WO2011127722A1 - 用于otn设备的交叉容量处理方法和otn设备 - Google Patents

用于otn设备的交叉容量处理方法和otn设备 Download PDF

Info

Publication number
WO2011127722A1
WO2011127722A1 PCT/CN2010/077879 CN2010077879W WO2011127722A1 WO 2011127722 A1 WO2011127722 A1 WO 2011127722A1 CN 2010077879 W CN2010077879 W CN 2010077879W WO 2011127722 A1 WO2011127722 A1 WO 2011127722A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
service
unit
subunit
slots
Prior art date
Application number
PCT/CN2010/077879
Other languages
English (en)
French (fr)
Inventor
马文凯
耿健
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to BR112012026321A priority Critical patent/BR112012026321A2/pt
Priority to RU2012147326/07A priority patent/RU2543612C2/ru
Priority to EP10849731.4A priority patent/EP2560301B1/en
Publication of WO2011127722A1 publication Critical patent/WO2011127722A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface

Definitions

  • the present invention relates to the field of communications, and in particular, to a cross-capacity processing method and an OTN device for an Optical Transport Network (OTN) device.
  • OTN Optical Transport Network
  • BACKGROUND OF THE INVENTION Optical Transport Hierarchy (OTH) technology is a new generation of standardized after Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET). Digital delivery architecture.
  • SDH Synchronous Digital Hierarchy
  • SONET Synchronous Optical Network
  • Digital delivery architecture OTH-based OTN meets the development requirements of data bandwidth, and is a transparent transmission technology developed for the large-capacity and coarse-grain scheduling requirements in the bone-throw network layer. Its emergence makes the reality of intelligent optical networks possible.
  • the connection scheduling function is a function that specifies the volume of communication services.
  • the volume of communication services has increased dramatically, and the service capacity of OTN communication equipment has also increased sharply.
  • How to achieve high-capacity OTN service crossover has become the focus of research on various OTN communication equipment manufacturers.
  • the cross-scheduling of the electrical layer in the transport network is limited by the number of high-speed serial buses of a single Field Programmable Gate Array (FPGA) chip, resulting in limited cross-capacity and difficulty in expansion.
  • FPGA Field Programmable Gate Array
  • a primary object of the present invention is to provide a cross capacity processing scheme for an OTN device to at least solve one of the above problems.
  • a cross capacity processing method for an optical transport network OTN device is provided.
  • the OTN device includes a service unit and a cross unit, and the service unit includes a first service sub-unit and a second service sub-list
  • the method includes the following steps: The first service subunit splits the data T1 mapped to the T time slots in the N/2 lower backplane bus into two pieces of data T11 and T12 having the same number of slots, The two service subunits split the data T2 mapped to the T time slots in the N/2 lower backplane bus into two parts of data T21 and T22 having the same number of slots, where N is the backplane bus of the service unit
  • the number of the first service sub-unit is exchanged and recombined with the second service sub-unit, the first service sub-unit obtains the data T3 composed of T11 and T21, and the second service sub-unit obtains the data T4 composed of T12 and T22;
  • a service sub-unit and a second service sub-unit respectively send T3 and T4 to the
  • the first service subunit splits the data T1 mapped to the T time slots in the N/2 lower backplane bus into two parts of data T11 and T12 with the same number of slots, and the second service subunit will The data T2 mapped to the T time slots in the N/2 lower backplane bus is split into two pieces of data T21 and T22 having the same number of slots.
  • the first service subunit splits the T1 into parity slots.
  • the second service sub-unit splits the T2 into two-part data T21 and T22 having the same number of slots in the parity slot.
  • the first service subunit exchanges and reorganizes with the second service subunit, including: T12 and
  • T21 is exchanged through the interconnection bus between the first service subunit and the second service subunit; the first service subunit;] the reorganization of TH and T21 constitutes ⁇ 3; the second service subunit ⁇ 1 T12 and ⁇ 22 are reorganized to form ⁇ 4.
  • the first service subunit exchanges and reorganizes with the second service subunit further includes: the first service subunit splits the data ⁇ 5 of the received cross unit into two parts of data T51 and ⁇ 52 with the same number of slots, and T12 and ⁇ 52 are combined to form ⁇ 6; the second service subunit divides the data ⁇ 7 received by the cross unit into two parts of data T71 and ⁇ 72 with the same number of slots, and combines T21 and T71 to form ⁇ 8; ⁇ 6 and ⁇ 8 pass through the interconnection bus The first service sub-unit combines T51 and T71 to recover and de-map the corresponding customer service data; the second service sub-unit combines ⁇ 72 and ⁇ 52 to recover and de-map the corresponding customer service data.
  • the exchange of ⁇ 6 and ⁇ 8 via the interconnection bus includes:
  • the exchange data of the interconnection bus includes a frame header for identifying the data of the upper backplane bus and a frame header for identifying the data of the lower backplane bus.
  • a ⁇ device is also provided.
  • the device includes a service unit and a cross unit, the service unit includes a first service sub-unit and a second service sub-unit, and the device further includes: an interconnection bus, configured to connect the first service sub-unit and Second business subunit, and the first business subunit The data of the two service subunits is exchanged; the first service subunit further includes: a first splitting module, configured to map data of T time slots in the N/2 lower backplane bus mapped to the first service subunit T1 is split into two parts of data T11 and T12 with equal number of slots, where N is the number of backplane buses of the service unit; and the first lower backplane data combining module is used to merge T11 and T21 to form data T3.
  • a first splitting module configured to map data of T time slots in the N/2 lower backplane bus mapped to the first service subunit T1 is split into two parts of data T11 and T12 with equal number of slots, where N is the number of backplane buses of the service unit
  • the second service subunit further includes: a second splitting module, configured to map the N/2 lower backplane bus to the second service subunit
  • the data T2 of the T time slots is split into two parts of data T21 and T22 with the same number of time slots; the second lower backplane data combining module is used to combine T12 and T22 to form data T4, and T4 is inserted through the second overhead.
  • the processing module sends to the cross unit; and wherein T11 and T12 received by the cross unit are in the same time slot, and T21 and T22 are in the same time slot.
  • the first splitting module splits T1 into two parts of data T11 and T12 with equal number of slots according to the parity time slot; the second splitting module splits T2 into two parts with equal number of slots according to the parity time slot.
  • Data T21 and T22 are the first splitting module splits T1 into two parts of data T11 and T12 with equal number of slots according to the parity time slot; the second splitting module splits T2 into two parts with equal number of slots according to the parity time slot.
  • the first service subunit further includes: a first upper backplane data splitting module, configured to split the data ⁇ 5 received by the crossover unit into two parts of data T51 and ⁇ 52 having the same number of slots; the first interaction data The merging module is configured to combine the T12 and the ⁇ 52 to form the ⁇ 6; the first data recovery module is configured to combine and restore the T51 and the T71, and demap the corresponding customer service data; the second service subunit further includes: a backplane data splitting module, configured to split the data ⁇ 7 received by the intersecting unit into two parts of data T71 and ⁇ 72 with equal number of slots; and a second interactive data merging module for combining T21 and T71 to form ⁇ 8; The second data recovery module is configured to combine and recover ⁇ 72 and ⁇ 52, and demap the corresponding customer service data; the interconnection bus is also used to exchange ⁇ 6 and ⁇ 8.
  • a first upper backplane data splitting module configured to split the data ⁇ 5 received by the crossover unit into two parts of data T
  • the first service subunit and the second subunit are FPGA chips.
  • the exchange data in the interconnect bus includes a frame header for identifying the upper backplane bus data and a frame header for identifying the lower backplane bus data.
  • the cross-cell is extended, so that the non-blocking cross-capacity of a single service sub-unit is expanded, which solves the problem that the cross-scheduling of the electrical layer in the transport network is limited by the number of high-speed serial buses of a single service sub-unit, resulting in limited cross-capacity, and the problem is reduced.
  • System cost increases system utilization.
  • FIG. 1 is a flowchart of a method for processing a cross capacity of an OTN device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an OTN device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a cross-capacity expansion apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a service sub-unit of an OTN apparatus according to a preferred embodiment of the present invention.
  • step S102 the first service subunit can split the data T1 mapped to the T time slots in the N/2 lower backplane bus into two parts of data T11 and T12 with the same number of slots.
  • the second service subunit can split the data T2 mapped to the T time slots in the N/2 lower backplane bus into two parts of data T21 and T22 with the same number of slots, where N is the back of the service unit
  • the first service subunit exchanges with the second service subunit (can be interconnected via the interconnection bus), and the first service subunit obtains the data T3 composed of T11 and T21, and the second service sub
  • the unit obtains data T4 composed of T12 and T22;
  • Step S106 The first service sub-unit and the second service sub-unit respectively send T3 and T4 (that is, through the lower backplane bus of the first service sub-unit) to the cross-unit, where T11 and T12 are in the same time slot.
  • T21 and ⁇ 22 are in the same time slot.
  • a part of data (for example, T12 or T21) that is sent to the cross unit by a single service subunit is transmitted to another service subroutine through the interconnection of the service subunits of the device.
  • the unit is sent by another service sub-unit to the cross-unit, so that the non-blocking cross capacity of the single service sub-unit is expanded, which solves the problem that the cross-scheduling of the electric layer in the transport network is limited by the number of high-speed serial buses of a single service sub-unit.
  • the problem of limited cross-capacity reduces system cost and increases system utilization.
  • the first service subunit can split T1 into two parts of data T11 and T12 with equal number of slots in parity slots, and the second service subunit splits ⁇ 2 into parity slots.
  • Two-part data T21 and ⁇ 22 having the same number of slots.
  • T12 and T21 are exchanged through the interconnection bus between the first service subunit and the second service subunit; the first service subunit reorganizes T11 and T21 to form ⁇ 3; The unit recombines T12 and ⁇ 22 to form ⁇ 4.
  • the method can increase the number of cross units that simultaneously process each service subunit without increasing the number of cross units, that is, exchange data in the first sub service unit and the second sub service unit through the interconnection bus.
  • the system resources are effectively utilized.
  • the first service subunit receives the data of the cross unit ⁇ 5
  • the bus is exchanged; the first service sub-unit combines and restores T51 and T71, and demaps the corresponding customer service data; the second service sub-unit combines and restores ⁇ 72 and ⁇ 52, and demaps the corresponding customer service data.
  • the method can recover the data after the splitting of the service subunit, and demap the corresponding service data, so as to achieve the purpose of cross capacity expansion without affecting the existing process.
  • the interconnected bus exchange data includes a header for identifying the upper backplane bus data and a header for identifying the lower backplane bus data. This method can effectively put the interconnect bus
  • the data is differentiated to facilitate different processing at the receiving end to achieve cross-capacity expansion and data recovery.
  • 2 is a schematic structural diagram of an OTN device according to an embodiment of the present invention. As shown in FIG. 2, the OTN device includes a service unit and a cross unit, where the service unit includes a first service subunit, a second service subunit, and an interconnection bus 22.
  • the first service subunit includes a first splitting module 202 and a first lower backplane data merge module 204
  • the second service subunit includes a second splitting module 206 and a second lower backplane data merge module 208, below This structure will be described in detail.
  • the interconnection bus 22 is configured to connect the first service sub-unit and the second service sub-unit, and exchange data of the first service sub-unit and the second service sub-unit;
  • the first service sub-unit includes: the first splitting module 202 And dividing the data T1 of the T time slots in the N/2 lower backplane bus mapped to the first service subunit into two parts of data T11 and T12 with the same number of slots, where N is a service unit The number of the backplane bus;
  • the first lower backplane data merge module 204 is configured to merge T11 and T21, and the constituent data T3 is sent to the crossover unit by the first overhead insertion processing module;
  • the second service subunit includes:
  • the second splitting module 206 is configured to split the data T2 of the T time slots in the N/2 lower backplane bus mapped to the second service subunit into two parts of data T21 and T22 with the same number of slots.
  • FIG. 3 is a schematic structural diagram of an OTN device according to a preferred embodiment of the present invention.
  • the first service sub-unit further includes a first upper backplane data splitting module 302 and a first interactive data merge module 304.
  • the first data recovery module 306, the second service sub-unit further includes a second upper backplane data splitting module 308, a second interactive data merge module 310, and a second data recovery module 312.
  • the structure is described in detail below.
  • the first service subunit further includes: a first upper backplane data splitting module 302, configured to split the data T5 that receives the crossover unit into two parts of data T51 and T52 with the same number of slots; the first interactive data merge module
  • the second service sub-unit further includes:
  • the backplane data splitting module 308 is configured to split the data T7 received by the intersecting unit into two parts of data T71 and T72 with the same number of slots;
  • the second interactive data combining module 310 is configured to combine T21 and T71 to form a T8
  • the second data recovery module 312 is configured to combine and restore T72 and T52, and demap the corresponding customer service data; the interconnection bus is also used to exchange T6 and T8.
  • the first service subunit and the second subunit are FPGA chips.
  • the method facilitates the implementation of the service subunit in the device of the embodiment of the present invention, and improves the operability of the method.
  • the exchange data in the interconnection bus 22 includes a frame header for identifying the upper backplane bus data and a frame header for identifying the lower backplane bus data (ie, the interaction data of the received interconnection bus 22 can be received). Perform an effective split).
  • the cross-capacity is expanded and used by interconnecting the first service sub-unit and the second service sub-unit, which satisfies the requirements of a larger cross-capacity and improves system utilization.
  • the hardware part of the apparatus of the embodiment of the present invention may be composed of three thousand service units, one thousand cross units, and one clock unit, and the bundle backplane bus bkBUS of each service unit is connected with the M cross units.
  • Working with a unified system clock and a frame-head aligned clock (both clocks are included in the clock unit), where each service unit and each cross-unit has at least one high-speed bus (ie, the backplane bus bkBUS) ) connected, and the number of connected buses is equal to each cross unit. For example, if the number of buses connected to each cross unit is P, then P N/M.
  • each backplane bus includes an upper backplane bus (ie, an add direction bkBUS bus) and a lower backplane bus (ie, a drop direction bkBUS bus).
  • FIG. 4 is a schematic diagram of a cross-capacity expansion apparatus according to an embodiment of the present invention. Taking a service unit including two service sub-units as an example, the implementation process of the apparatus is described in detail below. As shown in FIG. 4, each service unit is composed of two service sub-units (#1 and #2), and each service sub-unit corresponds to one FPGA, and each FPGA (ie, each service sub-unit) has N. /2 drop direction bkBUS bus and N/2 add direction bkBUS bus.
  • interconnection bus icBUS In a business unit, there are two directions of interconnection bus icBUS between two business subunits, wherein The line can be composed of low rate data lines, and the interconnect bus capacity in each direction should be equal to the lower backplane bus capacity of each service subunit.
  • the processing of the bkBUS high-speed data service is usually implemented by an FPGA or an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • the implementation process of the embodiment of the present invention will be described in detail below with reference to examples.
  • the source of the service subunit #1 (#2) will be processed into a series of thousands of time slots of the N/2 backplane bus bkBUS after a series of processing, and Let the number of slots of the bkBUS data (ie, T1) be T at this time.
  • the source of the service subunit #1 (#2) maps the chip (ie, the first service subunit) to the T/2 odd (even) slot data in the bkBUS (ie, T11). Combining with T/2 even (odd) time slot data (ie, T21) mapped to another traffic subunit in bkBUS, where the merged data (ie, T3) is in the T/ of the service subunit 1#
  • the two odd (even) time slots are located in the first T/2 time slots, and are sent to the cross unit through the drop bus after the overhead insertion.
  • the source end of the service subunit #1 (#2) will be the chip.
  • the other T/2 even (odd) time slot data (ie, T12) mapped to the bkBUS are merged with the post (front) T/2 time slot (ie, T52) data received by the chip in the add direction, and merged.
  • the first T/2 time slots in the data (ie, T6) are the T/2 even (odd) time slots mapped by the chip into the bkBUS data, and then sent to another chip through the interconnect bus via the overhead insertion. That is, the second business subunit).
  • the sink end of the service subunit 1# (2#) performs the overhead extraction processing on the N/2 way bkBUS data received in the add direction, and then processes the post (front) T /2 time slot data (ie, T52) is sent to the processing interface of the interconnect bus; on the other hand, the interaction data (ie, T8) from the service subunit 2# (1#) is subjected to overhead extraction processing, etc.
  • the first T/2 time slot data (ie, T21) is sent to the service subunit 1# (2#) source to perform the process of combining the lower backplane data, and the T/2 time slot data (ie, T71) and The front (back) T/2 time slot data (ie, T51) of the add direction data is merged, and then the corresponding client service is sent out.
  • the data in the interconnect bus for each direction contains two parts
  • one half of the time slots is the drop direction data and the other half of the time slots is the add direction data
  • Corresponding processing can be used to set the respective frame headers for the two parts of data transmitted by each service subunit through the interconnection bus to avoid data confusion due to delay and thus cannot be extracted. It can be seen that the above steps can distribute each customer service data to thousands of identical time slots of the N-channel bkBUS data, wherein the N/2 way is from the service sub-unit #1, and the other N/2 way is from the service sub-unit # 2.
  • each service unit can be connected to N/2 cross units at most, so that there is no blocking intersection, and there is interconnection.
  • each service unit can be connected to up to N cross units for non-blocking crossover, thereby doubling the crossover capacity.
  • the implementation method of the foregoing apparatus may be extended to the case where multiple service sub-units are interconnected, that is, one service unit contains more than two service sub-units, and there are two directions between each two service sub-units.
  • FIG. 5 is a schematic structural diagram of a service subunit of an OTN device according to a preferred embodiment of the present invention.
  • the service subunit includes: a lower backplane data merge module 51, an interaction data merge module 52, an overhead insertion module 53, and an overhead extraction module 54,
  • the upper backplane data is divided into two modules 55, the interactive data splitting module 56 and the data recovery module 57. The functions of the various modules of the service subunit are described in detail below.
  • the lower backplane data combining module 51 is configured to map the chip to T/2 time slots in the bkBUS data, and merge with another chip mapped to T/2 time slots in the bkBUS data to form an interpolated sequence.
  • the overhead insertion module 53 is sent, and then the lower backplane bus of the chip is sent to the interleaving unit.
  • the interaction data combining module 52 is configured to map the chip to another T/2 time slots in the bkBUS data, and re-interpolate the T/2 time slots in the data in the add direction into T time slots.
  • the overhead insertion module 53 processes and is sent by the interconnect bus to another chip.
  • the overhead insertion module 53 is responsible for the insertion of overhead.
  • each data on the interconnect bus has two headers, and the drop portion and the add portion each use a different header.
  • the cost extraction module 54 is configured to complete the extraction of the overhead. In the extraction, in order to distinguish the drop part and the add part in the interactive data, two frame headers need to be added, the drop part header is used when extracting the drop part data, and the add part header is used when extracting the add part.
  • the upper backplane data is divided into two modules 55, which are used to divide the bkBUS data in the add direction into two according to the T time slots, wherein the T/2 time slots go to the interactive data combining module 52, and then go to another chip. In addition, T/2 time slots are sent to the data recovery module 57.
  • the interaction data splitting module 56 is configured to receive data in the interconnect bus, and distinguish the received data according to the drop part and the add part, wherein the drop part data is sent to the lower backplane data merge module 51, and the add part data is sent to Data recovery module 57.
  • the data recovery module 57 is configured to combine the data sent by the upper backplane data one-two module 55 and the interactive data splitting module 56, and regenerate the frame to send.
  • the embodiment of the present invention expands the non-blocking cross-capacity by interconnecting FPGA chips, and solves the problem that the cross-distribution of the electrical layer in the transport network is limited by the number of high-speed serial buses of a single FPGA chip, resulting in limited cross-capacity.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Description

用于 OTN设备的交叉容量处理方法和 OTN设备 技术领域 本发明涉及通信领域, 尤其涉及一种用于光传送网 (Optical Transport Network, 简称为 OTN )设备的交叉容量处理方法和 OTN设备。 背景技术 光传送体系(Optical Transport Hierarchy , 简称为 OTH )技术是在同步数 字传输体制 (Synchronous Digital Hierarchy , 简称为 SDH ) /同步光纤网 (Synchronous Optical Network,简称为 SONET)之后的新一代的标准化的数字 传送体系结构。 基于 OTH的 OTN满足数据带宽的发展要求, 是针对骨千网 络层次中大容量、 粗颗粒的调度需求而发展形成的一种透明传送技术, 它的 出现使智能光网络的现实成为可能。
OTN网络 ^^于 k阶光数据单元 ODUk ( k=0, 1,2,3 ) 分别进行调度的, 具体地, 是由交叉调度单元分开处理, 完成 ODUk ( k=0, 1,2,3 ) 的连接调度 功能。然而,随着多媒体业务的广泛发展,通讯业务量急剧增长,相应地 OTN 通讯设备的业务容量也急剧增长, 如何实现大容量的 OTN 业务交叉成为各 个 OTN通讯设备厂商研究的重点。 在相关技术中, 传送网中电层交叉调度受限于单个现场可编程门阵列 ( Field Programmable Gate Array , 简称为 FPGA ) 芯片的高速串行总线的数 量, 从而导致交叉容量受限且难以扩展。 发明内容 本发明的主要目的在于提供一种用于 OTN设备的交叉容量处理方案, 以至少解决上述问题之一。 为了实现上述目的, 根据本发明的一个方面, 提供了一种用于光传送网 OTN设备的交叉容量处理方法。 根据本发明的用于光传送网 OTN设备的交叉容量处理方法, 该 OTN设 备包括业务单元和交叉单元, 业务单元包括第一业务子单元和第二业务子单 元, 该方法包括以下步骤: 第一业务子单元将映射到其 N/2条下背板总线中 的 T个时隙的数据 T1拆分成时隙数相等的两部分数据 T11和 T12, 第二业 务子单元将映射到其 N/2条下背板总线中的 T个时隙的数据 T2拆分成时隙 数相等的两部分数据 T21和 T22, 其中, N是业务单元的背板总线的条数; 第一业务子单元与第二业务子单元交换并重组, 第一业务子单元得到由 T11 与 T21构成的数据 T3 , 第二业务子单元得到由 T12与 T22构成的数据 T4; 第一业务子单元与第二业务子单元分别将 T3和 T4发送给交叉单元, 其中, T11与 T12处于相同的时隙, T21与 T22处于相同的时隙。 进一步地, 第一业务子单元将映射到其 N/2条下背板总线中的 T个时隙 的数据 T1拆分成时隙数相等的两部分数据 T11和 T12, 第二业务子单元将 映射到其 N/2条下背板总线中的 T个时隙的数据 T2拆分成时隙数相等的两 部分数据 T21和 T22包括: 第一业务子单元将 T1按奇偶时隙拆分成时隙数 相等的两部分数据 T11和 T12, 第二业务子单元将 T2按奇偶时隙拆分成时 隙数相等的两部分数据 T21和 T22。 进一步地, 第一业务子单元与第二业务子单元交换并重组包括: T12与
T21 经过第一业务子单元与第二业务子单元之间的互联总线进行交换; 第一 业务子单元;]夺 TH与 T21进行重组构成 Τ3; 第二业务子单元^ 1 T12与 Τ22 进行重组构成 Τ4。 进一步地, 第一业务子单元与第二业务子单元交换并重组 还包括: 第一业务子单元将接收到交叉单元的数据 Τ5 拆分成时隙数相等的 两部分数据 T51和 Τ52, 并将 T12与 Τ52合并构成 Τ6; 第二业务子单元将 接收到交叉单元的数据 Τ7拆分成时隙数相等的两部分数据 T71和 Τ72, 并 将 T21与 T71合并构成 Τ8; Τ6与 Τ8经过互联总线进行交换; 第一业务子 单元将 T51与 T71进行合并恢复, 并解映射出相应的客户业务数据; 第二业 务子单元将 Τ72与 Τ52进行合并恢复, 并解映射出相应的客户业务数据。 进一步地, Τ6与 Τ8经过互联总线进行交换包括: 互联总线的交换数据 包括一个用于标识上背板总线数据的帧头和一个用于标识下背板总线数据的 帧头。 为了实现上述目的, 根据本发明的另一方面, 还提供了一种 ΟΤΝ设备。 根据本发明的 ΟΤΝ设备, 该 ΟΤΝ设备包括业务单元和交叉单元, 业务 单元包括第一业务子单元和第二业务子单元, 该 ΟΤΝ设备还包括: 互联总 线, 用于连接第一业务子单元和第二业务子单元, 并对第一业务子单元与第 二业务子单元的数据进行交换; 第一业务子单元还包括: 第一拆分模块, 用 于将映射到第一业务子单元的 N/2条下背板总线中的 T个时隙的数据 T1拆 分成时隙数相等的两部分数据 T11和 T12, 其中, N是业务单元的背板总线 的条数; 第一下背板数据合并模块, 用于将 T11与 T21合并, 构成数据 T3 经第一开销插入处理模块将 T3 发送给交叉单元; 第二业务子单元还包括: 第二拆分模块, 用于将将映射到第二业务子单元的 N/2条下背板总线中的 T 个时隙的数据 T2拆分成时隙数相等的两部分数据 T21和 T22; 第二下背板 数据合并模块, 用于将 T12与 T22合并, 构成数据 T4, 将 T4经第二开销插 入处理模块发送给交叉单元; 以及其中, 交叉单元接收到的 T11与 T12处于 相同的时隙, T21与 T22处于相同的时隙。 进一步地, 第一拆分模块将 T1 按奇偶时隙拆分成时隙数相等的两部分 数据 T11和 T12; 第二拆分模块将 T2按奇偶时隙拆分成时隙数相等的两部 分数据 T21和 T22。 进一步地, 第一业务子单元还包括: 第一上背板数据拆分模块, 用于将 接收到交叉单元的数据 Τ5拆分成时隙数相等的两部分数据 T51和 Τ52; 第 一交互数据合并模块, 用于将 T12与 Τ52合并构成 Τ6; 第一数据恢复模块, 用于将 T51与 T71进行合并恢复, 并解映射出相应的客户业务数据; 第二业 务子单元还包括: 第二上背板数据拆分模块, 用于将接收到交叉单元的数据 Τ7拆分成时隙数相等的两部分数据 T71和 Τ72; 第二交互数据合并模块, 用 于将 T21与 T71合并构成 Τ8; 第二数据恢复模块, 用于将 Τ72与 Τ52进行 合并恢复, 并解映射出相应的客户业务数据; 互联总线还用于交换 Τ6与 Τ8。 进一步地, 第一业务子单元和第二子单元为 FPGA芯片。 进一步地, 互联总线中的交换数据包括一个用于标识上背板总线数据的 帧头和一个用于标识下背板总线数据的帧头。 通过本发明的上述技术方案, 釆用 ΟΤΝ设备的业务子单元互联的方式, 将单个业务子单元发送给交叉单元的一部分数据通过互联总线传送给另一个 业务子单元, 由另一个业务子单元发送给交叉单元, 使得单个业务子单元的 无阻塞交叉容量得到了扩展, 解决了传送网中电层交叉调度受限于单个业务 子单元高速串行总线数量而导致交叉容量受限的问题, 降低了系统成本, 提 高了系统利用率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据本发明实施例的用于 OTN设备的交叉容量处理方法流程图; 图 2是根据本发明实施例的 OTN设备的结构示意图; 图 3是根据本发明优选实施例的 OTN设备的结构示意图; 图 4是 居本发明实施例的交叉容量扩展装置示意图; 图 5是根据本发明优选实施例的 OTN设备的业务子单元的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
OTN网络是由交叉调度单元来完成 ODUk ( k=0, 1,2,3 ) 的连接调度功能 的。 随着 OTN通讯设备的业务容量也急剧增长, 实现大容量的 OTN业务交 叉成为各个 OTN通讯设备厂商研究的重点。 图 1是根据本发明实施例的用于 OTN设备的交叉容量处理方法流程图, 其中, OTN设备包括业务单元和交叉单元, 业务单元包括第一业务子单元和 第二业务子单元, 该方法包括以下步^^ 步骤 S 102, 第一业务子单元可以将映射到其 N/2 条下背板总线中的 T 个时隙的数据 T1拆分成时隙数相等的两部分数据 T11和 T12, 第二业务子 单元可以将映射到其 N/2条下背板总线中的 T个时隙的数据 T2拆分成时隙 数相等的两部分数据 T21和 T22 , 其中, N是业务单元的背板总线的条数; 步骤 S 104,第一业务子单元与第二业务子单元交换(可以通过互联总线) 并重组, 第一业务子单元得到由 T11与 T21构成的数据 T3 , 第二业务子单 元得到由 T12与 T22构成的数据 T4; 步骤 S 106, 第一业务子单元与第二业务子单元分别将 T3和 T4 (即, 通 过第一业务子单元的下背板总线) 发送给交叉单元, 其中, T11与 T12处于 相同的时隙, T21与 Τ22处于相同的时隙。 通过上述步骤 S 102至步骤 S 106,釆用 ΟΤΝ设备的业务子单元互联的方 式, 将单个业务子单元发送给交叉单元的一部分数据 (例如, T12或 T21 ) 通过互联总线传送给另一个业务子单元, 由另一个业务子单元发送给交叉单 元, 使得单个业务子单元的无阻塞交叉容量得到了扩展, 解决了传送网中电 层交叉调度受限于单个业务子单元高速串行总线数量而导致交叉容量受限的 问题, 降低了系统成本, 提高了系统利用率。 优选地, 在步骤 S 102中, 第一业务子单元将 T1可以按奇偶时隙拆分成 时隙数相等的两部分数据 T11和 T12, 第二业务子单元将 Τ2按奇偶时隙拆 分成时隙数相等的两部分数据 T21和 Τ22。 该方法使得数据可以得到均衡拆 分, 有利于交互数据的提取, 以便于区别来自不同业务子单元的数据。 优选地, 在步骤 S 104 中, T12与 T21经过第一业务子单元与第二业务 子单元之间的互联总线进行交换; 第一业务子单元将 T11与 T21进行重组构 成 Τ3; 第二业务子单元将 T12与 Τ22进行重组构成 Τ4。 该方法可以达到在 不增加交叉单元个数的情况下, 使得同时处理每个业务子单元的交叉单元增 加, 即, 通过互联总线对第一子业务单元和第二子业务单元中的数据进行交 换, 从而达到无阻塞交叉容扩展的目的, 有效地利用了系统资源。 优选地, 在步骤 S 104中, 第一业务子单元将接收到交叉单元的数据 Τ5
(即, 第一业务子单元的上背板总线的数据) 可以拆分成时隙数相等的两部 分数据 T51和 Τ52, 并将 T12与 Τ52合并构成 Τ6; 第二业务子单元将接收 到交叉单元的数据 Τ7 (即, 第二业务子单元的上背板总线的数据)可以拆分 成时隙数相等的两部分数据 T71和 Τ72, 并将 T21与 T71合并构成 Τ8; Τ6 与 Τ8经过互联总线进行交换;第一业务子单元将 T51与 T71进行合并恢复, 并解映射出相应的客户业务数据; 第二业务子单元将 Τ72与 Τ52进行合并恢 复, 并解映射出相应的客户业务数据。 该方法可以将业务子单元拆分后的数 据恢复, 并且解映射出相应的业务数据, 使得在不影响现有流程的情况下, 达到交叉容量扩展的目的。 优选地, 互联总线的交换数据包括一个用于标识上背板总线数据的帧头 和一个用于标识下背板总线数据的帧头。 该方法可以有效的将互联总线中的 数据区别开, 以便于在接收端故不同的处理, 实现交叉容量扩容和数据恢复 的目的。 图 2是根据本发明实施例的 OTN设备的结构示意图, 如图 2所示, 该 OTN设备包括业务单元和交叉单元, 业务单元包括第一业务子单元、 第二业 务子单元和互联总线 22 , 其中, 第一业务子单元包括第一拆分模块 202和第 一下背板数据合并模块 204 , 第二业务子单元包括第二拆分模块 206和第二 下背板数据合并模块 208 , 下面对该结构进行详细说明。 互联总线 22 , 用于连接第一业务子单元和第二业务子单元, 并对第一业 务子单元与第二业务子单元的数据进行交换; 第一业务子单元包括: 第一拆分模块 202 , 用于将映射到第一业务子单 元的 N/2条下背板总线中的 T个时隙的数据 T1拆分成时隙数相等的两部分 数据 T11和 T12, 其中, N是业务单元的背板总线的条数; 第一下背板数据 合并模块 204 , 用于将 T11与 T21合并, 构成数据 T3经第一开销插入处理 模块将 T3发送给交叉单元; 第二业务子单元包括: 第二拆分模块 206 , 用于将将映射到第二业务子 单元的 N/2条下背板总线中的 T个时隙的数据 T2拆分成时隙数相等的两部 分数据 T21和 T22; 第二下背板数据合并模块 208 , 用于将 T12与 T22合并, 构成数据 T4, 将 T4经第二开销插入处理模块发送给交叉单元; 以及 其中, 交叉单元接收到的 T11与 T12处于相同的时隙, T21与 T22处于 4目同的时隙。 优选地, 第一拆分模块 202将 T1按奇偶时隙拆分成时隙数相等的两部 分数据 T11和 T12; 第二拆分模块 206将 T2按奇偶时隙拆分成时隙数相等 的两部分数据 T21和 T22„ 图 3是根据本发明优选实施例的 OTN设备的结构示意图, 其中, 第一 业务子单元还包括第一上背板数据拆分模块 302、第一交互数据合并模块 304 和第一数据恢复模块 306 , 第二业务子单元还包括第二上背板数据拆分模块 308、 第二交互数据合并模块 310和第二数据恢复模块 312 , 下面对该结构进 行详细说明。 第一业务子单元还包括: 第一上背板数据拆分模块 302 , 用于将接收到 交叉单元的数据 T5拆分成时隙数相等的两部分数据 T51和 T52; 第一交互 数据合并模块 304 ,用于将 T12与 T52合并构成 T6;第一数据恢复模块 306 , 用于将 T51与 T71进行合并恢复, 并解映射出相应的客户业务数据; 第二业务子单元还包括: 第二上背板数据拆分模块 308 , 用于将接收到 交叉单元的数据 T7拆分成时隙数相等的两部分数据 T71和 T72; 第二交互 数据合并模块 310 ,用于将 T21与 T71合并构成 T8;第二数据恢复模块 312 , 用于将 T72与 T52进行合并恢复, 并解映射出相应的客户业务数据; 互联总 线还用于交换 T6与 T8。 优选地, 第一业务子单元和第二子单元为 FPGA芯片。 该方法使得本发 明实施例的 ΟΤΝ设备中的业务子单元便于实现, 提高了方法的可操作性。 优选地, 互联总线 22 中的交换数据包括一个用于标识上背板总线数据 的帧头和一个用于标识下背板总线数据的帧头 (即, 可以将接收到的互联总 线 22的交互数据进行有效拆分)。 本发明实施例通过第一业务子单元和第二业务子单元互联使交叉容量得 到扩展釆用, 满足了更大交叉容量的要求, 提高了系统利用率。 另外, 本发明实施例装置的硬件部分可以由若千个业务单元、 若千个交 叉单元和 1 个时钟单元三部分组成, 每个业务单元的 Ν条背板总线 bkBUS 与 M个交叉单元相连接, 在统一的系统时钟和帧头对齐时钟下工作(这两个 时钟都包含在时钟单元中), 其中,每一个业务单元与每一个交叉单元都至少 有一条高速总线 (即, 背板总线 bkBUS )相连接, 且与每一个交叉单元连接 总线的个数相等, 例如, 设与每一个交叉单元连接的总线的个数为 P , 则 P=N/M。 需要说明的是, 每条背板总线中都包括一条上背板总线 (即, add 方向 bkBUS总线) 和一条下背板总线 (即, drop方向 bkBUS总线)。 图 4是 居本发明实施例的交叉容量扩展装置示意图, 以一个业务单元 包含两个业务子单元为例, 下面详细说明该装置的实现过程。 如图 4所示, 每一个业务单元由 2个业务子单元构成 (#1和 #2 ), 且每 一个业务子单元对应一片 FPGA, 而每一个 FPGA (即, 每一个业务子单元) 有 N/2条 drop方向 bkBUS总线和 N/2条 add方向 bkBUS总线。在一个业务 单元内, 两个业务子单元之间有两个方向的互联总线 icBUS , 其中, 互联总 线可以由低速率数据线构成, 且每个方向的互联总线容量都应等于每个业务 子单元的下背板总线容量。而对于 bkBUS高速数据业务的处理,通常由 FPGA 還辑或专用集成电路 ( Application Specific Integrated Circuit , 简称为 ASIC ) 实现。 下面将结合实例对本发明实施例的实现过程进行详细描述。 第一步, 业务子单元 #1 ( #2 ) 的源端将接入的每一路客户业务经一系列 处理后, 映射进 N/2 路背板总线 bkBUS 相同的若千个时隙中, 并设此时 bkBUS数据 (即, T1 ) 的时隙个数为 T。 第二步, 业务子单元 #1 ( #2 ) 的源端一方面把本芯片 (即, 第一业务子 单元) 映射到 bkBUS中的 T/2个奇 (偶) 时隙数据 (即, T11 ) 与另一个业 务子单元映射到 bkBUS中的 T/2偶(奇)个时隙数据 (即, T21 )进行合并, 其中, 合并的数据(即, T3 )里业务子单元 1#的 T/2个奇(偶) 时隙位于前 T/2个时隙, 经开销插入等环节后通过 drop总线送给交叉单元; 另一方面, 业务子单元 #1 ( #2 ) 的源端将本芯片映射到 bkBUS中的另外 T/2个偶 (奇) 时隙数据 (即, T12 ), 同该芯片 add方向接收到的后 (前) T/2时隙 (即, T52 )数据合并,合并的数据(即, T6 )里前 T/2个时隙是本芯片映射到 bkBUS 数据中的 T/2个偶 (奇) 时隙, 然后经开销插入等环节, 通过互联总线送给 另一个芯片 (即, 第二业务子单元)。 第三步, 业务子单元 1# ( 2# ) 的宿端一方面将 add方向接收到的 N/2路 bkBUS数据进行开销提取处理, 再经一分二处理, 将其中的后 (前) T/2时 隙数据 (即, T52 ) 送给互联总线的处理接口; 另一方面, 来自业务子单元 2# ( 1# ) 的交互数据 (即, T8 ) 经开销提取处理等环节后, 将其中前 T/2个 时隙数据 (即, T21 ) 送往该业务子单元 1# ( 2# ) 源端进行下背板数据的合 并处理, 另外 T/2个时隙数据 (即, T71 ) 与 add方向数据的前 (后) T/2个 时隙数据 (即, T51 ) 合并, 再解映射出相应的客户业务送出。 优选地, 由于对于每一个方向的互联总线中的数据都包含两个部分, 其 中一半时隙是 drop方向数据, 另一半时隙是 add方向数据, 所以, 为了便于 对接收到的互联总线的数据进行相应的处理, 可以为每个业务子单元通过互 联总线传送的两部分数据设置各自的帧头,以避免由于延时而导致数据混乱, 从而无法提取。 可见, 上述步骤可以将每一路客户业务数据分布到了 N路 bkBUS数据 的若千个相同时隙上, 其中, N/2路来自业务子单元 #1 , 另外的 N/2路来自 业务子单元 #2。 由 jtb可知, 在业务子单元 1#和业务子单元 2#之间没有互联 总线的情况下, 每一个业务单元最多可以和 N/2个交叉单元相连接故到无阻 塞交叉, 而在有互联总线的情况下, 每一个业务单元最多可以与 N个交叉单 元相连接做到无阻塞交叉, 从而使交叉容量增加了一倍。 需要说明的是, 上述装置的实现方法可以扩展到多个业务子单元互联的 情况, 即, 一个业务单元内包含大于两个的业务子单元, 且每两个业务子单 元间都有两个方向的互联总线,每一路客户数据经 bkBUS映射及业务子单元 间的时隙拆合处理,最终将数据分配到这些个业务子单元 bkBUS组合的若千 相同时隙上, 从而可以使无阻塞交叉容量成倍增大。 图 5是根据本发明优选实施例的 OTN设备的业务子单元的结构示意图, 该业务子单元包括: 下背板数据合并模块 51、 交互数据合并模块 52、 开销 插入模块 53、 开销提取模块 54、 上背板数据一分二模块 55、 交互数据拆分 模块 56和数据恢复模块 57 , 下面详细介绍该业务子单元的各个模块的作用。 下背板数据合并模块 51 , 用于将本芯片映射到 bkBUS数据的中的 T/2 个时隙,与另一芯片映射到 bkBUS数据中的 T/2个时隙合并,形成间插序列, 送入开销插入模块 53 , 之后本芯片的下背板总线送给交叉单元。 交互数据合并模块 52 ,用于将本芯片映射到 bkBUS数据的中的另外 T/2 个时隙, 与 add方向的数据中的 T/2个时隙重新间插组合成 T个时隙, 经开 销插入模块 53处理后由互联总线发送至另一个芯片。 开销插入模块 53 , 用于负责开销的插入。 需要说明的是, 互联总线上的 每一路数据都有两个帧头, drop部分和 add部分各使用一个不同的帧头。 开销提取模块 54 , 用于完成开销的提取。 在提取的时候, 为了区别交互 数据中的的 drop部分和 add部分, 需要添加两个帧头, 提取 drop部分数据 时使用 drop部分帧头, 提取 add部分时使用 add部分帧头。 上背板数据一分二模块 55 , 用于将 add方向的 bkBUS数据按照 T个时 隙一分为二, 其中 T/2个时隙去往交互数据合并模块 52 , 进而去往另一个芯 片, 另外 T/2个时隙去往数据恢复模块 57。 交互数据拆分模块 56 , 用于负责互联总线中数据的接收, 并将接收的数 据按照 drop部分和 add部分区分, 其中, drop部分数据送往下背板数据合并 模块 51 , add部分数据送往数据恢复模块 57。 数据恢复模块 57 , 用于合并上背板数据一分二模块 55和交互数据拆分 模块 56送过来的数据, 重新生成帧送出。 综上所述, 本发明实施例通过 FPGA芯片互联使得无阻塞交叉容量得到 了扩展, 解决了传送网中电层交叉调度受限于单个 FPGA芯片高速串行总线 数量而导致交叉容量受限的问题, 摆脱了单个 FPGA高速总线数量限制的影 响, 降低了系统成本, 满足了更大交叉容量的要求, 提高了系统利用率。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种用于光传送网 OTN设备的交叉容量处理方法, 所述 OTN设备包括 业务单元和交叉单元, 所述业务单元包括第一业务子单元和第二业务子 单元, 其特征在于, 包括以下步 4聚:
所述第一业务子单元将映射到其 N/2条下背板总线中的 T个时隙的 数据 T1拆分成时隙数相等的两部分数据 T11和 T12,所述第二业务子单 元将映射到其 N/2条下背板总线中的 T个时隙的数据 T2拆分成时隙数 相等的两部分数据 T21和 T22, 其中, N是所述业务单元的背板总线的 条数;
所述第一业务子单元与所述第二业务子单元交换并重组, 所述第一 业务子单元得到由 T11与 T21构成的数据 T3 ,所述第二业务子单元得到 由 T12与 T22构成的数据 T4;
所述第一业务子单元与所述第二业务子单元分别将 T3和 T4发送给 所述交叉单元, 其中, T11与 T12处于相同的时隙, T21与 T22处于相 同的时隙。
2. 根据权利要求 1所述的方法, 其特征在于, 所述第一业务子单元将映射 到其 N/2条下背板总线中的 T个时隙的数据 T1拆分成时隙数相等的两 部分数据 T11和 T12, 所述第二业务子单元将映射到其 N/2条下背板总 线中的 T个时隙的数据 T2拆分成时隙数相等的两部分数据 T21和 T22 包括:
所述第一业务子单元将 T1 按奇偶时隙拆分成时隙数相等的两部分 数据 T11和 T12,所述第二业务子单元将 T2按奇偶时隙拆分成时隙数相 等的两部分数据 T21和 T22。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述第一业务子单元与 所述第二业务子单元交换并重组包括:
T12与 T21经过所述第一业务子单元与所述第二业务子单元之间的 互联总线进行交换;
所述第一业务子单元将 T11与 T21进行重组构成 Τ3;
所述第二业务子单元将 T12与 Τ22进行重组构成 Τ4。
4. 居权利要求 3所述的方法, 其特征在于, 所述第一业务子单元与所述 第二业务子单元交换并重组还包括: 所述第一业务子单元将接收到所述交叉单元的数据 T5 拆分成时隙 数相等的两部分数据 T51和 T52, 并将 T12与 T52合并构成 T6; 所述第 二业务子单元将接收到所述交叉单元的数据 T7 拆分成时隙数相等的两 部分数据 T71和 T72, 并将 T21与 T71合并构成 T8;
T6与 T8经过所述互联总线进行交换;
所述第一业务子单元将 T51与 T71进行合并恢复, 并解映射出相应 的客户业务数据; 所述第二业务子单元将 T72与 T52进行合并恢复, 并解映射出相应 的客户业务数据。
5. 根据权利要求 4所述的方法, 其特征在于, T6与 T8经过所述互联总线 进行交换包括:
所述互联总线的交换数据包括一个用于标识上背板总线数据的帧头 和一个用于标识下背板总线数据的帧头。
6. —种 OTN设备, 所述 OTN设备包括业务单元和交叉单元, 所述业务单 元包括第一业务子单元和第二业务子单元, 其特征在于,
所述业务单元还包括: 互联总线, 用于连接所述第一业务子单元和 所述第二业务子单元, 并对所述第一业务子单元与所述第二业务子单元 的数据进行交换;
所述第一业务子单元包括: 第一拆分模块, 用于将映射到所述第一 业务子单元的 N/2条下背板总线中的 T个时隙的数据 T1拆分成时隙数 相等的两部分数据 T11和 T12, 其中, N是所述业务单元的背板总线的 条数; 第一下背板数据合并模块, 用于将 T11与 T21合并, 构成数据 T3 经第一开销插入处理模块将 T3发送给所述交叉单元;
所述第二业务子单元包括: 第二拆分模块, 用于将将映射到所述第 二业务子单元的 N/2条下背板总线中的 T个时隙的数据 T2拆分成时隙 数相等的两部分数据 T21和 T22;第二下背板数据合并模块,用于将 T12 与 T22合并, 构成数据 T4, 将 T4经第二开销插入处理模块发送给所述 交叉单元; 以及 其中, 所述交叉单元接收到的 T11与 T12处于相同的时隙, T21与 T22处于 ^目同的时隙。
7. 根据权利要求 6所述的设备, 其特征在于, 所述第一拆分模块将 T1按奇 偶时隙拆分成时隙数相等的两部分数据 T11和 T12; 所述第二拆分模块 将 T2按奇偶时隙拆分成时隙数相等的两部分数据 T21和 T22。
8. 根据权利要求 6或 7所述的设备, 其特征在于,
所述第一业务子单元还包括: 第一上背板数据拆分模块, 用于将接 收到所述交叉单元的数据 Τ5 拆分成时隙数相等的两部分数据 T51 和 Τ52; 第一交互数据合并模块, 用于将 T12与 Τ52合并构成 Τ6; 第一数 据恢复模块, 用于将 T51与 T71进行合并恢复, 并解映射出相应的客户 业务数据;
所述第二业务子单元还包括: 第二上背板数据拆分模块, 用于将接 收到所述交叉单元的数据 Τ7 拆分成时隙数相等的两部分数据 T71 和 Τ72; 第二交互数据合并模块, 用于将 T21与 T71合并构成 Τ8; 第二数 据恢复模块, 用于将 Τ72与 Τ52进行合并恢复, 并解映射出相应的客户 业务数据;
所述互联总线还用于交换 Τ6与 Τ8。
9. 根据权利要求 8所述的设备, 其特征在于, 所述第一业务子单元和所述 第二子单元为 FPGA芯片。
10. 根据权利要求 8所述的设备, 其特征在于, 所述互联总线中的交换数据 包括一个用于标识上背板总线数据的帧头和一个用于标识下背板总线数 据的帧头。
PCT/CN2010/077879 2010-04-13 2010-10-19 用于otn设备的交叉容量处理方法和otn设备 WO2011127722A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112012026321A BR112012026321A2 (pt) 2010-04-13 2010-10-19 método de processamento de capacidade de cruzamento para equipamento de rede de transporte óptico (otn) e equipamento de rede de transporte óptico
RU2012147326/07A RU2543612C2 (ru) 2010-04-13 2010-10-19 Способ обработки кросс-коммутационной нагрузки для оборудования оптической трансаортной сети (otn) и соответствующее оборудование otn
EP10849731.4A EP2560301B1 (en) 2010-04-13 2010-10-19 Crossing capacity processing method for optical transport network (otn) equipment and otn equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010164973.0A CN101826920B (zh) 2010-04-13 2010-04-13 用于otn设备的交叉容量处理方法和otn设备
CN201010164973.0 2010-04-13

Publications (1)

Publication Number Publication Date
WO2011127722A1 true WO2011127722A1 (zh) 2011-10-20

Family

ID=42690647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077879 WO2011127722A1 (zh) 2010-04-13 2010-10-19 用于otn设备的交叉容量处理方法和otn设备

Country Status (5)

Country Link
EP (1) EP2560301B1 (zh)
CN (1) CN101826920B (zh)
BR (1) BR112012026321A2 (zh)
RU (1) RU2543612C2 (zh)
WO (1) WO2011127722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000012A1 (en) 2014-07-02 2016-01-07 Bionomics Limited Predicting response to cancer therapy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826920B (zh) * 2010-04-13 2014-01-01 中兴通讯股份有限公司 用于otn设备的交叉容量处理方法和otn设备
CN102394767B (zh) * 2011-10-08 2018-03-13 中兴通讯股份有限公司 基于光传送网的数据处理方法及系统
CN106559141B (zh) 2015-09-25 2020-01-10 华为技术有限公司 一种信号发送、接收方法、装置及系统
US10298348B2 (en) * 2016-04-01 2019-05-21 Ipg Photonics Corporation Transparent clocking in a cross connect system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791057A (zh) * 2004-12-15 2006-06-21 华为技术有限公司 在光传送网中传输数据业务的方法及其装置
CN101030827A (zh) * 2006-03-03 2007-09-05 华为技术有限公司 Dtm映射到otn的方法和装置
CN101146240A (zh) * 2007-09-19 2008-03-19 中兴通讯股份有限公司 一种共享总线的分布式交叉装置
CN101615967A (zh) * 2008-06-26 2009-12-30 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101826920A (zh) * 2010-04-13 2010-09-08 中兴通讯股份有限公司 用于otn设备的交叉容量处理方法和otn设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2376635C2 (ru) * 2002-10-23 2009-12-20 Закрытое акционерное общество "МедиаЛингва" Способ и система проведения транзакций в сети с использованием сетевых идентификаторов
CN100584104C (zh) * 2007-01-26 2010-01-20 华为技术有限公司 一种业务调度系统和方法
RU2362206C1 (ru) * 2008-01-09 2009-07-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Способ работы локальной сети

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791057A (zh) * 2004-12-15 2006-06-21 华为技术有限公司 在光传送网中传输数据业务的方法及其装置
CN101030827A (zh) * 2006-03-03 2007-09-05 华为技术有限公司 Dtm映射到otn的方法和装置
CN101146240A (zh) * 2007-09-19 2008-03-19 中兴通讯股份有限公司 一种共享总线的分布式交叉装置
CN101615967A (zh) * 2008-06-26 2009-12-30 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101826920A (zh) * 2010-04-13 2010-09-08 中兴通讯股份有限公司 用于otn设备的交叉容量处理方法和otn设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000012A1 (en) 2014-07-02 2016-01-07 Bionomics Limited Predicting response to cancer therapy

Also Published As

Publication number Publication date
RU2012147326A (ru) 2014-05-20
RU2543612C2 (ru) 2015-03-10
EP2560301B1 (en) 2019-01-02
CN101826920B (zh) 2014-01-01
CN101826920A (zh) 2010-09-08
EP2560301A1 (en) 2013-02-20
EP2560301A4 (en) 2017-08-09
BR112012026321A2 (pt) 2016-07-12

Similar Documents

Publication Publication Date Title
US9980021B2 (en) Scalable switch fabric using optical interconnects
US11101908B2 (en) Service data transmission method and apparatus
TWI233018B (en) Multi-port high-speed serial fabric interconnect chip in a meshed configuration
JP5153815B2 (ja) マルチレーン伝送方法及びシステム
WO2019153253A1 (zh) 一种光传送网中业务数据的处理方法及装置
US7649900B2 (en) Local area network/wide area network switch
CN111565113B (zh) 用于sdn控制器的灵活以太网网络拓扑抽象方法及系统
WO2018228420A1 (zh) 一种传输网络系统、数据交换和传输方法、装置及设备
WO2011127722A1 (zh) 用于otn设备的交叉容量处理方法和otn设备
WO2008092321A1 (fr) Système de programmation de service et son procédé
TW200423598A (en) Architecture, method and system of multiple high-speed servers to network in WDM based photonic burst-switched networks
JP5563724B2 (ja) 光トランスポートネットワークのネットワークノード
CN1511410A (zh) 一种接入网络的装置和方法
US11245470B2 (en) Method, device, and system for transmitting data
WO2019105010A1 (zh) 接口传输方法、装置及设备
WO2017121158A1 (zh) 处理弹性以太网信号的方法和装置
US8923288B2 (en) Multi-service transport apparatus with switch for integrated transport networks
CN109450544A (zh) 光线路终端olt设备、无源光网络pon数据传送方法
WO2019029419A1 (zh) 透传业务频率的方法和设备
WO2019090696A1 (zh) 光传输单元信号的传输方法和装置
US6754174B1 (en) Interface for communications among network elements
US6738392B1 (en) Method and apparatus of framing high-speed signals
WO2011015002A1 (zh) 一种交叉保护的方法和装置
CN104038851B (zh) 用于最低阶光学数据单元的子速率映射
CN102843293A (zh) 一种处理报文的方法和网元设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9781/DELNP/2012

Country of ref document: IN

Ref document number: 2010849731

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012147326

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026321

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012026321

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121015