK, s和 CK, s发送给目标 RNC保存, 以备下次 SRNC迁移时目标 RNC使用。 相关技术中, 传统 UTRAN在进行 SRNC迁移时, 不改变迁移前后的密 钥, 而通过本实施例, 4十对核心网节点的四层密钥结构, 计算更新下一兆增 强密钥, 并将更新的下一跳增强密钥发送给目标 RNC, 以使用户设备在进行 下一次 SRNC迁移时使用, 从而使得源 RNC和目标 RNC使用不同的密钥。 并且当进行了两次 SRNC迁移后, 源 RNC不能获得两跳后的目标基站使用 的增强密钥, 从而保证了用户通信的前向安全, 提高了无线接入系统通信安 全性。 由此, 有效实现了四层密钥结构下的密钥更新和通信安全。 在下一兆增强密钥 IK,S和 CK,S的计算过程中,除了传统密钥 IK和 CK、 中间密钥 KASMEU, 当前增强密钥 IKs和 CKS外, 还可以使用以下参数之一或 任意组合: 序列号 SQN 异或隐藏密钥 AK, 用户标识 (如国际用户识别码 IMSI、 临时移动用户识别码 TMSI), 服务网络标识, 核心网节点类型。 本发明实施例提供了以下密钥函数计算各安全密钥, 包括初始时和 SRNC迁移时计算各安全密钥的密钥函数, 以下密钥函数中, 括号内的参数 不分先后顺序, 其中的多个参数可以以级联形式或其它形式组合。 初始时: (IKS, CKS) =F1 (KAMSEU, fresh);
(IK,S, CK's) =F2 (KAMSEU, IKS||CKS );
SRNC迁移时: (IK,S, CK's ) =F2 (KAMSEU, IK,S— old||CK,s— old ); 或者, IKS = IK, s old, CKS = IK' s old,
(IK,S, CK's) =F2 (KAMSEU, IKS||CKS ); 或者初始时: (IKS, CKS ) =F1 (KASMEU, fresh);
(IK's, CK's ) =F2 (IK||CK, IKS||CKS );
SRNC迁移时: (IK's, CK's ) =F2 (IK||CK, IK,S old||CK,s old ); 或者,
IKs = IK's old, CKS = IK's old, (IK's, CK's ) =F2 ( IK||CK, IKS||CKS ); 其中, Fl和 F2表示不同或相同的密钥函数, 例如 3GPP定义的 KDF函 数。 IKS表示增强的完整性密钥, CKS表示增强的加密密钥, IK,S表示下一跳 增强的完整性密钥, CK,S表示下一跳增强的加密密钥, IK,S— old表示当前增 强的完整性密钥, CK,S— old表示当前增强的加密密钥。 "II" 表示级联。 fresh 表示参数, 可以为随机数或者计数器, 也可以为传统密钥。 当 UE从空闲态 进入连接态时, 需要保证每次使用的 fresh不同。 本发明的实施例均可以釆用上述密钥函数。 当然, 本领域技术人员也可 以 居实际情况, 釆用其它适当的密钥计算方法, 本发明对此不作限制。 在初始附着时, 或用户设备从空闲态返回激活态时, 或用户设备从 E-UTRAN或全球移动通信系统 GSM移动到增强的 UTRAN时,或用户设备 从传统的 UTRAN (不支持 HSPA+安全 ) 移动到增强的 UTRAN时, 核心网 节点对下一兆增强密钥的处理一般分为两种情况, 一种是核心网节点初始时 向 SRNC下发下一跳增强密钥 IK,s/CK,s, 首次 SRNC迁移时, 源 RNC把下 一跳增强密钥发送给目标 RNC , 目标 RNC和 UE分别使用该下一跳增强密 钥作为 IKS和 CKS; 另一种是核心网节点初始时不向 SRNC下发下一兆增强 密钥,首次 SRNC迁移时,源 RNC将当前增强密钥 IKS/CKS发送给目标 RNC, 目标 RNC和 UE分别使用该密钥 IKS和 CKS对通信作安全保护。 在第二次 SRNC迁移时, 目标 RNC和 UE再分别使用下一兆增强密钥 IK'S/CK'S。 空 中接口密钥更新的密钥链如图 6所示, 其中, NCC表示下一跳计数器, fresh 表示参数。 参照图 7, 示出了根据本发明实施例的一种初始空中接口密钥建立过程 的流程图, 包括以下步 4聚: 步骤 S702: 核心网节点(如 SGSN+或 MSC + )根据存储的 IK和 CK计 算中间密钥 KASMEU。 该步骤的触发条件为: 当 UE首次附着到网络运行完 AKA后, 或者 UE 从空闲模式转换到连接模式时, 或者 UE 从演进的通用陆地无线接入网络 E-UTRAN或 GSM移动到增强的通用陆地无线接入网络 UTRAN时,或者用 户设备从传统的 UTRAN (不支持 HSPA+安全 ) 移动到增强的 UTRAN时。 可选地, 在上述触发条件下, 若 SGSN+或 MSC/VLR+处还存储有有效 的中间密钥 KASMEU , 则该步骤可选, 可以直接使用存储的中间密钥, 而不必 重新计算。 步骤 S704:核心网节点根据步骤 S702中计算出的中间密钥 KASMEU计算 增强密钥 IKs和 /或 CKs; 根据增强密钥 IKs和 /或 CKs计算下一跳增强密钥 IK's/CK's o 其中,下一 i?兆增强密钥 IK' s/CK' s的计算除了增强密钥 IKS和 /或 CKS外, 还包括: 中间密钥 KASMEU, 和 /或传统完整性密钥 IK、 加密密钥 CK。 步骤 S706: 核心网节点向 SRNC发送安全模式命令消息, 该消息携带增 强密钥 IKS和 CKS , 和 /或下一跳增强密钥 IK, s/CK' s。 其中, 安全模式命令消息还可以携带以下参数之一或其任意组合: 用户 设备安全能力、 密钥集标识、 选择的完整性算法集、 加密算法集。 其中, 下一跳增强密钥 IKVCK,s的下发是可选的, 即初始连接建立时, 可以不发送下一兆增强密钥 IK,S/CK,s , 而仅发送增强密钥 IKS/CKS。 步骤 S708: SRNC接收到安全模式命令消息后, 存储接收到的增强密钥 IKs和 CKS , 和 /或下一跳增强密钥 IK, s/CK' s。 步骤 S710: SRNC向 UE发送安全模式命令消息。 该安全模式命令消息中可以携带用 IKs计算的消息验证码, 还可以携带 以下参数之一或其任意组合: 用户设备安全能力、 密钥集标识、 选择的完整 性算法、 加密算法。 步骤 S712: UE接收到安全模式命令消息后, 存储加密算法和完整性算 法, 才艮据 AKA过程生成的传统加密密钥 CK和传统完整性密钥 IK计算中间 密钥 KASMEU (该过程也可发生于收到安全模式命令消息之前)。 本步骤中, 若 UE处还存储有有效的中间密钥 KASMEU , 则可以直接使用 该中间密钥, 而不用重新计算。 步骤 S714: UE按照和网络侧同样的密钥推导算法, 计算增强密钥 IKS 和 /或 CKS , 和下一跳增强密钥 IK, s/CK' s。 下一兆增强密钥 IK,S/CK,s的计算步 4聚为可选,即 UE可以在;^时不计算 下一跳增强密钥, 待需要时再计算。 此时, UE和 SRNC共享相同的增强的完整性密钥 IKS和 /或增强的加密 密钥 CKS, 可以使用上述密钥对双方之间的通信进行保护。 步骤 S716: UE使用 IKs验证接收到的安全模式命令消息。 步骤 S718: 如果安全模式命令消息验证成功, 则 UE向 SRNC发送安全 模式完成消息, 该消息中携带有用 IKs计算的消息验证码, 或者, UE也可以 同时用 CKS对该安全模式完成消息进行加密。 步骤 S720: SRNC用 IKS验证接收到的安全模式完成消息; 或者, 先用 CKS对该消息进行解密, 再用 IKs对接收到的安全模式完成消息进行验证。 步骤 S722: 如果安全模式完成消息验证成功, 则 SRNC向核心网节点发 送安全模式完成消息, 该消息中可以携带参数: 选择的完整性算法和 /或加密 算法。 此后, UE和 SRNC即可以根据上述密钥开始加解密操作。 优选的, 在本实施例中, 核心网节点维护一个下一跳计数器网络 NCC, 用于对计算下一兆增强密钥的次数计数, 以和用户侧密钥同步。 网络 NCC 初始值为 0; 当步骤 S704 中首次计算下一跳增强密钥时, 对应的网络 NCC 为 1。 在核心网节点维护一个网络 NCC的情况下, 安全模式命令消息中还可 以携带参数网络 NCC, 并发送给 SRNC, 由 SRNC接收和存储。 同样, UE 也维护一个下一跳计数器终端 NCC, 用于对 UE计算下一跳增强密钥的次数 计数, 以和网络侧密钥同步, 初始值为 0; 当 UE首次计算下一兆增强密钥, 此时, 对应的终端 NCC值为 1。 在以后的 SRNC迁移流程中, 当终端 NCC 与网络 NCC不等时, UE计算下一跳增强密钥并递增相对应的终端 NCC, 直 到终端 NCC等于网络 NCC, 以使 UE和目标 RNC使用的密钥一致。 使用 NCC同步网络侧和用户侧密钥, 有效保证了网络侧和用户侧密钥的一致性。 参照图 8, 示出了才艮据本实施例的一种进行 SRNC伴随迁移时的空中接 口密钥的更新流程图。本实施例中, SRNC和目标 RNC之间的消息交互需要 通过核心网节点 CNN+ ( SGSN+或 MSC+ ) 中转。 本实施例包括以下步 4聚: 步骤 S802: 源 RNC (即 SRNC ) 决策进行 SRNC迁移。 该决策的触发可以是:源 RNC收到 UE的测量报告,或者收到目标 RNC 发送的上行信令传输指示要求进行小区更新或 URA更新等。 步骤 S804: 源 RNC向核心网节点发送迁移需要消息。 若源 RNC同时连接两个 CNN+节点, 则源 RNC同时向该两个 CNN+节 点发送迁移需要消息;若源 RNC和目标 RNC位于两个不同的 CNN+节点下, 则该消息需要经过该两个 CNN+节点的中转。 迁移需要消息中携带参数: 下一跳增强的完整性密钥 IK,S, 和 /或下一跳 增强的加密密钥 CK,S。 除此之外, 还可以携带以下参数之一或任意组合: 用 户设备安全能力、 用户支持的加密算法、 用户支持的完整性算法、 选择的加 密算法、 选择的完整性算法、 与增强的空中接口密钥关联的下一跳计数器网 络 NCC。 优选地, 上述安全材料携带于源 RNC到目标 RNC的透明容器中。 可选地, 源 RNC将下一跳增强的完整性密钥 IK'S当作增强的完整性密 钥 IKS , 将下一跳增强的加密密钥 CK,当作增强的加密密钥 CKS。 源 RNC发 送的迁移需要消息中携带参数: 增强完整性密钥 IKs , 和 /或增强加密密钥 CKS。 可选地, 由于源 RNC可能不能确定目标 RNC是否支持增强的安全, 因 此源 RNC将下一跳增强密钥 IK's和 CK,S分别放置于迁移需要消息的 IK和 CK字段。 在实际的网络布局中, 支持增强安全功能的网络实体和仅支持传统安全 的网络实体并存, 当 SRNC迁移时, 就会存在 UE从一个支持增强安全功能 的 SRNC+迁移到一个不支持增强安全功能的目标 RNC的场景。而当 SRNC+ 做出迁移决策时, 很可能是不知道目标 RNC 是否支持增强安全功能的。 因 此, 当 SRNC迁移时, 密钥的更新也需要考虑对传统网络的安全支持。 步骤 S806: 核心网节点向目标 RNC发送迁移请求消息, 消息中携带有 下一跳增强密钥 IK' s和 CK' s , 和 /或网络 NCC。 本实施例中,网络侧核心网节点维护一个下一跳计数器网络 NCC,因此, 迁移请求消息中还可以携带有网络 NCC信息。 将网络 NCC信息发送给目标 RNC , 以方便地实现目标 RNC与用户之间密钥的一致性。 本步骤中, 核心网节点将 CK'S置于所述迁移请求消息的 CK字段, 和 / 或将 IK'S置于所述迁移请求消息的 IK字段, 向目标 RNC发送。 需要说明的是, 在增强的 SRNC迁移过程中, 源 RNC可以直接发送迁 移请求消息给目标 RNC, 此时, 该迁移请求消息称为增强的迁移请求消息。 增强的迁移请求消息中携带下一跳增强的完整性密钥 IK,S,和 /或下一跳增强 的加密密钥 CK,S, 源 RNC将下一跳增强密钥 1 ,8和 0^,8分别放置于迁移 需要消息的 IK和 CK字段发送给目标 RNC。 步骤 S808: 目标 RNC存储接收到的密钥。若目标 RNC支持增强的安全, 则目标 RNC将接收到的消息中的 IK字段的值作为增强密钥 IKS, CK字段的 值作为增强密钥 CKs; 若目标 RNC不支持增强的安全, 则目标 RNC将接收 到的消息中的 IK字段的值作为传统密钥 IK, CK字段的值作为传统密钥 CK。 步骤 S810:目标 RNC向核心网节点发送迁移请求确认消息。 在发送该消 息之前, 目标 RNC和核心网节点可以建立新的 Iu 载, 为 UE分配 RRC ( Radio Resource Control, 无线资源控制协议 )连接资源和无线链路等资源。 若源 RNC和目标 RNC位于两个不同的 CNN+节点( SGSN+和 /或 MSC/VLR+ ) 下, 则该消息需要经过该两个 CNN+节点的中转。 可选地, 该迁移确认消息携带有下一跳计数器网络 NCC信息。 步骤 S812: 核心网节点向源 RNC发送迁移命令消息。 可选地, 该迁移命令消息携带核心网节点的下一跳计数器网络 NCC 信 息。 步骤 S814: 源 RNC 向 UE 发送迁移消息, 即物理信道重配置消息或 UTRAN移动性信息消息。 可选地, 上述物理信道重配置消息或 UTRAN移动性信息消息中携带有 下一跳计数器网络 NCC信息。 步骤 S 816: 若 UE支持增强的安全, 则 UE按照和网络侧同样的算法更 新增强的完整性密钥 IKS和 /或加密密钥 CKS。 本步骤中, UE中设置下一跳计数器终端 NCC, UE接收网络 NCC, 判 断当前激活的增强密钥对应的终端 NCC是否等于网络 NCC, 若二者相等, 则 UE直接使用自己保存的增强完整性密钥 IKS和 /或增强加密密钥 CKS; 若 网络 NCC大于终端 NCC, 则 UE计算增强密钥 IKS/CKS并递增相对应的终 端 NCC , 直到终端 NCC等于网络 NCC。 步骤 S818: UE向目标 RNC发送物理信道重配置完成消息或 UTRAN移 动性信息确认消息。上述消息可以用更新的完整性密钥 IKs进行完整性保护, 或用更新的完整性密钥 IKS和加密密钥 CKS对上述消息同时进行完整性和加 密保护。 该消息中还可以携带用户设备安全能力参数。 步骤 S820: 目标 RNC用更新的完整性密钥 IKS和 /或加密密钥 CKS对该 消息进行安全验证。 若目标 RNC对 UE发送的消息验证成功, 则目标 RNC 向核心网节点( SGSN+或者 MSC/VLR+ )发送迁移完成消息, 该消息携带向 核心网节点指示迁移完成的信息, 可选地, 还可以有网络 NCC信息。 步骤 S822: 核心网节点基于核心网密钥和当前的增强密钥 IKS、 CKS计 算下一跳增强密钥 IK,S、 CK,S。 其中, 核心网密钥包括: 中间密钥 KASMEU, 和 /或传统密钥 IK和 /或 CK。 可选地, 若网络侧维护了一个下一跳计数器网络 NCC, 则核心网节点在 计算下一跳增强密钥 IK,S、 CK,S之前或之后递增网络 NCC。 步骤 S824: 核心网节点向目标 RNC发送迁移完成确认消息, 该消息携 带下一跳增强密钥 IK,S、 CK's, 和 /或相关联的网络 NCC。 步骤 S826: 目标 RNC存储接收到下一跳增强密钥 IK,S、 CK,S, 和 /或相 关联的网络 NCC , 以备下一次 SRNC迁移时使用。 步骤 S828: 核心网节点 ( SGSN+或者 MSC/VLR+ )释放与源 RNC之间 的 Iu接口。 图 8所示的实施例中的安全操作同样适用于釆用增强 SRNC迁移流程, 在增强 SRNC迁移流程中, 源 RNC和目标 RNC之间直接进行通信, 而不用 通过核心网节点的中转。图 8中的步骤 S804、S806所示的消息替换为源 RNC 向目标 RNC发送增强的迁移请求消息, 图 8中步骤 S810、 S812所示的消息 替换为目标 RNC向源 RNC发送增强的迁移响应消息。 图 8 中步骤 S820、 S824所示的消息分别替换为目标 RNC和核心网节点之间的增强的迁移完成 请求消息和增强的迁移完成响应消息。 除此之外, 消息中携带的参数, 及其 它步骤的操作都完全相同, 此处不再赞述。 当初始时核心网节点即将下一跳增强密钥发送给 SRNC时, 当 UE进行 第一次 SRNC迁移流程时, 即可釆用上述的密钥更新流程。 当初始时核心网 节点未将下一跳增强密钥发送给 SRNC时, 当 UE进行第一次 SRNC迁移流 程时, 按照传统 UMTS定义的 SRNC迁移的安全操作执行, 即源 RNC将当 前使用的增强密钥 IKS和 /或 CKS发送给目标 RNC, UE和目标 RNC直接使 用该当前的增强密钥。 当进行第二次 SRNC迁移时, 再釆用上述的密钥更新 流程。 在一次 SRNC迁移流程成功完成后, 目标 RNC可以发起一次 SRNC内 部的迁移。 此时, 源 RNC和目标 RNC都是同一个 SRNC, 以此达到前向安 全的目的。 参照图 9, 示出了才艮据本发明实施例的一种进行 SRNC静态迁移时增强 的空中接口密钥的更新流程图。 本实施例釆用传统的 SRNC 迁移流程, 即 SRNC和目标 RNC之间的消息交互经过核心网节点的中转的流程。需要说明 的是, 该实施例的安全操作也同样适用于增强的 SRNC 伴随迁移流程, 即 SRNC和目标 RNC之间直接进行消息交互, 而不用通过核心网节点的中转。 本实施例包括以下步 4聚: 步骤 S902: UE向 UTRAN发送 URA更新消息, 或小区更新消息, 或测 量报告消息。 步骤 S904: 目标 RNC通过接收到该 UE的 URA更新消息或小区更新消 息, 或测量报告消息, 向该 UE的源 RNC发送上行信令传输指示消息。 步骤 S906: 源 RNC (即 SRNC ) 决策进行 SRNC迁移。 步骤 S908: 源 RNC向核心网节点发送迁移需要消息。 消息中携带有下 一跳增强密钥 IK, s和 CK, s , 还可以携带网络 NCC。 步骤 S910: 核心网节点向目标 RNC发送迁移请求消息, 消息中携带有 下一跳增强密钥 IK' s和 CK' s , 和 /或网络 NCC。 本实施例中,网络侧核心网节点维护一个下一跳计数器网络 NCC,因此, 迁移请求消息中还可以携带有网络 NCC信息。 步骤 S912: 目标 RNC存储接收到的密钥。 步骤 S914: 目标 RNC向核心网节点发送迁移请求确认消息。 在发送该 消息之前, 目标 RNC和核心网节点可以建立新的 Iu 载, 为 UE分配 RRC ( Radio Resource Control, 无线资源控制协议 )连接资源和无线链路等资源。 可选地, 该迁移确认消息携带有下一跳计数器网络 NCC信息。 步骤 S916: 核心网节点向源 RNC发送迁移命令消息。 可选地, 该迁移命令消息携带核心网节点的下一跳计数器网络 NCC 信 息。 步骤 S918: 源 RNC向目标 RNC发送迁移提交消息。 步骤 S920: 目标 RNC向核心网节点发送迁移检测消息。 步 4聚 S922: 目标 RNC向 UE发送小区更新确认消息, 或 URA更新确认 消息, 或 RAN移动性信息消息。 该消息携带目标 RNC的安全能力的指示信 息。 可选地, 上述消息携带有下一跳计数器网络 NCC信息。 步骤 S924: 若 UE支持增强的安全, 则 UE按照和网络侧同样的算法更 新增强的完整性密钥 IKS和 /或加密密钥 CKS。 本步骤中, UE中设置下一跳计数器终端 NCC, UE接收网络 NCC, 判 断当前激活的增强密钥对应的终端 NCC是否等于网络 NCC, 若二者相等, 则 UE直接使用自己保存的增强完整性密钥 IKS和 /或增强加密密钥 CKS; 若 网络 NCC大于终端 NCC, 则 UE计算增强密钥 IKS/CKS并递增相对应的终 端 NCC, 直到终端 NCC等于网络 NCC。 步骤 S926: UE向目标 RNC发送 UTRAN移动性信息确认消息或 RAN 移动性信息确认消息。 上述消息可以用更新的完整性密钥 IKs进行完整性保 护, 或用更新的完整性密钥 IKS和加密密钥 CKS对上述消息同时进行完整性 和加密保护。 该消息中还可以携带用户设备安全能力参数。 步骤 S928: 目标 RNC用更新的完整性密钥 IKS和 /或加密密钥 CKS对该 消息进行安全验证。 若目标 RNC对 UE发送的消息验证成功, 则目标 RNC 向核心网节点( SGSN+或者 MSC/VLR+ )发送迁移完成消息, 该消息携带向 核心网节点指示迁移完成的信息, 还可以有网络 NCC信息。 步骤 S930: 核心网节点基于核心网密钥和当前的增强密钥 IKS、 CKS计 算下一跳增强密钥 IK,S、 CK,S。 其中, 核心网密钥包括: 中间密钥 KASMEU, 和 /或, 传统密钥 IK和 /或 CK。 可选地, 若网络侧维护了一个下一跳计数器网络 NCC, 则核心网节点在 计算下一跳增强密钥 IK,S、 CK,S之前或之后递增网络 NCC。 步骤 S932: 核心网节点向目标 RNC发送迁移完成确认消息, 该消息携 带下一跳增强密钥 IK,S、 CK's, 和 /或相关联的网络 NCC。 步骤 S934: 目标 RNC存储接收到的下一跳增强密钥 IK,S、 CK,S, 和 / 或相关联的网络 NCC , 以备下一次 SRNC迁移时使用。 步骤 S936: 核心网节点( SGSN+或者 MSC + )释放与源 RNC之间的 Iu 接口。 本步骤核心网节点 ( SGSN+或者 MSC/VLR+ )释放与源 RNC之间的 Iu 接口也可发生于步骤 S930之前。 需要说明的是, 上述所有实施例也适用于 SRNC内部的迁移, 即源 RNC 和目标 RNC是同一个 RNC的场景。 参照图 10, 示出了根据本发明实施例的一种核心网节点的结构框图, 包 括: 接收模块 1002 , 设置为接收目标 RNC的迁移完成指示消息, 该迁移完 成指示消息用于指示 UE从源 RNC迁移到目标 RNC成功; 计算模块 1004 , 设置为在接收模块 1002接收到迁移完成指示消息后, 使用中间密钥和 /或传 统密钥, 以及当前增强密钥计算下一跳增强密钥; 发送模块 1006 , 设置为将 下一兆增强密钥发送给目标 RNC。 优选的, 核心网节点还包括: 第一初始模块, 设置为在用户设备 UE首 次附着到网络, 或者 UE从空闲模式转换到连接模式, 或者 UE从演进的通 用陆地无线接入网络 E-UTRAN或全球移动通信系统 GSM网络移动到增强 的通用陆地无线接入网络 UTRAN, 或者 UE从传统的 UTRAN移动到增强 的 UTRAN时, 根据中间密钥计算当前增强密钥; 并发送当前增强密钥给服 务 SRNC。 优选的, 第一初始模块还才艮据中间密钥和当前增强密钥计算下一 跳增强密钥, 或者, 根据存储的传统密钥和当前增强密钥计算下一跳增强密 钥, 或者, 才艮据存储的传统密钥和 /或中间密钥, 以及当前增强密钥计算下一 兆增强密钥。 优选的, 核心网节点还包括: 第二初始模块, 设置为在 UE首次附着到 网络, 或者 UE从空闲模式转换到连接模式, 或者 UE从演进的通用陆地无 线接入网络 E-UTRAN或全球移动通信系统 GSM网络移动到增强的通用陆 地无线接入网络 UTRAN, 或者 UE从传统的 UTRAN移动到增强的 UTRAN 时, 核心网节点才艮据中间密钥计算当前增强密钥; 核心网节点才艮据当前增强 密钥计算下一跳增强密钥; 核心网节点发送下一跳增强密钥给服务 SRNC。 优选的, 第二初始模块才艮据中间密钥和当前增强密钥计算下一跳增强密钥, 或者, 根据存储的传统密钥和当前增强密钥计算下一跳增强密钥, 或者, 根 据存储的传统密钥和 /或中间密钥, 以及当前增强密钥计算下一跳增强密钥。 优选的, 本实施例的核心网节点还可以包括: 下一跳计数器网络 NCC, 设置为对核心网节点计算下一跳增强密钥的次数计数。 优选的, 接收模块 1002还设置为在接收目标 RNC的迁移完成指示消息 之前, 接收源 RNC发送的迁移需要消息, 该迁移需要消息包括源 RNC的下 一跳 CK'S和 /或 IK'S; 发送模块 1006还设置为向目标 RNC发送迁移请求消 息, 该迁移请求消息包括源 RNC发送的下一跳 CK's和 /或 IK'S。 优选的, 迁移需要消息和迁移请求消息均还包括网络 NCC指示的信息。 参照图 11 , 示出了才艮据本发明实施例的一种无线接入系统的结构框图, 包括: 源 RNC1102、 目标 RNC1104、 核心网节点 1106和用户设备 UE1108。 其中,核心网节点 1106包括:接收模块 11062,设置为接收目标 RNC1104 的迁移完成指示消息,该迁移完成指示消息指示 UE1108从源 RNC1102迁移 到目标 RNC1104成功; 计算模块 11064, 设置为在接收模块 11062接收到迁 移完成指示消息后, 使用中间密钥和 /或传统密钥, 以及当前增强密钥计算下 一兆增强密钥; 发送模块 11066 , 设置为将下一兆增强密钥发送给目标 RNC1104。 其中, 源 RNC1102 , 设置为向核心网节点 1106发送迁移需要消息, 该 迁移需要消息中携带有源 RNC1102的下一兆增强密钥;接收核心网节点 1106 的迁移命令, 并向 UE1108发送迁移消息。 其中, 目标 RNC1104, 设置为接收核心网节点 1106发送的迁移请求消 息, 该迁移请求消息中携带有源 RNC1102 发送的下一跳增强密钥; 以及向 核心网节点 1106发送迁移完成指示消息, 接收核心网节点 1106的迁移完成 确认消息, 该迁移完成确认消息包括目标 RNC1104的下一兆增强密钥。 其中, UE1108, 设置为才艮据源 RNC1102发送的迁移消息同步自身的增 强密钥。 优选的, 核心网节点 1106还包括: 下一跳计数器网络 NCC, 设置为对 核心网节点 1106计算下一兆增强密钥的次数计数。 优选的, UE1108 包括: 下一跳计数器终端 NCC, 设置为对 UE1108计 算下一跳增强密钥的次数计数。 优选的, UE1108还包括: 判断模块 11082 , 设置为判断终端 NCC是否 等于网络 NCC; 确定模块 11084,设置为若判断模块 11082的判断结果为是, 则使用终端 NCC对应的预先存储的 CKS和 /或 IKS; 否定模块 11086,设置为 若判断模块 11082的判断结果为否, 则计算 CKS和 /或 IKS , 并递增相对应的 终端 NCC , 直到终端 NCC等于网络 NCC。 参照图 12,示出了才艮据本发明实施例的一种进行 SRNC伴随迁移时的空 中接口密钥的更新流程图。 本实施例中, SRNC和目标 RNC之间的消息交互 不需要通过核心网节点 CNN+ ( SGSN+或 MSC+ ) 中转, 釆用增强的 SRNS 迁移流程。 本实施例包括以下步 4聚: 步骤 S 1202: 源 RNC (即 SRNC ) 决策进行 SRNC迁移。 该决策的触发可以是:源 RNC收到 UE的测量报告,或者收到目标 RNC 发送的上行信令传输指示要求进行小区更新或 URA更新等。 步骤 S 1204: 源 RNC向目标 RNC发送增强的迁移请求消息, 消息中携 带有下一跳增强密钥 IK, s和 CK, s , 和 /或网络 NCC。 增强的迁移请求消息中携带参数: 下一跳增强的完整性密钥 IK,S , 和 / 或下一跳增强的加密密钥 CK,S。 除此之外, 还可以携带以下参数之一或任意 组合: 用户设备安全能力、 用户支持的加密算法、 用户支持的完整性算法、 选择的加密算法、 选择的完整性算法、 与增强的空中接口密钥关联的下一跳 计数器网络 NCC。 优选地, 上述安全材料携带于源 RNC到目标 RNC的透明容器中。 可选地, 源 RNC将下一跳增强的完整性密钥 IK'S当作增强的完整性密 钥 IKS , 将下一跳增强的加密密钥 CK, s当作增强的加密密钥 CKS。 源 RNC 发送的迁移需要消息中携带参数: 增强完整性密钥 IKs, 和 /或增强加密密钥 CKS。 可选地, 由于源 RNC可能不能确定目标 RNC是否支持增强的安全, 因 此源 RNC将下一跳增强密钥 IK,S和 CK,S分别放置于增强的迁移请求消息的 IK和 CK字段。 在实际的网络布局中, 支持增强安全功能的网络实体和仅支持传统安全 的网络实体并存, 当 SRNC迁移时, 就会存在 UE从一个支持增强安全功能 的 SRNC+迁移到一个不支持增强安全功能的目标 RNC的场景。而当 SRNC+ 做出迁移决策时, 很可能是不知道目标 RNC 是否支持增强安全功能的。 因 此, 当 SRNC迁移时, 密钥的更新也需要考虑对传统网络的安全支持。 步骤 S 1206: 目标 RNC存储接收到的密钥。 若目标 RNC支持增强的安 全, 则目标 RNC将接收到的消息中的 IK字段的值作为增强密钥 IKS, CK字 段的值作为增强密钥 CKs; 若目标 RNC不支持增强的安全, 则目标 RNC将 接收到的消息中的 IK字段的值作为传统密钥 IK, CK字段的值作为传统密 钥 CK。 步骤 S 1208:目标 RNC向源 RNC发送增强的迁移响应消息。在发送该消 息之前, 目标 RNC为 UE分配 RRC ( Radio Resource Control, 无线资源控制 协议) 连接资源和无线链路等资源。 可选地, 该增强的迁移响应消息携带有下一跳计数器网络 NCC信息。 步 4聚 S 1210: 源 RNC 向 UE发送迁移消息, 即物理信道重配置消息或 UTRAN移动性信息消息。 可选地, 上述物理信道重配置消息或 UTRAN移动性信息消息中携带有 下一跳计数器网络 NCC信息。 步骤 S 1212: 若 UE支持增强的安全, 则 UE按照和网络侧同样的算法更 新增强的完整性密钥 IKS和 /或加密密钥 CKS。 本步骤中, UE中设置下一跳计数器终端 NCC, UE接收网络 NCC, 判 断当前激活的增强密钥对应的终端 NCC是否等于网络 NCC, 若二者相等, 则 UE直接使用自己保存的增强完整性密钥 IKu和 /或增强加密密钥 CKu; 若 网络 NCC大于终端 NCC, 则 UE计算增强密钥 IKu/CKu并递增相对应的终 端 NCC , 直到终端 NCC等于网络 NCC。 步骤 S 1214: UE向目标 RNC发送物理信道重配置完成消息或 UTRAN 移动性信息确认消息。 上述消息可以用更新的完整性密钥 IKu进行完整性保 护, 或用更新的完整性密钥 IKS和加密密钥 CKS对上述消息同时进行完整性 和加密保护。 该消息中还可以携带用户设备安全能力参数。 步骤 S 1216: 目标 RNC用更新的完整性密钥 IKS和 /或加密密钥 CKS对 该消息进行安全验证。若目标 RNC对 UE发送的消息验证成功,则目标 RNC 向核心网节点( SGSN+或者 MSC/VLR+ )发送增强的迁移完成请求消息, 该 消息携带向核心网节点指示迁移完成的信息, 可选地, 还可以有网络 NCC 信息。 步骤 S 1218: 核心网节点基于核心网密钥和当前的增强密钥 IKS、 CKS 计算下一跳增强密钥 IK,S、 CK,S。 其中,核心网密钥包括: 中间密钥 KASMEU, 和 /或, 传统密钥 IK和 /或 CK。 可选地, 若网络侧维护了一个下一跳计数器网络 NCC, 则核心网节点在 计算下一跳增强密钥 IK,S、 CK,S之前或之后递增网络 NCC。 步骤 S 1220: 核心网节点向目标 RNC发送增强的迁移完成请求消息, 该 消息携带下一跳增强密钥 IK,S、 C'Ks, 和 /或相关联的网络 NCC。 步骤 S 1222: 目标 RNC存储接收到的下一跳增强密钥 IK,S、 CK,S, 和 / 或相关联的网络 NCC , 以备下一次 SRNC迁移时使用。 步骤 S 1224: 核心网节点 ( SGSN+或者 MSC/VLR+ )释放与源 RNC之 间的 Iu接口。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种空中接口密钥的更新方法, 包括:
核心网节点接收到目标无线网络控制器 RNC的迁移完成指示消息, 所述迁移完成指示消息用于指示用户设备 UE从源 RNC迁移到所述目标 RNC成功;
使用密钥参数计算下一跳增强密钥, 所述密钥参数包括中间密钥和 当前增强密钥;
将所述下一跳增强密钥发送给所述目标 RNC。
2. 根据权利要求 1所述的方法, 其中, 所述密钥参数还包括传统密钥。
3. 根据权利要求 1所述的方法, 其中, 所述方法还包括:
所述核心网节点在用户设备 UE首次附着到网络, 或者所述 UE从 空闲模式转换到连接模式, 或者所述 UE从演进的通用陆地无线接入网 络 E-UTRAN或全球移动通信系统 GSM网络移动到增强的通用陆地无线 接入网络 UTRAN,或者所述 UE从传统的 UTRAN移动到增强的 UTRAN 时, 所述核心网节点才艮据所述中间密钥计算所述当前增强密钥;
所述核心网节点发送所述当前增强密钥给服务无线网络控制器 SRNC。
4. 才艮据权利要求 3所述的方法, 其中, 在所述核心网节点才艮据所述中间密 钥计算所述当前增强密钥的步骤之后, 还包括: 所述核心网节点才艮据所述中间密钥和所述当前增强密钥计算初始下 一兆增强密钥;
或者,
所述核心网节点根据存储的传统密钥和所述当前增强密钥计算所述 初始下一兆增强密钥; 或者,
所述核心网节点才艮据所述存储的传统密钥、 所述中间密钥和所述当 前增强密钥计算所述初始下一兆增强密钥。
5. 根据权利要求 1所述的方法, 其中, 所述方法还包括:
所述核心网节点在用户设备 UE首次附着到网络, 或者所述 UE从 空闲模式转换到连接模式, 或者所述 UE从演进的通用陆地无线接入网 络 E-UTRAN或全球移动通信系统 GSM网络移动到增强的通用陆地无线 接入网络 UTRAN,或者所述 UE从传统的 UTRAN移动到增强的 UTRAN 时, 所述核心网节点才艮据所述中间密钥计算所述当前增强密钥;
所述核心网节点才艮据所述当前增强密钥计算初始下一跳增强密钥; 所述核心网节点发送所述当前增强密钥和 /或初始下一兆增强密钥 给月艮务无线网络控制器 SRNC。
6. 根据权利要求 5所述的方法, 其中, 所述核心网节点根据所述当前增强 密钥计算初始下一兆增强密钥的步 4聚包括: 所述核心网节点才艮据所述中间密钥和所述当前增强密钥计算所述初 始下一兆增强密钥; 或者,
所述核心网节点根据存储的传统密钥和所述当前增强密钥计算所述 初始下一兆增强密钥; 或者,
所述核心网节点才艮据所述存储的传统密钥、 所述中间密钥和所述当 前增强密钥计算所述初始下一兆增强密钥。
7. 根据权利要求 1所述的方法, 其中, 在所述核心网节点中设置下一跳计 数器网络 NCC, 对所述核心网节点计算下一跳增强密钥的次数计数。
8. 根据权利要求 7所述的方法, 其中, 在所述核心网节点接收到目标 RNC 的迁移完成指示消息步骤之前, 还包括:
所述源 RNC向所述核心网节点发送迁移需要消息 ,所述迁移需要消 息包括所述源 RNC的下一兆增强加密密钥 CKS和 /或下一兆增强完整性 密钥 IKS;
所述核心网节点接收所述迁移需要消息,并向所述目标 RNC发送迁 移请求消息, 所述迁移请求消息包括所述源 RNC发送的下一跳 CKS和 / 或 IKS
. 根据权利要求 8所述的方法, 其中, 所述迁移需要消息和迁移请求消息 均还包括所述网络 NCC指示的信息。
10. 根据权利要求 8所述的方法, 其中, 在所述核心网节点向所述目标 RNC 发送迁移请求消息的步骤之后, 还包括:
所述核心网节点接收所述目标 RNC的迁移请求确认消息,并向所述 源 RNC发送迁移命令消息, 所述迁移命令消息包括所述网络 NCC指示 的信息;
所述源 RNC接收所述迁移命令消息,向用户设备 UE发送迁移消息, 所述迁移消息包括所述网络 NCC指示的信息。
11. 根据权利要求 10所述的方法, 其中, 所述源 RNC接收所述迁移命令消 息, 向所述 UE发送迁移消息步骤之后, 还包括:
所述 UE接收所述迁移消息, 判断当前激活的增强密钥对应的下一 跳计数器终端 NCC是否等于所述网络 NCC;
若是, 则所述 UE使用所述终端 NCC对应的预先存储的所述 IKS和 /或 CKS;
若否, 则所述 UE计算所述 IKs和 /或 CKS , 并递增相对应的所述终 端 NCC, 直到所述终端 NCC等于所述网络 NCC。
12. 根据权利要求 1至 11任一项所述的方法,其中,所述源 RNC和目标 RNC 为同一个 RNC。
13. 根据权利要求 1至 11任一项所述的方法, 其中, 所述核心网节点使用四 层安全密钥层次结构, 所述四层安全密钥层次结构包括才艮密钥层、 传统 密钥层、 中间密钥层和增强密钥层。
14. 根据权利要求 3或 4所述的方法, 其中, 在所述核心网节点发送所述当 前增强密钥给所述 SRNC步骤之后, 还包括:
所述 SRNC接收并存储所述当前增强密钥, 并向所述 UE发送安全 模式命令消息;
所述 UE接收所述安全模式命令消息, 使用所述中间密钥计算当前 增强密钥。
15. 居权利要求 14所述的方法, 其中, 在所述 UE接收所述安全模式命令 消息, 使用所述中间密钥计算当前增强密钥步骤之后, 还包括:
所述 UE使用所述中间密钥和当前增强密钥计算下一兆增强密钥。
16. 根据权利要求 5或 6所述的方法, 其中, 在所述核心网节点发送所述当 前增强密钥和 /或初始下一跳增强密钥给所述 SRNC步骤之后, 还包括: 所述 SRNC 接收并存储所述当前增强密钥和 /或初始下一兆增强密 钥, 并向所述 UE发送安全模式命令消息;
所述 UE接收所述安全模式命令消息, 使用所述中间密钥计算当前 增强密钥。
17. 居权利要求 16所述的方法, 其中, 在所述 UE接收所述安全模式命令 消息, 使用所述中间密钥计算当前增强密钥步骤之后, 还包括:
所述 UE使用所述中间密钥和当前增强密钥计算下一兆增强密钥。
18. 根据权利要求 1所述的方法, 其中, 在所述核心网节点接收到目标 RNC 的迁移完成指示消息步骤之前, 还包括:
所述源 RNC向所述目标 RNC发送增强的迁移请求消息, 所述增强 的迁移请求消息包括所述源 RNC发送的下一跳增强加密密钥 CKS和 /或 下一兆增强完整性密钥 IKS
19. 根据权利要求 18所述的方法, 其中, 在所述源 RNC 向所述目标 RNC 发送增强的迁移请求消息步骤之后, 还包括:
所述目标 RNC接收所述增强的迁移请求消息, 使用所述源 RNC发 送的下一跳增强加密密钥 CKS和 /或下一跳增强完整性密钥 IKS更新自身 的密钥。
20. 一种空中接口密钥的更新方法, 包括:
核心网节点接收到目标无线网络控制器 RNC的迁移完成指示消息, 所述迁移完成指示消息用于指示用户设备 UE从源 RNC迁移到所述目标 RNC成功, 所述核心网节点使用四层安全密钥层次结构, 所述四层安全 密钥层次结构包括才艮密钥层、 传统密钥层、 中间密钥层和增强密钥层; 使用密钥参数计算下一兆增强密钥, 所述密钥参数包括所述传统密 钥层的传统密钥和所述增强密钥层的当前增强密钥; 将所述下一跳增强密钥发送给所述目标 RNC。
21. 根据权利要求 20所述的方法, 其中, 所述密钥参数还包括所述中间密钥 层的中间密钥。
22. 一种核心网节点, 包括:
接收模块,设置为接收目标无线网络控制器 RNC的迁移完成指示消 息,所述迁移完成指示消息用于指示用户设备 UE从源 RNC迁移到所述 目标 RNC成功;
计算模块, 设置为使用密钥参数计算下一跳增强密钥, 所述密钥参 数包括中间密钥和当前增强密钥;
发送模块, 设置为将所述下一跳增强密钥发送给所述目标 RNC。
23. 根据权利要求 22所述的核心网节点, 其中, 所述密钥参数还包括传统密 钥。
24. 一种无线接入系统, 包括源无线网络控制器 RNC、 目标 RNC、 核心网 节点和用户设备 UE, 其中, 所述核心网节点包括:
接收模块,设置为接收所述目标 RNC的迁移完成指示消息, 所述迁 移完成指示消息指示用户设备 UE从源 RNC迁移到所述目标 RNC成功; 计算模块, 设置为使用密钥参数计算下一跳增强密钥, 所述密钥参 数包括中间密钥和当前增强密钥;
发送模块, 设置为将所述下一跳增强密钥发送给所述目标 RNC。
25. 才艮据权利要求 24所述的无线接入系统, 其中, 所述密钥参数还包括传统 密钥。
PCT/CN2011/072182 2010-07-23 2011-03-25 空中接口密钥的更新方法、核心网节点及无线接入系统 WO2012009981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010238641.2 2010-07-23
CN201010238641.2A CN101902736B (zh) 2010-07-23 2010-07-23 空中接口密钥的更新方法、核心网节点及无线接入系统

Publications (1)

Publication Number Publication Date
WO2012009981A1 true WO2012009981A1 (zh) 2012-01-26

Family

ID=43227860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072182 WO2012009981A1 (zh) 2010-07-23 2011-03-25 空中接口密钥的更新方法、核心网节点及无线接入系统

Country Status (2)

Country Link
CN (1) CN101902736B (zh)
WO (1) WO2012009981A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902736B (zh) * 2010-07-23 2018-01-23 江苏悦达数梦技术有限公司 空中接口密钥的更新方法、核心网节点及无线接入系统
CN101909292B (zh) 2010-08-18 2016-04-13 中兴通讯股份有限公司 空中接口密钥的更新方法、核心网节点及用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841810A (zh) * 2010-06-07 2010-09-22 中兴通讯股份有限公司 空中接口密钥的更新方法、核心网节点及无线接入系统
CN101902736A (zh) * 2010-07-23 2010-12-01 中兴通讯股份有限公司 空中接口密钥的更新方法、核心网节点及无线接入系统
CN101909292A (zh) * 2010-08-18 2010-12-08 中兴通讯股份有限公司 空中接口密钥的更新方法、核心网节点及用户设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128033B (zh) * 2006-08-18 2011-04-20 中兴通讯股份有限公司 重定位中实现加密算法改变的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841810A (zh) * 2010-06-07 2010-09-22 中兴通讯股份有限公司 空中接口密钥的更新方法、核心网节点及无线接入系统
CN101902736A (zh) * 2010-07-23 2010-12-01 中兴通讯股份有限公司 空中接口密钥的更新方法、核心网节点及无线接入系统
CN101909292A (zh) * 2010-08-18 2010-12-08 中兴通讯股份有限公司 空中接口密钥的更新方法、核心网节点及用户设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED.: "Key hierarchy for solution 2.", 3GPP TSG-SA3 (SECURITY) SA3#60, 21 June 2010 (2010-06-21), pages S3 - 100861, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgsa/WG3Security/TSGS360Montreal/Docs> *
QUALCOMM INCORPORATED.: "Proposal for UTRAN KH solution 2 interworking with GERAN.", 3GPPTSG-SA3 (SECURITY) SA3#60, S3-100854, 21 June 2010 (2010-06-21), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgsa/WG3Security/TSGS360Montreal/Docs> *
QUALCOMM INCORPORATED.: "Re-visiting the desired security properties in UTRAN Key Hierarchy.", 3GPP TSG-SA3 (SECURITY) SA3#59, S3-100559., 19 April 2010 (2010-04-19), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgsa/WG3Security/TSGS359Lisbon/Docs> *
ZTE CORPORATION.: "Key update during SRNS Relocation.", 3GPP TSG-SA3 (SECURITY) SA3#60, S3-100821., 21 June 2010 (2010-06-21), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgsa/WG3Security/TSGS360Montreal/Docs> *

Also Published As

Publication number Publication date
CN101902736B (zh) 2018-01-23
CN101902736A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
CN101841810B (zh) 空中接口密钥的更新方法、核心网节点及无线接入系统
US8145195B2 (en) Mobility related control signalling authentication in mobile communications system
KR101395204B1 (ko) Lte 모바일 유닛에서의 비접속 계층(nas) 보안을 가능하게 하는 방법 및 장치
TWI338489B (en) Asymmetric cryptography for wireless systems
CN109417740B (zh) 保持相同无线终端的切换期间的安全密钥使用
JP3968073B2 (ja) ワイヤレス通信機器にセキュリティstart値を記憶させる方法
US20080039096A1 (en) Apparatus, method and computer program product providing secure distributed HO signaling for 3.9G with secure U-plane location update from source eNB
KR20100114927A (ko) 무선 통신 시스템에서 핸드오버를 실행하는 동안 키 관리를 실행하기 위한 시스템 및 방법
WO2011085682A1 (zh) 一种空中接口密钥的更新方法及系统
JP2011526097A (ja) トラフィック暗号化キー生成方法及び更新方法
JP5770288B2 (ja) エアーインターフェースキーの更新方法、コアネットワークノード及びユーザ設備
WO2013075417A1 (zh) 切换过程中密钥生成方法及系统
JP2011515904A (ja) ワイヤレス通信システムにおいてハンドオーバ、またはハンドオーバ実行中の鍵管理を実行するシステムおよび方法
WO2011131063A1 (zh) 一种建立增强的空口密钥的方法及系统
WO2011153855A1 (zh) 空中接口密钥的更新、生成方法及无线接入系统
CN113170369A (zh) 用于在系统间改变期间的安全上下文处理的方法和装置
WO2011143977A1 (zh) 终端移动到增强通用陆地无线接入网络(utran)时建立增强密钥的方法及系统
WO2011095077A1 (zh) 无线通信系统中管理空口映射密钥的方法、系统和装置
WO2012009981A1 (zh) 空中接口密钥的更新方法、核心网节点及无线接入系统
WO2011127775A1 (zh) 空中接口密钥的更新方法及无线接入系统
WO2012022186A1 (zh) 空中接口密钥的更新方法、核心网节点、ue及无线接入系统
WO2022198671A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809170

Country of ref document: EP

Kind code of ref document: A1