WO2011143977A1 - 终端移动到增强通用陆地无线接入网络(utran)时建立增强密钥的方法及系统 - Google Patents

终端移动到增强通用陆地无线接入网络(utran)时建立增强密钥的方法及系统 Download PDF

Info

Publication number
WO2011143977A1
WO2011143977A1 PCT/CN2011/072439 CN2011072439W WO2011143977A1 WO 2011143977 A1 WO2011143977 A1 WO 2011143977A1 CN 2011072439 W CN2011072439 W CN 2011072439W WO 2011143977 A1 WO2011143977 A1 WO 2011143977A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
enhanced
terminal
iku
cku
Prior art date
Application number
PCT/CN2011/072439
Other languages
English (en)
French (fr)
Inventor
冯成燕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011143977A1 publication Critical patent/WO2011143977A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a wireless communication system for establishing a enhanced secret when a terminal moves from an evolved universal terrestrial radio access network (E-UTRAN) to an enhanced universal terrestrial radio access network (UTRAN).
  • E-UTRAN evolved universal terrestrial radio access network
  • UTRAN enhanced universal terrestrial radio access network
  • 3GPP (3rd Generation Partnership Project, third-generation partner ⁇ 'J) uses Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (Reference) in Release7 , referred to as MIMO technology, completes the future evolution path HSPA+ of HSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access).
  • HSPA+ is an enhancement technology for 3GPP HSPA (including HSDPA and HSUPA), providing HSPA operators with a low-complexity, low-cost path from HSPA to LTE.
  • HSPA+ improves peak data rate and spectral efficiency by combining high-order modulation (such as downlink 64QAM (Quadature Amplitude Modulation) and uplink 16QAM), MIMO, and high-end modulation combined with MIMO.
  • high-order modulation such as downlink 64QAM (Quadature Amplitude Modulation) and uplink 16QAM
  • MIMO Multiple Access Multimedia Subsystem
  • high-end modulation combined with MIMO.
  • HSPA+ also uses a series of other enhancement technologies to increase user capacity, reduce latency, reduce terminal power consumption, better support voice over IP (VOIP) and enhance the system.
  • Targets such as multicast/broadcast capabilities.
  • HSPA+ decentralizes the function of Radio Network Controller (RNC) to the base station Node B (Node B) on the system architecture to form a completely flat wireless access network architecture, as shown in Figure 1. Show. At this time, the Node B integrated with the full RNC function is called Evolved HSPA Node B, or simply called the enhanced node Node (Node B+ ).
  • SGSN+ is an SGSN (ServICE GPRS SUPPORT NODE, Serving GPRS Support Node; GPRS: General Packet Radio System) that has been upgraded to support HSPA+ functions.
  • ME+ is a user terminal device (also called UE+) that can support HSPA+ function.
  • each Node B+ becomes a node equivalent to the RNC.
  • the Iu-PS interface can be directly connected to the PS CN (Core Network), and the Iu-PS user plane is terminated at the SGSN.
  • the network supports the direct tunnel function, and the Iu-PS user plane can also be terminated at the GGSN (Gateway GPRS Support Node).
  • the communication between the evolved HSPA Node Bs is performed through the lur interface.
  • Node B+ has the ability to independently network and support full mobility features, including inter-system and intra-system switching.
  • Node B+ can be thought of as a combination of Node B and RNC. Both are a physical entity, but are still two different logical entities. Therefore, the Node B+ supporting the HSPA+ enhanced key hierarchy in the present invention can also be equivalent to the RNC upgraded in the UMTS. To distinguish, we can call it RNC+.
  • K Key
  • CK Chiping Key
  • IK Intelligent Security Key
  • K is the root key stored in the AuC (Authentication Center) and USIM (UNIVERSAL SUBSCRIBER IDENTITY MODULE).
  • the CK and IK are the AKA (Authentication and Key Agreement) of the user equipment and the HSS. Authentication and key agreement)
  • the secret key and integrity key calculated by K.
  • RNC uses CK and IK to encrypt and protect data.
  • HSPA+ introduces a key hierarchy similar to E-UTRAN (Evolved Universal Terrestrial Radio Access Network), namely UTRAN Key Hierarchy.
  • CKu also known as CK S
  • IKu also known as IK S
  • CKu is used to encrypt user plane data and control plane signaling
  • IKu is used to perform integrity protection on control plane signaling.
  • LTE/SAE is an evolution technology of 3GPP for UMTS, which supports a downlink rate of 100 Mbps and an uplink of 50 Mbps in a 20 MHz spectrum bandwidth.
  • the network of the LTE/SAE is composed of a User Equipment (UE), an access network, and a core network.
  • UE User Equipment
  • the entire LTE architecture is shown in Figure 3.
  • the base station device is an evolved Node-B (eNB), and is mainly responsible for wireless communication, wireless communication management, and mobility context management.
  • the core network includes a Mobility Management Entity (MME), which is responsible for control plane-related tasks such as mobility management, non-access stratum signaling processing, and user security mode management.
  • MME Mobility Management Entity
  • the source MME When the user moves from E-UTRAN to UTRAN, the source MME generates a mapped legacy key IK', CK' according to the key KASME in LTE.
  • the traditional key derivation of the mapping is as follows:
  • IK' l l CK' KDF (KASME, downlink NAS COUNT)
  • KDF is a security algorithm defined by 3GPP, and the specific definition can refer to the relevant 3GPP specifications.
  • KASME is a key generated by the HSS based on CK and IK, and is sent to the MME in the AKA (Authentication and Key Agreement) process to derive the NAS (non-access stratum) layer key and the eNB.
  • AS access layer
  • NAS COUNT is the NAS count
  • the NAS COUNT is 24 bits long and is maintained independently by the UE and the MME. When a successful AKA is run and a new KASME is generated, the NAS COUNT is initially 0.
  • the source MME sends the derived mapped legacy keys IK' and CK' to the core network node SGSN of the target network.
  • the target SGSN protects the communication between the user and the network using the mapped legacy key.
  • the technical problem to be solved by the present invention is to provide a terminal moving from an evolved network E-UTRAN to A method of establishing an enhanced air interface key when the UTRAN is enhanced ensures that the terminal can perform normal communication securely in the enhanced UTRAN.
  • the present invention provides a method for establishing an enhanced key when a terminal moves to an enhanced UTRAN, including:
  • the step of the SGSN+ deriving the enhanced key used in the enhanced UTRAN according to the mapped legacy key obtained from the source MME comprises:
  • the target SGSN+ obtains the encryption key CK' and the integrity key ⁇ ' in the mapped legacy key from the source mobility management entity;
  • the target SGSN+ derives the encryption key CCu and the integrity key IKu in the enhanced key by using CK, and ⁇ according to the key algorithm
  • the enhanced key CKu and IKu are sent to the key distribution message through the key distribution message.
  • the step of deriving the enhanced key used in the enhanced UTRAN according to the traditional key of the mapping and the same algorithm as the target SGSN+ includes: The terminal derives and stores the enhanced keys CKu, IKu used in the enhanced UTRAN using the mapped legacy keys CK' and IK' according to the key algorithm.
  • the step of deriving the enhanced key used in the enhanced UTRAN according to the mapped legacy key obtained from the source MME comprises: the target SGSN+ is a traditional secret obtained from the source mobility management entity.
  • the encryption key CK in the key, and the integrity key IK treat the mapped traditional integrity key IK' as a traditional integrity key, and the mapped traditional encryption key CK' as a traditional encryption key. CK;
  • the target SGSN+ derives the encryption key CCu and the integrity key IKu in the enhanced key by using the traditional key CK and ⁇ according to the key algorithm, and sends the enhanced key CKu, IKu through the key distribution message.
  • RNC+ radio network controller
  • the step of deriving the enhanced key used in the enhanced UTRAN according to the traditional key of the mapping and the same algorithm as the target SGSN+ includes: The terminal regards the mapped traditional integrity key IK' as the traditional integrity key IK, and the mapped traditional encryption key CK' as the traditional encryption key CK; derives from the traditional key CK and IK according to the key algorithm The encryption key CKu and the integrity key IKu in the enhanced key are stored.
  • the key distribution message is a migration request message.
  • the method further includes:
  • the target SGSN+ After deriving the encryption key CCu and the integrity key IKu in the enhanced key, the target SGSN+ derives the deformation enhanced key CKu* according to the mapped traditional key CK', IK' and the enhanced keys CKu, IKu.
  • the deformation enhancement key CKu*, IKu* transmitting the deformation enhancement key CKu*, IKu* to the target radio network controller (RNC+) in the enhanced UTRAN through the migration request message, and storing by the target RNC+; the terminal deriving the enhanced secret After the encryption key CKu and the integrity key IKu in the key, the deformation enhancement keys CKu*, IKu* are derived and stored according to the mapped traditional keys CK', IK' and the enhanced keys CKu, IKu; The terminal and the target SGSN+ perform SRNC migration within the enhanced UTRAN network using the deformation enhanced keys CCu*, IKu*.
  • the method further includes: the SGSN+ and the terminal in the active state, when deriving the deformation enhancement key CKu*, IKu*, setting an associated counter for the deformation enhancement key, The counter is used to record the number of times the morphing enhancement key is generated; the target SGSN+ sends the morphing enhancement key CKu*, IKu* to the target radio network controller RNC+ and also sends the counter value to the RNC+.
  • the terminal and the target SGSN+4 derive an encryption key CKu and an integrity key IKu in the enhanced key according to the encryption key CK′ and the integrity key IK′ in the mapped legacy key. in the process of:
  • CK' and IK' are combined with the first parameter to derive the enhanced key CKu,
  • the enhanced key CKu, IKu is derived by combining the first parameter with IK.
  • the first parameter includes one or more of the following parameters:
  • PLMN identifier Service Network Identifier
  • SQN serial number
  • AK hidden key
  • user identity user identity
  • target SGSN+ and/or counter maintained by the UE target SGSN+ generated random number NONCESGSNO
  • the first parameter when the terminal is in an idle state, includes one or more of the following parameters:
  • PLMN identifier Service network identifier
  • core network node type SQN
  • AK hidden key
  • user identity user identity
  • target SGSN+ and/or counter maintained by the terminal UE target SGSN+ generated random number NONCESGSN, terminal The generated random number NONCEUE.
  • the random number NONCESGSN is generated by the target SGSN+ after receiving the forwarding migration request message sent by the source MME, and is forwarded to the terminal via the source MME and the source base station; or
  • the random number NONCESGSN is generated by the target SGSN+ after receiving the routing area update request message sent by the terminal, and is sent to the terminal via the routing area update accept message;
  • the random number NONCEUE is generated by the terminal before transmitting the routing area update request message to the target SGSN+, and is sent to the target SGSN+ via the routing area update request message.
  • the method further includes:
  • the target SGSN+ When the terminal is in an idle state, the target SGSN+ generates a random number NONCESGSN after receiving the forwarding migration request message sent by the source MME, and forwards it to the terminal via the source MME and the source base station; or the target SGSN+ sends the received terminal.
  • the routing area update request message generates the random number NONCESGSN, and sends the message to the terminal via the routing area update accept message;
  • the terminal generates a random number NONCEUE before sending the routing area update request message to the target SGSN+, and sends the message to the target SGSN+ via the routing area update request message;
  • the terminal and the target SGSN+ follow the key algorithm according to the encryption key CK', the integrity key ⁇ ', and the random number NONCESGSN and/or the random number NONCEUE in the mapped legacy key.
  • the enhanced keys used in the enhanced UTRAN are derived separately.
  • the terminal and the target SGSN+4 are based on an encryption key in the mapped legacy key.
  • the present invention also provides a system for establishing an enhanced key when a terminal moves to an enhanced UTRAN, including an evolved universal terrestrial radio access network E-UTRAN, an enhanced UTRAN network supporting enhanced security functions, a terminal, and a source mobility management entity (source MME) ), enhancing the target serving GPRS support node (target SGSN+) in UTRAN;
  • E-UTRAN evolved universal terrestrial radio access network
  • E-UTRAN enhanced universal terrestrial radio access network
  • enhanced UTRAN network supporting enhanced security functions a terminal
  • source MME source mobility management entity
  • target SGSN+ target serving GPRS support node
  • the target SGSN+ is set to: derive an enhanced key used in the enhanced UTRAN based on the mapped legacy key obtained from the source mobility management entity (source MME);
  • the terminal is configured to: after deriving the mapped legacy key, deriving an enhanced key used in the enhanced UTRAN according to the mapped legacy key using the same algorithm as the target SGSN+.
  • the target SGSN+ and the terminal are configured to: directly calculate an encryption in the enhanced key according to the same key algorithm by using an encryption key CK in the mapped legacy key and an integrity key IK.
  • the key CKa, the integrity key IKu; or the traditional integrity key IK of the mapping is first regarded as the traditional integrity key IK, and the mapped traditional encryption key CK' is regarded as the traditional encryption key CK, and then The same key algorithm uses the traditional keys CK and IK to derive the encryption key CKu and the integrity key IKu in the enhanced key;
  • the system further includes: an enhanced target WLAN controller (RNC+) in the UTRAN, the target SGSN+ being further configured to: send the enhanced key CKu, IKu to the target radio network controller by using a key distribution message (RNC+)
  • RNC+ is further configured to: store the enhanced keys CKu, IKu.
  • the terminal is an active state terminal; and the key distribution message is a migration request message.
  • the terminal is a terminal in an active state; the target SGSN+ and the activated terminal are further configured to: after deriving an encryption key CKu and an integrity key IKu in the enhanced key, Deriving the deformation enhancement key CKu*, IKu* according to the mapped traditional key CK', IK' and the enhancement keys CCu, IKu;
  • the target SGSN+ is further configured to: send the deformation enhancement key CKu*, IKu* to a target radio network controller (RNC+) in the enhanced UTRAN by using a migration request message;
  • RNC+ target radio network controller
  • the target RNC+ is further configured to: store the deformation enhanced key CKu*, IKu*;
  • the terminal and the target SGSN+ are further configured to: perform SRNC migration within the enhanced UTRAN network using the morphing enhancement keys CKu*, IKu*.
  • the terminal and the target SGSN+ are an encryption key CK, and an integrity key IK, which are set in a traditional key mapped in the following manner, and derive an encryption key CCu in the enhanced key, Integrity key IKu:
  • CK' and IK' are combined with the first parameter to derive the enhanced key CKu, IKu; or, the mapped traditional integrity key IK' is regarded as the traditional integrity key IK, which will be mapped.
  • the traditional encryption key CK' is regarded as the traditional encryption key CK
  • the enhanced key CKu, IKu is derived by combining CK and IK with the first parameter according to the same key algorithm.
  • the first parameter includes one or more of the following parameters:
  • PLMN identifier Service Network Identifier
  • Core Network Node Type Serial Number
  • SQL Serial Number
  • AK Hidden Key
  • User Identity User Identity
  • Target SGSN+ and/or Counter maintained by the UE
  • Target SGSN+ Generated Random Number NONCESGSN.
  • the first parameter includes one or more of the following parameters:
  • PLMN identifier Service network identifier
  • core network node type SQN
  • AK hidden key
  • user identity user identity
  • target SGSN+ and/or counter maintained by the terminal UE target SGSN+ generated random number NONCESGSN, terminal The generated random number NONCEUE.
  • the network side and the terminal can respectively establish an enhanced key system according to the mapped legacy key, instead of performing AKA again (authentication and Key agreement) process, which saves network overhead and improves System efficiency, ensuring that the terminal can communicate securely with the enhanced UTRAN network.
  • AKA again authentication and Key agreement
  • FIG. 1 is a schematic structural diagram of a radio access network using HSPA+ technology in the prior art
  • FIG. 2 is a schematic diagram of a HiSPA+ enhanced security key hierarchy in the prior art
  • FIG. 3 is a schematic structural diagram of an LTE/SAE in the prior art
  • FIG. 5 is a flowchart of Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart of Embodiment 6 of the present invention. Preferred embodiment of the invention
  • the principle of the present invention is:
  • the target SGSN+ enhanced serving GPRS support node
  • the target SGSN+ enhanced serving GPRS support node
  • MME traditional key derivation of the mapping obtained from the source mobility management entity MME enhances the enhanced key used in the UTRAN; after deriving the mapped legacy key, the terminal uses the traditional key of the mapping according to the mapping
  • the same algorithm of the target SGSN+ derives the enhanced key used in the enhanced UTRAN.
  • the target SGSN+ When the terminal is in an active state, the target SGSN+ obtains the mapped legacy key from the source mobility management entity by forwarding a migration request message. Target SGSN+ derives enhanced secrets based on key algorithm After the key, the enhanced key CKu, IKu is sent to the target radio network controller (RNC+) in the enhanced UTRAN through a key distribution message (such as a migration request message), which is stored by the target RNC+.
  • RNC+ target radio network controller
  • the terminal uses the same key algorithm as the target SGSN+ to derive and enhance the enhanced keys CKu, IKu used in the UTRAN.
  • the target SGSN+4 is based on the mapped legacy key and enhanced key
  • the target SGSN+ sets an associated counter for the deformation enhancement key while deriving the deformation enhancement key, and the counter is used to record the number of times the deformation enhancement key is generated.
  • the target SGSN+ can also send the counter value to the RNC+ at the same time.
  • the terminal may also derive the deformation enhanced key CKu*, IKu* according to the mapped traditional key and the enhanced key CKu, IKu.
  • the target SGSN+ may further derive the enhanced key used in the enhanced UTRAN according to the mapped legacy key and the first parameter; the terminal is in the process of deriving the enhanced key.
  • the parameters of the terminal, or the target SGSN+, are agreed with the terminal.
  • the first parameter includes one or more of the following parameters: a service network identifier (PLMN identifier), a core network node type, a sequence number (SQN), a hidden key (AK), a user identity, and a target SGSN+ generated random Number NONCESGSNO
  • the target SGSN+ When the terminal is in an idle state, the target SGSN+ obtains the mapped legacy key from the source mobility management entity MME through a context response message. In the process of deriving the enhanced key, the target SGSN+ derives the enhanced key used in the enhanced UTRAN according to the mapped legacy key and the first parameter; the terminal in the process of deriving the enhanced key, the same The enhanced key used in the enhanced UTRAN is derived from the mapped legacy key in conjunction with the first parameter using the same algorithm as the target SGSN+.
  • the first parameter includes one or more of the following parameters: a service network identifier (PLMN identifier), a core network node type, a sequence number (SQN), a hidden key (AK), a user identity, and a target SGSN+ generated random Number NONCESGSN, the random number generated by the terminal NONCEuEo
  • PLMN identifier a service network identifier
  • SQN sequence number
  • AK hidden key
  • NONCESGSN the random number generated by the terminal NONCEuEo
  • the derivation of the enhanced key CKu and IKu is optional, that is, the terminal may only save the received random number NONCESGSN and/or the generated random number NONCEUE, in preparation for the terminal to exit the idle mode and enter the active state.
  • the enhanced key CKu, IKu is derived, it is not necessary to derive the enhanced key in the idle state.
  • the random number NONCESGSN is generated by the target SGSN+ after receiving the forwarding migration request message sent by the source MME, and is forwarded to the terminal via the source MME and the source base station; or the random number NONCESGSN is received by the target SGSN+ in the routing area received by the terminal.
  • the update request message is generated and sent to the terminal via the routing area update accept message.
  • the above random number NONCEUE is generated by the terminal before transmitting the routing area update request message to the target SGSN+, and is transmitted to the target SGSN+ via the routing area update request message.
  • the mapped traditional key can also be regarded as a traditional key, for example: the mapped traditional integrity key IK' is regarded as a traditional integrity key IK, and the mapped traditional encryption key CK' is regarded as a traditional encryption.
  • the key CK derives the enhanced keys CKu and IKu according to IK and CK.
  • the system for establishing an enhanced key when the terminal moves to the enhanced UTRAN includes an evolved universal terrestrial radio access network E-UTRAN, UTRAN supporting enhanced security function (ie, enhanced UTRAN), moving from E-UTRAN to a terminal for enhancing UTRAN, a source mobility management entity (source ⁇ ), an enhanced target GPRS support node (target SGSN+) in the UTRAN; wherein: the target SGSN+, for obtaining from the source mobility management entity (source MME) Mapping the legacy key, deriving the enhanced key used in the enhanced UTRAN according to the same algorithm as the terminal;
  • E-UTRAN evolved universal terrestrial radio access network
  • UTRAN supporting enhanced security function ie, enhanced UTRAN
  • source ⁇ source mobility management entity
  • target GPRS support node target GPRS support node
  • the terminal after deriving the mapped legacy key, derives the enhanced key used in the enhanced UTRAN according to the traditional key of the mapping and the same algorithm as the target SGSN+.
  • the terminal and the target SGSN+4 are based on the mapped traditional key encryption key CK' and complete
  • the target SGSN+ and the terminal directly calculate the encryption key CCr and the integrity in the enhanced key according to the same key algorithm by using the encryption key CK' and the integrity key IK in the mapped legacy key.
  • Key IKu or first regard the mapped traditional integrity key IK' as the traditional integrity key IK, the mapped traditional encryption key CK' as the traditional encryption key CK, and then use the same key algorithm
  • the traditional keys CK and IK derive the encryption key CKu and the integrity key IKu in the enhanced key;
  • the system further includes: an enhanced target WLAN controller (RNC+) in the UTRAN, the target SGSN+ transmitting the enhanced key CKu, IKu to a target radio network controller (RNC+) through a key distribution message, The target RNC+ storage.
  • RNC+ enhanced target WLAN controller
  • the terminal is an active terminal; the target SGSN+ and the activated terminal are also used to derive the encryption key CCu and the integrity key IKu in the enhanced key according to the traditional density of the mapping.
  • the key CK', IK' and the enhanced key CCu, IKu derive the deformation enhanced key CCu*, IKu*; the target SGSN+ sends the deformation enhanced key CCu*, IKu* to the enhanced UTRAN through the key distribution message
  • the target radio network controller (RNC+) is stored by the target RNC+.
  • CK' and IK' are combined with the first parameter to derive the enhanced key CKu, IKu; or, the mapped traditional integrity key IK' is regarded as the traditional integrity key IK, and the mapping is
  • the traditional encryption key CK' is regarded as the traditional encryption key CK
  • the enhanced key CKu, IKu is derived by combining CK and IK with the first parameter according to the same key algorithm.
  • the first parameter includes one or more of the following parameters: a service network identifier (PLMN identifier), a core network node type, a serial number (SQN), a hidden key ( ⁇ ) , the user identity, or the random number NONCESGSN generated by the target SGSN+.
  • PLMN identifier service network identifier
  • SQN serial number
  • hidden key
  • the first parameter includes one or more of the following parameters: a service network identifier (PLMN identifier), a core network node type, a serial number (SQN), a hidden key ( ⁇ ) , the user identity, the random number NONCESGSN generated by the target SGSN+, or the random number NONCEUE generated by the terminal.
  • PLMN identifier service network identifier
  • SQN serial number
  • hidden key
  • the user identity the random number NONCESGSN generated by the target SGSN+
  • the random number NONCEUE generated by the terminal The specific manner of establishing the enhanced key of the present invention will be described in detail below with reference to the accompanying drawings in conjunction with the embodiments.
  • the migration process includes a handover procedure of the active state terminal, and also includes a mobile process of the idle state terminal.
  • the terminal state in the embodiment 1-2 is an active state
  • the terminal state in the embodiment 3-6 is an idle state.
  • This embodiment illustrates an example of an air interface key management procedure when the terminal moves from the evolved network E-UTRAN to the enhanced UTRAN.
  • the target SGSN+ is responsible for deriving the enhanced keys CKu and IKu, as shown in FIG. 4 As shown, the following steps are included:
  • Step 101 The source base station decides to switch from the E-UTRAN network to the target enhanced UTRAN network.
  • Step 103 The source ⁇ confirms that the terminal is to switch to the UTRAN, and derives the traditional keys IK' and CK' mapped according to the KASME; when the terminal is in the LTE network, the KASME is saved at both the terminal and the MME.
  • the derivation of the mapped traditional keys IK, and CK is in accordance with the LTE-related protocol definition and will not be described here.
  • Step 104 The source MME sends a Forward Migration Request message to the target SGSN, requesting the target SGSN to allocate resources for the terminal; the message carries security related parameters: for example, mapped traditional keys IK' and CK'.
  • the migration process of the Serving GW may be performed at the same time.
  • Step 105 If the target SGSN supports the enhanced security function, that is, if the target SGSN is SGSN+, the target SGSN+ derives the enhanced keys IKu, CKu according to the received traditional keys IK', CK'.
  • the target SGSN+ regards the mapped legacy integrity key IK' as the traditional integrity key IK, and the mapped traditional encryption key CK as the traditional encryption key CK, and derives the enhanced key CKu according to IK, CK. , IKu.
  • a random number or counter is included in the derivation of the enhanced keys CKu, IKu, in addition to the mapped legacy keys IK', CK', or the legacy keys IK, CK.
  • the random number or counter may be a random number or a counter existing in the system.
  • the counter is a counter maintained by the target SGSN+ and/or the UE.
  • the target SGSN+ derives the deformation enhanced key CKu*, IKu* according to the mapped traditional key IK', CK' and the enhanced keys CKu, IKu, the deformation enhanced key Used when the terminal performs SRNC migration within an enhanced UTRAN network.
  • the morphing enhancement key is associated with a counter NCC for recording the number of times the morphing enhanced key is generated. In this embodiment, the NCC value associated with the morphing enhanced key is 1.
  • target SGSN does not support the HSPA+ enhanced security function, the following processes are performed according to the procedures specified in the LTE specification, and are not described here.
  • Step 106 The target SGSN+ sends a migration request message to the target RNC+, requesting the target RNC+ to establish a wireless network resource for the terminal, where the message carries security-related information, and at least includes: an enhanced key CKu, IKu, and algorithm information;
  • the algorithm information includes integrity algorithm information and/or encryption algorithm information, and the integrity algorithm may be an integrity algorithm supported by the terminal, or an integrity algorithm selected by the network side; the encryption algorithm may be an encryption supported by the terminal. Algorithm, or an encryption algorithm selected on the network side. If integrity protection is required, the algorithm information contains at least an integrity algorithm.
  • the target SGSN+ further derives the deformation enhancement key CKu*,
  • the target SGSN+ can also carry the deformation enhancement keys CKu*, IKu* in this information. If the counter NCC is set for the deformation enhancement keys CKu*, IKu*, the counter NCC value can also be carried.
  • Step 107 The target RNC+ allocates radio resources to the terminal, and saves the generated IKu and/or CKu; the derivation formula of IKu and CKu is as shown in Embodiment 7.
  • Step 108 The target RNC+ sends a migration request acknowledgement message to the target SGSN+.
  • the RNC+ needs to carry the RNC+ selected algorithm (integrity algorithm and/or encryption algorithm) in the migration request acknowledgement message.
  • the target RNC+ may add an indication in the migration request acknowledgement message to implicitly or explicitly instruct the terminal to perform the derivation of the enhanced key IKu and/or CKu, for example: adding the target RNC+ security in the migration request acknowledgement message Capability indication (implicit mode), or enhanced key enable indication (explicit mode).
  • the target SGSN+ and the serving gateway may create an indirect data forwarding tunnel request message. Interaction process.
  • Step 109 The target SGSN+ sends a forwarding migration response message to the source MME.
  • the RNC+ selected algorithm is carried in the forward migration response message.
  • the target SGSN+ may also add an indication in the forwarding migration response message to implicitly or explicitly instruct the terminal to perform the derivation of the enhanced key IKu and/or CKu, for example: adding the target RNC+ security capability in the forwarding migration response message Indication (implicit mode), or enhanced key enable indication (explicit mode). If the target RNC+ carries the indication in step 108, the target SGSN+ may add the indication in the constructed forwarding migration response message.
  • Step 110 The source MME sends a handover command message to the source base station, indicating that the network completes the handover preparation process.
  • the handover command message sent by the source MME to the source base station also carries the parameter indicating the algorithm.
  • the source MME carries an indication of the target RNC+ or the target SGSN+ added in the handover command message to instruct the terminal to perform derivation of the enhanced key IKu and/or CKu.
  • Step 111 The source base station sends a handover command message from the E-UTRAN to the terminal, instructing the terminal to switch to the target access network.
  • the handover command message carries the radio parameters of the target RNC+ assigned to the terminal during the preparation phase, as well as algorithm information (including integrity algorithms and/or encryption algorithms).
  • the source base station also carries an indication added by the target RNC+ or the target SGSN+ in the message, to instruct the terminal to perform derivation of the enhanced keys IKu and CKu.
  • Step 112 The terminal derives the enhanced air interface integrity key according to the mapped traditional keys IK' and CK' according to the traditional key IK' and CK' derived from the KASME according to the same key derivation as the network side.
  • the terminal considers the mapped traditional integrity key IK′ as the traditional integrity key IK according to the same key derivation as the network side, and regards the mapped traditional encryption key CK′ as the traditional encryption key CK.
  • IK, CK, the enhanced keys CKu and IKu are derived.
  • the terminal may also be based on the mapped traditional key IK', CK' and the enhanced keys CHu, IKu derive the deformation enhanced key CCu*, IKu*, which is used when the terminal performs SRNC migration within the enhanced UTRAN network.
  • the morphing enhancement key is associated with a counter NCC for recording the number of times the morphing enhanced key is generated.
  • the NCC value associated with the morphing enhanced key is 1.
  • Step 113 The terminal sends a handover to the target RNC+ to the UTRAN complete message, where the message is integrity protected using the newly generated enhanced integrity key IKu, and/or encrypted using the enhanced encryption key CKu;
  • Step 114 The target RNC+ sends a migration complete message to the target SGSN+, indicating to the target SGSN+ that the terminal has successfully switched from the E-UTRAN to the target RNC+;
  • Step 115 The target SGSN+ and the source MME perform message interaction, and confirm that the migration is complete.
  • This embodiment illustrates another example of an enhanced air interface key establishment procedure when a terminal moves from an E-UTRAN to an enhanced UTRAN.
  • the difference between this embodiment and the example 1 is that a random number NONCESGSN is generated by the target SGSN+, and the enhanced keys CKu, IKu are derived using the random number NONCESGSN and the mapped legacy keys IK' and CK'. As shown in Figure 5, the following steps are included:
  • Steps 301-304 the same as the embodiment 1 steps 101-104;
  • Step 305 if the target SGSN is SGSN+, the target SGSN+ generates a random number NONCESGSN, and derives the enhanced key CKu, IKu according to the received traditional key IK', CK' and the generated random number NONCESGSN;
  • the target SGSN+ regards the mapped legacy integrity key IK' as the traditional integrity key IK, and the mapped traditional encryption key CK as the traditional encryption key CK, and derives the enhanced key CKu according to IK, CK. , IKu.
  • the derivation of CKu and IKu is as described in Example 7.
  • the target SGSN+ derives the deformation enhanced key CKu*, IKu* according to the mapped traditional key IK', CK' and the enhanced keys CKu, IKu, the deformation enhanced key Used when the terminal performs SRNC migration within an enhanced UTRAN network.
  • the deformation enhancement key is associated with a counter NCC for recording deformation The number of times the key is enhanced. In this embodiment, at this time, the NCC value associated with the deformation enhanced key is 1. Steps 306-308, the same as the embodiment 1 steps 106-108;
  • Step 309 The target SGSN+ sends a forwarding migration response message to the source MME, and carries the parameter: a random number NONCESGSN, and algorithm information, where the algorithm information includes: integrity algorithm information and/or encryption algorithm information;
  • the target SGSN+ may carry an indication in the message, and the source MME relays the terminal to perform the derivation of the enhanced keys IKu and CKu, which may be indicated in an implicit or explicit manner, for example: adding the inclusion in the forwarding migration response message Target RNC security capability indication (implicit mode), or enhanced key enable indication (explicit mode).
  • Step 310 The source MME sends a handover command message to the source base station, instructing the network to complete the handover preparation process, and carrying the parameter in the message: a random number NONCESGSN, and algorithm information;
  • Step 311 The source base station sends a handover command message from the E-UTRAN to the terminal, instructing the terminal to switch to the target access network, and carries the radio parameters of the target RNC+ allocated to the terminal in the preparation phase, including: the random number NONCESGSN , and algorithm information;
  • the source base station instructs the terminal to perform the derivation of the enhanced keys IKu and CKu in the message, which may be indicated in an implicit or explicit manner, for example: adding a network side security capability indication (implicit indication) in the handover command , or an enhanced key enable indicator (explicit indication).
  • Step 312 The terminal deduces the traditional key IK' and CK' according to the KASME according to the same key derivation as the network side, and then derives the enhanced air interface integrity according to the mapped traditional key IK', CK' and the random number NONCESGSN. Sex key IKu and / or air interface encryption key CKu;
  • the terminal considers the mapped traditional integrity key IK′ as the traditional integrity key IK according to the same key derivation as the network side, and regards the mapped traditional encryption key CK′ as the traditional encryption key CK.
  • the derived keys CKu, IKu are derived from IK, CK and the random number NONCESGSN.
  • the terminal derives the deformation enhanced key CCu*, IKu* according to the mapped traditional key IK', CK' and the enhanced key CCu, IKu, and the deformation enhanced key is used.
  • the morphing enhancement key is associated with a counter NCC for recording the number of times the morphing enhanced key is generated.
  • the NCC value associated with the morphing enhanced key is 1. Steps 313-316 are the same as steps 113-116 of Embodiment 1.
  • This embodiment shows an example of an enhanced air interface key establishment when the terminal moves from the E-UTRAN to the enhanced UTRAN for routing area update in the idle mode. As shown in FIG. 6, the following steps are included:
  • Step 501 When the routing area update trigger condition is met, the terminal sends a routing area update request message to the target SGSN+, requesting to perform routing area update, and the message carries a NAS token (non-access stratum token) for the network to verify the terminal;
  • NAS token non-access stratum token
  • the derivation of the NAS token complies with the definition of the LTE-related protocol and will not be described here.
  • Step 502 The target SGSN+ sends a context request message to the source MME of the terminal, requesting the context of the terminal, and the message carries the parameter: NAS token;
  • Step 503 The source MME verifies the NAS token. If the verification succeeds, the source MME derives the mapped traditional keys IK' and CK' according to the KASME; the derived traditional keys IK' and CK' are derived according to the LTE-related protocol definition. , will not repeat them here.
  • Step 504 The source MME sends a context response message to the target SGSN+, where the message carries parameters: the mapped traditional keys IK' and CK';
  • Step 505 the target SGSN+ derives the enhanced keys CKu, IKu according to the received traditional keys IK' and CK';
  • the target SGSN+ treats the mapped legacy integrity key IK' as a legacy integrity key
  • the mapped traditional encryption key CK is regarded as the traditional encryption key CK
  • the enhanced keys CKu and IKu are derived according to IK and CK.
  • the derivation of the enhanced key CKu, IKu is as described in Embodiment 7.
  • Step 506 The target SGSN+ sends a routing area update accept message to the terminal.
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform the derivation of the enhanced key, for example: adding a target network security capability indication in the routing area update accept message (implicit mode), or enhanced key enable indication (explicit mode).
  • Step 507 The terminal derives the enhanced keys CKu and IKu according to the same key derivation type as the network side, according to the traditional keys IK' and CK' of the KASME derivation mapping, and then the mapped traditional keys IK' and CK'; The derivation of the mapped traditional keys IK' and CK' may also occur before this step;
  • the terminal considers the mapped traditional integrity key IK′ as the traditional integrity key and the mapped traditional encryption key CK′ as the traditional encryption key CK according to the same key derivation as the network side.
  • IK, CK, the enhanced keys CKu and IKu are derived.
  • Step 508 The terminal sends a routing area update complete message to the target SGSN+ to confirm that the routing area update is completed.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from E-UTRAN to enhanced UTRAN for routing area update in idle mode.
  • a random number NONCESGSN is generated by the target SGSN+, and the target SGSN+ and the terminal use the random number NONCESGSN and the mapped legacy keys IK', CK' to derive the enhanced keys CKu, IKu.
  • the following steps are included:
  • Steps 601-604 the same as the embodiment 3 steps 501-504;
  • Step 605 the target SGSN+ generates a random number NONCESGSN, and derives the enhanced key CKu, IKu according to the received traditional key IK', CK' and the random number NONCESGSN;
  • the target SGSN+ regards the mapped legacy integrity key IK' as the traditional integrity key IK, and the mapped traditional encryption key CK' as the traditional encryption key CK, derived from IK, CK and the random number NONCESGSN.
  • Step 606 The target SGSN+ sends a routing area update accept message to the terminal, and carries the parameter in the message: a random number NONCESGSN;
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform KRNC derivation.
  • Step 607 The terminal derivates according to the same key as the network side, derives the mapped traditional keys IK' and CK' according to the KASME, and then derives according to the mapped traditional keys IK', CK', and NONCESGSN. Strong key CKu, IKu; where the derivation of the mapped traditional keys IK' and CK' can also occur before this step;
  • the terminal considers the mapped traditional integrity key IK′ as the traditional integrity key IK according to the same key derivation as the network side, and regards the mapped traditional encryption key CK′ as the traditional encryption key CK.
  • the derived keys CKu, IKu are derived from IK, CK and the random number NONCESGSN.
  • Step 608 which is the same as step 508 of Embodiment 3.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from E-UTRAN to enhanced UTRAN for routing area update in idle mode.
  • the difference between this embodiment and Embodiment 4 is that a random number NONCEUE is generated by the terminal, and the target SGSN+ and the terminal use the random number NONCEUE and the mapped legacy keys IK', CK' to derive the enhanced keys CKu, IKu.
  • the following steps are included:
  • Step 701 When the routing area update trigger condition is met, the terminal generates a random number NONCEUE.
  • the message carries a NAS token for network to authenticate the terminal.
  • the derivation of the NAS token complies with the definition of the LTE-related protocol and will not be described here.
  • Steps 703-705 the same as the embodiment 3 steps 502-504;
  • Step 706 the target SGSN+ is based on the received traditional key IK', CK' and the random number
  • NONCEUE derives the enhanced key CKu, IKu;
  • the target SGSN+ treats the mapped legacy integrity key IK' as the traditional integrity key IK, and the mapped traditional encryption key CK' as the traditional encryption key CK, derived from IK, CK and random number NONCEUE Enhanced key CKu, IKu.
  • Step 707 the same as step 506 of the embodiment 3;
  • Step 708 The terminal deduces the traditional key IK' and CK' according to the KASME according to the same key derivation as the network side, and then derives the enhanced key CKu, IKu according to the mapped traditional keys IK', CK' and NONCEUE.
  • the derivation of the mapped traditional keys IK' and CK' may also occur before this step; preferably, the terminal considers the mapped traditional integrity key IK' as a traditional key derivation according to the network side
  • the integrity key IK, the mapped traditional encryption key CK' is regarded as the traditional encryption key CK, and the enhanced keys CKu, IKu are derived according to IK, CK and the random number NONCEUE.
  • the derivation of the enhanced key CKu and IKu is optional, that is, the terminal can only save the generated random number NONCEUE, so that the terminal can use the enhanced key CKu and IKu when the terminal exits the idle mode and enters the active state.
  • Step 709 is the same as step 508 of Embodiment 3.
  • This embodiment shows an example in which the terminal establishes an enhanced air interface key when moving from E-UTRAN to enhanced UTRAN for routing area update in idle mode.
  • the terminal generates a random number NONCEUE
  • the target SGSN+ generates a random number NONCESGSN
  • the terminal and the target SGSN+ respectively use the random number NONCEUE, the random number NONCESGSN, and the mapped traditional secret.
  • the keys IK', CK' derive the enhanced keys CKu, IKu. As shown in Figure 9, the following steps are included:
  • Step 801 When the routing area update trigger condition is met, the terminal generates a random number NONCEUE.
  • the derivation of the NAS token complies with the definition of the LTE-related protocol and will not be described here.
  • Steps 803-805 the same as the embodiment 3 steps 502-504;
  • Step 806 the target SGSN+ generates a random number NONCESGSN, and derives the enhanced key CKu, IKu according to the received traditional key IK, CK', and the random number NONCEUE and the random number NONCESGSN;
  • the target SGSN+ treats the mapped legacy integrity key IK' as a legacy integrity key IK, the mapped traditional encryption key CK' is regarded as the traditional encryption key CK, and the enhanced keys CKu, IKu are derived according to IK, CK and the random number NONCEUE and the random number NONCESGSN.
  • the derivation of the enhanced key CCu, IKu is optional, that is, the target SGSN+ can only save the received random number NONCEUE and the generated random number NONCESGSN, in preparation for the terminal to exit the idle mode and enter the active state to derive the enhanced key CKu, Used when IKu.
  • Step 807 the target SGSN+ sends a routing area update accept message to the terminal, and carries the parameter in the message: a random number NONCESGSN;
  • the target SGSN+ adds an indication in the routing area update accept message to implicitly or explicitly instruct the terminal to perform KRNC derivation.
  • Step 808 The terminal deducts the traditional key IK' and CK' according to the KASME, and combines the random number NONCEUE and the random number NONCESGSN to derive the enhanced key CKu, IKu according to the same key derivation as the network side.
  • the derivation of the keys IK' and CK' may also occur before this step; preferably, the terminal considers the mapped traditional integrity key IK' as the traditional integrity key IK according to the same key derivation as the network side.
  • the traditional encryption key CK' is regarded as a traditional encryption key CK, and the enhanced keys CKu and IKu are derived according to IK, CK, and the random number NONCEUE and the random number NONCESGSN.
  • the derivation of the enhanced key CKu and IKu is optional, that is, the terminal may only save the received random number NONCESGSN and the generated random number NONCEUE, so as to derive the enhanced key CKu, IKu when the terminal exits the idle mode and enters the active state. When used.
  • Step 809 the same as step 3 of embodiment 3.
  • This embodiment gives an example of the derivation of the enhanced keys CKu, IKu.
  • the generation parameters of the SGSN+ derived enhancement keys CKu and IKu include one or a combination of the following parameters in addition to the mapped traditional encryption key CK and the mapped legacy integrity key IK: Service Network Identification ( PLMN identifier ) , core network node type (TYPE, indicating packet switching or circuit switching), serial number (SQN), hidden key (AK), user identity (eg IMSI, IMEI or TMSI), the random number NONCESGSN generated by the SGSN+, the random number NONCEUE generated by the terminal; the serial number and the hidden key are parameters respectively generated by the user and the home subscriber server in the authentication and key agreement process.
  • PLMN identifier Service Network Identification
  • TYPE indicating packet switching or circuit switching
  • SQN serial number
  • AK hidden key
  • user identity eg IMSI, IMEI or TMSI
  • IKu Fl (CK,, IK', Type, SQN ® AK );
  • IKu F1 (CK,, IK', PLMN identifier, SQN ® AK );
  • IKu F1 (CK,, IK', PLMN identifier, Type, SQN ® AK ); or CKu
  • IKu F1 (CK,, IK', IMSI, SQN ® AK );
  • IKu F1 (CK,, IK', Type, IMSI, SQN ® AK );
  • IKu F1 (CK,, IK',: PLMN identifier, Type, IMSI, SQN ® AK ) or CKu
  • IKu F1 (CK,, IK', PLMN identifier, SQN ® AK );
  • IKu F1 (CK,, IK', SQN® AK , NONCESGSN, NONCEUE );
  • Fl is an arbitrary key generation algorithm, for example: A KDF algorithm that can be defined by 3GPP. " ® " refers to the 3GPP definition for an exclusive OR algorithm.
  • the target SGSN+ cannot obtain the value of SQN@AK, it can be initialized to 0 or a specific value.
  • This embodiment example gives the traditional integrity of the mapping based on the traditional encryption key CK' and mapping.
  • the key IK' and related parameters are derived from the specific algorithm form of the enhanced key CKu, IKu. Since the terminal and the target SGSN+ use the same key derivation method, the above example is also applicable to the terminal derived enhanced key CKu, IKu. the process of.
  • This embodiment gives an example of another derivation of the enhanced air interface integrity key IKu and air interface encryption key CKu.
  • the network side and the terminal can respectively establish an enhanced key system according to the mapped legacy key, without performing AKA again.
  • the (authentication and key agreement) process which saves network overhead, improves system efficiency, and ensures that the terminal can communicate securely with the enhanced UTRAN network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

终端移动到增强通用陆地无线接入网络 (UTRAN) 时建立增 强密钥的方法及系统 技术领域
本发明涉及无线通信领域, 具体而言, 涉及一种无线通信系统中终端从 演进的通用陆地无线接入网 ( E-UTRAN )移动到增强的通用陆地无线接入网 ( UTRAN ) 时建立增强密钥的方法。 背景技术
3GPP ( 3rd Generation Partnership Project , 第三代合作伙伴计戈 'J ) 在 Release7中釆用了正交频分复用 ( Orthogonal Frequency Division Multiplexing, 简称 OFDM )和多输入多输出 ( Multiple-Input Multiple-Output, 简称 MIMO ) 技术完成 HSDPA ( High Speed Downlink Packet Access , 高速下行链路分组接 入)和 HSUPA ( High Speed Uplink Packet Access, 高速上行链路分组接入) 的未来演进道路 HSPA+。 HSPA+是 3GPP HSPA (包括 HSDPA和 HSUPA)的增 强技术, 为 HSPA运营商提供低复杂度、 低成本的从 HSPA向 LTE平滑演进 的途径。
HSPA+通过釆用高阶调制 (例如下行 64QAM ( Quadrature Amplitude Modulation, 正交幅度调制)和上行 16QAM ) 、 MIMO 以及高阶段调制与 MIMO的结合等技术, 提升了峰值数据速率与频谱效率。 另一方面, 为了更 好的支持分组业务, HSPA+还釆用了一系列其它增强技术来达到增加用户容 量、 降低时延、 降低终端耗电, 更好地支持 IP语音通信 (VOIP)以及提升系统 的多播 /广播能力等目标。
相比较于 HSPA, HSPA+在系统架构上将无线网络控制器( Radio Network Controller, 简称 RNC )的功能下放到基站节点 B ( Node B ) , 形成完全扁平 化的无线接入网络架构,如图 1所示。此时称集成了完全 RNC功能的 Node B 为 Evolved HSPA Node B , 或者简称增强节点 Β ( Node B+ ) 。 SGSN+为进行 了升级能支持 HSPA+功能的 SGSN ( SERVICE GPRS SUPPORT NODE, 服 务 GPRS支持节点; GPRS: General Packet Radio System,通用分组无线系统)。 ME+为能支持 HSPA+功能的用户终端设备 (也可称为 UE+ ) 。 演进的 HSPA 系统能够使用 3GPP Rel-5和以后的空口版本, 对空口的 HSPA业务没有任何 修改。 釆用这种方案后, 每个 Node B+都成为一个相当于 RNC的节点, 具有 Iu-PS接口能够直接与 PS CN ( Core Network, 核心网)连接, Iu-PS用户面在 SGSN终结, 其中如果网络支持直通隧道功能, Iu-PS用户面也可以在 GGSN ( Gateway GPRS Support Node, 网关 GPRS支持节点)终结。 演进的 HSPA Node B之间的通信通过 lur接口执行。 Node B+具有独立组网的能力, 并支持 完整的移动性功能, 包括系统间和系统内切换。
在 HSPA+中, 可以将 Node B+看作 Node B和 RNC的结合。 二者是一个 物理实体, 但是仍然是 2个不同的逻辑实体。 因此本发明中支持 HSPA+增强 的密钥层次的 Node B+也可以等同为 UMTS中进行了升级的 RNC。为了区分, 我们可以称之为 RNC+。
目前有提案提出的 HSPA+增强的安全密钥层次结构如图 2所示。 其中, K ( Key, 即才艮密钥)、 CK ( Ciphering Key, 即加密密钥)和 IK ( Integrity Key, 通用移动通信系统)中完全一致。 即 K是存储于 AuC ( Authentication Center, 鉴权中心)和 USIM ( UNIVERSAL SUBSCRIBER IDENTITY MODULE, 通 用订阅者身份模块) 中的根密钥, CK和 IK是用户设备与 HSS 进行 AKA ( Authentication and Key Agreement, 认证和密钥协定) 时由 K计算出的力口密 密钥和完整性密钥。 在 UMTS中, RNC即使用 CK和 IK对数据进行加密和 完整性保护。我们可以将 CK和 IK称为传统的空口安全密钥,简称传统密钥。
由于 HSPA+架构中, 将 RNC的功能全部下放到基站 Node B+, 则加解 密都需在 Node B+处进行, 而 Node B+位于不安全的环境中, 安全性不是特 别高。 因此 HSPA+引入了一个类似于 E-UTRAN ( Evolved Universal Terrestrial Radio Access Network , 演进的通用陆地无线接入网络) 的密钥层次, 即 UTRAN密钥层次(UTRAN Key Hierarchy )。在 UTRAN密钥层次结构中, CKu (也称为 CKS )和 IKu (也称为 IKS )是 HSPA+新引入的密钥, 由传统密钥 CK和 IK推导生成。 其中 CKu用于加密用户面数据和控制面信令, IKu用于 对控制面信令进行完整性保护。我们将 CKu和 IKu称为增强的空口安全密钥, 简称增强密钥。 LTE/SAE是 3GPP对 UMTS的演进技术, 它支持在 20MHz频谱带宽下 提供下行 100Mbps、 上行 50Mbps的峰值速率。 LTE/SAE的网络由用户设备 ( UE ) 、 接入网以及核心网组成。 整个 LTE架构如图 3所示。 在 E-UTRAN 中, 基站设备为演进的基站(evolved Node-B, 简称 eNB ) , 主要负责无线通 信、 无线通信管理、 和移动性上下文的管理。 核心网包含移动管理实体 ( Mobility Management Entity, 简称 MME ) , MME负责移动性的管理、 非 接入层信令的处理、 以及用户安全模式的管理等控制面相关的工作。
当用户从 E-UTRAN移动到 UTRAN时 ,源 MME根据 LTE中的密钥 KASME 生成映射的传统密钥 IK'、 CK' , 映射的传统密钥推导式如下:
IK' l l CK' =KDF(KASME, downlink NAS COUNT)
其中, KDF是 3GPP定义的安全算法, 具体定义可参考 3GPP相关规范。
KASME是 HSS根据 CK、 IK生成的密钥, 并在 AKA ( Authentication and Key Agreement, 认证和密钥协定)过程中下发给 MME, 用以推导 NAS (非接入 层)层密钥以及 eNB上的 AS (接入层)层密钥。 NAS COUNT是 NAS计数
COUNT, 一个 downlink NAS COUNT。 NAS COUNT长度为 24位, 由 UE和 MME独立维护。 当成功运行一次 AKA, 生成新的 KASME时, NAS COUNT 初始 为 0。
源 MME将推导的映射的传统密钥 IK'和 CK'发送给目标网络的核心网节 点 SGSN。 目标 SGSN使用该映射的传统密钥对用户和网络之间的通信进行 保护。
随着 HSPA+安全的引入, 由于增加了密钥层次, 用户和网络之间使用增 强密钥 IKu和 CKu对通信进行保护。 当用户从 E-UTRAN移动到支持 HSPA+ 安全功能的 UTRAN时, 如何通过映射的传统密钥建立起 HSPA+的增强的安 全密钥, 是一个急需解决的问题。 发明内容
本发明要解决的技术问题是提供一种终端从演进网络 E-UTRAN移动到 增强 UTRAN时建立增强空口密钥的方法, 保证终端在增强的 UTRAN中能 够安全地进行正常的通信。
为了解决上述问题, 本发明提出了一种终端移动到增强 UTRAN时建立 增强密钥的方法, 包括:
增强通用陆地无线接入网络 UTRAN 中的目标目标 SGSN+根据从源
MME处获得的映射的传统密钥, 推导出增强 UTRAN中所使用的增强密钥; 所述终端推导出映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与 所述目标 SGSN+相同的算法推导出增强 UTRAN中所使用的增强密钥。
优选的, 所述 SGSN+根据从源 MME处获得的映射的传统密钥, 推导出 增强 UTRAN中所使用的增强密钥的步骤包括:
所述目标 SGSN+从源移动管理实体处获得映射的传统密钥中的加密密 钥 CK'和完整性密钥 ΙΚ';
所述目标 SGSN+在根据密钥算法利用 CK,和 ΙΚ,推导出增强密钥中的加 密密钥 CKu、 完整性密钥 IKu后, 将所述增强密钥 CKu、 IKu通过密钥分发消 息发送给增强 UTRAN中的目标无线网络控制器(RNC+ ) ,由所述目标 RNC+ 存储;
所述终端推导出映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与 所述目标 SGSN+相同的算法推导出增强 UTRAN中所使用的增强密钥的步骤 包括: 所述终端根据密钥算法利用映射的传统密钥 CK'和 IK'推导出增强 UTRAN中所使用的增强密钥 CKu、 IKu并存储。
优选的, 所述 SGSN+根据从源 MME处获得的映射的传统密钥, 推导出 增强 UTRAN中所使用的增强密钥的步骤包括: 所述目标 SGSN+是从源移动 管理实体处获得映射的传统密钥中的加密密钥 CK,和完整性密钥 IK,,将映射 的传统完整性密钥 IK'视为传统完整性密钥 ΙΚ, 将映射的传统加密密钥 CK' 视为传统加密密钥 CK;
所述目标 SGSN+才艮据密钥算法利用传统密钥 CK和 ΙΚ推导出增强密钥 中的加密密钥 CKu、 完整性密钥 IKu, 将所述增强密钥 CKu、 IKu通过密钥分 发消息发送给增强 UTRAN中的目标无线网络控制器(RNC+ ) , 由所述目标 RNC+存储;
所述终端推导出映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与 所述目标 SGSN+相同的算法推导出增强 UTRAN中所使用的增强密钥的步骤 包括: 所述终端将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映 射的传统加密密钥 CK'视为传统加密密钥 CK; 根据密钥算法利用传统密钥 CK和 IK推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu并存储。
优选的, 所述终端为激活态时, 所述密钥分发消息是迁移请求消息。 优选的, 所述终端为激活态时, 所述方法还包括:
所述目标 SGSN+在推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu 后, 根据映射的传统密钥 CK'、 IK'和增强密钥 CKu、 IKu推导获得变形增强 密钥 CKu*、 IKu*, 将所述变形增强密钥 CKu*、 IKu*通过迁移请求消息发送 给增强 UTRAN中的目标无线网络控制器 ( RNC+ ), 由所述目标 RNC+存储; 所述终端在推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu后, 才艮据映 射的传统密钥 CK'、 IK'和增强密钥 CKu、 IKu推导出变形增强密钥 CKu*、 IKu* 并存储; 所述终端和所述目标 SGSN+利用变形增强密钥 CKu*、 IKu*在增强 的 UTRAN网络内进行 SRNC迁移。
优选的, 所述方法还包括: 所述 SGSN+和所述处于激活态的终端在推导 所述变形增强密钥 CKu*、 IKu*的同时, 为所述变形增强密钥设置一关联的计 数器, 所述计数器用于记录生成变形增强密钥的次数; 所述目标 SGSN+向目 标无线网络控制器 RNC+发送变形增强密钥 CKu*、 IKu*的同时将计数器值也 发送给 RNC+。
优选的, 所述终端和所述目标 SGSN+4艮据映射的传统密钥中的加密密钥 CK'和完整性密钥 IK'推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu的过 程中:
按照相同的密钥算法将 CK'和 IK'结合第一参数推导出增强密钥 CKu、
IKu; 或者, 先将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射 的传统加密密钥 CK'视为传统加密密钥 CK,再按照相同的密钥算法将 CK和 IK结合第一参数推导出增强密钥 CKu、 IKu。 优选的, 所述终端为激活态时, 所述第一参数包括以下参数的一种或多 种:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSNO
优选的, 所述终端为空闲态时, 所述第一参数包括以下参数的一种或多 种:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSN , 终端生成的随机数 NONCEUE。
优选的, 所述随机数 NONCESGSN由目标 SGSN+在接收到源 MME发送 的转发迁移请求消息后生成, 并经由源 MME、 源基站的中转发送给终端; 或 者,
该随机数 NONCESGSN由目标 SGSN+在接收到终端发送的路由区更新请 求消息后生成, 并经由路由区更新接受消息发送给终端;
所述随机数 NONCEUE由终端在向目标 SGSN+发送路由区更新请求消息 前生成, 并经由路由区更新请求消息发送给目标 SGSN+。
优选的, 所述方法还包括:
所述终端是空闲态时, 所述目标 SGSN+在接收到源 MME发送的转发迁 移请求消息后生成随机数 NONCESGSN, 并经由源 MME、 源基站的中转发送 给终端; 或者目标 SGSN+在接收到终端发送的路由区更新请求消息后生成该 随机数 NONCESGSN, 并经由路由区更新接受消息发送给终端;
终端在向目标 SGSN+发送路由区更新请求消息前生成随机数 NONCEUE, 并经由路由区更新请求消息发送给目标 SGSN+;
所述终端切换至激活态后, 所述终端和目标 SGSN+根据映射的传统密钥 中的加密密钥 CK' , 完整性密钥 ΙΚ' , 以及随机数 NONCESGSN和 /或随机数 NONCEUE按照密钥算法分别推导出增强 UTRAN中所使用的增强密钥。
优选的, 所述终端和所述目标 SGSN+4艮据映射的传统密钥中的加密密钥 CK,和完整性密钥 IK,推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu的算 法为: IKu = IK,, CKu=CK'。
本发明还提供一种终端移动到增强 UTRAN时建立增强密钥的系统, 包 括演进的通用陆地无线接入网络 E-UTRAN , 支持增强安全功能的增强 UTRAN网络, 终端, 源移动管理实体 (源 MME ) , 增强 UTRAN中的目标 服务 GPRS支持节点 (目标 SGSN+ ) ; 其中:
所述目标 SGSN+设置为: 根据从源移动管理实体(源 MME )处获得的 映射的传统密钥, 推导出增强 UTRAN中所使用的增强密钥;
所述终端设置为: 推导出映射的传统密钥后, 根据所述映射的传统密钥 釆用与所述目标 SGSN+相同的算法推导出增强 UTRAN 中所使用的增强密 钥。
优选的, 所述终端和所述目标 SGSN+根据映射的传统密钥的加密密钥 CK,和完整性密钥 IK,推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu的算 法为: IKu = IK,, CKu=CK,。
优选的, 所述目标 SGSN+和所述终端是设置为: 利用映射的传统密钥中 的加密密钥 CK,和完整性密钥 IK,按照相同的密钥算法直接计算出增强密钥 中的加密密钥 CKu、 完整性密钥 IKu; 或者先将映射的传统完整性密钥 IK,视 为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密钥 CK, 再按照相同的密钥算法利用传统密钥 CK和 IK推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu;
所述系统还包括: 增强 UTRAN中的目标无线网络控制器(RNC+ ) , 所 述目标 SGSN+还设置为: 将所述增强密钥 CKu、 IKu通过密钥分发消息发送 给目标无线网络控制器(RNC+ ); 所述目标 RNC+还设置为: 存储所述增强 密钥 CKu、 IKu。
优选的, 所述终端是激活态终端; 所述密钥分发消息是迁移请求消息。 优选的, 所述终端是处于激活态的终端; 所述目标 SGSN+和所述激活态 的终端还设置为: 在推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu后, 根据映射的传统密钥 CK'、 IK'和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*;
所述目标 SGSN+还设置为: 将所述变形增强密钥 CKu*、 IKu*通过迁移 请求消息发送给增强 UTRAN中的目标无线网络控制器(RNC+ ) ;
所述目标 RNC+还设置为: 存储所述变形增强密钥 CKu*、 IKu*;
所述终端和所述目标 SGSN+还设置为: 利用变形增强密钥 CKu*、 IKu* 在增强的 UTRAN网络内进行 SRNC迁移。
优选的, 所述终端和所述目标 SGSN+是设置为以如下方式 4艮据映射的传 统密钥中的加密密钥 CK,和完整性密钥 IK,推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu:
按照相同的密钥算法将 CK'和 IK'结合第一参数推导出增强密钥 CKu、 IKu; 或者, 先将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射 的传统加密密钥 CK'视为传统加密密钥 CK,再按照相同的密钥算法将 CK和 IK结合第一参数推导出增强密钥 CKu、 IKu。
优选的, 所述终端为激活态的终端时, 所述第一参数包括以下参数的一 种或多种:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSN。
优选的, 所述终端为空闲态的终端时, 所述第一参数包括以下参数的一 种或多种:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSN , 终端生成的随机数 NONCEUE。
釆用本发明所述方法及系统, 终端从 E-UTRAN移动到增强的 UTRAN 时, 网络侧和终端可以分别根据映射的传统密钥建立增强的密钥体系, 而不 用通过再次进行 AKA (认证和密钥协定)过程, 从而能节省网络开销, 提高 系统效率, 保证终端能和增强 UTRAN网络安全地进行通信。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。
图 1为现有技术中釆用 HSPA+技术的无线接入网络的架构示意图; 图 2为现有技术中 HSPA+增强的安全密钥层次结构示意图;
图 3为现有技术中 LTE/SAE的架构示意图;
图 4为本发明实施例一流程图;
图 5为本发明实施例二流程图;
图 6为本发明实施例三流程图;
图 7为本发明实施例四流程图;
图 8为本发明实施例五流程图;
图 9为本发明实施例六流程图。 本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 作进一步地详细说明。
本发明的原理为: 当终端从 E-UTRAN网络移动到支持 HSPA+安全功能 的 UTRAN(即增强的 UTRAN,以下简称增强 UTRAN )网络时 ,增强 UTRAN 中的目标 SGSN+(增强的服务 GPRS支持节点)根据从源移动管理实体 MME 处获得的映射的传统密钥推导增强 UTRAN中所使用的增强密钥; 所述终端 推导出映射的传统密钥后, 再根据所述映射的传统密钥釆用与所述目标 SGSN+相同的算法推导增强 UTRAN中所使用的增强密钥。
所述终端为激活态时, 所述目标 SGSN+通过转发迁移请求消息从源移动 管理实体处获得映射的传统密钥。 目标 SGSN+在根据密钥算法推导出增强密 钥后, 将所述增强密钥 CKu、 IKu通过密钥分发消息(如迁移请求消息)发送 给增强 UTRAN中的目标无线网络控制器 ( RNC+ ), 由所述目标 RNC+存储。 所述终端釆用与目标 SGSN+相同的密钥算法推导增强 UTRAN中所使用的增 强密钥 CKu、 IKu并存储。
另一种改进的方案为: 所述目标 SGSN+4艮据映射的传统密钥和增强密钥
CKu、 IKu推导变形增强密钥 CKu*、 IKu*, 并通过密钥分发消息 (如迁移请 求消息)将所述变形增强密钥 CKu*、 IKu*发送给增强的 UTRAN中的目标无 线网络控制器 RNC+, 所述变形增强密钥 CKu*、 IKu*用于当所述终端在增强 的 UTRAN网络内进行服务无线网络控制器(SRNC ) 迁移时使用。 优选地, 所述目标 SGSN+在推导所述变形增强密钥的同时, 为所述变形增强密钥设置 一关联的计数器, 所述计数器用于记录生成变形增强密钥的次数。 目标 SGSN+可同时将计数器值也发送给 RNC+。 所述终端也可根据映射的传统密 钥和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*。
优选地,一种简化的推导增强的空口密钥的算法为: IKu = IK', CKu=CK'。 所述目标 SGSN+在推导增强密钥的过程中,还可根据映射的传统密钥再 结合第一参数推导出增强的 UTRAN中所使用的增强密钥; 所述终端在推导 增强密钥的过程中, 同样根据映射的传统密钥再结合所述第一参数釆用与所 述目标 SGSN+相同的算法推导出增强的 UTRAN中所使用的增强密钥; 所述 第一参数为目标 SGSN+发送给所述终端的, 或者是目标 SGSN+与所述终端 约定好的参数。
所述第一参数包括以下参数的一种或多种: 服务网络标识 (PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥 (AK ) , 用户身 份标识, 目标 SGSN+生成的随机数 NONCESGSNO
所述终端为空闲态时, 所述目标 SGSN+通过上下文响应消息从源移动管 理实体 MME处获得映射的传统密钥。 所述目标 SGSN+在推导增强密钥的过 程中, 根据映射的传统密钥再结合第一参数推导出增强的 UTRAN中所使用 的增强密钥; 所述终端在推导增强密钥的过程中, 同样根据映射的传统密钥 再结合所述第一参数釆用与所述目标 SGSN+相同的算法推导出增强的 UTRAN中所使用的增强密钥。 所述第一参数包括以下参数的一种或多种: 服务网络标识 (PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥 (AK ) , 用户身 份标识, 目标 SGSN+生成的随机数 NONCESGSN , 终端生成的随机数 NONCEuEo
其中, 终端为空闲态时, 增强密钥 CKu、 IKu的推导是可选的, 即终端可 以仅保存接收到的随机数 NONCESGSN和 /或生成的随机数 NONCEUE , 以备终 端退出空闲模式进入激活态时推导增强密钥 CKu、 IKu时使用, 而不必在空闲 态推导出增强密钥。
上述随机数 NONCESGSN由目标 SGSN+在接收到源 MME发送的转发迁 移请求消息后生成, 并经由源 MME、 源基站的中转发送给终端; 或者该随机 数 NONCESGSN由目标 SGSN+在接收到终端发送的路由区更新请求消息后生 成, 并经由路由区更新接受消息发送给终端。
上述随机数 NONCEUE由终端在向目标 SGSN+发送路由区更新请求消息 前生成, 并经由路由区更新请求消息发送给目标 SGSN+。
优选的, 还可将映射的传统密钥视为传统密钥, 例如: 映射的传统完整 性密钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加 密密钥 CK, 根据 IK、 CK推导增强密钥 CKu、 IKu。
如图 4所示, 终端移动到增强 UTRAN时建立增强密钥的系统, 包括演 进的通用陆地无线接入网络 E-UTRAN, 支持增强安全功能的 UTRAN (即增 强 UTRAN ) ,从 E-UTRAN移动至增强 UTRAN的终端 ,源移动管理实体 (源 ΜΜΕ ) ,增强 UTRAN中的目标服务 GPRS支持节点(目标 SGSN+ ); 其中: 所述目标 SGSN+, 用于根据从源移动管理实体(源 MME )处获得的映 射的传统密钥, 按照与终端相同的算法推导出增强 UTRAN中所使用的增强 密钥;
所述终端, 用于推导出映射的传统密钥后, 才艮据所述映射的传统密钥釆 用与所述目标 SGSN+相同的算法推导出增强 UTRAN中所使用的增强密钥。
所述终端和所述目标 SGSN+4艮据映射的传统密钥的加密密钥 CK'和完整 性密钥 IK,推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu的算法为: ΙΚυ = ΙΚ' , CKu=CK,。
所述目标 SGSN+和所述终端, 利用映射的传统密钥中的加密密钥 CK'和 完整性密钥 IK,按照相同的密钥算法直接计算出增强密钥中的加密密钥 CKu、 完整性密钥 IKu; 或者先将映射的传统完整性密钥 IK'视为传统完整性密钥 IK,将映射的传统加密密钥 CK'视为传统加密密钥 CK,再按照相同的密钥算 法利用传统密钥 CK和 IK推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu;
所述系统还包括: 增强 UTRAN中的目标无线网络控制器(RNC+ ) , 所 述目标 SGSN+将所述增强密钥 CKu、 IKu通过密钥分发消息发送给目标无线 网络控制器(RNC+ ) , 由所述目标 RNC+存储。
所述终端是处于激活态的终端; 所述目标 SGSN+和所述激活态的终端, 还用于在推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu后, 根据映射 的传统密钥 CK'、 IK'和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*; 所述目标 SGSN+将所述变形增强密钥 CKu*、 IKu*通过密钥分发消息发送给 增强 UTRAN中的目标无线网络控制器(RNC+ ) , 由所述目标 RNC+存储。
所述终端和所述目标 SGSN+在才艮据映射的传统密钥中的加密密钥 CK,和 完整性密钥 IK,推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu的过程中: 按照相同的密钥算法将 CK'和 IK'结合第一参数推导出增强密钥 CKu、 IKu; 或者, 先将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射的传 统加密密钥 CK'视为传统加密密钥 CK, 再按照相同的密钥算法将 CK和 IK 结合第一参数推导出增强密钥 CKu、 IKu。
所述终端为激活态的终端时 ,所述第一参数包括以下参数的一种或多种: 服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号(SQN ) , 隐藏 密钥 (ΑΚ ) , 用户身份标识, 或目标 SGSN+生成的随机数 NONCESGSN。
所述终端为空闲态的终端时 ,所述第一参数包括以下参数的一种或多种: 服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号(SQN ) , 隐藏 密钥 (ΑΚ ) , 用户身份标识, 目标 SGSN+生成的随机数 NONCESGSN, 或终 端生成的随机数 NONCEUE。 下面将参考附图并结合实施例, 来详细说明本发明的建立增强密钥的具 体方式。 终端在从演进网络 E-UTRAN移动到增强的 UTRAN时, 迁移过程 包括激活态终端的切换过程, 还包括空闲态终端的移动过程。 其中, 实施例 1-2中的终端状态为激活态, 实施例 3-6中的终端状态为空闲态。
实施例 1
本实施例说明了终端在从演进网络 E-UTRAN移动到增强的 UTRAN时, 空口密钥管理流程的示例, 在本实施例中, 由目标 SGSN+负责推导出增强密 钥 CKu和 IKu, 如图 4所示, 包括以下步骤:
步骤 101 , 源基站决定从 E-UTRAN网络切换到目标增强 UTRAN网络; 步骤 102, 源基站向源 ΜΜΕ发送切换需要消息;
步骤 103 , 源 ΜΜΕ确认终端是要切换到 UTRAN , 根据 KASME推导映射 的传统密钥 IK'和 CK';终端在 LTE网络中时,终端和 MME处都保存有 KASME。 映射的传统密钥 IK,和 CK,的推导式遵从 LTE相关协议定义, 此处不再赘述。
步骤 104,源 MME向目标 SGSN发送转发迁移请求消息,请求目标 SGSN 为终端分配资源; 该消息携带安全相关的参数: 例如映射的传统密钥 IK'和 CK'。 此后可能会同时进行服务网关 ( Serving GW ) 的迁移过程。
步骤 105 , 若目标 SGSN 支持增强的安全功能, 即: 若目标 SGSN为 SGSN+, 则该目标 SGSN+根据接收到的映射的传统密钥 IK'、 CK'推导增强 密钥 IKu、 CKu。
优选地, 目标 SGSN+将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK,视为传统加密密钥 CK, 根据 IK、 CK推导增 强密钥 CKu、 IKu。
优选地,增强密钥 CKu、 IKu的推导式中,除了映射的传统密钥 IK'、 CK' , 或者传统密钥 IK、 CK外, 还包括随机数或计数器。
优选地, 该随机数或计数器可以为系统已有的随机数或计数器。
优选地, 该计数器为目标 SGSN+和 /或 UE维护的计数器。 可选地, 目标 SGSN+在推导增强密钥 CKu、 IKu后, 根据映射的传统密 钥 IK'、 CK'和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*, 该变形增 强密钥用于当终端在增强的 UTRAN网络内进行 SRNC迁移时使用。优选地 , 变形增强密钥与一个计数器 NCC相关联, 该计数器 NCC用于记录生成变形 增强密钥的次数,在本实施例中,此时, 该变形增强密钥关联的 NCC值为 1。
若目标 SGSN不支持 HSPA+增强的安全功能, 则后面的流程按照 LTE 规范中规定的流程进行操作, 此处不再赘述。
步骤 106, 目标 SGSN+向目标 RNC+发送迁移请求消息,请求目标 RNC+ 为终端建立无线网络资源, 该消息携带安全相关的信息, 至少包括: 增强密 钥 CKu、 IKu和算法信息;
所述算法信息包括完整性算法信息和 /或加密算法信息, 所述完整性算法 可以是终端支持的完整性算法, 或者是网络侧选择的完整性算法; 所述加密 算法可以是终端支持的加密算法, 或者是网络侧选择的加密算法。 如果要求 必须进行完整性保护, 则所述算法信息中至少包含完整性算法。
可选地, 如果步骤 105中, 目标 SGSN+还推导了变形增强密钥 CKu*、
IKu*, 则目标 SGSN+还可以在该信息中携带变形增强密钥 CKu*、 IKu*。 如果 为变形增强密钥 CKu*、 IKu*设置了计数器 NCC,则还可携带计数器 NCC值。
步骤 107, 目标 RNC+为终端分配无线资源, 并保存所生成的 IKu和 /或 CKu; IKu和 CKu的推导式如实施例 7所示。
步骤 108, 目标 RNC+向目标 SGSN+发送迁移请求确认消息;
如果在步骤 106中目标 SGSN+携带了算法信息, 则在本步骤中, RNC+ 需在所述迁移请求确认消息中携带 RNC+选择的算法(完整性算法和 /或加密 算法) 。
此外, 目标 RNC+可以在所述迁移请求确认消息增加指示, 用以隐式或 显式地指示终端进行增强密钥 IKu和 /或 CKu的推导, 例如: 在迁移请求确认 消息中增加包含目标 RNC+安全能力指示 (隐式方式) , 或者增强密钥启用 指示 (显式方式) 。
此后可能目标 SGSN+和服务网关进行创建间接数据转发隧道请求消息 交互过程。
步骤 109 , 目标 SGSN+向源 MME发送转发迁移响应消息;
如果目标 SGSN+收到目标 RNC+选择的算法, 则在该转发迁移响应消息 中携带 RNC+选择的算法。
目标 SGSN+也可以在所述转发迁移响应消息增加指示, 用以隐式或显式 地指示终端进行增强密钥 IKu和 /或 CKu的推导, 例如: 在转发迁移响应消息 中增加包含目标 RNC+安全能力指示 (隐式方式) , 或者增强密钥启用指示 (显式方式) 。 如果步骤 108中目标 RNC+携带了所述指示, 则目标 SGSN+ 可将该指示添加在构造的转发迁移响应消息中。
步骤 110, 源 MME向源基站发送切换命令消息,指示网络完成切换准备 过程;
如果目标 SGSN+向源 MME发送的消息中携带有 RNC+选择的算法, 则 源 MME向源基站发送的该切换命令消息中也携带表示算法的参数。
此外, 源 MME在切换命令消息中携带目标 RNC+或者目标 SGSN+添加 的指示, 用以指示终端进行增强密钥 IKu和 /或 CKu的推导。
步骤 111 , 源基站向终端发送从 E-UTRAN切换命令消息,指示终端切换 到目标接入网络;
该切换命令消息携带目标 RNC+在准备阶段为终端分配的无线方面的参 数, 以及算法信息 (包括完整性算法和 /或加密算法) 。
优选地, 源基站也在该消息中携带目标 RNC+或者目标 SGSN+添加的指 示, 用以指示终端进行增强密钥 IKu和 CKu的推导。
步骤 112,终端按照和网络侧同样的密钥推导式,根据 KASME推导映射的 传统密钥 IK'和 CK' , 才艮据映射的传统密钥 IK'和 CK'推导增强的空口完整性 密钥 IKu和 /或空口加密密钥 CKu;
优选地, 终端按照和网络侧同样的密钥推导式, 将映射的传统完整性密 钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密 钥 CK, 根据 IK、 CK推导增强密钥 CKu、 IKu。
可选地,终端在推导增强密钥 CKu、 IKu后,还可根据映射的传统密钥 IK'、 CK'和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*, 该变形增强密钥用 于当终端在增强的 UTRAN网络内进行 SRNC迁移时使用。 优选地, 变形增 强密钥与一个计数器 NCC相关联, 该计数器 NCC用于记录生成变形增强密 钥的次数, 在本实施例中, 此时, 该变形增强密钥关联的 NCC值为 1。
步骤 113 , 终端向目标 RNC+发送切换到 UTRAN完成消息, 该消息使用 新生成的增强完整性密钥 IKu进行完整性保护, 和 /或使用增强加密密钥 CKu 进行加密保护;
步骤 114, 目标 RNC+向目标 SGSN+发送迁移完成消息, 向目标 SGSN+ 指示终端已从 E-UTRAN成功切换到目标 RNC+;
步骤 115, 目标 SGSN+和源 MME进行消息交互, 确认迁移完成; 步骤 116, 源 MME和源基站进行消息交互, 释放相关资源。
实施例 2
本实施例说明了终端在从 E-UTRAN移动到增强的 UTRAN时, 增强的 空口密钥建立流程的另一种示例。本实施例与例 1的区别在于,由目标 SGSN+ 生成一个随机数 NONCESGSN, 并使用该随机数 NONCESGSN和映射的传统密 钥 IK'和 CK'推导增强密钥 CKu、 IKu。 如图 5所示, 包括以下步骤:
步骤 301-304, 同实施例 1步骤 101-104;
步骤 305 , 若目标 SGSN 为 SGSN+ , 则目标 SGSN+生成随机数 NONCESGSN, 并根据接收到的映射的传统密钥 IK'、 CK'和生成的随机数 NONCESGSN推导增强密钥 CKu、 IKu;
优选地, 目标 SGSN+将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK,视为传统加密密钥 CK, 根据 IK、 CK推导增 强密钥 CKu、 IKu。 CKu、 IKu的推导式如实施例 7所述。
可选地, 目标 SGSN+在推导增强密钥 CKu、 IKu后, 根据映射的传统密 钥 IK'、 CK'和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*, 该变形增 强密钥用于当终端在增强的 UTRAN网络内进行 SRNC迁移时使用。优选地 , 变形增强密钥与一个计数器 NCC相关联, 该计数器 NCC用于记录生成变形 增强密钥的次数,在本实施例中,此时, 该变形增强密钥关联的 NCC值为 1。 步骤 306-308, 同实施例 1步骤 106-108;
步骤 309, 目标 SGSN+向源 MME发送转发迁移响应消息, 并在该消息 中携带参数: 随机数 NONCESGSN, 以及算法信息, 算法信息包括: 完整性算 法信息和 /或加密算法信息;
优选地, 目标 SGSN+可在该消息中携带指示, 经由源 MME中转指示终 端进行增强密钥 IKu和 CKu的推导,可以通过隐式或显式的方式指示,例如: 在转发迁移响应消息中增加包含目标 RNC安全能力指示(隐式方式), 或者 增强密钥启用指示 (显式方式) 。
步骤 310, 源 MME向源基站发送切换命令消息,指示网络完成切换准备 过程, 并在该消息中携带参数: 随机数 NONCESGSN, 以及算法信息;
步骤 311 , 源基站向终端发送从 E-UTRAN切换命令消息,指示终端切换 到目标接入网络, 并在该消息中携带目标 RNC+在准备阶段为终端分配的无 线方面的参数, 包括: 随机数 NONCESGSN, 以及算法信息;
优选地, 源基站在该消息中指示终端进行增强密钥 IKu和 CKu的推导, 可以通过隐式或显式的方式指示, 例如: 在切换命令中增加包含网络侧安全 能力指示 (隐式指示) , 或者增强密钥启用指示 (显式指示) 。
步骤 312 ,终端按照和网络侧同样的密钥推导式,根据 KASME推导映射的 传统密钥 IK'和 CK' ,随后根据映射的传统密钥 IK'、CK '和随机数 NONCESGSN 推导增强的空口完整性密钥 IKu和 /或空口加密密钥 CKu;
优选地, 终端按照和网络侧同样的密钥推导式, 将映射的传统完整性密 钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密 钥 CK, 根据 IK、 CK和随机数 NONCESGSN推导增强密钥 CKu、 IKu。
可选地, 终端在推导增强密钥 CKu、 IKu后, 根据映射的传统密钥 IK'、 CK'和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*, 该变形增强密钥用 于当终端在增强的 UTRAN网络内进行 SRNC迁移时使用。 优选地, 变形增 强密钥与一个计数器 NCC相关联, 该计数器 NCC用于记录生成变形增强密 钥的次数, 在本实施例中, 此时, 该变形增强密钥关联的 NCC值为 1。 步骤 313-316, 同实施例 1步骤 113-116。
实施例 3
本实施例示出了终端在空闲模式下从 E-UTRAN移动到增强的 UTRAN 进行路由区更新时的一种增强的空口密钥建立的示例, 如图 6所示, 包括以 下步骤:
步骤 501 , 当满足路由区更新触发条件时, 终端向目标 SGSN+发送路由 区更新请求消息,请求进行路由区更新, 该消息携带 NAS token (非接入层令 牌)用于网络对终端进行验证;
NAS token的推导式遵从 LTE相关协议的定义, 此处不再赘述。
步骤 502, 目标 SGSN+向该终端的源 MME发送上下文请求消息, 请求 该终端的上下文, 该消息携带参数: NAS token;
步骤 503 , 源 MME对 NAS token进行验证, 若验证通过, 则源 MME根 据 KASME推导映射的传统密钥 IK'和 CK' ; 映射的传统密钥 IK'和 CK'的推导 式遵从 LTE相关协议定义, 此处不再赘述。
步骤 504, 源 MME向目标 SGSN+发送上下文响应消息, 该消息携带参 数: 映射的传统密钥 IK'和 CK';
步骤 505, 目标 SGSN+根据接收到的映射的传统密钥 IK'和 CK'推导增 强密钥 CKu、 IKu;
优选地, 目标 SGSN+将映射的传统完整性密钥 IK'视为传统完整性密钥
ΙΚ, 将映射的传统加密密钥 CK,视为传统加密密钥 CK, 根据 IK、 CK推导增 强密钥 CKu、 IKu。 增强密钥 CKu、 IKu的推导式如实施例 7所述。
步骤 506 , 目标 SGSN+向终端发送路由区更新接受消息;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行增强密钥的推导, 例如: 在路由区更新接受消息中增 加包含目标网络安全能力指示 (隐式方式) , 或者增强密钥启用指示 (显式 方式) 。 步骤 507 ,终端按照和网络侧同样的密钥推导式,根据 KASME推导映射的 传统密钥 IK'和 CK' , 再由映射的传统密钥 IK'和 CK'推导出增强密钥 CKu、 IKu; 其中映射的传统密钥 IK'和 CK'的推导也可发生于该步骤之前;
优选地, 终端按照和网络侧同样的密钥推导式, 将映射的传统完整性密 钥 IK'视为传统完整性密钥 ΙΚ, 将映射的传统加密密钥 CK'视为传统加密密 钥 CK, 根据 IK、 CK推导增强密钥 CKu、 IKu。
步骤 508 , 终端向目标 SGSN+发送路由区更新完成消息, 确认路由区更 新完成。
实施例 4
本实施例示出了终端在空闲模式下从 E-UTRAN移动到增强的 UTRAN 进行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 3的区别 在于, 由目标 SGSN+生成一个随机数 NONCESGSN, 目标 SGSN+和终端使用 该随机数 NONCESGSN和映射的传统密钥 IK'、 CK'推导增强密钥 CKu、 IKu。 如图 7所示, 包括以下步骤:
步骤 601-604 , 同实施例 3步骤 501-504;
步骤 605 , 目标 SGSN+生成随机数 NONCESGSN, 并根据接收到的映射的 传统密钥 IK'、 CK'和随机数 NONCESGSN推导增强密钥 CKu、 IKu;
优选地, 目标 SGSN+将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密钥 CK, 根据 IK、 CK和随机 数 NONCESGSN推导增强密钥 CKu、 IKu。
增强密钥 CKu、 IKu的推导式如实施例 7所述。
步骤 606 , 目标 SGSN+向终端发送路由区更新接受消息, 并在消息中携 带参数: 随机数 NONCESGSN;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导。
步骤 607 ,终端按照和网络侧同样的密钥推导式,根据 KASME推导映射的 传统密钥 IK'和 CK' , 再根据映射的传统密钥 IK'、 CK'和 NONCESGSN推导增 强密钥 CKu、 IKu; 其中映射的传统密钥 IK'和 CK'的推导也可发生于该步骤 之前;
优选地, 终端按照和网络侧同样的密钥推导式, 将映射的传统完整性密 钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密 钥 CK, 根据 IK、 CK和随机数 NONCESGSN推导增强密钥 CKu、 IKu。
步骤 608, 同实施例 3步骤 508。
实施例 5
本实施例示出了终端在空闲模式下从 E-UTRAN移动到增强的 UTRAN 进行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 4的区别 在于, 由终端生成一个随机数 NONCEUE, 目标 SGSN+和终端使用该随机数 NONCEUE和映射的传统密钥 IK'、 CK'推导增强密钥 CKu、 IKu。如图 6所示, 包括以下步骤:
步骤 701 , 当满足路由区更新触发条件时, 终端生成随机数 NONCEUE; 步骤 702, 终端向目标 SGSN+发送路由区更新请求消息, 请求进行路由 区更新, 该消息携带参数: 随机数 NONCEUE;
此外, 该消息还携带 NAS token用于网络对终端进行验证。 NAS token 的推导式遵从 LTE相关协议的定义, 此处不再赘述。
步骤 703-705, 同实施例 3步骤 502-504;
步骤 706, 目标 SGSN+根据接收到的映射的传统密钥 IK'、 CK'和随机数
NONCEUE推导增强密钥 CKu、 IKu;
优选地, 目标 SGSN+将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密钥 CK, 根据 IK、 CK和随机 数 NONCEUE推导增强密钥 CKu、 IKu。
其中, 增强密钥 CKu、 IKu的推导是可选的, 即目标 SGSN+可以仅保存 接收到的随机数 NONCEUE,以备终端退出空闲模式进入激活态时推导增强密 钥 CKu、 IKu时使用。 步骤 707, 同实施例 3步骤 506; 步骤 708 ,终端按照和网络侧同样的密钥推导式,根据 KASME推导映射的 传统密钥 IK'和 CK' ,再根据映射的传统密钥 IK'、 CK'和 NONCEUE推导增强 密钥 CKu、IKu,其中映射的传统密钥 IK'和 CK'的推导也可发生于该步骤之前; 优选地, 终端按照和网络侧同样的密钥推导式, 将映射的传统完整性密 钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密 钥 CK, 根据 IK、 CK和随机数 NONCEUE推导增强密钥 CKu、 IKu。
其中, 增强密钥 CKu、 IKu的推导是可选的, 即终端可以仅保存生成的随 机数 NONCEUE,以备终端退出空闲模式进入激活态时推导增强密钥 CKu、 IKu 时使用。
步骤 709 , 同实施例 3步骤 508。
实施例 6
本实施例示出了终端在空闲模式下从 E-UTRAN移动到增强的 UTRAN 进行路由区更新时建立增强的空口密钥的示例。 本实施例与实施例 3的区别 在于, 在本实施例中, 终端生成一个随机数 NONCEUE, 目标 SGSN+生成一 个随机数 NONCESGSN , 终端和目标 SGSN+分别使用随机数 NONCEUE、 随机 数 NONCESGSN和映射的传统密钥 IK'、 CK'推导增强密钥 CKu、 IKu。 如图 9 所示, 包括如下步骤:
步骤 801 , 当满足路由区更新触发条件时, 终端生成随机数 NONCEUE; 步骤 802 , 终端向目标 SGSN+发送路由区更新请求消息, 请求进行路由 区更新, 该消息携带参数: 随机数 NONCEUE, 同时该消息还携带 NAS token 用于网络对终端进行验证;
NAS token的推导式遵从 LTE相关协议的定义, 此处不再赘述。
步骤 803-805 , 同实施例 3步骤 502-504;
步骤 806 , 目标 SGSN+生成随机数 NONCESGSN, 并根据接收到的映射的 传统密钥 IK,、 CK' , 以及随机数 NONCEUE、 随机数 NONCESGSN推导增强密 钥 CKu、 IKu;
优选地, 目标 SGSN+将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密钥 CK, 根据 IK、 CK以及随 机数 NONCEUE、 随机数 NONCESGSN推导增强密钥 CKu、 IKu。
增强密钥 CKu、 IKu的推导式如实施例 7所述。
其中, 增强密钥 CKu、 IKu的推导是可选的, 即目标 SGSN+可以仅保存 接收到的随机数 NONCEUE和生成的随机数 NONCESGSN , 以备终端退出空闲 模式进入激活态时推导增强密钥 CKu、 IKu时使用。
步骤 807, 目标 SGSN+向终端发送路由区更新接受消息, 并在消息中携 带参数: 随机数 NONCESGSN;
优选地, 目标 SGSN+在所述路由区更新接受消息中增加指示, 用以隐式 或显式地指示终端进行 KRNC的推导。
步骤 808 ,终端按照和网络侧同样的密钥推导式,根据 KASME推导映射的 传统密钥 IK'和 CK' ,再结合随机数 NONCEUE、随机数 NONCESGSN推导增强 密钥 CKu、 IKu,其中映射的传统密钥 IK'和 CK'的推导也可发生于该步骤之前; 优选地, 终端按照和网络侧同样的密钥推导式, 将映射的传统完整性密 钥 IK'视为传统完整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密 钥 CK, 根据 IK、 CK以及随机数 NONCEUE、 随机数 NONCESGSN推导增强密 钥 CKu、 IKu。
其中, 增强密钥 CKu、 IKu的推导是可选的, 即终端可以仅保存接收到的 随机数 NONCESGSN和生成的随机数 NONCEUE , 以备终端退出空闲模式进入 激活态时推导增强密钥 CKu、 IKu时使用。
步骤 809, 同实施例 3步骤 508。
实施例 7
本实施例给出增强密钥 CKu、 IKu的推导式的示例。
SGSN+派生所述增强密钥 CKu、 IKu的生成参数除了映射的传统加密密 钥 CK,和映射的传统完整性密钥 IK,外还包括以下参数之一或任意多个的组 合: 服务网络标识( PLMN identifier ) , 核心网节点类型 (TYPE, 表示分组 交换或者电路交换), 序列号(SQN ) , 隐藏密钥(AK ) , 用户身份标识(如 IMSI, IMEI或 TMSI) , SGSN+生成的随机数 NONCESGSN, 终端生成的随机 数 NONCEUE;所述序列号和隐藏密钥均是在认证和密钥协定过程中由用户和 归属用户服务器分别生成的参数。
以下给出派生增强密钥 CKu、 IKu的几种示例,其中括号内的参数排列不 分前后顺序, 其中的多个参数可以以 "II" (级联) 的形式进行连接:
CKu||IKu = Fl (CK,, IK', Type, SQN ® AK ) ;
或 CKu |IKu =F1 (CK,, IK', PLMN identifier, SQN ® AK ) ;
或 CKu |IKu =F1 (CK,, IK', PLMN identifier, Type, SQN ® AK ) ; 或 CKu |IKu =F1 (CK,, IK', IMSI, SQN ® AK ) ;
或 CKu |IKu =F1 (CK,, IK', Type, IMSI, SQN ® AK ) ;
或 CKu |IKu =F1 (CK,, IK',: PLMN identifier, Type, IMSI, SQN ® AK ) 或 CKu |IKu =F1 (CK,, IK', PLMN identifier, SQN ® AK ) ;
或 CKu |IKu =F1 (CK,, IK', SQN ® AK ) ;
或 CKu |IKu =F1 (CK,, IK', TYPE, AK) ;
或 CKu |IKu =F1 (CK,, IK', NONCESGSN ) ;
或 CKu |IKu =F1 (CK,, IK', SQN® AK , NONCESGSN ) ;
或 CKu |IKu =F1 (CK,, IK', NONCEUE ) ;
或 CKu |IKu =F1 (CK,, IK', SQN® AK , NONCEUE ) ;
或 CKu |IKu =F1 (CK,, IK', NONCESGSN, NONCEUE ) ;
或 CKu |IKu =F1 (CK,, IK', SQN® AK , NONCESGSN, NONCEUE ) ;
其中 Fl为任意密钥生成算法, 例如: 可以为 3GPP定义的 KDF算法。 " ® "参照 3GPP定义表示异或算法。
可选地, 若目标 SGSN+无法获得 SQN@AK的值, 则可以将其初始化为 0或者某个特定的值。
本实施例示例给出了根据映射的传统加密密钥 CK'和映射的传统完整性 密钥 IK'以及相关参数派生得到所述增强密钥 CKu、 IKu的具体算法形式, 由 于终端和目标 SGSN+釆用相同的密钥派生方法, 因此上述示例也适用于终端 派生增强密钥 CKu、 IKu的过程。
实施例 8
本实施例给出增强的空口完整性密钥 IKu和空口加密密钥 CKu的另一种 推导的示例。 当目标 SGSN+收到源 MME发送的映射的传统密钥 IK'和 CK'后, 令增 强的空口密钥 IKu = IK' , CKu=CK';
终端推导出映射的传统密钥 IK'和 CK'后, 令 IKu = IK', CKu=CK'。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性 釆用本发明所述方法及系统, 终端从 E-UTRAN移动到增强的 UTRAN 时, 网络侧和终端可以分别根据映射的传统密钥建立增强的密钥体系, 而不 用通过再次进行 AKA (认证和密钥协定)过程, 从而能节省网络开销, 提高 系统效率, 保证终端能和增强 UTRAN网络安全地进行通信。

Claims

权 利 要 求 书
1、 一种终端移动到增强通用陆地无线接入网 (UTRAN ) 时建立增强密 钥的方法, 包括:
增强 UTRAN中的目标服务通用分组无线服务支持节点 ( SGSN+ )根据 从源移动管理实体(MME )处获得的映射的传统密钥, 推导出增强 UTRAN 中所使用的增强密钥;
所述终端推导出映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与 所述目标 SGSN+相同的算法推导出增强 UTRAN中所使用的增强密钥。
2、 如权利要求 1所述的方法, 其中,
所述 SGSN+根据从源 MME 处获得的映射的传统密钥, 推导出增强
UTRAN中所使用的增强密钥的步骤包括:
所述目标 SGSN+从源 MME处获得映射的传统密钥中的加密密钥 CK'和 完整性密钥 ΙΚ'; 以及
所述目标 SGSN+在根据密钥算法利用 CK,和 ΙΚ,推导出增强密钥中的加 密密钥 CKu、 完整性密钥 IKu后, 将所述增强密钥 CKu、 IKu通过密钥分发消 息发送给增强 UTRAN中的目标无线网络控制器( RNC+ ) ,由所述目标 RNC+ 存储;
所述终端推导出映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与 所述目标 SGSN+相同的算法推导出增强 UTRAN中所使用的增强密钥的步骤 包括: 所述终端根据密钥算法利用映射的传统密钥 CK'和 IK'推导出增强 UTRAN中所使用的增强密钥 CKu、 IKu并存储。
3、 如权利要求 1所述的方法, 其中,
所述 SGSN+根据从源 MME 处获得的映射的传统密钥, 推导出增强 UTRAN中所使用的增强密钥的步骤包括:
所述目标 SGSN+是从源 MME获得映射的传统密钥中的加密密钥 CK'和 完整性密钥 ΙΚ' , 将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映 射的传统加密密钥 CK'视为传统加密密钥 CK; 以及 所述目标 SGSN+才艮据密钥算法利用传统密钥 CK和 IK推导出增强密钥 中的加密密钥 CKu、 完整性密钥 IKu, 将所述增强密钥 CKu、 IKu通过密钥分 发消息发送给增强 UTRAN中的目标无线网络控制器(RNC+ ) , 由所述目标 RNC+存储;
所述终端推导出映射的传统密钥后, 再才艮据所述映射的传统密钥釆用与 所述目标 SGSN+相同的算法推导出增强 UTRAN中所使用的增强密钥的步骤 包括: 所述终端将映射的传统完整性密钥 IK'视为传统完整性密钥 ΙΚ, 将映 射的传统加密密钥 CK'视为传统加密密钥 CK; 根据密钥算法利用传统密钥 CK和 ΙΚ推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu并存储。
4、 如权利要求 2或 3所述的方法, 其中, 所述终端为激活态时, 所述密 钥分发消息是迁移请求消息。
5、 如权利要求 2或 3所述的方法, 其中, 所述终端为激活态时, 所述方 法还包括:
所述目标 SGSN+在推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu 后, 根据映射的传统密钥 CK'、 IK'和增强密钥 CKu、 IKu推导获得变形增强 密钥 CKu*、 IKu*, 将所述变形增强密钥 CKu*、 IKu*通过迁移请求消息发送 给增强 UTRAN中的目标无线网络控制器 ( RNC+ ), 由所述目标 RNC+存储; 所述终端在推导出增强密钥中的加密密钥 CKu、 完整性密钥 IKu后, 根 据映射的传统密钥 CK'、 IK'和增强密钥 CKu、 IKu推导出变形增强密钥 CKu*、 IKu*并存储; 以及
所述终端和所述目标 SGSN+利用变形增强密钥 CKu*、 IKu*在增强的 UTRAN网络内进行 SRNC迁移。
6、 如权利要求 5所述的方法, 所述方法还包括:
所述 SGSN+和所述处于激活态的终端在推导所述变形增强密钥 CKu*、 IKu*的同时, 为所述变形增强密钥设置一关联的计数器, 所述计数器用于记 录生成变形增强密钥的次数; 所述目标 SGSN+向目标无线网络控制器 RNC+ 发送变形增强密钥 CKu*、 IKu*的同时将计数器值也发送给 RNC+。
7、 如权利要求 2或 3中任一项所述的方法, 其中, 所述终端和所述目标 SGSN+根据映射的传统密钥中的加密密钥 CK'和完整性密钥 IK'推导增强密 钥中的加密密钥 CKu、 完整性密钥 IKu的过程中:
按照相同的密钥算法将 CK'和 IK'结合第一参数推导出增强密钥 CKu、 IKu; 或者, 先将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射 的传统加密密钥 CK'视为传统加密密钥 CK,再按照相同的密钥算法将 CK和 IK结合第一参数推导出增强密钥 CKu、 IKu。
8、 如权利要求 7所述的方法, 其中, 所述终端为激活态时, 所述第一参 数包括以下参数的一种或多种:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSN。
9、 如权利要求 7所述的方法, 其中, 所述终端为空闲态时, 所述第一参 数包括以下参数的一种或多种:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSN , 终端生成的随机数 NONCEUE。
10、 如权利要求 9所述的方法, 其中,
所述随机数 NONCESGSN由目标 SGSN+在接收到源 MME发送的转发迁 移请求消息后生成, 并经由源 MME、 源基站的中转发送给终端; 或者, 该随机数 NONCESGSN由目标 SGSN+在接收到终端发送的路由区更新请 求消息后生成, 并经由路由区更新接受消息发送给终端;
所述随机数 NONCEUE由终端在向目标 SGSN+发送路由区更新请求消息 前生成, 并经由路由区更新请求消息发送给目标 SGSN+。
11、 如权利要求 1或 2所述的方法, 所述方法还包括:
所述终端是空闲态时, 所述目标 SGSN+在接收到源 MME发送的转发迁 移请求消息后生成随机数 NONCESGSN, 并经由源 MME、 源基站的中转发送 给终端; 或者目标 SGSN+在接收到终端发送的路由区更新请求消息后生成该 随机数 NONCESGSN, 并经由路由区更新接受消息发送给终端; 终端在向目标 SGSN+发送路由区更新请求消息前生成随机数 NONCEUE, 并经由路由区更新请求消息发送给目标 SGSN+;
所述终端切换至激活态后, 所述终端和目标 SGSN+根据映射的传统密钥 中的加密密钥 CK' , 完整性密钥 ΙΚ' , 以及随机数 NONCESGSN和 /或随机数 NONCEUE按照密钥算法分别推导出增强 UTRAN中所使用的增强密钥。
12、 如权利要求 1或 2所述的方法, 其中,
所述终端和所述目标 SGSN+4艮据映射的传统密钥中的加密密钥 CK'和完 整性密钥 IK,推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu的算法为:
ΙΚυ = ΙΚ' , CKu=CK,。
13、 一种终端移动到增强通用陆地无线接入网络(UTRAN )时建立增强 密钥的系统, 包括演进的通用陆地无线接入网络(E-UTRAN ) , 支持增强安 全功能的增强 UTRAN 网络, 终端, 源移动管理实体(MME ) , 以及增强 UTRAN中的目标服务通用分组无线服务支持节点 (SGSN+ ) ; 其中:
所述目标 SGSN+设置为:根据从所述源 MME处获得的映射的传统密钥, 推导出增强 UTRAN中所使用的增强密钥;
所述终端设置为: 推导出映射的传统密钥后, 根据所述映射的传统密钥 釆用与所述目标 SGSN+相同的算法推导出增强 UTRAN 中所使用的增强密 钥。
14、 如权利要求 13所述的系统, 其中,
所述终端和所述目标 SGSN+4艮据映射的传统密钥的加密密钥 CK'和完整 性密钥 IK,推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu的算法为:
ΙΚυ = ΙΚ' , CKu=CK,。
15、 如权利要求 13所述的系统, 其中,
所述目标 SGSN+和所述终端是设置为: 利用映射的传统密钥中的加密密 钥 CK,和完整性密钥 IK,按照相同的密钥算法直接计算出增强密钥中的加密 密钥 CKu、 完整性密钥 IKu; 或者先将映射的传统完整性密钥 IK'视为传统完 整性密钥 IK, 将映射的传统加密密钥 CK'视为传统加密密钥 CK, 再按照相 同的密钥算法利用传统密钥 CK和 IK推导出增强密钥中的加密密钥 CKu、完 整性密钥 IKu;
所述系统还包括: 增强 UTRAN中的目标无线网络控制器(RNC+ ) , 所 述目标 SGSN+还设置为: 将所述增强密钥 CKu、 IKu通过密钥分发消息发送 给目标无线网络控制器(RNC+ ); 所述目标 RNC+设置为: 存储所述增强密 钥 CKu、 IKu。
16、 如权利要求 15所述的系统, 其中, 所述终端是激活态终端; 所述密 钥分发消息是迁移请求消息。
17、 如权利要求 15所述的系统, 其中, 所述终端是处于激活态的终端; 所述目标 SGSN+和所述激活态的终端还设置为: 在推导出增强密钥中的加密 密钥 CKu、完整性密钥 IKu后,根据映射的传统密钥 CK'、IK'和增强密钥 CKu、 IKu推导变形增强密钥 CKu*、 IKu*;
所述目标 SGSN+还设置为: 将所述变形增强密钥 CKu*、 IKu*通过迁移 请求消息发送给增强 UTRAN中的目标无线网络控制器(RNC+ ) ;
所述目标 RNC+还设置为: 存储所述变形增强密钥 CKu*、 IKu*;
所述终端和所述目标 SGSN+还设置为: 利用变形增强密钥 CKu*、 IKu* 在增强的 UTRAN网络内进行 SRNC迁移。
18、 如权利要求 15所述的系统, 其中, 所述终端和所述目标 SGSN+是 设置为以如下方式根据映射的传统密钥中的加密密钥 CK'和完整性密钥 IK' 推导增强密钥中的加密密钥 CKu、 完整性密钥 IKu:
按照相同的密钥算法将 CK'和 IK'结合第一参数推导出增强密钥 CKu、
IKu; 或者, 先将映射的传统完整性密钥 IK'视为传统完整性密钥 IK, 将映射 的传统加密密钥 CK'视为传统加密密钥 CK,再按照相同的密钥算法将 CK和 IK结合第一参数推导出增强密钥 CKu、 IKu。
19、 如权利要求 18所述的系统, 其中, 所述终端为激活态的终端时, 所 述第一参数包括以下参数的一种或多种:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSN。
20、 如权利要求 18所述的系统, 其中, 所述终端为空闲态的终端时, 所 述第一参数包括以下参数的一种或多种它们的组合:
服务网络标识( PLMN identifier ) , 核心网节点类型, 序列号 (SQN ) , 隐藏密钥(AK ) , 用户身份标识, 目标 SGSN+和 /或终端 UE维护的计数器, 目标 SGSN+生成的随机数 NONCESGSN, 终端生成的随机数 NONCEUE。
PCT/CN2011/072439 2010-05-17 2011-04-02 终端移动到增强通用陆地无线接入网络(utran)时建立增强密钥的方法及系统 WO2011143977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010184429.2A CN101860862B (zh) 2010-05-17 2010-05-17 终端移动到增强utran时建立增强密钥的方法及系统
CN201010184429.2 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011143977A1 true WO2011143977A1 (zh) 2011-11-24

Family

ID=42946451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072439 WO2011143977A1 (zh) 2010-05-17 2011-04-02 终端移动到增强通用陆地无线接入网络(utran)时建立增强密钥的方法及系统

Country Status (2)

Country Link
CN (1) CN101860862B (zh)
WO (1) WO2011143977A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860862B (zh) * 2010-05-17 2015-05-13 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统
US10433161B2 (en) 2012-01-30 2019-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Call handover between cellular communication system nodes that support different security contexts
US9883385B2 (en) 2015-09-15 2018-01-30 Qualcomm Incorporated Apparatus and method for mobility procedure involving mobility management entity relocation
CN106792676B (zh) * 2017-02-10 2018-03-20 北京浩瀚深度信息技术股份有限公司 一种lte系统内部nas消息的解密方法及装置
CN109842881B (zh) * 2017-09-15 2021-08-31 华为技术有限公司 通信方法、相关设备以及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299884A (zh) * 2008-06-16 2008-11-05 中兴通讯股份有限公司 用户设备转移时密钥身份标识符的生成方法和生成系统
WO2009080480A1 (en) * 2007-12-19 2009-07-02 Nokia Corporation Methods, apparatuses, system, and related computer program products for handover security
CN101860862A (zh) * 2010-05-17 2010-10-13 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304311A (zh) * 2008-06-12 2008-11-12 中兴通讯股份有限公司 密钥生成方法和系统
JP2010045815A (ja) * 2009-10-01 2010-02-25 Ntt Docomo Inc 移動通信方法、無線基地局及び移動局
CN101835152A (zh) * 2010-04-16 2010-09-15 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080480A1 (en) * 2007-12-19 2009-07-02 Nokia Corporation Methods, apparatuses, system, and related computer program products for handover security
CN101299884A (zh) * 2008-06-16 2008-11-05 中兴通讯股份有限公司 用户设备转移时密钥身份标识符的生成方法和生成系统
CN101860862A (zh) * 2010-05-17 2010-10-13 中兴通讯股份有限公司 终端移动到增强utran时建立增强密钥的方法及系统

Also Published As

Publication number Publication date
CN101860862B (zh) 2015-05-13
CN101860862A (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
RU2669780C2 (ru) Взаимодействие и интеграция различных сетей радиодоступа
AU2015321927B2 (en) Serving network authentication
RU2424634C2 (ru) Способ и устройство для самоконфигурирования базовой станции
WO2011127791A1 (zh) 终端移动到增强utran时建立增强密钥的方法及系统
JP4965655B2 (ja) 無線通信システム用の鍵管理のためのシステムおよび方法
JP5597676B2 (ja) 鍵マテリアルの交換
CN107615825B (zh) 在不可信wlan接入上的多个pdn连接
CN106134231B (zh) 密钥生成方法、设备及系统
EP3453149B1 (en) Secure signaling before performing an authentication and key agreement
WO2011085682A1 (zh) 一种空中接口密钥的更新方法及系统
US10659370B2 (en) Wireless local area network (WLAN) node, a wireless device, and methods therein
WO2011072599A1 (zh) 空口密钥的管理方法和系统
WO2013174267A1 (zh) 无线局域网络的安全建立方法及系统、设备
WO2007121669A1 (fr) Procédé, dispositif et système pour établir une connexion hertzienne
WO2017197596A1 (zh) 通信方法、网络侧设备和用户设备
WO2011088770A1 (zh) 一种派生空中接口密钥的方法及系统
WO2016023198A1 (zh) 异构网络之间的切换方法及切换系统
WO2011015060A1 (zh) 一种可扩展的鉴权协议认证方法、基站及鉴权服务器
EP2648437B1 (en) Method, apparatus and system for key generation
WO2011143977A1 (zh) 终端移动到增强通用陆地无线接入网络(utran)时建立增强密钥的方法及系统
Kim et al. MoTH: mobile terminal handover security protocol for HUB switching based on 5G and beyond (5GB) P2MP backhaul environment
WO2011131063A1 (zh) 一种建立增强的空口密钥的方法及系统
CN114501438A (zh) 一种电力无线专网的增强型eap身份验证方法
US20170331688A1 (en) Method Performed by a WLAN Node in an Integrated Wireless Communications Network, for Applying Security to Received Traffic Data
WO2011095077A1 (zh) 无线通信系统中管理空口映射密钥的方法、系统和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11782894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11782894

Country of ref document: EP

Kind code of ref document: A1