WO2011125332A1 - Gas-insulated bus - Google Patents

Gas-insulated bus Download PDF

Info

Publication number
WO2011125332A1
WO2011125332A1 PCT/JP2011/002065 JP2011002065W WO2011125332A1 WO 2011125332 A1 WO2011125332 A1 WO 2011125332A1 JP 2011002065 W JP2011002065 W JP 2011002065W WO 2011125332 A1 WO2011125332 A1 WO 2011125332A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
gas
longitudinal
insulated bus
radial
Prior art date
Application number
PCT/JP2011/002065
Other languages
French (fr)
Japanese (ja)
Inventor
暁来 豊田
博紀 矢永
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201180016905.2A priority Critical patent/CN102823095B/en
Publication of WO2011125332A1 publication Critical patent/WO2011125332A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/061Tubular casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/08Connection boxes therefor

Definitions

  • Embodiments of the present invention relate to a gas insulated bus used in a gas insulated switchgear or the like.
  • GIS gas insulated switchgear
  • SF 6 gas having excellent insulation performance as a main insulating medium
  • GIS uses an L-shaped gas insulated bus in order to connect a device such as a gas insulation breaker (GCB) or a branch bus from the main bus (see, for example, Patent Document 1).
  • GCB gas insulation breaker
  • Patent Document 1 Japanese Patent Document 1
  • FIG. 9 is a cross-sectional view of an L-shaped gas insulated bus showing a single-phase structure of an L-shaped gas insulated bus having a three-phase collective structure described in Patent Document 1 and the like for convenience of explanation.
  • 1 is a tank of an L-shaped gas insulated bus, which is formed in a cylindrical shape, has tank openings 1a and 1b formed at both ends in the longitudinal direction, and has a diameter perpendicular to the longitudinal direction.
  • a tank opening 1c is formed in the direction.
  • the tank 1 is filled with an insulating gas G such as SF 6 gas, and the tank opening 1a and the tank opening 1c at a position orthogonal to the tank opening 1a are insulated spacers 2 having embedded electrodes 3 1 and 3 2 , respectively.
  • G an insulating gas
  • the tank opening 1a and the tank opening 1c at a position orthogonal to the tank opening 1a are insulated spacers 2 having embedded electrodes 3 1 and 3 2 , respectively.
  • 1, 2 2 is closed by hand, the tank opening 1b facing the tank opening 1a is adapted to be closed by the closed lid 4.
  • the insulating spacers 2 1 and 2 2 and the closing lid 4 are fixed to flanges formed in the tank openings 1a to 1c by bolts (not shown).
  • L-shaped conductors (hereinafter referred to as L-shaped conductor) is formed on the radial end portion of the 5 contact portion 5 1 is adapted to the contact portion 5 1 is also connected to the electrical and buried electrode 3 2 by being rigidly fixed by fixing bolts 61. Insulating spacer
  • Round rod-like contactor 7 2 formed at the other end of the L-shaped conductors 5, the longitudinal center line CL 1 on the arranged conductor of the tank 1 (hereinafter, referred to as longitudinal conductor) 7 one end to the It is adapted to be electrically connected by being fitted through the contact piece 81 against the formed circular engagement groove 7 h.
  • a round rod-like contactor 7 2 a configured connection portion from the circular fitting groove 7 h and the contact piece 81 and the connecting portion 9.
  • a round rod-like contactor 7 2 formed at the other end (shown top) of the longitudinal conductor 7, the circular fitting groove 10 h of the connecting conductor 10 which is fixed to the embedded electrode 3 first insulating spacer 2 1 It is fitted connected through the contact piece 82 against.
  • a round rod-like contactor 7 2 a configured connection portion from the contact piece 82 and the circular fitting groove 10 h and the connecting portion 11.
  • connection conductor 10 is adapted to be satisfactorily connected to the electrical by being fixed to the embedded electrode 3 1 by a fixing bolt 6 2.
  • L1 is (a radial distance portion i.e. L-shaped conductors 5)
  • L2 is the diameter of the L-shaped conductors 5 the distance from the center line CL 2 directions portion to contact pieces 8 1 of the rod-shaped end portion 5
  • L3 is the distance to the contact piece 82 the center of the connection conductor 10 from the contact piece 81 center.
  • FIGS. 10 and 11 are diagrams showing an assembly process of a conventional L-shaped gas insulated bus
  • FIG. 10 is a diagram showing an assembly process of an L-shaped gas insulated bus having a three-phase structure
  • FIG. 11 is a single-phase structure. It is a figure which shows the assembly process of the L-shaped gas insulation bus-line.
  • the X moiety carefully inserted while rotating clockwise in the same manner in the case of L-shaped gas insulated bus of the single-phase structure, by bolts and nuts (not shown) in a state of being inserted in a predetermined position between the insulating spacer 2 2
  • the flange surface with the tank opening 1c is fastened.
  • FIG. 11 shows the case of an L-shaped gas insulated bus having a single phase structure, but the same applies to the case of an L-shaped gas insulated bus having a three-phase structure.
  • the intersection of the center line CL 2 and the buried electrodes 3 second flange face of the radial portion of the L-shaped conductor 5 is A
  • the radial portion of the L-shaped conductor 5 are bent portion of the L-shaped conductors 5 the center line CL 2 and longitudinal conductor 7 intersection of the center line CL 1 of B
  • the position of the connecting portion 9 (strictly speaking contact piece 8 1 position) C speaking position of the connecting portion 11 (strictly If the position) of the contact piece 8 2 is D, is energized a current i to L-shaped conductors 5 and longitudinal conductors 7, the electromagnetic force F1 shown downward between points a-B, but also, between the points B-C And the left and right electromagnetic forces F2 and F3 act between C and C, respectively.
  • Gas insulated buses are required to reduce manufacturing costs while maintaining the performance of L-shaped gas insulated buses.
  • the conductors, insulation spacers and tanks are downsized to reduce the overall gas insulation equipment. It is necessary to reduce the material cost.
  • the electromagnetic force generated by the short-time energization current i with the severest mechanical stress will be described with reference to FIG.
  • the electromagnetic force generated in the L-shaped conductor 5 is indicated by a distributed load Fs and a distributed load FL as shown in FIG.
  • the magnitude of the electromagnetic force increases in proportion to the square of the magnitude of the short-time energization current i.
  • the short-time withstand current-carrying performance is a performance that does not cause contact meltdown, damage due to deformation of the conductor, or poor withstand voltage performance when a short-circuit current such as a ground fault flows through the conductor. Although it is as short as ⁇ 3 seconds, an electromagnetic force in the direction shown in FIG. 13 is generated.
  • the force received by the electromagnetic force by the L-shaped gas insulated bus having the conventional configuration shown in FIG. 9 will be described with reference to the schematic diagram of FIG.
  • the electromagnetic force is a distributed load
  • the resultant force of the electromagnetic force generated by the distances L2 and L3 with respect to the distance L1 is F1
  • the resultant force of the electromagnetic force generated by the distance L1 is F2
  • the resultant force of the electromagnetic force generated by L1 with respect to L3 is F3.
  • connection portion 9 is a contact connection with a spring property, only the force in the direction perpendicular to the conductor axis is transmitted, and no moment is transmitted. Therefore, the point C in FIG. 12 can be considered as a free end. Since the connection part 11 is the same, the point D in FIG. 12 is also a free end.
  • L-shaped conductor 5 and the electrode 3 2 for fixing by the fixing bolts 6 1, A point is a fixed end. Pulling load generated in the fixing bolt 61 for fixing the L-shaped conductor 5 are added to the electromagnetic force F1, F2, F3, the addition of the force generated by the moment of the point A about M 1, M 2, M 3 .
  • Mt generates a pulling force Fb 1 of fixing bolts 61 represented by the following formula by the fulcrum E and moment arm r.
  • Fb 1 Mt / r
  • F2 and F3 for fixing bolts 61 to be parallel that secure the L-shaped conductor 5 and the electrode 3 2, acts as a pull-out load.
  • F3 is halved because the force applied to the L2 side end is affected. Accordingly, the total drawing force Fb generated in the fixing bolt 61 becomes the following expression.
  • Fb (L1 ⁇ F1 + L2 ⁇ (F2 + F3)) / 2r + (F2 + F3 / 2)
  • the problem to be solved by the present invention is to provide a gas-insulated bus that can reduce the bolt pull-out load due to electromagnetic force generated by short-time withstand current and minimize the conductor diameter.
  • the gas-insulated bus of the embodiment includes a cylindrical tank that is filled with an insulating gas and has openings in the longitudinal direction and the direction perpendicular to the longitudinal direction, and a longitudinal conductor disposed in the longitudinal direction inside the tank, A radial conductor connected to the longitudinal conductor and arranged to be orthogonal to the longitudinal conductor; and an insulating spacer for fixing the longitudinal conductor and the radial conductor at the opening of the tank.
  • a connecting portion between the longitudinal conductor and the radial conductor is disposed at an intersection of the central axis of the longitudinal conductor and the central axis of the radial conductor.
  • FIG. 6 is a cross-sectional view showing a gas insulated bus according to a modification of the first embodiment. It is sectional drawing which shows the gas insulation bus-line in Embodiment 2 of this invention. It is sectional drawing which shows the gas insulation bus-line in Embodiment 3 of this invention. It is sectional drawing which shows the assembly process of the gas insulation bus-line of FIG.
  • FIG. 10 is a cross-sectional view showing a gas insulated bus according to a modification of the third embodiment.
  • FIG. 1 is a configuration diagram of Embodiment 1 of a gas insulated bus according to the present invention
  • FIG. 2 is a diagram schematically showing a relationship between electromagnetic force and moment generated in the gas insulated bus of Embodiment 1.
  • the main differences between the first embodiment and the conventional gas-insulated bus shown in FIG. 9 are that the L-shaped conductor 5 is replaced with a linear radial conductor 5A, and this radial conductor.
  • the intersection portion of the center line CL 1 of the center line CL 2 and longitudinal conductor 7 of 5A lies in placing the connection part 9 of both conductors 5A and 7.
  • the other configuration is the same as that of FIG.
  • Radial conductor 5A employed in this first embodiment together with a mechanically connected contactors 5A 1 formed at one end fixing bolt 61 in electrically the buried electrode 3 and second insulating spacer 2 2 are rigidly secured, are arranged circular fitting groove 5A h formed at the other end in the longitudinal center line direction conductors 7 CL 1 coaxially. And, this is a circular fitting groove 5A h has longitudinal round rod-like contactor 71 formed at one end of the direction conductor 7 via a contact piece 81 fit connection, whereby both conductors 5A and 7 Have a good electrical connection.
  • the longitudinal conductors 7 forms a second end portion (shown top) in a round rod-like contactor 7 2 Similarly, a round rod-like contactor 7 2 via the contact piece 82 connecting conductor of the other end portion 10 are fitted and connected to the circular fitting groove 10 h and are electrically connected to the connecting conductor 10 in an excellent manner.
  • the radial conductor 5A and a longitudinal conductor 7 contact the round rod-like contactor 71 which is formed longitudinally conductor 7 end in the radial conductor 5A edge of the circular fitting groove 5A h piece thereby making it possible to assemble the connecting portion 9 only by inserting through the 8 1.
  • M 3 is fixed bolt 61 in Figure 12, about what had affected the extent pulling load, shows an example of the effect by substituting specific numerical values.
  • M 1 , M 2 , and M 3 are as follows.
  • the bolt pull-out load due to electromagnetic force can be reduced by 67% compared to the conventional structure, and the bolt pitch dimension and conductor diameter can be reduced. Achieved, and the size of the equipment can be reduced.
  • a gas-insulated bus bar that can reduce the pull-out load of the bolt due to electromagnetic force on the radial conductor 5A and consequently minimize the conductor diameter of the radial conductor 5A is provided. It becomes possible.
  • T-shaped conductor structure of FIG. 3 may be changed to a cross-shaped conductor structure.
  • Embodiment 2 of the gas insulated bus according to the present invention will be described with reference to FIG.
  • symbol is attached
  • Embodiment 2 is changed in the longitudinal direction round rod-like contactor 7 which is formed at both ends of the conductor 7 1 and 7 2 respectively spherical connection 7 3 and 7 4 of the first embodiment, spherical shape of the connecting portion 9 the contact of the connecting portion 7 3 disposed on the radial conductor 5A conductor centerline CL 2 of, for connecting the connection conductor 10 similarly to the connecting portion 11 even spherical connection 7 4.
  • Embodiment 2 since it is configured as described above, in addition to the effect of the bolt diameter and bolt pitch dimension of the fixing bolt 61 in the radial conductor 5A of the first embodiment can be minimized, longitudinal conductors by seven degrees of freedom of the slope of the increase, without interfering with the displacement absorbing capacity of the bellows 12, it is possible to suppress the moment generated in the fixed bolt 61 around the radial conductor 5A by electromagnetic force. As a result, the conductor diameter and the bolt pitch dimension can be reduced, and a large displacement absorbing function can be achieved, thereby reducing the size of the entire device.
  • FIG. 5 shows a state incorporating radial conductor 5A in the tank 1
  • FIG. 6 is a sectional view showing an assembly process of FIG. 5, integrated radial conductor 5A and the insulating spacer 2 2 before incorporating Shows the state.
  • the third embodiment is characterized in that the connection configuration between the longitudinal conductor 7 and the radial conductor 5A in the first embodiment is changed, and the same configuration as that of the first embodiment.
  • Embodiment 3 is provided with a circular fitting groove 7 h longitudinally conductor 7 in place of the round-rod-like contactor 71 of the center line CL 2 concentric and circular fitting groove 5A h of the radial conductor 5A Instead of this, a round bar contact 5A 2 is provided.
  • connection part 11 of the longitudinal conductor 7 in the longitudinal direction conductor 7 central axis CL 1 and coaxially with, the other connecting portion 9 is configured with the central axis CL 2 coaxially in the radial conductor 5A.
  • connection between the longitudinal conductor 7 and the radial conductor 5A is not limited to the above-described FIGS. 5 and 6 and may be deformed as shown in FIG.
  • Figure 7 is a longitudinal conductors 7 positioned on the connecting portion 9 side extending toward the tank opening 1b side, also fixedly connected to the embedded electrodes 3 3 of insulating spacer 2 3 provided in place of the closed lid 4 that the connection conductor 10A provided, the longitudinal round rod-like contactor 7 1 Toko direction conductor 7 of a connection conductor 10A by connecting through the contact pieces 8 3, gas insulated bus having a conductor structure of T-shaped and substantially perpendicular An example applied to is also shown.
  • T-shaped conductor structure of FIG. 7 may be changed to a cross-shaped conductor structure.
  • Embodiment 4 The gas insulated bus according to the modified example (FIG. 7) of Embodiment 1 (FIG. 1) to Embodiment 3 described above is an example applied to a single-phase structure in which one bus is accommodated in one tank. Form 4 is applied to a so-called three-phase collective structure in which three-phase buses are stored in one tank.
  • FIG. 7 The gas insulated bus according to the modified example (FIG. 7) of Embodiment 1 (FIG. 1) to Embodiment 3 described above is an example applied to a single-phase structure in which one bus is accommodated in one tank.
  • Form 4 is applied to a so-called three-phase collective structure in which three-phase buses are stored in one tank.
  • FIG. 8 is a diagram showing an assembling process of the gas insulated bus having a three-phase collective structure according to the fourth embodiment.
  • the longitudinal conductor 7 and the connecting portion 9 in the tank 1 are omitted.
  • the conventional L-shaped conductor 5 shown in FIG. 10 may be rotated clockwise in order to prevent damage when inserting the X portion of the L-shaped conductor 5 into the tank opening 1c.
  • the difficulty level is high and it takes a long time.
  • connection portion 9 is provided at the intersection of the radial conductor 5A and the longitudinal conductor 7 as in FIG. 6 of the third embodiment described above, the connection is also made from the tank opening 1c.
  • the portion 9 can be visually confirmed, and the final docking location can be provided at both the connecting portions 9 and 11, so that the assembly efficiency can be improved.
  • the assembly work time can be shortened, the conductor shape can be reduced, and an inexpensive gas insulated bus can be provided.
  • This structure can also be applied to a gas-insulated bus having a T-shaped conductor structure substantially orthogonal as shown in FIG. Furthermore, it can be applied to a cross-shaped conductor structure.
  • the bolt pull-out load due to electromagnetic force on the radial conductor is reduced, and as a result, the conductor diameter of the radial conductor can be minimized.

Abstract

Disclosed is a gas-insulated bus which allows decreasing the bolt pulling load caused by the electromagnetic force generated by a short-duration current resistance, and makes is possible to minimize the conductor diameter. The gas-insulated bus is provided with: a cylindrical tank (1) filled with an insulating gas (G) and having tank apertures (1a, 1b, 1c) in the length direction and the perpendicular direction; a longitunidinal conductor (7) arranged longitudinally in the tank (1); a radial conductor (5A) arranged so as to connect to the longitudinal conductor (7) and to be perpendicular thereto; and insulating spacers (21, 22, 23) which fix the longitudinal conductor (7) and the radial conductor (5A) at the tank apertures (1a, 1b, 1c) of the tank (1). A connecting unit (9) connecting both conductors is arranged at the intersection (B) of the central axis (CL1) of the longitudinal conductor (7) and the central axis (CL2) of the radial conductor (5A).

Description

ガス絶縁母線Gas insulated bus
 本発明の実施形態は、ガス絶縁開閉装置等に用いられるガス絶縁母線に関する。 Embodiments of the present invention relate to a gas insulated bus used in a gas insulated switchgear or the like.
 近年の変電所や開閉所等の電気所では、絶縁性能の優れたSFガスを主絶縁媒体としたガス絶縁開閉装置(GIS)が用いられている。このGISは、主母線からガス絶縁遮断器(GCB)等の機器あるいは分岐母線を接続するために、L形ガス絶縁母線を用いている(例えば、特許文献1参照)。 In recent electric stations such as substations and switch stations, gas insulated switchgear (GIS) using SF 6 gas having excellent insulation performance as a main insulating medium is used. This GIS uses an L-shaped gas insulated bus in order to connect a device such as a gas insulation breaker (GCB) or a branch bus from the main bus (see, for example, Patent Document 1).
 図9は特許文献1等に記載されている3相一括構造のL形ガス絶縁母線を説明の便宜上単相構造で示したL形ガス絶縁母線の断面図である。 FIG. 9 is a cross-sectional view of an L-shaped gas insulated bus showing a single-phase structure of an L-shaped gas insulated bus having a three-phase collective structure described in Patent Document 1 and the like for convenience of explanation.
 以下、図9乃至図11を参照して従来技術について説明する。 Hereinafter, the prior art will be described with reference to FIGS. 9 to 11.
 まず、図9において、1はL形ガス絶縁母線のタンクであって円筒状に形成されており、その長手方向の両端にタンク開口部1aおよび1bを形成し、また、長手方向と直交する径方向にタンク開口部1cを形成している。 First, in FIG. 9, 1 is a tank of an L-shaped gas insulated bus, which is formed in a cylindrical shape, has tank openings 1a and 1b formed at both ends in the longitudinal direction, and has a diameter perpendicular to the longitudinal direction. A tank opening 1c is formed in the direction.
 このタンク1は内部にSFガス等の絶縁ガスGを封入しており、タンク開口部1aおよびこれと直交位置にあるタンク開口部1cは、それぞれ埋め込み電極3、3を有する絶縁スペーサ2、2によって閉塞され、また、タンク開口部1aに対向するタンク開口部1bは閉塞蓋4によって閉塞されるようになっている。なお、各絶縁スペーサ2、2および閉塞蓋4は、タンク開口部1a~1cに形成したフランジに図示しないボルトによって固定されるようになっている。 The tank 1 is filled with an insulating gas G such as SF 6 gas, and the tank opening 1a and the tank opening 1c at a position orthogonal to the tank opening 1a are insulated spacers 2 having embedded electrodes 3 1 and 3 2 , respectively. 1, 2 2 is closed by hand, the tank opening 1b facing the tank opening 1a is adapted to be closed by the closed lid 4. The insulating spacers 2 1 and 2 2 and the closing lid 4 are fixed to flanges formed in the tank openings 1a to 1c by bolts (not shown).
 そして、タンク1の長手方向と直交する径方向に設けられた絶縁スペーサ2の埋め込み電極3には、L字形の導体(以降、L形導体と呼ぶ)5の径方向端部に形成した接触部5が固定ボルト6によって堅牢に固定されることによって埋め込み電極3と接触部5とが電気的にも接続されるようになっている。このようにL形導体5の一端部に形成した接触部5を埋め込み電極3に固定した状態では、その他端部の丸棒状接触子7は、タンク1の長手方向に位置する絶縁スペーサ2と対向するように位置している。 Then, the embedded electrode 3 and second insulating spacer 2 2 provided in a radial direction perpendicular to the longitudinal direction of the tank 1, L-shaped conductors (hereinafter referred to as L-shaped conductor) is formed on the radial end portion of the 5 contact portion 5 1 is adapted to the contact portion 5 1 is also connected to the electrical and buried electrode 3 2 by being rigidly fixed by fixing bolts 61. Insulating spacer Thus, in the state of fixing the contact portions 5 1 which is formed at one end of the L-shaped conductor 5 to the embedded electrode 3 2, a round rod-like contactor 7 2 of the other end, which is located in the longitudinal direction of the tank 1 2 Located so as to face 1 .
 このL形導体5の他端部に形成された丸棒状接触子7は、タンク1の長手方向中心線CL上に配置された導体(以降、長手方向導体と呼ぶ)7の一端部に形成された円形嵌合溝部7に対して接触片8を介して嵌合されることにより電気的に接続されるようになっている。ここで、丸棒状接触子7、円形嵌合溝部7および接触片8から構成された接続部分を接続部9と呼ぶことにする。 Round rod-like contactor 7 2 formed at the other end of the L-shaped conductors 5, the longitudinal center line CL 1 on the arranged conductor of the tank 1 (hereinafter, referred to as longitudinal conductor) 7 one end to the It is adapted to be electrically connected by being fitted through the contact piece 81 against the formed circular engagement groove 7 h. Here, it will be referred to as a round rod-like contactor 7 2, a configured connection portion from the circular fitting groove 7 h and the contact piece 81 and the connecting portion 9.
 一方、前記長手方向導体7の他端部(図示上部)に形成された丸棒状接触子7は、絶縁スペーサ2の埋め込み電極3に固定された接続導体10の円形嵌合溝部10に対して接触片8を介して嵌合され接続されている。ここで、丸棒状接触子7、接触片8および円形嵌合溝部10から構成された接続部分を接続部11と呼ぶことにする。 Meanwhile, a round rod-like contactor 7 2 formed at the other end (shown top) of the longitudinal conductor 7, the circular fitting groove 10 h of the connecting conductor 10 which is fixed to the embedded electrode 3 first insulating spacer 2 1 It is fitted connected through the contact piece 82 against. Here, it will be referred to as a round rod-like contactor 7 2, a configured connection portion from the contact piece 82 and the circular fitting groove 10 h and the connecting portion 11.
 なお、接続導体10は固定ボルト6によって埋め込み電極3に固定されることによって電気的にも良好に接続されるようになっている。 The connection conductor 10 is adapted to be satisfactorily connected to the electrical by being fixed to the embedded electrode 3 1 by a fixing bolt 6 2.
 図9中、L1は絶縁スペーサ2のフランジ面から長手方向導体7の長手方向中心線CLまでの距離(すなわちL形導体5の径方向部分の距離)、L2はL形導体5の径方向部分の中心線CLから棒状端部5の接触片8までの距離、L3は接触片8中心から接続導体10の接触片8中心までの距離である。 In Figure 9, L1 is (a radial distance portion i.e. L-shaped conductors 5) The distance to the longitudinal center line CL 1 of the longitudinal conductors 7 from the flange surface of the insulating spacer 2 2, L2 is the diameter of the L-shaped conductors 5 the distance from the center line CL 2 directions portion to contact pieces 8 1 of the rod-shaped end portion 5 2, L3 is the distance to the contact piece 82 the center of the connection conductor 10 from the contact piece 81 center.
 図10および図11は、ともに従来のL形ガス絶縁母線の組立過程を示す図であり、図10は3相一括構造のL形ガス絶縁母線の組立過程を示す図、図11は単相構造のL形ガス絶縁母線の組立過程を示す図である。 10 and 11 are diagrams showing an assembly process of a conventional L-shaped gas insulated bus, FIG. 10 is a diagram showing an assembly process of an L-shaped gas insulated bus having a three-phase structure, and FIG. 11 is a single-phase structure. It is a figure which shows the assembly process of the L-shaped gas insulation bus-line.
 図10(b)で示したL形導体5をタンク開口部1cへ挿入する際、L形導体5のX部分がタンク開口部1cにぶつかって損傷しないようにするために、X部分を時計回りに回転させながら慎重に挿入する。そして、所定の位置に挿入されると、図示しないボルトナットによって絶縁スペーサ2とタンク開口部1cとのフランジ面を締結する。この状態が図10(a)である。なお、単相構造のL形ガス絶縁母線の場合も同様にしてX部分を時計回りに回転させながら慎重に挿入し、所定の位置に挿入された状態で図示しないボルトナットによって絶縁スペーサ2とタンク開口部1cとのフランジ面を締結する。 When the L-shaped conductor 5 shown in FIG. 10B is inserted into the tank opening 1c, the X portion of the L-shaped conductor 5 does not collide with the tank opening 1c and is not damaged. Insert carefully while rotating. When it is inserted to a predetermined position by bolts and nuts (not shown) for fastening the flange surface of the insulating spacer 2 2 and the tank opening 1c. This state is shown in FIG. Incidentally, the X moiety carefully inserted while rotating clockwise in the same manner in the case of L-shaped gas insulated bus of the single-phase structure, by bolts and nuts (not shown) in a state of being inserted in a predetermined position between the insulating spacer 2 2 The flange surface with the tank opening 1c is fastened.
 図10(a)のようにL形導体5が所定位置に固定された後は、図11で示すように、L形導体5の棒状端部5に対して長手方向導体7の円形嵌合溝部7を接触片8を介して嵌合し、さらに、丸棒状接触子7に接触片8を介して絶縁スペーサ2の埋め込み電極3に固定された接続導体10の円形嵌合溝部10を嵌合し、絶縁スペーサ2とタンク開口部1aとのフランジ面を図示しないボルトナットによって締結する。図11は、単相構造のL形ガス絶縁母線の場合であるが、3相一括構造のL形ガス絶縁母線の場合も同様である。 After Figure 10 L-shaped conductor 5 as in (a) is fixed in position, as shown in Figure 11, the circular fitting longitudinal conductor 7 with respect to the rod-shaped end portion 5 2 of L-shaped conductors 5 the groove 7 h fitted through the contact pieces 81, further, fitting the circular shape of a round bar contactor 7 2 via the contact piece 82 is fixed to the embedded electrode 3 first insulating spacer 2 1 connection conductors 10 fitting the engagement groove 10 h, fastened by bolts and nuts (not shown) the flange surface of the insulating spacer 2 1 and the tank opening 1a. FIG. 11 shows the case of an L-shaped gas insulated bus having a single phase structure, but the same applies to the case of an L-shaped gas insulated bus having a three-phase structure.
 次に、図12の模式図を参照して、L形導体5および長手方向導体7に通電中に生じるモーメントについて説明する。 Next, with reference to the schematic diagram of FIG. 12, the moment generated during energization of the L-shaped conductor 5 and the longitudinal conductor 7 will be described.
 図12において、L形導体5の径方向部分の中心線CLと埋め込み電極3のフランジ面との交点をAとし、L形導体5の折曲部であるL形導体5の径方向部分の中心線CLと長手方向導体7の中心線CLの交点をB、接続部9の位置(厳密に言えば接触片8の位置)をC、接続部11の位置(厳密に言えば接触片8の位置)をDとすると、L形導体5および長手方向導体7に電流iを通電すると、点A-B間には図示下向きの電磁力F1が、また、点B-C間およびC-D間にはそれぞれ図示左向きの電磁力F2およびF3が作用する。 12, the intersection of the center line CL 2 and the buried electrodes 3 second flange face of the radial portion of the L-shaped conductor 5 is A, the radial portion of the L-shaped conductor 5 are bent portion of the L-shaped conductors 5 the center line CL 2 and longitudinal conductor 7 intersection of the center line CL 1 of B, the position of the connecting portion 9 (strictly speaking contact piece 8 1 position) C, speaking position of the connecting portion 11 (strictly If the position) of the contact piece 8 2 is D, is energized a current i to L-shaped conductors 5 and longitudinal conductors 7, the electromagnetic force F1 shown downward between points a-B, but also, between the points B-C And the left and right electromagnetic forces F2 and F3 act between C and C, respectively.
 ガス絶縁母線には、L形ガス絶縁母線の性能を維持したままで製造価格を低減することが求められており、そのためには、導体、絶縁スペーサおよびタンクを小型化してガス絶縁機器全体の縮小化を図り、材料費を削減することが必要である。 Gas insulated buses are required to reduce manufacturing costs while maintaining the performance of L-shaped gas insulated buses. To that end, the conductors, insulation spacers and tanks are downsized to reduce the overall gas insulation equipment. It is necessary to reduce the material cost.
 しかし、図9に示した従来構成のL形ガス絶縁母線では、L形導体5の径方向部分と埋め込み電極3とを固定ボルト6で固定しているため、図12のように、電磁力F1、F2およびF3によるモーメントに耐えるボルト径の選定、ボルトピッチ寸法を決定し、接続導体径を決めている。 However, in the conventional structure of the L-shaped gas-insulated bus as it is shown in FIG. 9, since the fixing the electrode 3 2 embedding the radial portion of the L-shaped conductors 5 by fixing bolts 61, as shown in FIG. 12, the electromagnetic Selection of the bolt diameter that can withstand the moments caused by the forces F1, F2, and F3, the bolt pitch dimension, and the connecting conductor diameter are determined.
 そのため、図9に示した従来構成のL形ガス絶縁母線では、ボルトピッチ寸法を小さくすることの限界から、接続導体の径を小さくすることができず、結局これがコストを下げられない原因の一つになっている。 For this reason, in the L-shaped gas insulated bus having the conventional configuration shown in FIG. 9, the diameter of the connecting conductor cannot be reduced due to the limit of reducing the bolt pitch dimension, which is one of the reasons that the cost cannot be lowered after all. It is connected.
特開2000-312411号公報JP 2000-312411 A
 ところで、L形ガス絶縁母線に求められる性能として、電流通電性能、耐電圧性能および短時間耐電流通電性能の3点が挙げられる。この中で、機械的ストレスが最も厳しい短時間通電電流iにより発生する電磁力に関して、図13を使用し説明する。L形導体5に発生する電磁力は図13のように分布荷重Fsと分布荷重FLとにより示される。電磁力の大きさは、短時間通電電流iの大きさに2乗に比例して増加する。短時間耐電流通電性能とは、地絡事故などの短絡電流が導体に流れた場合に接点の溶損や導体の変形による破損、耐電圧性能不良などが発生しない性能であり、耐える時間は2~3秒と短いが、図13に示した方向の電磁力が発生する。 By the way, as performance required for the L-shaped gas insulated bus, there are three points of current conduction performance, withstand voltage performance and short-time withstand current conduction performance. Among these, the electromagnetic force generated by the short-time energization current i with the severest mechanical stress will be described with reference to FIG. The electromagnetic force generated in the L-shaped conductor 5 is indicated by a distributed load Fs and a distributed load FL as shown in FIG. The magnitude of the electromagnetic force increases in proportion to the square of the magnitude of the short-time energization current i. The short-time withstand current-carrying performance is a performance that does not cause contact meltdown, damage due to deformation of the conductor, or poor withstand voltage performance when a short-circuit current such as a ground fault flows through the conductor. Although it is as short as ˜3 seconds, an electromagnetic force in the direction shown in FIG. 13 is generated.
 図9で示した従来構成のL形ガス絶縁母線が電磁力により受ける力を図12の模式図を使用し説明する。電磁力は分布荷重であるが説明を単純化するために等分布荷重の合力として表現すると、距離L1に対して距離L2およびL3により発生する電磁力の合力はF1であり、距離L2に対して距離L1により発生する電磁力の合力はF2、L3に対してL1により発生する電磁力の合力はF3となる。これらの合力はすべてのA点回りの同一方向のモーメントを発生させる。A点のモーメントを考えると、各合力F1、F2、F3は距離L1、L2、L3のほぼ中央部に発生するものとほぼ等価となる。 The force received by the electromagnetic force by the L-shaped gas insulated bus having the conventional configuration shown in FIG. 9 will be described with reference to the schematic diagram of FIG. Although the electromagnetic force is a distributed load, in order to simplify the explanation, if expressed as a resultant force of an evenly distributed load, the resultant force of the electromagnetic force generated by the distances L2 and L3 with respect to the distance L1 is F1, and with respect to the distance L2 The resultant force of the electromagnetic force generated by the distance L1 is F2 and the resultant force of the electromagnetic force generated by L1 with respect to L3 is F3. These resultant forces generate moments in the same direction around all points A. Considering the moment at point A, the resultant forces F1, F2, and F3 are substantially equivalent to those generated at substantially the center of the distances L1, L2, and L3.
 ここで、A点回りのモーメントについて、図9、図12および数式を使用しもう少し詳しく説明する。接続部9はバネ性のある接点接続であるため、導体軸直角方向の力のみ伝達し、モーメントは伝達しない。よって、図12のC点は自由端と考えることができる。接続部11も同様であるので、図12のD点も自由端となる。L形導体5と電極3は固定ボルト6による固定のため、A点は固定端となる。L形導体5を固定する固定ボルト6に発生する引抜き荷重は電磁力F1、F2、F3に加え、A点回りのモーメントM、M、Mにより発生する力との足し算となる。 Here, the moment around the point A will be described in a little more detail with reference to FIGS. Since the connection portion 9 is a contact connection with a spring property, only the force in the direction perpendicular to the conductor axis is transmitted, and no moment is transmitted. Therefore, the point C in FIG. 12 can be considered as a free end. Since the connection part 11 is the same, the point D in FIG. 12 is also a free end. L-shaped conductor 5 and the electrode 3 2 for fixing by the fixing bolts 6 1, A point is a fixed end. Pulling load generated in the fixing bolt 61 for fixing the L-shaped conductor 5 are added to the electromagnetic force F1, F2, F3, the addition of the force generated by the moment of the point A about M 1, M 2, M 3 .
 各モーメントは、
  M=L1/2×F1、
  M=L2/2×F2、
  M=L2×F3/2、
 L3は両端を接続部9および11で固定されているため、L2側端には、F3の半分の力を受けると仮定した。よってA点回りの全モーメントMtは
 Mt=M+M+M=(L1×F1+L2×(F2+F3))/2
で表される。
Each moment is
M 1 = L1 / 2 × F1,
M 2 = L2 / 2 × F2,
M 3 = L2 × F3 / 2,
Since L3 is fixed at both ends by the connecting portions 9 and 11, it is assumed that the L2 side end receives half the force of F3. Therefore, the total moment Mt around the point A is Mt = M 1 + M 2 + M 3 = (L1 × F1 + L2 × (F2 + F3)) / 2
It is represented by
 次に、図14を参照してA点回りのモーメントMtにより発生する固定ボルト6の引抜き荷重について説明する。 Next, the fixing bolts 61 of the pull-out load generated by the moment Mt of the point A around will be described with reference to FIG. 14.
 Mtは支点E及びモーメントアームrによって次式で表される固定ボルト6の引抜き荷重Fbを発生させる。
  Fb=Mt/r
Mt generates a pulling force Fb 1 of fixing bolts 61 represented by the following formula by the fulcrum E and moment arm r.
Fb 1 = Mt / r
 F2およびF3は、L形導体5と電極3を固定している固定ボルト6と平行であるため、引抜き荷重として作用する。但し、F3はL2側端にかかる力が影響するため、半分となる。従って、固定ボルト6に発生する全引き抜き荷重Fbは下式となる。
 Fb=(L1×F1+L2×(F2+F3))/2r+(F2+F3/2)
F2 and F3, for fixing bolts 61 to be parallel that secure the L-shaped conductor 5 and the electrode 3 2, acts as a pull-out load. However, F3 is halved because the force applied to the L2 side end is affected. Accordingly, the total drawing force Fb generated in the fixing bolt 61 becomes the following expression.
Fb = (L1 × F1 + L2 × (F2 + F3)) / 2r + (F2 + F3 / 2)
 以上のように、固定ボルト6に発生する引き抜き荷重Fbにおいて、モーメントM、Mによる力が大きく影響しており、従来構造では、モーメントM、Mは構造により決まる値であり、小さくすることはできない。よって導体径、ボルトピッチ寸法を小さくするには限界があり、更なる機器の縮小化を達成するために新しいL形導体構造のガス絶縁母線が求められている。 In the above manner, drawing force Fb generated in the fixing bolt 61, the moment M 2, M 3 and a force is significantly influenced by, in the conventional structure, the moment M 2, M 3 is a value determined by the structure, It cannot be made smaller. Therefore, there is a limit to reducing the conductor diameter and the bolt pitch dimension, and a new gas-insulated bus bar with an L-shaped conductor structure is required to achieve further reduction in equipment.
 本発明が解決しようとする課題は、短時間耐電流により発生する電磁力によるボルト引抜き荷重を小さくし、導体径を最小化できるガス絶縁母線を提供することにある。 The problem to be solved by the present invention is to provide a gas-insulated bus that can reduce the bolt pull-out load due to electromagnetic force generated by short-time withstand current and minimize the conductor diameter.
 実施形態のガス絶縁母線は、絶縁ガスを充填するとともに長手方向および長手方向と直交する方向にそれぞれ開口部を有する筒状のタンクと、前記タンク内部の長手方向に配置された長手方向導体と、前記長手方向導体に接続されかつ当該長手方向導体に直交するように配置された径方向導体と、前記タンクの前記開口部で前記長手方向導体および前記径方向導体を固定する絶縁スペーサと、を有するガス絶縁母線において、前記長手方向導体の中心軸および前記径方向導体の中心軸との交点に、前記長手方向導体と前記径方向導体との接続部を配置したことを特徴とする。 The gas-insulated bus of the embodiment includes a cylindrical tank that is filled with an insulating gas and has openings in the longitudinal direction and the direction perpendicular to the longitudinal direction, and a longitudinal conductor disposed in the longitudinal direction inside the tank, A radial conductor connected to the longitudinal conductor and arranged to be orthogonal to the longitudinal conductor; and an insulating spacer for fixing the longitudinal conductor and the radial conductor at the opening of the tank. In the gas-insulated bus, a connecting portion between the longitudinal conductor and the radial conductor is disposed at an intersection of the central axis of the longitudinal conductor and the central axis of the radial conductor.
本発明の実施形態1におけるガス絶縁母線を示す断面図である。It is sectional drawing which shows the gas insulation bus-line in Embodiment 1 of this invention. 図1の電磁力とモーメントの関係を模式的に示した図である。It is the figure which showed typically the relationship between the electromagnetic force of FIG. 1, and a moment. 実施形態1の変形例のガス絶縁母線を示す断面図である。FIG. 6 is a cross-sectional view showing a gas insulated bus according to a modification of the first embodiment. 本発明の実施形態2におけるガス絶縁母線を示す断面図である。It is sectional drawing which shows the gas insulation bus-line in Embodiment 2 of this invention. 本発明の実施形態3におけるガス絶縁母線を示す断面図である。It is sectional drawing which shows the gas insulation bus-line in Embodiment 3 of this invention. 図5のガス絶縁母線の組立過程を示す断面図である。It is sectional drawing which shows the assembly process of the gas insulation bus-line of FIG. 実施形態3の変形例のガス絶縁母線を示す断面図である。FIG. 10 is a cross-sectional view showing a gas insulated bus according to a modification of the third embodiment. 本発明の実施形態4におけるガス絶縁母線の組立過程を示す断面図である。It is sectional drawing which shows the assembly process of the gas insulated bus in Embodiment 4 of this invention. 従来のガス絶縁母線の構造図である。It is a structural diagram of a conventional gas insulated bus. 従来のガス絶縁母線の組立過程を示す断面図である。It is sectional drawing which shows the assembly process of the conventional gas insulated bus. 従来のガス絶縁母線の組立過程を示す断面図である。It is sectional drawing which shows the assembly process of the conventional gas insulated bus. 図9のガス絶縁母線の電磁力とモーメントの関係を模式的に示した図である。It is the figure which showed typically the relationship between the electromagnetic force and moment of the gas insulation bus-line of FIG. L形導体に働く電磁力方向の模式図である。It is a schematic diagram of the electromagnetic force direction which acts on an L-shaped conductor. 埋め込み電極とL形導体とのボルト締結図である。It is a bolt fastening diagram of an embedded electrode and an L-shaped conductor.
 以下、図面を参照して、本発明の実施形態について説明する。なお、各図を通して同一部分には同一符号を付けて、重複する説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the same portions are denoted by the same reference numerals throughout the drawings, and redundant descriptions are omitted as appropriate.
[実施形態1]
 図1は本発明に係るガス絶縁母線の実施形態1の構成図であり、図2は実施形態1のガス絶縁母線に発生する電磁力とモーメントの関係を模式的に示した図である。
[Embodiment 1]
FIG. 1 is a configuration diagram of Embodiment 1 of a gas insulated bus according to the present invention, and FIG. 2 is a diagram schematically showing a relationship between electromagnetic force and moment generated in the gas insulated bus of Embodiment 1.
 図1において、本実施形態1が図9で示した従来構成のガス絶縁母線と相違する主な点は、L形導体5を直線状の径方向導体5Aに替えたことと、この径方向導体5Aの中心線CLと長手方向導体7の中心線CLとの交点部に両導体5Aおよび7の接続部9を配置したことにある。その他は図7の構成と同様の構成である。 In FIG. 1, the main differences between the first embodiment and the conventional gas-insulated bus shown in FIG. 9 are that the L-shaped conductor 5 is replaced with a linear radial conductor 5A, and this radial conductor. the intersection portion of the center line CL 1 of the center line CL 2 and longitudinal conductor 7 of 5A lies in placing the connection part 9 of both conductors 5A and 7. The other configuration is the same as that of FIG.
 本実施形態1で採用した径方向導体5Aは、一端部に形成された接触子5Aを固定ボルト6にて絶縁スペーサ2の埋め込み電極3に電気的に接続されるとともに機械的に堅牢に固定されており、他端部に形成された円形嵌合溝部5Aを長手方向導体7の中心線CLと同心状に配置している。そして、この円形嵌合溝部5Aには長手方向導体7の一端部に形成された丸棒状接触子7が接触片8を介して嵌合接続しており、これによって両導体5Aおよび7を電気的に良好に接続している。 Radial conductor 5A employed in this first embodiment, together with a mechanically connected contactors 5A 1 formed at one end fixing bolt 61 in electrically the buried electrode 3 and second insulating spacer 2 2 are rigidly secured, are arranged circular fitting groove 5A h formed at the other end in the longitudinal center line direction conductors 7 CL 1 coaxially. And, this is a circular fitting groove 5A h has longitudinal round rod-like contactor 71 formed at one end of the direction conductor 7 via a contact piece 81 fit connection, whereby both conductors 5A and 7 Have a good electrical connection.
 この長手方向導体7は他端部(図示上部)にも同様に丸棒状接触子7を形成しており、この他端部の丸棒状接触子7は接触片8を介して接続導体10の円形嵌合溝部10に嵌合接続され、接続導体10と電気的に良好に接続されている。このように、径方向導体5Aと長手方向導体7とは、長手方向導体7端部に形成されている丸棒状接触子7を径方向導体5A端部の円形嵌合溝部5Aに接触片8を介して差し込むだけで接続部9を組立てることができるようになっている。 The longitudinal conductors 7 forms a second end portion (shown top) in a round rod-like contactor 7 2 Similarly, a round rod-like contactor 7 2 via the contact piece 82 connecting conductor of the other end portion 10 are fitted and connected to the circular fitting groove 10 h and are electrically connected to the connecting conductor 10 in an excellent manner. Thus, the radial conductor 5A and a longitudinal conductor 7, contact the round rod-like contactor 71 which is formed longitudinally conductor 7 end in the radial conductor 5A edge of the circular fitting groove 5A h piece thereby making it possible to assemble the connecting portion 9 only by inserting through the 8 1.
 このように、タンク1の長手方向中心線CLと、これに直交する径方向の中心線CLとの交差部で、径方向導体5Aの端部と長手方向導体7の端部とを接続することによって、埋め込み電極3に固定される側の径方向導体5Aの端部は接続構造上固定端となり、また径方向導体5Aの他端部側の接続部9は接点接続のために自由端となる。同様に、長手方向導体7の他端部の丸棒状接触子7側と接続導体10との接続部11も接点接続のため、自由端となる。 Thus, connected to the longitudinal center line CL 1 of the tank 1, at the intersection with the radial direction of the center line CL 2 orthogonal thereto, and end portions of the longitudinal conductor 7 of the radial conductor 5A by, embedded electrode 3 end of the radial conductor 5A of 2 on the side to be fixed becomes connected structurally fixed end and the radial conductor the other end of the connecting portion 9 of 5A is free for contact connection End. Similarly, since the connecting portion 11 of the round rod-like contactor 7 2 side and the connection conductor 10 of the other end of the longitudinal conductors 7 also contact connection, the free end.
 図1のように構成されたガス絶縁母線では、短時間電流通電により電磁力が発生したとき、図2に示す様に径方向導体5AにF1方向、長手方向導体7にF4方向への電磁力が作用する。電磁力F4によって発生するB点回りのモーメントMは、接続部9が自由端であるため、A点には伝わらない。 In the gas-insulated bus configured as shown in FIG. 1, when an electromagnetic force is generated by a short time current application, the electromagnetic force in the F1 direction is applied to the radial conductor 5A and the F4 direction is applied to the longitudinal conductor 7 as shown in FIG. Works. Moment M 4 point B around generated by the electromagnetic force F4, since the connection portion 9 is a free end, not transmitted to the A point.
 本実施形態1が図1の構成を採用した結果、図12のB-C間の距離L2によって発生していたA点回りのモーメントMが発生しないことを以下説明する。  As a result of adopting the configuration of FIG. 1 in the first embodiment, it will be described below that the moment M 2 around the point A generated by the distance L2 between B and C in FIG. 12 does not occur.
 ここで、図12におけるモーメントM、Mが固定ボルト6に対して、どの程度引抜き荷重に影響を与えていたのかについて、具体的な数値を代入してその効果の例を示す。 Here, with respect to the moment M 2, M 3 is fixed bolt 61 in Figure 12, about what had affected the extent pulling load, shows an example of the effect by substituting specific numerical values.
 図12の従来構造のガス絶縁母線について、下記数値を代入して電磁力とモーメントを求める。
  L1=500[mm]、
  L2=250[mm]、
  L3=2250[mm]、
  r=40[mm]
 L形ガス絶縁母線に流れる短時間電流は、i=104kAp(40kA×2.6倍)とする。
For the gas insulated bus having the conventional structure shown in FIG. 12, the electromagnetic force and moment are obtained by substituting the following numerical values.
L1 = 500 [mm],
L2 = 250 [mm],
L3 = 2250 [mm],
r = 40 [mm]
The short-time current flowing through the L-shaped gas insulated bus is assumed to be i = 104 kAp (40 kA × 2.6 times).
 以上の値より、計算した結果を下記に示す。
  F1=352[kgf]=3452[N]、
  F2=196[kgf]=1922[N]、
  F3=140[kgf]=1373[N]、
よって、固定ボルト6の全引抜き荷重は、
 Fb=(L1×F1+L2×(F2+F3))/2r+(F2+F3/2)
   =3516[kgf]=34.5[kN]
となる。
Based on the above values, the calculation results are shown below.
F1 = 352 [kgf] = 3452 [N],
F2 = 196 [kgf] = 1922 [N],
F3 = 140 [kgf] = 1373 [N],
Thus, the total pulling force of the fixing bolts 61 are
Fb = (L1 × F1 + L2 × (F2 + F3)) / 2r + (F2 + F3 / 2)
= 3516 [kgf] = 34.5 [kN]
It becomes.
 ちなみに、M、M、Mの値は下記となる。
  M=88000[kg・mm]=863[Nm]、
  M=24500[kg・mm]=240[Nm]、
  M=17500[kg・mm]=172[Nm]
Incidentally, the values of M 1 , M 2 , and M 3 are as follows.
M 1 = 88000 [kg · mm] = 863 [Nm],
M 2 = 24500 [kg · mm] = 240 [Nm],
M 3 = 17500 [kg · mm] = 172 [Nm]
 次に、図2に示す実施形態1の構造について固定ボルト6の引抜き荷重を計算する。
 以下に図2に示す寸法に対して代入する値を示す。
  L1=500[mm]、
  L4=2500[mm]、
  r=40[mm]
 L形ガス絶縁母線に流れる短時間電流はi=104kAp(40kA×2.6倍)とする。
Next, calculate the pull-out load of the fixing bolt 61 about the structure of the first embodiment shown in FIG.
The values to be substituted for the dimensions shown in FIG. 2 are shown below.
L1 = 500 [mm],
L4 = 2500 [mm],
r = 40 [mm]
The short-time current flowing through the L-shaped gas insulated bus is assumed to be i = 104 kAp (40 kA × 2.6 times).
 以上の値より、計算した結果を下記に示す。
  F1=352[kgf]、
  F4=336[kgf]、
  M=88000[kg・mm]=863[Nm]
よって、固定ボルト6の全引抜き荷重は、電磁力F4の半分とMにより
  Fb=F4/2+M/r=2368[kgf]=23.2[kN]
となる。
Based on the above values, the calculation results are shown below.
F1 = 352 [kgf],
F4 = 336 [kgf],
M 1 = 88000 [kg · mm] = 863 [Nm]
Thus, the total pulling force of the fixing bolts 61 are, Fb = F4 / 2 + M 1 /r=2368[kgf]=23.2[kN by half and M 1 of the electromagnetic force F4]
It becomes.
 本実施形態1では、M、Mの影響を無くしたことで、電磁力によるボルトの引抜荷重を従来構造に対して、67%低減でき、ボルトピッチ寸法の縮小、及び導体径縮小化を達成し、機器寸法の縮小化が可能である。 In the first embodiment, by eliminating the influence of M 2 and M 3 , the bolt pull-out load due to electromagnetic force can be reduced by 67% compared to the conventional structure, and the bolt pitch dimension and conductor diameter can be reduced. Achieved, and the size of the equipment can be reduced.
 以上述べたように、本実施形態1によれば、径方向導体5Aに対する、電磁力によるボルトの引抜き荷重が小さくなり、その結果径方向導体5Aの導体径を最小化できるガス絶縁母線を提供することが可能となる。 As described above, according to the first embodiment, a gas-insulated bus bar that can reduce the pull-out load of the bolt due to electromagnetic force on the radial conductor 5A and consequently minimize the conductor diameter of the radial conductor 5A is provided. It becomes possible.
[実施形態1の変形例]
 長手方向導体7と径方向導体5Aとによる接続部9の構成は、図1に限定されるものではなく、図3の如く変形しても差し支えない。
[Modification of Embodiment 1]
The configuration of the connecting portion 9 formed by the longitudinal conductor 7 and the radial conductor 5A is not limited to that shown in FIG. 1 and may be modified as shown in FIG.
 図3の構成は、長手方向導体7の図示下端部に形成した丸棒状接触子7を延長させ、一方、この丸棒状接触子7の延長部分に対向して閉塞蓋4の替わりに絶縁スペーサ2を設け、この絶縁スペーサ2の埋め込み電極3に接続導体10Aを接続固定し、丸棒状接触子7とこの接続導体10Aとを接触片8を介して接続することによって、ほぼ直交したT字形の導体構造を有するガス絶縁母線に適用した例を示す。 Arrangement of Figure 3, the round rod-like contactor 71 formed in the bottom end portion in the longitudinal direction conductor 7 is extended, while the insulation in place of the closing lid 4 so as to face the extended portion of the round rod-like contactor 7 1 the spacer 2 3 provided by the insulation spacer 2 3 embedded electrodes 3 3 a connection conductor 10A to a connection fixed and connected through the contact pieces 8 3 and a connection conductor 10A of a round rod-like contactor 7 1 Toko, An example in which the present invention is applied to a gas-insulated bus having a substantially orthogonal T-shaped conductor structure is shown.
 更に、図示しないが図3のT字形の導体構造を十字形の導体構造に変更するようにしてもよい。 Further, although not shown, the T-shaped conductor structure of FIG. 3 may be changed to a cross-shaped conductor structure.
[実施形態2]
 以下、本発明に係るガス絶縁母線の実施形態2について図4を参照して説明する。なお、実施形態1と同一の構成には同一の符号を付し、重複する説明は省略する。
[Embodiment 2]
Hereinafter, Embodiment 2 of the gas insulated bus according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as Embodiment 1, and the overlapping description is abbreviate | omitted.
 本実施形態2は、実施形態1の長手方向導体7の両端部に形成した丸棒状接触子7および7をそれぞれ球形状接続部7および7に変更し、接続部9の球形状接続部7の接点を径方向導体5Aの導体中心線CL上に配置し、同様に接続部11でも球形状接続部7と接続導体10とを接続する。 Embodiment 2 is changed in the longitudinal direction round rod-like contactor 7 which is formed at both ends of the conductor 7 1 and 7 2 respectively spherical connection 7 3 and 7 4 of the first embodiment, spherical shape of the connecting portion 9 the contact of the connecting portion 7 3 disposed on the radial conductor 5A conductor centerline CL 2 of, for connecting the connection conductor 10 similarly to the connecting portion 11 even spherical connection 7 4.
 さらに、タンク1と接続導体10側の絶縁スペーサ2との間は内部の導体やタンクの大変位を吸収するためのベロー12を取付ける。 Furthermore, between the insulating spacer 2 1 tank 1 and the connecting conductor 10 side to mount the bellows 12 for absorbing large displacement of the inner conductor and the tank.
 本実施形態2は、以上のように構成したので、実施形態1の径方向導体5Aの固定ボルト6のボルト径やボルトピッチ寸法を最小にすることができるという効果に加えて、長手方向導体7の傾きの自由度が増すことで、ベロー12の変位吸収能力を妨げることなく、電磁力による径方向導体5Aの固定ボルト6回りに発生するモーメントを抑制することができる。この結果、導体径やボルトピッチ寸法を小さくすることが可能となり、大変位吸収機能を有し機器全体の縮小化を達成することが可能となる。 Embodiment 2, since it is configured as described above, in addition to the effect of the bolt diameter and bolt pitch dimension of the fixing bolt 61 in the radial conductor 5A of the first embodiment can be minimized, longitudinal conductors by seven degrees of freedom of the slope of the increase, without interfering with the displacement absorbing capacity of the bellows 12, it is possible to suppress the moment generated in the fixed bolt 61 around the radial conductor 5A by electromagnetic force. As a result, the conductor diameter and the bolt pitch dimension can be reduced, and a large displacement absorbing function can be achieved, thereby reducing the size of the entire device.
[実施形態3]
 以下、本発明に係るガス絶縁母線の実施形態3について図5および図6を参照して説明する。図5はタンク1内に径方向導体5Aを組込んだ状態を示し、図6は図5の組立過程を示す断面図であり、一体化された径方向導体5Aおよび絶縁スペーサ2を組込む前の状態を示す。
[Embodiment 3]
Hereinafter, Embodiment 3 of the gas insulated bus according to the present invention will be described with reference to FIGS. Figure 5 shows a state incorporating radial conductor 5A in the tank 1, FIG. 6 is a sectional view showing an assembly process of FIG. 5, integrated radial conductor 5A and the insulating spacer 2 2 before incorporating Shows the state.
 図5および図6において、本実施形態3は前述した実施形態1における長手方向導体7と径方向導体5Aとの接続構成を変更したことを特徴としたものであり、実施形態1と同一の構成には、同一の符号を付し、重複する説明は省略する。 5 and 6, the third embodiment is characterized in that the connection configuration between the longitudinal conductor 7 and the radial conductor 5A in the first embodiment is changed, and the same configuration as that of the first embodiment. Are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態3は、長手方向導体7の丸棒状接触子7に替えて中心線CLと同心状に円形嵌合溝部7を設け、また、径方向導体5Aの円形嵌合溝部5Aに替えて丸棒状接触子5Aを設けたことを特徴とする。 Embodiment 3 is provided with a circular fitting groove 7 h longitudinally conductor 7 in place of the round-rod-like contactor 71 of the center line CL 2 concentric and circular fitting groove 5A h of the radial conductor 5A Instead of this, a round bar contact 5A 2 is provided.
 これにより長手方向導体7の接続部11は長手方向導体7の中心軸CLと同軸上に、もう一方の接続部9は径方向導体5Aの中心軸CLと同軸上に構成される。 Thus the connection part 11 of the longitudinal conductor 7 in the longitudinal direction conductor 7 central axis CL 1 and coaxially with, the other connecting portion 9 is configured with the central axis CL 2 coaxially in the radial conductor 5A.
 長手方向導体7の中心軸CLと軸直角方向に設けた丸棒状接触子5Aとにより径方向導体5Aには長手方向導体7に働く電磁力によるボルト引抜き荷重を0kgにすることが可能となる。すなわち径方向導体5AはF1により発生するモーメントMから受ける引抜き荷重に耐えるだけで良くなる。つまり図2において
  Mt=M=Fb×r
となり、固定ボルト6回りに発生するモーメントが小さくなる。
It can be a bolt pulling load by electromagnetic force acting in the longitudinal direction conductor 7 to 0kg the central axis CL 1 and round bar contactor 5A 2 and the radial conductor 5A provided in the axis-perpendicular direction of the longitudinal conductor 7 Become. That radial conductor 5A is need only withstand the pull-out load received from moment M 1 generated by F1. That is, in FIG. 2, Mt = M 1 = Fb × r
Next, the moment generated in the fixed bolt 61 around smaller.
 以上の構成により、固定ボルト6の引抜き荷重Fbは実施形態1の値を用いて計算すると
  Fb=M/r=88000/40=2200[kgf]=21.6[kN]
となり、実施形態1よりさらに93%に低減でき、従来構造に対しては63%に低減できる。
With the above configuration, pulling the load Fb of the fixing bolt 6 1 is calculated using the values of Embodiment 1 Fb = M 1 /r=88000/40=2200[kgf]=21.6[kN]
Thus, it can be further reduced to 93% from the first embodiment, and to 63% with respect to the conventional structure.
 本実施形態3の構成を用いた場合、L4が長い場合や短時間耐電流が大きな場合に効果を発揮する。 When the configuration of the third embodiment is used, the effect is exhibited when L4 is long or the short-time withstand current is large.
 以上述べたように、本実施形態3によれば固定ボルト引抜き荷重を最小とし、短時間電流による電磁力の影響を抑えたL形のガス絶縁母線を提供することが可能となる。 As described above, according to the third embodiment, it is possible to provide an L-shaped gas-insulated bus that minimizes the fixing bolt pull-out load and suppresses the influence of electromagnetic force due to a short-time current.
[実施形態3の変形例]
 長手方向導体7と径方向導体5Aとの接続は、前述した図5、図6に限定されるものではなく、図7の如く変形しても差し支えない。
[Modification of Embodiment 3]
The connection between the longitudinal conductor 7 and the radial conductor 5A is not limited to the above-described FIGS. 5 and 6 and may be deformed as shown in FIG.
 図7は、接続部9側に位置する長手方向導体7をタンク開口部1b側に向けて延長し、また、閉塞蓋4に替えて設けた絶縁スペーサ2の埋め込み電極3に接続固定される接続導体10Aを設け、長手方向導体7の丸棒状接触子7とこの接続導体10Aとを接触片8を介して接続することによって、ほぼ直交したT字形の導体構造を有するガス絶縁母線にも適用した例を示す。 Figure 7 is a longitudinal conductors 7 positioned on the connecting portion 9 side extending toward the tank opening 1b side, also fixedly connected to the embedded electrodes 3 3 of insulating spacer 2 3 provided in place of the closed lid 4 that the connection conductor 10A provided, the longitudinal round rod-like contactor 7 1 Toko direction conductor 7 of a connection conductor 10A by connecting through the contact pieces 8 3, gas insulated bus having a conductor structure of T-shaped and substantially perpendicular An example applied to is also shown.
 更に、図示しないが図7のT字形の導体構造を十字形の導体構造に変更するようにしてもよい。 Further, although not shown, the T-shaped conductor structure of FIG. 7 may be changed to a cross-shaped conductor structure.
[実施形態4]
 以上説明した実施形態1(図1)乃至実施形態3の変形例(図7)によるガス絶縁母線は、1つのタンクに1つの母線を収納した単相構造に適用した例であるが、本実施形態4は、1つのタンクに3相の母線を収納した所謂3相一括構造に適用したものである。以下、図8を参照して具体的に説明する。
[Embodiment 4]
The gas insulated bus according to the modified example (FIG. 7) of Embodiment 1 (FIG. 1) to Embodiment 3 described above is an example applied to a single-phase structure in which one bus is accommodated in one tank. Form 4 is applied to a so-called three-phase collective structure in which three-phase buses are stored in one tank. Hereinafter, a specific description will be given with reference to FIG.
 図8は本実施形態4による三相一括構造のガス絶縁母線の組立過程を示す図である。なお、図8ではタンク1内の長手方向導体7および接続部9を省略している。 FIG. 8 is a diagram showing an assembling process of the gas insulated bus having a three-phase collective structure according to the fourth embodiment. In FIG. 8, the longitudinal conductor 7 and the connecting portion 9 in the tank 1 are omitted.
 以下、図10に示す従来形状のL形導体と対比しながら本実施形態4によるガス絶縁母線の組立手順について説明する。 Hereinafter, a procedure for assembling the gas insulated bus according to the fourth embodiment will be described in comparison with the L-shaped conductor having the conventional shape shown in FIG.
 径方向導体5Aと絶縁スペーサ2を締結した導体組立部分をタンク1へ取り付けする際、タンク開口部1cを通して組立をする必要がある。図10で示した従来形状のL形導体5では、L形導体5のX部分をタンク開口部1cへ挿入する際、損傷させないようにするために、時計回りに回転させる場合があり、組立性の難易度が高く作業時間もかかる。 When attaching the conductive assembly portion entered into radial conductor 5A and the insulation spacer 2 2 to the tank 1, it is necessary to assembly through the tank opening 1c. The conventional L-shaped conductor 5 shown in FIG. 10 may be rotated clockwise in order to prevent damage when inserting the X portion of the L-shaped conductor 5 into the tank opening 1c. The difficulty level is high and it takes a long time.
 しかしながら、本実施形態4によるガス絶縁母線は、図8に示すように径方向導体5Aが直線のため図10中のようにほぼ90度に折曲したX部分がなくなり、組立が容易となって作業時間を短縮することができる。また、従来形状のL形導体5では、図11に示すように最終ドッキング箇所は、接続部9ではタンク開口部1cから目視確認ができないため、タンク開口部1a側から目視確認できる接続部11のみとなる。 However, in the gas insulated bus according to the fourth embodiment, since the radial conductor 5A is straight as shown in FIG. 8, there is no X portion bent at about 90 degrees as shown in FIG. Work time can be shortened. Moreover, in the L-shaped conductor 5 of the conventional shape, as shown in FIG. 11, since the final docking location cannot be visually confirmed from the tank opening 1c at the connecting portion 9, only the connecting portion 11 that can be visually confirmed from the tank opening 1a side. It becomes.
 これに対して、本実施形態4では、前述した実施形態3の図6と同様、径方向導体5Aと長手方向導体7の交点に接続部9を設けているため、タンク開口部1cからも接続部9の目視確認が可能となり、最終ドッキング箇所は、接続部9と11の両方で可能となり、組立の効率向上を図ることができる。 On the other hand, in the fourth embodiment, since the connection portion 9 is provided at the intersection of the radial conductor 5A and the longitudinal conductor 7 as in FIG. 6 of the third embodiment described above, the connection is also made from the tank opening 1c. The portion 9 can be visually confirmed, and the final docking location can be provided at both the connecting portions 9 and 11, so that the assembly efficiency can be improved.
 以上の構成により、組立作業時間が短縮できると共に、導体形状の小形化も可能となり、低廉なガス絶縁母線を提供することができる。 With the above configuration, the assembly work time can be shortened, the conductor shape can be reduced, and an inexpensive gas insulated bus can be provided.
[実施形態5の変形例]
 本構造は図7の如くほぼ直交したT字形の導体構造を有したガス絶縁母線にも適用可能である。更に、十字形の導体構造にも応用できる。
[Modification of Embodiment 5]
This structure can also be applied to a gas-insulated bus having a T-shaped conductor structure substantially orthogonal as shown in FIG. Furthermore, it can be applied to a cross-shaped conductor structure.
 以上説明した実施形態によれば、径方向導体に対する、電磁力によるボルトの引抜き荷重が小さくなり、その結果径方向導体の導体径を最小化することが可能となる。 According to the embodiment described above, the bolt pull-out load due to electromagnetic force on the radial conductor is reduced, and as a result, the conductor diameter of the radial conductor can be minimized.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1…タンク、2,2,2…絶縁スペーサ、3,3,3…埋め込み電極、4…閉塞板、5A…径方向導体、5A…接触子、5A…円形嵌合溝部、6,6,6…固定ボルト、7…長手方向導体、7,7…丸棒状接触子、7,7…球形状接続部、7…円形嵌合溝部、8,8,8…接触片、9…接続部、10…接続導体、11…接続部、G…絶縁ガス、12…ベロー 1 ... tank, 2 1, 2 2, 2 3 ... insulating spacer, 3 1, 3 2, 3 3 ... buried electrode, 4 ... closing plates, 5A ... radial conductor, 5A 1 ... contact, 5A h ... fitting circular if the grooves, 6 1, 6 2, 6 3 ... fixing bolt 7 ... longitudinal conductors, 7 1, 7 2 ... round bar contactor, 7 3, 7 4 ... spherical connection portion 7 h ... circular engagement groove , 8 1 , 8 2 , 8 3 ... contact piece, 9 ... connection part, 10 ... connection conductor, 11 ... connection part, G ... insulating gas, 12 ... bellows

Claims (5)

  1.  絶縁ガスを充填するとともに長手方向および長手方向と直交する方向にそれぞれ開口部を有する筒状のタンクと、前記タンク内部の長手方向に配置された長手方向導体と、前記長手方向導体に接続されかつ当該長手方向導体に直交するように配置された径方向導体と、前記タンクの前記開口部で前記長手方向導体および前記径方向導体を固定する絶縁スペーサと、を有するガス絶縁母線において、
     前記長手方向導体の中心軸および前記径方向導体の中心軸との交点に、前記長手方向導体と前記径方向導体との接続部を配置したことを特徴とするガス絶縁母線。
    A cylindrical tank filled with an insulating gas and having openings in the longitudinal direction and the direction perpendicular to the longitudinal direction, a longitudinal conductor disposed in the longitudinal direction inside the tank, and connected to the longitudinal conductor; In a gas-insulated bus having a radial conductor arranged to be orthogonal to the longitudinal conductor, and an insulating spacer that fixes the longitudinal conductor and the radial conductor at the opening of the tank,
    A gas-insulated bus in which a connecting portion between the longitudinal conductor and the radial conductor is disposed at an intersection between the central axis of the longitudinal conductor and the central axis of the radial conductor.
  2.  請求項1記載のガス絶縁母線において、
     前記長手方向導体の端部を丸棒状に形成し、前記径方向導体の端部を円形嵌合溝に形成し、丸棒状の前記端部を前記円形嵌合溝に嵌合して前記長手方向導体と前記径方向導体との接続部を形成したことを特徴とするガス絶縁母線。
    The gas-insulated bus according to claim 1,
    The end of the longitudinal conductor is formed in a round bar shape, the end of the radial conductor is formed in a circular fitting groove, and the end of the round bar is fitted in the circular fitting groove in the longitudinal direction. A gas-insulated bus having a connection portion between a conductor and the radial conductor.
  3.  請求項1記載のガス絶縁母線において、
     前記長手方向導体の端部を球形状に形成し、前記径方向導体の端部を円形嵌合溝に形成し、球形状の前記端部を前記円形嵌合溝に嵌合して前記長手方向導体と前記径方向導体との接続部を形成したことを特徴とするガス絶縁母線。
    The gas-insulated bus according to claim 1,
    The end of the longitudinal conductor is formed into a spherical shape, the end of the radial conductor is formed into a circular fitting groove, and the end of the spherical shape is fitted into the circular fitting groove to form the longitudinal direction. A gas-insulated bus having a connection portion between a conductor and the radial conductor.
  4.  請求項1記載のガス絶縁母線において、
     前記長手方向導体の端部を前記径方向導体の中心軸と同心の円形嵌合溝に形成し、前記径方向導体の端部を丸棒状または球形状に形成し、丸棒状または球形状の前記端部を前記円形嵌合溝に嵌合して前記長手方向導体と前記径方向導体との接続部を形成したことを特徴とするガス絶縁母線。
    The gas-insulated bus according to claim 1,
    The end portion of the longitudinal conductor is formed in a circular fitting groove concentric with the central axis of the radial conductor, the end portion of the radial conductor is formed in a round bar shape or a spherical shape, and the round bar shape or the spherical shape is formed. A gas-insulated bus in which an end portion is fitted into the circular fitting groove to form a connection portion between the longitudinal conductor and the radial conductor.
  5.  請求項1記載のガス絶縁母線において、
     3相各相分の、前記長手方向導体および前記径方向導体を1つのタンクに収納したことを特徴とするガス絶縁母線。
    The gas-insulated bus according to claim 1,
    A gas-insulated bus in which the longitudinal conductor and the radial conductor for each of the three phases are housed in one tank.
PCT/JP2011/002065 2010-04-07 2011-04-07 Gas-insulated bus WO2011125332A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180016905.2A CN102823095B (en) 2010-04-07 2011-04-07 Gas insulated bus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010088717A JP5523903B2 (en) 2010-04-07 2010-04-07 Gas insulated bus
JP2010-088717 2010-04-07

Publications (1)

Publication Number Publication Date
WO2011125332A1 true WO2011125332A1 (en) 2011-10-13

Family

ID=44762302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002065 WO2011125332A1 (en) 2010-04-07 2011-04-07 Gas-insulated bus

Country Status (3)

Country Link
JP (1) JP5523903B2 (en)
CN (1) CN102823095B (en)
WO (1) WO2011125332A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097951A (en) * 2021-04-01 2021-07-09 云南送变电工程有限公司 Method for hoisting vertical expansion joint of lower 500kVGIL pipeline bus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515832B2 (en) * 2016-01-29 2019-05-22 東芝三菱電機産業システム株式会社 Switchboard, Bus
WO2018205093A1 (en) 2017-05-08 2018-11-15 Abb Schweiz Ag Gas-insulated line, gas-insulated switchgear and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142537A (en) * 1978-04-27 1979-11-06 Mitsubishi Electric Corp Gas insulated electric appliances
JPS58156315U (en) * 1982-04-12 1983-10-19 株式会社東芝 Busbar/Switchgear
JPS59216413A (en) * 1983-05-24 1984-12-06 三菱電機株式会社 Gas insulated bus device
JPS63131512U (en) * 1987-02-18 1988-08-29
WO2007116480A1 (en) * 2006-03-31 2007-10-18 Mitsubishi Denki Kabushiki Kaisha Gas-insulated electric power apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117574U (en) * 1984-01-18 1985-08-08 古河電気工業株式会社 Universal conductor connection
JP2000312411A (en) * 1999-04-26 2000-11-07 Toshiba Corp Gas insulated breaker
JP4048045B2 (en) * 2001-11-13 2008-02-13 株式会社日立製作所 Three-phase collective gas insulated bus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142537A (en) * 1978-04-27 1979-11-06 Mitsubishi Electric Corp Gas insulated electric appliances
JPS58156315U (en) * 1982-04-12 1983-10-19 株式会社東芝 Busbar/Switchgear
JPS59216413A (en) * 1983-05-24 1984-12-06 三菱電機株式会社 Gas insulated bus device
JPS63131512U (en) * 1987-02-18 1988-08-29
WO2007116480A1 (en) * 2006-03-31 2007-10-18 Mitsubishi Denki Kabushiki Kaisha Gas-insulated electric power apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097951A (en) * 2021-04-01 2021-07-09 云南送变电工程有限公司 Method for hoisting vertical expansion joint of lower 500kVGIL pipeline bus
CN113097951B (en) * 2021-04-01 2022-05-13 云南送变电工程有限公司 Method for hoisting lower 500kVGIL pipeline bus vertical expansion joint

Also Published As

Publication number Publication date
CN102823095B (en) 2016-01-20
CN102823095A (en) 2012-12-12
JP2011223708A (en) 2011-11-04
JP5523903B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP4555857B2 (en) Vacuum insulated switchgear
US8168909B2 (en) Vacuum switchgear
JP4962616B2 (en) Vacuum circuit breaker and gas insulated switchgear using the same
JP2011041407A (en) Switch gear and operation method of switch gear
TW480799B (en) Switch gear
WO2011125332A1 (en) Gas-insulated bus
JP4490486B2 (en) High voltage switchgear assembly
JP5002358B2 (en) Vacuum circuit breaker
US8420971B2 (en) Switching chamber insulation arrangement for a circuit breaker
JP2014030282A (en) Three-phase gas-insulated bus
JP4575325B2 (en) Gas insulated bus
JP5183794B2 (en) Switchgear
US8605412B2 (en) Gas insulated switchgear
JP2008112836A (en) Transformer for gas insulated meter
KR20180002931U (en) Outer case structure of current transformer in gas insulated switchgear
WO2010106916A1 (en) Integral three-phase gas insulated switchgear
JP4934506B2 (en) Phase adjusting equipment with switch for power system
US9006602B2 (en) Gas insulated switchgear
JP2019032994A (en) Vacuum switching device
JP2007295669A (en) Gas-insulated switchgear
KR101504795B1 (en) Gas Insulated Switchgear
JP2015107035A (en) Gas-insulated busbar and gas-insulated switchgear
KR101563588B1 (en) Coupling Structure of Conductor Hole Cover of GIS
KR101286291B1 (en) Gas-insulated switchgear
JP2009129855A (en) Vacuum circuit breaker

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016905.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3002/KOLNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11765234

Country of ref document: EP

Kind code of ref document: A1