WO2011125856A1 - 無線基地局及び通信制御方法 - Google Patents

無線基地局及び通信制御方法 Download PDF

Info

Publication number
WO2011125856A1
WO2011125856A1 PCT/JP2011/058257 JP2011058257W WO2011125856A1 WO 2011125856 A1 WO2011125856 A1 WO 2011125856A1 JP 2011058257 W JP2011058257 W JP 2011058257W WO 2011125856 A1 WO2011125856 A1 WO 2011125856A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
base station
control information
radio
Prior art date
Application number
PCT/JP2011/058257
Other languages
English (en)
French (fr)
Inventor
大介 外山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/638,841 priority Critical patent/US9402267B2/en
Publication of WO2011125856A1 publication Critical patent/WO2011125856A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio base station that allocates a downlink radio channel to a radio terminal, and a communication control method in the radio base station.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the wireless base station In order to efficiently transmit data to a plurality of wireless terminals in a communication area, the wireless base station performs packet scheduling for each wireless terminal and allocates an uplink wireless channel and a downlink wireless channel. .
  • the radio base station uses a PDCCH (Physical Downlink Control CHannel), which is a radio channel for control information in the downlink, in order to notify the radio terminal of radio channel assignment for each of the uplink and downlink, It is necessary to transmit information for uplink radio channel allocation control (uplink allocation control information) and information for downlink radio channel allocation control (downlink allocation control information).
  • PDCCH Physical Downlink Control CHannel
  • uplink allocation control information uplink allocation control information
  • downlink radio channel allocation control information downlink allocation control information
  • PDSCH Physical Downlink Shared CHannel
  • the allocation process of the uplink allocation control information and the allocation process of the uplink allocation control information are performed so that the allocation is not biased to one side.
  • HARQ hybrid automatic retransmission
  • ARQ automatic retransmission
  • FEC forward error detection code
  • the radio base station can immediately allocate downlink allocation control information when a period in which information can be allocated to the PDCCH has arrived.
  • the radio base station cannot immediately allocate uplink allocation control information. This is because the radio base station must perform error detection on the signal transmitted through the uplink and then allocate uplink allocation control information according to the error detection result. Therefore, the timing for starting the allocation of uplink allocation control information is delayed from the timing for starting the allocation of downlink allocation control information. For this reason, it becomes indispensable to cooperate and negotiate allocation processing, which has a large burden in implementation.
  • an object of the present invention is to provide a radio base station and a communication control method for appropriately allocating information to a downlink radio channel without increasing the burden on implementation.
  • a first feature of the present invention is a radio base station (LTE base station 1) that allocates a radio channel to radio terminals (radio terminal 2-1 and radio terminal 2-2), and includes a downlink base station.
  • the gist is to provide an uplink dedicated area setting unit (logical area setting unit 154) for setting a dedicated area of uplink control information for controlling an uplink radio channel in a logical area of the radio channel.
  • Such a radio base station when the start of assignment of uplink control information to the downlink radio channel is delayed from the start of assignment of downlink control information to the downlink radio channel, By setting a dedicated area for uplink control information in a logical area, downlink control information is not assigned to the dedicated area for uplink control information. Therefore, even when there is no cooperation or negotiation of allocation processing, an allocation bias that a lot of downlink control information is allocated to a downlink radio channel and only a small amount of uplink control information is allocated is suppressed.
  • the second feature of the present invention is summarized in that the uplink dedicated area setting unit sets the size and / or number of dedicated areas of the uplink control information in accordance with the uplink traffic volume. .
  • a third feature of the present invention is that a downlink dedicated region setting unit (logical region) sets a dedicated region of downlink control information for controlling a downlink radio channel in a logical region of the downlink radio channel.
  • the gist is to include a setting unit 154).
  • a fourth feature of the present invention is summarized in that the downlink dedicated area setting unit sets the size and / or number of dedicated areas of the downlink control information according to the downlink traffic amount. .
  • a shared area for downlink control information for downlink control and uplink control information for uplink control is provided.
  • the gist is to include a shared area setting unit (logical area setting unit 154) to be set.
  • the shared area setting unit sets the size and / or number of the shared area according to the downlink traffic volume and the uplink traffic volume.
  • the gist is a sixth aspect of the present invention.
  • a communication control method in a radio base station that assigns a radio channel to a radio terminal, wherein the radio base station has an uplink in a logical area of a downlink radio channel.
  • the gist of the present invention is to set a dedicated area for uplink control information for controlling the radio channel.
  • 1 is an overall schematic configuration diagram of a wireless communication system according to an embodiment of the present invention. It is a block diagram of the LTE base station which concerns on embodiment of this invention. It is a figure which shows an example of the logical area corresponding to one PDCCH by the LTE base station which concerns on embodiment of this invention. It is a figure which shows the timing chart of the allocation process in 1 sub-frame period which concerns on embodiment of this invention. It is a flowchart which shows the operation
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment of the present invention.
  • the wireless communication system 10 shown in FIG. 1 has a configuration based on LTE (Long Term Evolution) which is a standard formulated by 3GPP.
  • the radio communication system 10 combines a radio base station (LTE base station) 1, a radio terminal 2-1 and a radio terminal 2-2 (hereinafter referred to as radio terminal 2-1 and radio terminal 2-2) existing in a cell 3. Appropriately referred to as “wireless terminal 2”).
  • the radio terminal 2 exists in a cell 3 formed by the LTE base station 1.
  • the LTE base station 1 performs wireless communication with the wireless terminal 2 existing in the cell 3.
  • E-UTRAN Evolved UMTSresTerrestrial Radio Access Network
  • HARQ hybrid automatic retransmission
  • FIG. 2 is a diagram illustrating a configuration of the LTE base station 1.
  • the LTE base station 1 illustrated in FIG. 2 includes a control unit 102, a storage unit 103, a wired communication unit 104, a wireless communication unit 105, and an antenna 107.
  • the control unit 102 includes, for example, a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), and controls various functions of the LTE base station 1.
  • storage part 103 is comprised by memory, for example, and memorize
  • the wired communication unit 104 is connected to an MME (Mobile Management Management Entity) or SGW (Serving Management Gateway) existing in an upper network (not shown) via the S1 interface.
  • the wired communication unit 104 is connected to another LTE base station, a base station (for example, a picocell base station) having a smaller transmission output than the LTE base station, and the like via the X2 interface.
  • MME Mobile Management Management Entity
  • SGW Serving Management Gateway
  • the wireless communication unit 105 includes an RF circuit, a baseband circuit, and the like.
  • the wireless communication unit 105 performs modulation, demodulation, encoding, decoding, and the like, and transmits and receives wireless signals to and from the wireless terminal 2 via the antenna 107.
  • the control unit 102 in the LTE base station 1 transmits, to the radio terminal 2, an uplink resource block and a downlink resource that are radio channels. Assign blocks.
  • the uplink resource block has a time length of one subframe period, which is a period corresponding to two OFDM symbols, and includes a PUCCH (Physical-Uplink-Control-CHannel) that is a radio channel for control information and a radio for user information. It is comprised by PUSCH (Physical
  • the downlink resource block includes PDCCH (Physical Downlink Control CHannel) that is a radio channel for control information and PDSCH (Physical Downlink Shared CHANnel) that is a radio channel for user information.
  • the control unit 102 includes a traffic volume acquisition unit 152, a logical area setting unit 154, and a PDCCH allocation unit 156.
  • the traffic volume acquisition unit 152 determines whether or not the timing for setting a logical area (logical area) of a PDCCH, which is a radio channel for downlink control information, described later has arrived.
  • the traffic amount acquisition unit 152 transmits the time corresponding to a predetermined number of subframes from the previous setting of the logical region, and is transmitted from the LTE base station 1 to the wireless terminal 2 using the PDCCH.
  • An error occurs in either the information for uplink radio channel allocation control (uplink allocation control information) or the information for downlink radio channel allocation control (downlink allocation control information), and the radio
  • the timing at which the LTE base station 1 receives retransmission control information as a retransmission request from the terminal 2 or the timing at which the number of wireless terminals 2 performing wireless communication with the LTE base station 1 is increased or decreased is logically determined. It is detected as the timing for setting the area.
  • the traffic volume acquisition unit 152 may detect the timing at which the service (for example, FTP or TELNET) in the higher layer received by the wireless terminal 2 is changed as the timing to set.
  • an uplink resource block and a downlink resource block are allocated to the wireless terminal 2, and wireless communication is performed between the LTE base station 1 and the wireless terminal 2.
  • the traffic volume acquisition unit 152 acquires an uplink traffic volume and a downlink traffic volume in wireless communication.
  • the traffic amount acquisition unit 152 assigns an average value (uplink average data amount) of data (uplink data) amount from the radio terminal 2 within a predetermined time, and allocates to the radio terminal 2 for transmission of uplink data. At least one of the number of uplink resource blocks, the amount of uplink data queue at a predetermined timing, and the amount of PDCCH allocated to the wireless terminal 2 is acquired as the amount of uplink traffic.
  • the traffic amount acquisition unit 152 has an average value (downlink average data amount) of data (downlink data) to the wireless terminal 2 within a predetermined time, and a downlink allocated to the wireless terminal 2 for transmission of downlink data. At least one of the number of link resource blocks, the amount of downlink data queue at a predetermined timing, and the amount of PUCCH allocated to the wireless terminal 2 is acquired as the downlink traffic amount.
  • the logical area setting unit 154 sets a logical area (logical area) of the PDCCH that is a radio channel for control information in the downlink.
  • the logical area setting unit 154 reserves a storage area corresponding to the data amount of one PDCCH in the storage unit 103.
  • the storage area is used as a logical area corresponding to one PDCCH.
  • the traffic volume acquisition unit 152 does not acquire the upstream traffic volume and the downstream traffic volume.
  • the logical region setting unit 154 divides the logical region corresponding to one PDCCH into three equal parts, and a dedicated region (uplink dedicated control information) for uplink radio channel allocation control (uplink allocation control information) Logical area), a dedicated area for downlink radio channel allocation control (downlink allocation control information) (downlink dedicated logical area), and an area shared by uplink allocation control information and downlink allocation control information ( Shared logical area).
  • FIG. 3A is a diagram illustrating a state where an uplink dedicated logical region, a downlink dedicated logical region, and a shared logical region are set by dividing a logical region corresponding to one PDCCH into three equal parts.
  • traffic The amount acquisition unit 152 acquires the amount of uplink traffic and the amount of downlink traffic.
  • the logical region setting unit 154 sets the uplink dedicated logical region, the downlink dedicated logical region, and the shared logical region in the logical region corresponding to one PDCCH based on the uplink traffic amount and the downlink traffic amount.
  • the logical region setting unit 154 maintains the same size as the initial state for the shared logical region, while maintaining the ratio of the uplink traffic amount and the downlink traffic amount, the size of the uplink dedicated logical region, and the downlink dedicated amount.
  • the uplink dedicated logical region and the downlink dedicated logical region may be set so that the ratio with the size of the logical region matches.
  • FIG. 3B shows an uplink-dedicated logical area and a downlink-dedicated logical area when the shared logical area is the same size as the initial state and the ratio of the uplink traffic volume to the downlink traffic volume is 7: 5. It is a figure which shows the state which set the logical area and the shared logical area.
  • 3C shows an uplink dedicated logical area when the shared logical area is the same size as the initial state and the ratio of the upstream traffic volume to the downstream traffic volume is 5: 7. It is a figure which shows the state which set the link exclusive logical area and the shared logical area.
  • the logical area setting unit 154 makes the size of the shared logical area variable, and increases the size of the uplink dedicated logical area as the uplink traffic volume acquired by the traffic volume acquiring unit 152 increases. As the amount of downlink traffic acquired by the amount acquisition unit 152 increases, the size of the downlink dedicated logical area may be increased.
  • FIG. 3D shows a state in which the uplink dedicated logical area, the downlink dedicated logical area, and the shared logical area are set when the size of the shared logical area is variable and the uplink traffic volume is larger than the reference value.
  • FIG. 3E shows the state in which the uplink dedicated logical area, the downlink dedicated logical area, and the shared logical area are set when the size of the shared logical area is variable and the downlink traffic amount is larger than the reference value.
  • FIG. 3D shows a state in which the uplink dedicated logical area, the downlink dedicated logical area, and the shared logical area are set when the size of the shared logical area is variable and the uplink traffic amount is larger
  • the logical area setting unit 154 is based on the uplink traffic volume and the downlink traffic volume.
  • the number of divided areas corresponding to the uplink dedicated logical area, the number of divided areas corresponding to the downlink dedicated logical area, and the number of divided areas corresponding to the shared logical area may be set.
  • the PDCCH allocation unit 156 performs the logical region corresponding to one PDCCH. To uplink allocation control information and downlink allocation control information.
  • FIG. 4 is a timing chart showing allocation processing of uplink allocation control information and downlink allocation control information in one subframe period.
  • PDCCH allocation section 156 allocates downlink allocation control information to the downlink dedicated logical area. However, after the downlink allocation control information is allocated to all downlink dedicated logical areas, the PDCCH allocation unit 156 allocates the remaining downlink allocation control information to an unallocated area in the shared logical area.
  • the control unit 102 decodes the signal transmitted through the uplink, performs error detection, and generates uplink allocation control information according to the error detection result (retransmission control process). ) And must be done. Therefore, the PDCCH allocation unit 156 allocates uplink allocation control information to the uplink dedicated logical area after the decoding process and the retransmission control process are completed. However, after the uplink allocation control information is allocated to all uplink dedicated logical areas, the PDCCH allocation unit 156 allocates the remaining uplink allocation control information to an unallocated area of the shared logical area.
  • the control unit 102 transmits uplink allocation control information and downlink allocation control information allocated to the uplink dedicated logical region, the downlink dedicated logical region, and the shared logical region corresponding to one PDCCH according to the allocation state.
  • the PDCCH is assigned to a physical area uniquely determined by the frequency band and time.
  • the radio communication unit 105 transmits a radio signal corresponding to PDCCH to the radio terminal 2 via the antenna 107.
  • FIG. 5 is a flowchart showing an operation for setting a logical area in the LTE base station 1.
  • an uplink resource block and a downlink resource block are allocated to the wireless terminal 2, and wireless communication is performed between the LTE base station 1 and the wireless terminal 2. It shall be.
  • a logical area corresponding to one PDCCH is already set in the storage unit 103.
  • step S101 the LTE base station 1 determines whether or not the timing for setting the logical area has arrived.
  • step S102 the LTE base station 1 acquires the uplink traffic volume and the downlink traffic volume in the radio communication with the radio terminal 2.
  • step S103 the LTE base station 1 sets an uplink dedicated logical region, a downlink dedicated logical region, and a shared logical region in a logical region corresponding to one PDCCH based on the acquired uplink traffic amount and downlink traffic amount. To do.
  • the LTE base station 1 receives uplink traffic in wireless communication with the wireless terminal 2 when the logical region setting timing arrives.
  • the uplink dedicated logical region, the downlink dedicated logical region, and the shared logical region are set in the logical region corresponding to one PDCCH based on the uplink traffic amount and the downlink traffic amount.
  • the allocation process of uplink allocation control information to the logical area is delayed from the allocation process of downlink allocation control information to the logical area.
  • downlink allocation control information is allocated to the entire logical area corresponding to one PDCCH. The situation is prevented, and the allocation of the uplink allocation control information to the logical area and the allocation of the downlink allocation control information to the logical area can be performed in a balanced manner.
  • the cell 3 may be divided into a plurality of sectors.
  • the LTE base station 1 acquires, for each sector, the amount of uplink traffic and the amount of downlink traffic in wireless communication with a wireless terminal existing in the sector, and based on the amount of uplink traffic and the amount of downlink traffic.
  • an uplink dedicated logical region, a downlink dedicated logical region, and a shared logical region are set in a logical region corresponding to one PDCCH.
  • the wireless communication system 10 employs LTE, but the present invention can be similarly applied to a wireless communication system employing other wireless communication standards.
  • the radio base station and communication control method according to the present invention can appropriately allocate information to a downlink radio channel without increasing the burden of implementation, and are useful as a radio base station and a communication control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 LTE基地局1は、論理領域の設定のタイミングが到来したか否かを判定する。論理領域の設定のタイミングが到来した場合、LTE基地局1は、無線端末2との間の無線通信における、上りトラフィック量及び下りトラフィック量を取得する。LTE基地局1は、取得した上りトラフィック量及び下りトラフィック量に基づいて、1つのPDCCHに対応する論理領域に、上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定する。

Description

無線基地局及び通信制御方法
 本発明は、無線端末に対して、下りリンクの無線チャネルを割り当てる無線基地局、及び、当該無線基地局における通信制御方法に関する。
 LTE(Long Term Evolution)が採用される無線通信システムでは、無線基地局から無線端末に向かう下りリンクの通信には、OFDMA(Orthogonal Frequency Division Multiplexing Access)が採用され、無線端末から無線基地局に向かう上りリンクの通信には、SC-FDMA(Single Carrier Frequency Division Multiple Access)が採用されている。これらの多重化方式は、周波数と時間の2次元で無線チャネルの配置を行ってユーザ多重を実現している。
 無線基地局は、通信エリア内の複数の無線端末に対して、効率的にデータを伝送するために、各無線端末に対するパケットスケジューリングを行い、上りリンクの無線チャネルと下りリンクの無線チャネルとを割り当てる。
 また、無線基地局は、上りリンクと下りリンクのそれぞれに対する無線チャネルの割り当てを無線端末へ通知するために、下りリンクにおける制御情報用の無線チャネルであるPDCCH(Physical Downlink Control CHannel)を用いて、上りリンクの無線チャネルの割り当て制御のための情報(上り割当制御情報)と、下りリンクの無線チャネルの割り当て制御のための情報(下り割当制御情報)とを送信する必要がある。しかし、下りリンクにおけるユーザ情報用の無線チャネルであるPDSCH(Physical Downlink Shared CHannel)のリソースを十分に確保する必要があることから、PDCCHのリソースは少ない。このため、上り割当制御情報と下り割当制御情報とがPDCCHの論理領域に割り当てられる場合には、一方に割り当てが偏らないように、上り割当制御情報の割り当て処理と、上り割当制御情報の割り当て処理との連携や折衝が必要となる。
 また、近年の無線通信技術では、伝送エラーの発生時における再送が重要な課題となっている。この課題に対して、下位レイヤにおけるハイブリッド自動再送(HARQ)と称される誤り訂正技術が導入されている。HARQは、自動再送(ARQ)と前方誤り検出符号(FEC)を用いた誤り検出とを組み合わせることにより、受信装置における誤り検出能力を向上させるものである。
 しかしながら、上述した上り割当制御情報の割り当て処理と、下り割当制御情報の割り当て処理との連携や折衝は、実装における負担が大きい。
 また、特にHARQが上りリンクにおいて採用される場合には、無線基地局は、PDCCHに情報を割り当て可能な期間が到来すると、下り割当制御情報については直ちに割り当てることができる。しかし、無線基地局は、上り割当制御情報については直ちに割り当てることができない。これは、無線基地局は、上りリンクを伝送された信号について誤り検出を行った後、その誤り検出の結果に応じた上り割当制御情報を割り当てなければならないからである。従って、上り割当制御情報の割り当て開始のタイミングは、下り割当制御情報の割り当て開始のタイミングよりも遅れる。このため、実装における負担が大きい割り当て処理の連携や折衝が不可欠となってしまう。
 そこで、本発明は、実装における負担を大きくすることなく、下りリンクの無線チャネルに情報を適切に割り当てる無線基地局及び通信制御方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。まず、本発明の第1の特徴は、無線端末(無線端末2-1、無線端末2-2)に対して、無線チャネルを割り当てる無線基地局(LTE基地局1)であって、下りリンクの無線チャネルの論理的な領域に、上りリンクの無線チャネルの制御のための上りリンク制御情報の専用領域を設定する上り専用領域設定部(論理領域設定部154)を備えることを要旨とする。
 このような無線基地局は、下りリンクの無線チャネルへの上りリンク制御情報の割り当て開始が、下りリンクの無線チャネルへの下りリンク制御情報の割り当て開始よりも遅れる場合に、下りリンクの無線チャネルの論理的な領域に、上りリンク制御情報の専用領域を設定することで、当該上りリンク制御情報の専用領域には、下りリンク制御情報が割り当てられることがない。従って、割り当て処理の連携や折衝がなくても、下りリンクの無線チャネルに対して、下りリンク制御情報が多く割り当てられ、上りリンク制御情報は僅かしか割り当てられないといった割り当ての偏りが抑制される。
 本発明の第2の特徴は、前記上り専用領域設定部は、前記上りリンクのトラフィック量に応じて、前記上りリンク制御情報の専用領域の大きさ及び/又は数を設定することを要旨とする。
 本発明の第3の特徴は、前記下りリンクの無線チャネルの論理的な領域に、下りリンクの無線チャネルの制御のための下りリンク制御情報の専用領域を設定する下り専用領域設定部(論理領域設定部154)を備えることを要旨とする。
 本発明の第4の特徴は、前記下り専用領域設定部は、前記下りリンクのトラフィック量に応じて、前記下りリンク制御情報の専用領域の大きさ及び/又は数を設定することを要旨とする。
 本発明の第5の特徴は、前記下りリンクの無線チャネルの論理的な領域に、下りリンクの制御のための下りリンク制御情報と上りリンクの制御のための上りリンク制御情報との共用領域を設定する共用領域設定部(論理領域設定部154)を備えることを要旨とする。
 本発明の第6の特徴は、前記共用領域設定部は、前記下りリンクのトラフィック量と、前記上りリンクのトラフィック量とに応じて、前記共用領域の大きさ及び/又は数を設定することを要旨とする。
 本発明の第7の特徴は、無線端末に対して、無線チャネルを割り当てる無線基地局における通信制御方法であって、前記無線基地局が、下りリンクの無線チャネルの論理的な領域に、上りリンクの無線チャネルの制御のための上りリンク制御情報の専用領域を設定することを要旨とする。
 本発明によれば、実装における負担を大きくすることなく、下りリンクの無線チャネルを適切に割り当てることができる。
本発明の実施形態に係る無線通信システムの全体概略構成図である。 本発明の実施形態に係るLTE基地局の構成図である。 本発明の実施形態に係るLTE基地局による1つのPDCCHに対応する論理領域の一例を示す図である。 本発明の実施形態に係る1サブフレーム期間における割当処理のタイミングチャートを示す図である。 本発明の実施形態に係る無線基地局による論理領域の設定の動作を示すフローチャートである。
 次に、図面を参照して、本発明の実施形態を説明する。具体的には、(1)無線通信システムの構成、(2)LTE基地局の動作、(3)作用・効果、(4)その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)無線通信システムの構成
 (1.1)無線通信システムの全体概略構成
 図1は、本発明の実施形態に係る無線通信システム10の全体概略構成図である。
 図1に示す無線通信システム10は、3GPPで策定された規格であるLTE(Long Term Evolution)に基づく構成を有する。無線通信システム10は、無線基地局(LTE基地局)1と、セル3内に存在する無線端末2-1及び無線端末2-2(以下、無線端末2-1及び無線端末2-2をまとめて適宜、「無線端末2」と称する)を含む。図1において、無線端末2は、LTE基地局1によって形成されるセル3内に存在する。LTE基地局1は、セル3内に存在する無線端末2との間で無線通信を行う。LTEにおいて、LTE基地局1と無線端末2との間の通信方式は、E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)と称される。また、上りリンクでの伝送エラーの発生時には、再送制御としてハイブリッド自動再送(HARQ)が採用されている。
 (1.2)LTE基地局の構成
 図2は、LTE基地局1の構成を示す図である。図2に示すLTE基地局1は、制御部102、記憶部103、有線通信部104、無線通信部105及びアンテナ107を含む。
 制御部102は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)により構成され、LTE基地局1が具備する各種機能を制御する。記憶部103は、例えばメモリによって構成され、LTE基地局1における制御などに用いられる各種情報を記憶する。有線通信部104は、S1インタフェースを介して、図示しない上位ネットワークに存在するMME(Mobile Management Entity)やSGW(Serving Gateway)と接続する。また、有線通信部104は、X2インタフェースを介して、他のLTE基地局や、LTE基地局よりも送信出力が小さい基地局(例えばピコセル基地局)等と接続する。
 無線通信部105は、RF回路、ベースバンド回路等を含む。無線通信部105は、変調及び復調、符号化及び復号等を行い、アンテナ107を介して、無線端末2との間で、無線信号の送信及び受信を行う。
 LTE基地局1と無線端末2との間の無線通信においては、LTE基地局1内の制御部102は、無線端末2に対して、無線チャネルである、上りリンクのリソースブロックと下りリンクのリソースブロックとを割り当てる。
 上りリンクのリソースブロックは、2つのOFDMシンボルに相当する期間である1サブフレーム期間の時間長を有し、制御情報用の無線チャネルであるPUCCH(Physical Uplink Control CHannel)と、ユーザ情報用の無線チャネルであるPUSCH(Physical Uplink Shared CHannel)とにより構成される。下りリンクのリソースブロックは、制御情報用の無線チャネルであるPDCCH(Physical Downlink Control CHannel)と、ユーザ情報用の無線チャネルであるPDSCH(Physical Downlink Shared CHannel)とにより構成される。
 制御部102は、トラフィック量取得部152、論理領域設定部154及びPDCCH割当部156を含む。
 トラフィック量取得部152は、後述する、下りリンクにおける制御情報用の無線チャネルであるPDCCHの論理的な領域(論理領域)を設定するタイミングが到来したか否かを判定する。
 具体的には、トラフィック量取得部152は、前回の論理領域の設定から、所定数のサブフレームに対応する時間が経過したタイミング、PDCCHを用いてLTE基地局1から無線端末2へ送信される、上りリンクの無線チャネルの割り当て制御のための情報(上り割当制御情報)と、下りリンクの無線チャネルの割り当て制御のための情報(下り割当制御情報)との何れかにエラーが発生し、無線端末2からの再送要求としての再送制御情報をLTE基地局1が受信したタイミング、LTE基地局1との間で無線通信を行う無線端末2の数が増加又は減少したタイミングの何れかを、論理領域を設定するタイミングとして検知する。また、トラフィック量取得部152は、無線端末2が受けている、上位レイヤにおけるサービス(例えば、FTPやTELNET)が変更されたタイミングを、設定するタイミングとして検知してもよい。
 論理領域を設定するタイミングが到来した場合、無線端末2に対して上りリンクのリソースブロックと下りリンクのリソースブロックとが割り当てられ、LTE基地局1と無線端末2との間で無線通信が行われている状態において、トラフィック量取得部152は、無線通信における、上りリンクのトラフィック量と、下りリンクのトラフィック量とをを取得する。
 具体的には、トラフィック量取得部152は、所定時間内における無線端末2からのデータ(上りデータ)の量の平均値(上り平均データ量)、上りデータの伝送のために無線端末2に割り当てられた上りリンクのリソースブロックの数、所定のタイミングにおける上りリンクのデータキュー量、無線端末2に割り当てられているPDCCHの量の少なくとも何れかを、上りリンクのトラフィック量として取得する。
 また、トラフィック量取得部152は、所定時間内における無線端末2へのデータ(下りデータ)の量の平均値(下り平均データ量)、下りデータの伝送のために無線端末2に割り当てられた下りリンクのリソースブロックの数、所定のタイミングにおける下りリンクのデータキュー量、無線端末2に割り当てられているPUCCHの量の少なくとも何れかを、下りリンクのトラフィック量として取得する。
 論理領域設定部154は、下りリンクにおける制御情報用の無線チャネルであるPDCCHの論理的な領域(論理領域)を設定する。
 具体的には、論理領域設定部154は、記憶部103内に、1つのPDCCHのデータ量に相当する記憶領域を確保する。記憶領域は、1つのPDCCHに対応する論理領域として用いられる。
 無線端末2に対して上りリンクのリソースブロックと下りリンクのリソースブロックとが割り当てられておらず、LTE基地局1と無線端末2との間で無線通信が行われていない状態(初期状態)においては、トラフィック量取得部152によって上りトラフィック量及び下りトラフィック量は取得されない。
 この場合、論理領域設定部154は、1つのPDCCHに対応する論理領域を3等分して、上りリンクの無線チャネルの割り当て制御のための情報(上り割当制御情報)の専用領域(上りリンク専用論理領域)と、下りリンクの無線チャネルの割り当て制御のための情報(下り割当制御情報)の専用領域(下りリンク専用論理領域)と、上り割当制御情報及び下り割当制御情報により共用される領域(共用論理領域)とを設定する。図3(a)は、1つのPDCCHに対応する論理領域を3等分して、上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定した状態を示す図である。
 一方、無線端末2に対して上りリンクのリソースブロックと下りリンクのリソースブロックとが割り当てられており、LTE基地局1と無線端末2との間で無線通信が行われている状態においては、トラフィック量取得部152によって上りトラフィック量及び下りトラフィック量が取得されている。この場合、論理領域設定部154は、上りトラフィック量及び下りトラフィック量に基づいて、1つのPDCCHに対応する論理領域に、上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定する。
 ここで、論理領域設定部154は、共用論理領域については初期状態と同一の大きさを維持しつつ、上りトラフィック量と下りトラフィック量との比率と、上りリンク専用論理領域の大きさと下りリンク専用論理領域の大きさとの比率とが一致するように、上りリンク専用論理領域と下りリンク専用論理領域とを設定してもよい。図3(b)は、共用論理領域が初期状態と同一の大きさであり、且つ、上りトラフィック量と下りトラフィック量との比率が7:5である場合の上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定した状態を示す図である。また、図3(c)は、共用論理領域が初期状態と同一の大きさであり、且つ、上りトラフィック量と下りトラフィック量との比率が5:7である場合の上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定した状態を示す図である。
 また、論理領域設定部154は、共用論理領域の大きさを可変とするとともに、トラフィック量取得部152によって取得された上りトラフィック量が大きいほど、上りリンク専用論理領域の大きさを大きくし、トラフィック量取得部152によって取得された下りトラフィック量が大きいほど、下りリンク専用論理領域の大きさを大きくしてもよい。図3(d)は、共用論理領域の大きさが可変であり、上りトラフィック量が基準値よりも大きい場合の上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定した状態を示す図である。また、図3(e)は、共用論理領域の大きさが可変であり、下りトラフィック量が基準値よりも大きい場合の上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定した状態を示す図である。
 なお、1つのPDCCHに対応する論理領域が、所定の大きさの複数の領域(分割領域)によって構成される場合には、論理領域設定部154は、上りトラフィック量及び下りトラフィック量に基づいて、上りリンク専用論理領域に対応する分割領域の数、下りリンク専用論理領域に対応する分割領域の数、及び、共用論理領域に対応する分割領域の数を設定してもよい。
 上述したように、1つのPDCCHに対応する論理領域に、上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域が設定された後、PDCCH割当部156は、1つのPDCCHに対応する論理領域に、上り割当制御情報と、下り割当制御情報とを割り当てる。
 図4は、1サブフレーム期間における上り割当制御情報及び下り割当制御情報の割当処理を示すタイミングチャートである。1サブフレーム期間の先頭において、PDCCH割当部156は、下りリンク専用論理領域に下り割当制御情報を割り当てる。但し、全ての下りリンク専用論理領域に下り割当制御情報が割り当てられた後においては、PDCCH割当部156は、共用論理領域のうち、未割り当ての領域に残りの下り割当制御情報を割り当てる。
 一方、上りリンクでの伝送エラーの発生時には、再送制御としてHARQが採用されている。このため、1サブフレーム期間の先頭において、制御部102は、上りリンクを伝送された信号の復号と、誤り検出、及び、当該誤り検出の結果に応じた上り割当制御情報の生成(再送制御処理)とを行わなければならない。従って、PDCCH割当部156は、復号処理と再送制御処理の終了後に、上りリンク専用論理領域に上り割当制御情報を割り当てる。但し、全ての上りリンク専用論理領域に上り割当制御情報が割り当てられた後においては、PDCCH割当部156は、共用論理領域のうち、未割り当ての領域に残りの上り割当制御情報を割り当てる。
 その後、制御部102は、1つのPDCCHに対応する上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域に割り当てられた上り割当制御情報及び下り割当制御情報を、当該割り当ての状態に応じて、周波数帯域と時間とによって一意に定まるPDCCHの物理的な領域に割り当てる。無線通信部105は、PDCCHに対応する無線信号を、アンテナ107を介して無線端末2へ送信する。
 (2)LTE基地局の動作
 図5は、LTE基地局1における論理領域設定の動作を示すフローチャートである。なお、前提として、無線端末2に対して上りリンクのリソースブロックと下りリンクのリソースブロックとが割り当てられており、LTE基地局1と無線端末2との間で無線通信が行われている状態にあるものとする。また、記憶部103内に、1つのPDCCHに対応する論理領域が既に設定されているものとする。
 ステップS101において、LTE基地局1は、論理領域の設定のタイミングが到来したか否かを判定する。
 論理領域の設定のタイミングが到来した場合、ステップS102において、LTE基地局1は、無線端末2との間の無線通信における、上りトラフィック量及び下りトラフィック量を取得する。
 ステップS103において、LTE基地局1は、取得した上りトラフィック量及び下りトラフィック量に基づいて、1つのPDCCHに対応する論理領域に、上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定する。
 (3)作用・効果
 このように、本実施形態の無線通信システム10では、LTE基地局1は、論理領域の設定のタイミングが到来した場合、無線端末2との間の無線通信における、上りトラフィック量及び下りトラフィック量を取得し、当該上りトラフィック量及び下りトラフィック量に基づいて、1つのPDCCHに対応する論理領域に、上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定する。
 図4に示すように、1サブフレーム期間において、論理領域への上り割当制御情報の割り当て処理は、論理領域への下り割当制御情報の割り当て処理よりも遅れる。しかし、本実施形態では、1つのPDCCHに対応する論理領域に、少なくとも上り専用論理領域が設定されることにより、1つのPDCCHに対応する論理領域の全体に下り割当制御情報が割り当てられてしまうという事態が防止され、論理領域への上り割当制御情報の割り当てと、論理領域への下り割当制御情報の割り当てとをバランスよく行うことができる。また、上り割当制御情報の割り当て処理と、下り割当制御情報の割り当て処理との連携や折衝が行われなくても、論理領域への上り割当制御情報の割り当てが可能であるため、実装における負担が大きくなることもない。
 (4)その他の実施形態
 本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 例えば、セル3は、複数のセクタに分割されていてもよい。この場合、LTE基地局1は、セクタ毎に、当該セクタ内に存在する無線端末との間の無線通信における、上りトラフィック量及び下りトラフィック量を取得し、当該上りトラフィック量及び下りトラフィック量に基づいて、1つのPDCCHに対応する論理領域に、上りリンク専用論理領域、下りリンク専用論理領域及び共用論理領域を設定する。
 また、上述した実施形態では、無線通信システム10は、LTEを採用しているが、他の無線通信規格を採用する無線通信システムにおいても、同様に本発明を適用できる。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2010-086531号(2010年4月2日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明の無線基地局及び通信制御方法は、実装における負担を大きくすることなく、下りリンクの無線チャネルに情報を適切に割り当てることができ、無線基地局及び通信制御方法として有用である。

Claims (7)

  1.  無線端末に対して、無線チャネルを割り当てる無線基地局であって、
     下りリンクの無線チャネルの論理的な領域に、上りリンクの無線チャネルの制御のための上りリンク制御情報の専用領域を設定する上り専用領域設定部を備える無線基地局。
  2.  前記上り専用領域設定部は、前記上りリンクのトラフィック量に応じて、前記上りリンク制御情報の専用領域の大きさ及び/又は数を設定する請求項1に記載の無線基地局。
  3.  前記下りリンクの無線チャネルの論理的な領域に、下りリンクの無線チャネルの制御のための下りリンク制御情報の専用領域を設定する下り専用領域設定部を備える請求項1に記載の無線基地局。
  4.  前記下り専用領域設定部は、前記下りリンクのトラフィック量に応じて、前記下りリンク制御情報の専用領域の大きさ及び/又は数を設定する請求項3に記載の無線基地局。
  5.  前記下りリンクの無線チャネルの論理的な領域に、下りリンクの制御のための下りリンク制御情報と上りリンクの制御のための上りリンク制御情報との共用領域を設定する共用領域設定部を備える請求項1に記載の無線基地局。
  6.  前記共用領域設定部は、前記下りリンクのトラフィック量と、前記上りリンクのトラフィック量とに応じて、前記共用領域の大きさ及び/又は数を設定する請求項5に記載の無線基地局。
  7.  無線端末に対して、無線チャネルを割り当てる無線基地局における通信制御方法であって、
     前記無線基地局が、下りリンクの無線チャネルの論理的な領域に、上りリンクの無線チャネルの制御のための上りリンク制御情報の専用領域を設定する通信制御方法。
PCT/JP2011/058257 2010-04-02 2011-03-31 無線基地局及び通信制御方法 WO2011125856A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/638,841 US9402267B2 (en) 2010-04-02 2011-03-31 Radio base station and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-086531 2010-04-02
JP2010086531A JP5406779B2 (ja) 2010-04-02 2010-04-02 無線基地局及び通信制御方法

Publications (1)

Publication Number Publication Date
WO2011125856A1 true WO2011125856A1 (ja) 2011-10-13

Family

ID=44762794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058257 WO2011125856A1 (ja) 2010-04-02 2011-03-31 無線基地局及び通信制御方法

Country Status (3)

Country Link
US (1) US9402267B2 (ja)
JP (1) JP5406779B2 (ja)
WO (1) WO2011125856A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10143005B2 (en) 2014-11-07 2018-11-27 Qualcomm Incorporated Uplink control resource allocation for dynamic time-division duplex systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057286A1 (ja) * 2007-10-29 2009-05-07 Panasonic Corporation 無線通信移動局装置および応答信号拡散系列制御方法
JP2010028334A (ja) * 2008-07-17 2010-02-04 Hitachi Kokusai Electric Inc 無線通信システム
WO2010018684A1 (ja) * 2008-08-11 2010-02-18 パナソニック株式会社 無線通信基地局装置、無線通信端末装置および制御情報生成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008136194A1 (ja) * 2007-05-01 2010-07-29 パナソニック株式会社 無線通信基地局装置およびリソース共有方法
US20120207124A1 (en) * 2009-10-29 2012-08-16 Jing Xiu Liu Method and Device for Allocating Resources of a Control Channel in a Wireless Communication System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057286A1 (ja) * 2007-10-29 2009-05-07 Panasonic Corporation 無線通信移動局装置および応答信号拡散系列制御方法
JP2010028334A (ja) * 2008-07-17 2010-02-04 Hitachi Kokusai Electric Inc 無線通信システム
WO2010018684A1 (ja) * 2008-08-11 2010-02-18 パナソニック株式会社 無線通信基地局装置、無線通信端末装置および制御情報生成方法

Also Published As

Publication number Publication date
US9402267B2 (en) 2016-07-26
JP2011223067A (ja) 2011-11-04
JP5406779B2 (ja) 2014-02-05
US20130016691A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
US10736123B2 (en) Resource scheduling method and apparatus
US20220039074A1 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
JP7043395B2 (ja) 端末、無線通信方法及びシステム
JP5980330B2 (ja) 異種ネットワークにおいて動的アップリンクおよびダウンリンク構成を知らせる方法およびそのための装置
JP6546607B2 (ja) 無線通信システムにおいて競合ベースリソースを用いたスケジューリング要求伝送方法及びそのための装置
JP2022079554A (ja) ワイヤレス通信におけるレイテンシ低減技法
JP7359269B2 (ja) 端末装置、基地局装置、通信方法およびプログラム
EP3455991B1 (en) Configuration of downlink transmissions
US10616911B2 (en) Two-step signaling of uplink scheduling assignments
WO2018202867A1 (en) Resource determination for uplink control channel for wireless networks
CN105453684B (zh) 在蜂窝移动通信系统中用于请求调度的方法和设备
JP5158384B2 (ja) 制御情報を送信する方法
KR102313943B1 (ko) 반송파 집성 기반의 무선 통신 시스템에서 통신 방법
US10863449B2 (en) Uplink channel sending method and apparatus
WO2015180175A1 (zh) 一种下行控制信息的发送、接收方法和设备
WO2020166334A1 (en) Communication system
AU2017425065B2 (en) User terminal and radio communication method
JP2018078564A (ja) アンテナ切替えダイバーシティのための動的なトリガアルゴリズム
JP2021532694A (ja) 通信システム
US11902193B2 (en) Search space configuration for short transmission time interval
WO2016158087A1 (ja) ユーザ装置及び基地局
JP7129740B2 (ja) 端末、無線通信方法及びシステム
JP6745406B2 (ja) 情報を伝送する方法、ネットワーク装置、及び端末装置
JP6888008B2 (ja) ユーザ端末及び無線通信方法
CN114982172A (zh) 用于非授权频带上的通信的方法、设备和计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13638841

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765756

Country of ref document: EP

Kind code of ref document: A1